1
|
Lee C, Lepore D, Lee SH, Kim TG, Buwa N, Lee J, Munson M, Yoon TY. Exocyst stimulates multiple steps of exocytic SNARE complex assembly and vesicle fusion. Nat Struct Mol Biol 2024:10.1038/s41594-024-01388-2. [PMID: 39242980 DOI: 10.1038/s41594-024-01388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Exocyst is a large multisubunit tethering complex essential for targeting and fusion of secretory vesicles in eukaryotic cells. Although the assembled exocyst complex has been proposed to tether vesicles to the plasma membrane and activate soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) for membrane fusion, the key biochemical steps that exocyst stimulates in SNARE-mediated fusion are undetermined. Here we use a combination of single-molecule and bulk fluorescence assays to investigate the roles of purified octameric yeast exocyst complexes in a reconstituted yeast exocytic SNARE assembly and vesicle fusion system. Exocyst had stimulatory roles in multiple distinct steps ranging from SNARE protein activation to binary and ternary complex assembly. Importantly, exocyst had a downstream role in driving membrane fusion and full content mixing of vesicle lumens. Our data suggest that exocyst provides extensive chaperoning functions across the entire process of SNARE complex assembly and fusion, thereby governing exocytosis at multiple steps.
Collapse
Affiliation(s)
- Chanwoo Lee
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Dante Lepore
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Seung-Hak Lee
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Tae Gyun Kim
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Natasha Buwa
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jongchan Lee
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Mary Munson
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
| |
Collapse
|
2
|
Duan M, Plemel RL, Takenaka T, Lin A, Delgado BM, Nattermann U, Nickerson DP, Mima J, Miller EA, Merz AJ. SNARE chaperone Sly1 directly mediates close-range vesicle tethering. J Cell Biol 2024; 223:e202001032. [PMID: 38478018 PMCID: PMC10943277 DOI: 10.1083/jcb.202001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
The essential Golgi protein Sly1 is a member of the Sec1/mammalian Unc-18 (SM) family of SNARE chaperones. Sly1 was originally identified through remarkable gain-of-function alleles that bypass requirements for diverse vesicle tethering factors. Employing genetic analyses and chemically defined reconstitutions of ER-Golgi fusion, we discovered that a loop conserved among Sly1 family members is not only autoinhibitory but also acts as a positive effector. An amphipathic lipid packing sensor (ALPS)-like helix within the loop directly binds high-curvature membranes. Membrane binding is required for relief of Sly1 autoinhibition and also allows Sly1 to directly tether incoming vesicles to the Qa-SNARE on the target organelle. The SLY1-20 mutation bypasses requirements for diverse tethering factors but loses this ability if the tethering activity is impaired. We propose that long-range tethers, including Golgins and multisubunit tethering complexes, hand off vesicles to Sly1, which then tethers at close range to initiate trans-SNARE complex assembly and fusion in the early secretory pathway.
Collapse
Affiliation(s)
- Mengtong Duan
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rachael L. Plemel
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Ariel Lin
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Biology, California State University, San Bernardino, CA, USA
| | | | - Una Nattermann
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Biophysics, Structure, and Design Graduate Program, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Joji Mima
- Institute for Protein Research, Osaka University, Osaka, Japan
| | | | - Alexey J. Merz
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Orr A, Wickner W. Sec18 binds the tethering/SM complex HOPS to engage the Qc-SNARE for membrane fusion. Mol Biol Cell 2024; 35:ar71. [PMID: 38536444 PMCID: PMC11151092 DOI: 10.1091/mbc.e24-02-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/18/2024] Open
Abstract
Membrane fusion is regulated by Rab GTPases, their tethering effectors such as HOPS, SNARE proteins on each fusion partner, SM proteins to catalyze SNARE assembly, Sec17 (SNAP), and Sec18 (NSF). Though concentrated HOPS can support fusion without Sec18, we now report that fusion falls off sharply at lower HOPS levels, where direct Sec18 binding to HOPS restores fusion. This Sec18-dependent fusion needs adenine nucleotide but neither ATP hydrolysis nor Sec17. Sec18 enhances HOPS recognition of the Qc-SNARE. With high levels of HOPS, Qc has a Km for fusion of a few nM. Either lower HOPS levels, or substitution of a synthetic tether for HOPS, strikingly increases the Km for Qc to several hundred nM. With dilute HOPS, Sec18 returns the Km for Qc to low nM. In contrast, HOPS concentration and Sec18 have no effect on Qb-SNARE recognition. Just as Qc is required for fusion but not for the initial assembly of SNAREs in trans, impaired Qc recognition by limiting HOPS without Sec18 still allows substantial trans-SNARE assembly. Thus, in addition to the known Sec18 functions of disassembling SNARE complexes, oligomerizing Sec17 for membrane association, and allowing Sec17 to drive fusion without complete SNARE zippering, we report a fourth Sec18 function, the Sec17-independent binding of Sec18 to HOPS to enhance functional Qc-SNARE engagement.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
4
|
Orr A, Wickner W. MARCKS Effector Domain, a reversible lipid ligand, illuminates late stages of membrane fusion. Mol Biol Cell 2023; 34:ar123. [PMID: 37672336 PMCID: PMC10846624 DOI: 10.1091/mbc.e23-06-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Yeast vacuolar HOPS tethers membranes, catalyzes trans-SNARE assembly between R- and Q-SNAREs, and shepherds SNAREs past early inhibition by Sec17. After partial SNARE zippering, fusion is driven slowly by either completion of SNARE zippering or by Sec17/Sec18, but rapid fusion needs zippering and Sec17/Sec18. Using reconstituted-vacuolar fusion, we find that MARCKS Effector Domain (MED) peptide, a lipid ligand, blocks fusion reversibly at a late reaction stage. The MED fusion blockade is overcome by either salt extraction, inactivation with the MED ligand calmodulin, or addition of Sec17/Sec18. During incubation with MED, SNAREs assemble stable complexes in trans and fusion becomes resistant to antibody to the Qa SNARE. When Q-SNAREs are preassembled, a synthetic tether can replace HOPS for fusion. With a synthetic tether, fusion needs both complete SNARE zippering and Sec17/Sec18 to overcome a MED block. In contrast, when SNARE domains are only two-third zippered, only HOPS will support Sec17/Sec18 driven fusion without needing complete zippering. HOPS thus remains engaged with SNAREs during zippering. MED facilitates the study of distinct fusion stages: tethering, initial trans-SNARE assembly and its sensitivity to Sec17, SNARE zippering, Sec17/Sec18 engagement, and lipid and lumenal mixing.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
5
|
Wickner W, Lopes K, Song H, Rizo J, Orr A. Efficient fusion requires a membrane anchor on the vacuolar Qa-SNARE. Mol Biol Cell 2023; 34:ar88. [PMID: 37314849 PMCID: PMC10398888 DOI: 10.1091/mbc.e23-02-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
As a prelude to fusion, the R-SNARE on one membrane zippers with Qa-, Qb-, and Qc-SNAREs from its apposed fusion partner, forming a four-helical bundle that draws the two membranes together. Because Qa- and Qb-SNAREs are anchored to the same membrane and are adjacent in the 4-SNARE bundle, their two anchors might be redundant. Using the recombinant pure protein catalysts of yeast vacuole fusion, we now report that the specific distribution of transmembrane (TM) anchors on the Q-SNAREs is critical for efficient fusion. A TM anchor on the Qa-SNARE supports rapid fusion even when the other two Q-SNAREs are unanchored, while a TM anchor on the Qb-SNARE is dispensable and is insufficient for rapid fusion as the sole Q-SNARE anchor. This does not depend on which specific TM domain is attached to the Qa-SNARE but rather is due to the Qa-SNARE being anchored per se. The need for Qa-SNARE anchoring is even seen when the homotypic fusion and vacuole protein sorting protein (HOPS), the physiological catalyst of tethering and SNARE assembly, is replaced by an artificial tether. The need for a Qa TM anchor is thus a fundamental property of vacuolar SNARE zippering-induced fusion and may reflect the need for the Qa juxtamembrane (JxQa) region to be anchored between its SNARE and TM domains. This requirement for Qa-SNARE anchoring and correct JxQa position is bypassed by Sec17/Sec18, exploiting a platform of partially zippered SNAREs. Because Qa is the only synaptic Q-SNARE with a TM anchor, the need for Qa-specific anchoring may reflect a general requirement for SNARE-mediated fusion.
Collapse
Affiliation(s)
- William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Karina Lopes
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Insmed, Inc, Lebanon, NH 03756
| | - Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
6
|
Fielden SDP, Derry MJ, Miller A, Topham PD, O’Reilly RK. Triggered Polymersome Fusion. J Am Chem Soc 2023; 145:5824-5833. [PMID: 36877655 PMCID: PMC10021019 DOI: 10.1021/jacs.2c13049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 03/07/2023]
Abstract
The contents of biological cells are retained within compartments formed of phospholipid membranes. The movement of material within and between cells is often mediated by the fusion of phospholipid membranes, which allows mixing of contents or excretion of material into the surrounding environment. Biological membrane fusion is a highly regulated process that is catalyzed by proteins and often triggered by cellular signaling. In contrast, the controlled fusion of polymer-based membranes is largely unexplored, despite the potential application of this process in nanomedicine, smart materials, and reagent trafficking. Here, we demonstrate triggered polymersome fusion. Out-of-equilibrium polymersomes were formed by ring-opening metathesis polymerization-induced self-assembly and persist until a specific chemical signal (pH change) triggers their fusion. Characterization of polymersomes was performed by a variety of techniques, including dynamic light scattering, dry-state/cryogenic-transmission electron microscopy, and small-angle X-ray scattering (SAXS). The fusion process was followed by time-resolved SAXS analysis. Developing elementary methods of communication between polymersomes, such as fusion, will prove essential for emulating life-like behaviors in synthetic nanotechnology.
Collapse
Affiliation(s)
| | - Matthew J. Derry
- Aston
Advanced Materials Research Centre, Aston
University, Birmingham B4 7ET, UK
| | - Alisha
J. Miller
- School
of Chemistry, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK
| | - Paul D. Topham
- Aston
Advanced Materials Research Centre, Aston
University, Birmingham B4 7ET, UK
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Orr A, Wickner W. PI3P regulates multiple stages of membrane fusion. Mol Biol Cell 2023; 34:ar17. [PMID: 36735517 PMCID: PMC10011722 DOI: 10.1091/mbc.e22-10-0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The conserved catalysts of intracellular membrane fusion are Rab-family GTPases, effector complexes that bind Rabs for membrane tethering, SNARE proteins of the R, Qa, Qb, and Qc families, and SNARE chaperones of the SM, Sec17/SNAP, and Sec18/NSF families. Yeast vacuole fusion is regulated by phosphatidylinositol-3-phosphate (PI3P). PI3P binds directly to the vacuolar Qc-SNARE and to HOPS, the vacuolar tethering/SM complex. We now report several distinct functions of PI3P in fusion. PI3P binds the N-terminal PX domain of the Qc-SNARE to enhance its engagement for fusion. Even when Qc has been preassembled with the Qa- and Qb-SNAREs, PI3P still promotes trans-SNARE assembly and fusion between these 3Q proteoliposomes and those with R-SNARE, whether with the natural HOPS tether or with a synthetic tether. With HOPS, efficient trans-SNARE complex formation needs PI3P on the 3Q-SNARE proteoliposomes, in cis to the Qc. PI3P is also needed for HOPS to confer resistance to Sec17/Sec18. With a synthetic tether, fusion is supported by PI3P on either fusion partner membrane, but this fusion is blocked by Sec17/Sec18. PI3P thus supports multiple stages of fusion: the engagement of the Qc-SNARE, trans-SNARE complex formation with preassembled Q-SNAREs, HOPS protection of SNARE complexes from Sec17/Sec18, and fusion per se after tethering and Q-SNARE assembly.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
8
|
Orr A, Wickner W. Sec18 supports membrane fusion by promoting Sec17 membrane association. Mol Biol Cell 2022; 33:ar127. [PMID: 36103252 PMCID: PMC9634978 DOI: 10.1091/mbc.e22-07-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Membrane fusion is driven by Sec17, Sec18, and SNARE zippering. Sec17 bound to SNAREs promotes fusion through its membrane-proximal N-terminal apolar loop domain. At its membrane-distal end, Sec17 serves as a high-affinity receptor for Sec18. At that distance from the fusion site, it has been unclear how Sec18 can aid Sec17 to promote fusion. We now report that Sec18, with ATPγS, lowers the Km of Sec17 for fusion. A C-terminal and membrane-distal Sec17 mutation, L291A,L292A, diminishes Sec17 affinity for Sec18. High levels of wild-type Sec17 or Sec17-L291AL292A show equivalent fusion without Sec18, but Sec18 causes far less fusion enhancement with low levels of Sec17-L291AL292A than with wild-type Sec17. Another mutant, Sec17-F21SM22S, has reduced N-loop apolarity. Only very high levels of this mutant protein support fusion, but Sec18 still lowers the apparent fusion Km for Sec17-F21SM22S. Thus Sec18 stimulates fusion through Sec17 and acts at the well-described interface between Sec18 and Sec17. ATP acts as a ligand to activate Sec18 for Sec17-dependent fusion, but ATP hydrolysis is not required. Even without SNAREs, Sec18 and Sec17 exhibit interdependent stable association with lipids, with several Sec17 bound for each Sec18 hexamer, explaining how Sec18 stabilization of surface-concentrated clusters of Sec17 lowers the Sec17 Km for assembly with SNAREs. Each of the associations, between SNARE complex, Sec18, Sec17, and lipid, helps assemble the fusion machinery.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755,*Address correspondence to: William Wickner ()
| |
Collapse
|
9
|
Abstract
Major recent advances and previous data have led to a plausible model of how key proteins mediate neurotransmitter release. In this model, the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin form tight complexes that bring the membranes together and are crucial for membrane fusion. NSF and SNAPs disassemble SNARE complexes and ensure that fusion occurs through an exquisitely regulated pathway that starts with Munc18-1 bound to a closed conformation of syntaxin-1. Munc18-1 also binds to synaptobrevin, forming a template to assemble the SNARE complex when Munc13-1 opens syntaxin-1 while bridging the vesicle and plasma membranes. Synaptotagmin-1 and complexin bind to partially assembled SNARE complexes, likely stabilizing them and preventing fusion until Ca2+ binding to synaptotagmin-1 causes dissociation from the SNARE complex and induces interactions with phospholipids that help trigger release. Although fundamental questions remain about the mechanism of membrane fusion, these advances provide a framework to investigate the mechanisms underlying presynaptic plasticity.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
10
|
Orr A, Song H, Wickner W. Fusion with wild-type SNARE domains is controlled by juxtamembrane domains, transmembrane anchors, and Sec17. Mol Biol Cell 2022; 33:ar38. [PMID: 35171720 PMCID: PMC9282010 DOI: 10.1091/mbc.e21-11-0583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Membrane fusion requires tethers, SNAREs of R, Qa, Qb, and Qc families, and chaperones of the SM, Sec17/SNAP, and Sec18/NSF families. SNAREs have N-domains, SNARE domains that zipper into 4-helical RQaQbQc coiled coils, a short juxtamembrane (Jx) domain, and (often) a C-terminal transmembrane anchor. We reconstitute fusion with purified components from yeast vacuoles, where the HOPS protein combines tethering and SM functions. The vacuolar Rab, lipids, and R-SNARE activate HOPS to bind Q-SNAREs and catalyze trans-SNARE associations. With SNAREs initially disassembled, as they are on the organelle, we now report that R- and Qa-SNAREs require their physiological juxtamembrane (Jx) regions for fusion. Swap of the Jx domain between the R- and Qa-SNAREs blocks fusion after SNARE association in trans. This block is bypassed by either Sec17, which drives fusion without requiring complete SNARE zippering, or transmembrane-anchored Qb-SNARE in complex with Qa. The abundance of the trans-SNARE complex is not the sole fusion determinant, as it is unaltered by Sec17, Jx swap, or the Qb-transmembrane anchor. The sensitivity of fusion to Jx swap in the absence of a Qb transmembrane anchor is inherent to the SNAREs, because it remains when a synthetic tether replaces HOPS.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755
| | - Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755
| |
Collapse
|
11
|
Torng T, Wickner W. Phosphatidylinositol and phosphatidylinositol-3-phosphate activate HOPS to catalyze SNARE assembly, allowing small headgroup lipids to support the terminal steps of membrane fusion. Mol Biol Cell 2021; 32:ar19. [PMID: 34495682 PMCID: PMC8693972 DOI: 10.1091/mbc.e21-07-0373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intracellular membrane fusion requires Rab GTPases, tethers, SNAREs of the R, Qa, Qb, and Qc families, and SNARE chaperones of the Sec17 (SNAP), Sec18 (NSF), and SM (Sec1/Munc18) families. The vacuolar HOPS complex combines the functions of membrane tethering and SM catalysis of SNARE assembly. HOPS is activated for this catalysis by binding to the vacuolar lipids and Rab. Of the eight major vacuolar lipids, we now report that phosphatidylinositol and phosphatidylinositol-3-phosphate are required to activate HOPS for SNARE complex assembly. These lipids plus ergosterol also allow full trans-SNARE complex assembly, yet do not support fusion, which is reliant on either phosphatidylethanolamine (PE) or on phosphatidic acid (PA), phosphatidylserine (PS), and diacylglycerol (DAG). Fusion with a synthetic tether and without HOPS, or even without SNAREs, still relies on either PE or on PS, PA, and DAG. These lipids are thus required for the terminal bilayer rearrangement step of fusion, distinct from the lipid requirements for the earlier step of activating HOPS for trans-SNARE assembly.
Collapse
Affiliation(s)
- Thomas Torng
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
12
|
Song H, Wickner WT. Fusion of tethered membranes can be driven by Sec18/NSF and Sec17/αSNAP without HOPS. eLife 2021; 10:73240. [PMID: 34698639 PMCID: PMC8560088 DOI: 10.7554/elife.73240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Yeast vacuolar membrane fusion has been reconstituted with R, Qa, Qb, and Qc-family SNAREs, Sec17/αSNAP, Sec18/NSF, and the hexameric HOPS complex. HOPS tethers membranes and catalyzes SNARE assembly into RQaQbQc trans-complexes which zipper through their SNARE domains to promote fusion. Previously, we demonstrated that Sec17 and Sec18 can bypass the requirement of complete zippering for fusion (Song et al., 2021), but it has been unclear whether this activity of Sec17 and Sec18 is directly coupled to HOPS. HOPS can be replaced for fusion by a synthetic tether when the three Q-SNAREs are pre-assembled. We now report that fusion intermediates with arrested SNARE zippering, formed with a synthetic tether but without HOPS, support Sec17/Sec18-triggered fusion. This zippering-bypass fusion is thus a direct result of Sec17 and Sec18 interactions: with each other, with the platform of partially zippered SNAREs, and with the apposed tethered membranes. As these fusion elements are shared among all exocytic and endocytic traffic, Sec17 and Sec18 may have a general role in directly promoting fusion.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - William T Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
13
|
Rizo J, Jaczynska K, Stepien KP. Molecular machinery turns full circle. eLife 2021; 10:70298. [PMID: 34137372 PMCID: PMC8211446 DOI: 10.7554/elife.70298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Two proteins called Sec17 and Sec18 may have a larger role in membrane fusion than is commonly assumed in textbook models.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Klaudia Jaczynska
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Karolina P Stepien
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
14
|
Song H, Torng TL, Orr AS, Brunger AT, Wickner WT. Sec17/Sec18 can support membrane fusion without help from completion of SNARE zippering. eLife 2021; 10:67578. [PMID: 33944780 PMCID: PMC8143792 DOI: 10.7554/elife.67578] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
Membrane fusion requires R-, Qa-, Qb-, and Qc-family SNAREs that zipper into RQaQbQc coiled coils, driven by the sequestration of apolar amino acids. Zippering has been thought to provide all the force driving fusion. Sec17/αSNAP can form an oligomeric assembly with SNAREs with the Sec17 C-terminus bound to Sec18/NSF, the central region bound to SNAREs, and a crucial apolar loop near the N-terminus poised to insert into membranes. We now report that Sec17 and Sec18 can drive robust fusion without requiring zippering completion. Zippering-driven fusion is blocked by deleting the C-terminal quarter of any Q-SNARE domain or by replacing the apolar amino acids of the Qa-SNARE that face the center of the 4-SNARE coiled coils with polar residues. These blocks, singly or combined, are bypassed by Sec17 and Sec18, and SNARE-dependent fusion is restored without help from completing zippering.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Thomas L Torng
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Amy S Orr
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Axel T Brunger
- Howard Hughes Medical Institute and Department of Molecular and Cellular Physiology Stanford University, Stanford, United States
| | - William T Wickner
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
15
|
A Rab prenyl membrane-anchor allows effector recognition to be regulated by guanine nucleotide. Proc Natl Acad Sci U S A 2020; 117:7739-7744. [PMID: 32213587 DOI: 10.1073/pnas.2000923117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Membrane fusion is catalyzed by conserved proteins R, Qa, Qb, and Qc SNAREs, which form tetrameric RQaQbQc complexes between membranes; SNARE chaperones of the SM, Sec17/αSNAP, and Sec18/NSF families; Rab-GTPases (Rabs); and Rab effectors. Rabs are anchored to membranes by C-terminal prenyl groups, but can also function when anchored by an apolar polypeptide. Rabs are regulated by GTPase-activating proteins (GAPs), activating the hydrolysis of bound GTP. We have reconstituted fusion with pure components from yeast vacuoles including SNAREs, the HOPS (homotypic fusion and vacuole protein sorting) tethering and SNARE-assembly complex, and the Rab Ypt7, bound to membranes by either C-terminal prenyl groups (Ypt7-pr) or a recombinant transmembrane anchor (Ypt7-tm). We now report that HOPS-dependent fusion occurs with Ypt7 anchored by either means, but only Ypt7-pr requires GTP for activation and is inactive either with bound GDP or without bound guanine nucleotide. In contrast, Ypt7-tm is constitutively active for HOPS-dependent fusion, independent of bound guanine nucleotide. Fusion inhibition by the GAP Gyp1-46 is not limited to Ypt7-tm with bound GTP, indicating that this GAP has an additional mode of regulating fusion. Phosphorylation of HOPS by the vacuolar kinase Yck3 renders fusion strictly dependent on GTP-activated Ypt7, whether bound to membranes by prenyl or transmembrane anchor. The binding of GTP or GDP constitutes a selective switch for Ypt7, but with Ypt7-tm, this switch is only read by HOPS after phosphorylation to P-HOPS by its physiological kinase Yck3. The prenyl anchor of Ypt7 allows both HOPS and P-HOPS to be regulated by Ypt7-bound guanine nucleotide.
Collapse
|
16
|
Torng T, Song H, Wickner W. Asymmetric Rab activation of vacuolar HOPS to catalyze SNARE complex assembly. Mol Biol Cell 2020; 31:1060-1068. [PMID: 32160129 PMCID: PMC7346727 DOI: 10.1091/mbc.e20-01-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Intracellular membrane fusion requires Rab-family GTPases, their effector tethers, soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, and SNARE chaperones of the Sec1/Munc18 (SM), Sec17/α-SNAP, and Sec18/NSF families. We have developed an assay using fluorescence resonance energy transfer to measure SNARE complex formation in real time. We now show that yeast vacuolar SNAREs assemble spontaneously into RQaQbQc complexes when the R- and Qa-SNAREs are concentrated in the same micelles or in cis on the same membrane. When SNAREs are free in solution or are tethered to distinct membranes, assembly requires catalysis by HOPS, the vacuolar SM and tethering complex. The Rab Ypt7 and vacuole lipids together allosterically activate the bound HOPS for catalyzing SNARE assembly, even if none of the SNAREs are membrane bound. HOPS-dependent fusion between proteoliposomes bearing R- or Qa-SNAREs shows a strict requirement for Ypt7 on the R-SNARE proteoliposomes but not on the Qa-SNARE proteoliposomes. This asymmetry is reflected in the strikingly different capacity of Ypt7 in cis to either the R- or Qa-SNARE to stimulate SNARE complex assembly. Membrane-bound Ypt7 activates HOPS to catalyze 4-SNARE complex assembly when it is on the same membrane as the R-SNARE but not the Qa-SNARE, thus explaining the asymmetric need for Ypt7 for fusion.
Collapse
Affiliation(s)
- Thomas Torng
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
17
|
Song H, Orr AS, Lee M, Harner ME, Wickner WT. HOPS recognizes each SNARE, assembling ternary trans-complexes for rapid fusion upon engagement with the 4th SNARE. eLife 2020; 9:53559. [PMID: 31961324 PMCID: PMC6994237 DOI: 10.7554/elife.53559] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/19/2020] [Indexed: 01/23/2023] Open
Abstract
Yeast vacuole fusion requires R-SNARE, Q-SNAREs, and HOPS. A HOPS SM-family subunit binds the R- and Qa-SNAREs. We now report that HOPS binds each of the four SNAREs. HOPS catalyzes fusion when the Q-SNAREs are not pre-assembled, ushering them into a functional complex. Co-incubation of HOPS, proteoliposomes bearing R-SNARE, and proteoliposomes with any two Q-SNAREs yields a rapid-fusion complex with 3 SNAREs in a trans-assembly. The missing Q-SNARE then induces sudden fusion. HOPS can 'template' SNARE complex assembly through SM recognition of R- and Qa-SNAREs. Though the Qa-SNARE is essential for spontaneous SNARE assembly, HOPS also assembles a rapid-fusion complex between R- and QbQc-SNARE proteoliposomes in the absence of Qa-SNARE, awaiting Qa for fusion. HOPS-dependent fusion is saturable at low concentrations of each Q-SNARE, showing binding site functionality. HOPS thus tethers membranes and recognizes each SNARE, assembling R+Qa or R+QbQc rapid fusion intermediates.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Amy S Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Miriam Lee
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Max E Harner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - William T Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
18
|
Wang S, Crisman L, Miller J, Datta I, Gulbranson DR, Tian Y, Yin Q, Yu H, Shen J. Inducible Exoc7/Exo70 knockout reveals a critical role of the exocyst in insulin-regulated GLUT4 exocytosis. J Biol Chem 2019; 294:19988-19996. [PMID: 31740584 PMCID: PMC6937574 DOI: 10.1074/jbc.ra119.010821] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Insulin promotes glucose uptake by triggering the translocation of glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane through exocytosis. GLUT4 exocytosis is a vesicle fusion event involving fusion of GLUT4-containing vesicles with the plasma membrane. For GLUT4 vesicle fusion to occur, GLUT4 vesicles must first be tethered to the plasma membrane. A key tethering factor in exocytosis is a heterooctameric protein complex called the exocyst. The role of the exocyst in GLUT4 exocytosis, however, remains incompletely understood. Here we first systematically analyzed data from a genome-scale CRISPR screen in HeLa cells that targeted virtually all known genes in the human genome, including 12 exocyst genes. The screen recovered only a subset of the exocyst genes, including exocyst complex component 7 (Exoc7/Exo70). Other exocyst genes, however, were not isolated in the screen, likely because of functional redundancy. Our findings suggest that selection of an appropriate exocyst gene is critical for genetic studies of exocyst functions. Next we developed an inducible adipocyte genome editing system that enabled Exoc7 gene deletion in adipocytes without interfering with adipocyte differentiation. We observed that insulin-stimulated GLUT4 exocytosis was markedly inhibited in Exoc7 KO adipocytes. Insulin signaling, however, remained intact in these KO cells. These results indicate that the exocyst plays a critical role in insulin-stimulated GLUT4 exocytosis in adipocytes. We propose that the strategy outlined in this work could be instrumental in genetically dissecting other membrane-trafficking pathways in adipocytes.
Collapse
Affiliation(s)
- Shifeng Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lauren Crisman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Jessica Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Ishara Datta
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Daniel R Gulbranson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Yuan Tian
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Qian Yin
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Haijia Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingshi Shen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
19
|
Rathore SS, Liu Y, Yu H, Wan C, Lee M, Yin Q, Stowell MHB, Shen J. Intracellular Vesicle Fusion Requires a Membrane-Destabilizing Peptide Located at the Juxtamembrane Region of the v-SNARE. Cell Rep 2019; 29:4583-4592.e3. [PMID: 31875562 PMCID: PMC6990648 DOI: 10.1016/j.celrep.2019.11.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/13/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Intracellular vesicle fusion is mediated by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18 (SM) proteins. It is generally accepted that membrane fusion occurs when the vesicle and target membranes are brought into close proximity by SNAREs and SM proteins. In this work, we demonstrate that, for fusion to occur, membrane bilayers must be destabilized by a conserved membrane-embedded motif located at the juxtamembrane region of the vesicle-anchored v-SNARE. Comprised of basic and hydrophobic residues, the juxtamembrane motif perturbs the lipid bilayer structure and promotes SNARE-SM-mediated membrane fusion. The juxtamembrane motif can be functionally substituted with an unrelated membrane-disrupting peptide in the membrane fusion reaction. These findings establish the juxtamembrane motif of the v-SNARE as a membrane-destabilizing peptide. Requirement of membrane-destabilizing peptides is likely a common feature of biological membrane fusion.
Collapse
Affiliation(s)
- Shailendra S Rathore
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA
| | - Yinghui Liu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA; Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Haijia Yu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA; Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA
| | - MyeongSeon Lee
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA
| | - Qian Yin
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
20
|
Sec17 (α-SNAP) and Sec18 (NSF) restrict membrane fusion to R-SNAREs, Q-SNAREs, and SM proteins from identical compartments. Proc Natl Acad Sci U S A 2019; 116:23573-23581. [PMID: 31685636 DOI: 10.1073/pnas.1913985116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Membrane fusion at each organelle requires conserved proteins: Rab-GTPases, effector tethering complexes, Sec1/Munc18 (SM)-family SNARE chaperones, SNAREs of the R, Qa, Qb, and Qc families, and the Sec17/α-SNAP and ATP-dependent Sec18/NSF SNARE chaperone system. The basis of organelle-specific fusion, which is essential for accurate protein compartmentation, has been elusive. Rab family GTPases, SM proteins, and R- and Q-SNAREs may contribute to this specificity. We now report that the fusion supported by SNAREs alone is both inefficient and promiscuous with respect to organelle identity and to stimulation by SM family proteins or complexes. SNARE-only fusion is abolished by the disassembly chaperones Sec17 and Sec18. Efficient fusion in the presence of Sec17 and Sec18 requires a tripartite match between the organellar identities of the R-SNARE, the Q-SNAREs, and the SM protein or complex. The functions of Sec17 and Sec18 are not simply negative regulation; they stimulate fusion with either vacuolar SNAREs and their SM protein complex HOPS or endoplasmic reticulum/cis-Golgi SNAREs and their SM protein Sly1. The fusion complex of each organelle is assembled from its own functionally matching pieces to engage Sec17/Sec18 for fusion stimulation rather than inhibition.
Collapse
|
21
|
Munc18-1 is crucial to overcome the inhibition of synaptic vesicle fusion by αSNAP. Nat Commun 2019; 10:4326. [PMID: 31548544 PMCID: PMC6757032 DOI: 10.1038/s41467-019-12188-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/23/2019] [Indexed: 12/02/2022] Open
Abstract
Munc18-1 and Munc13-1 orchestrate assembly of the SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin, allowing exquisite regulation of neurotransmitter release. Non-regulated neurotransmitter release might be prevented by αSNAP, which inhibits exocytosis and SNARE-dependent liposome fusion. However, distinct mechanisms of inhibition by αSNAP were suggested, and it is unknown how such inhibition is overcome. Using liposome fusion assays, FRET and NMR spectroscopy, here we provide a comprehensive view of the mechanisms underlying the inhibitory functions of αSNAP, showing that αSNAP potently inhibits liposome fusion by: binding to syntaxin-1, hindering Munc18-1 binding; binding to syntaxin-1-SNAP-25 heterodimers, precluding SNARE complex formation; and binding to trans-SNARE complexes, preventing fusion. Importantly, inhibition by αSNAP is avoided only when Munc18-1 binds first to syntaxin-1, leading to Munc18-1-Munc13-1-dependent liposome fusion. We propose that at least some of the inhibitory activities of αSNAP ensure that neurotransmitter release occurs through the highly-regulated Munc18-1-Munc13-1 pathway at the active zone. Munc18-1 and Munc13-1 are key for the exquisite regulation of neurotransmitter release. Here biophysical experiments show how αSNAP inhibits liposome fusion mediated by the neuronal SNAREs and how Munc18-1 overcomes this inhibition, ensuring that release depends on Munc18-1 and Munc13-1.
Collapse
|
22
|
Abstract
R-SNAREs (soluble N-ethylmaleimide-sensitive factor receptor), Q-SNAREs, and Sec1/Munc18 (SM)-family proteins are essential for membrane fusion in exocytic and endocytic trafficking. The yeast vacuolar tethering/SM complex HOPS (homotypic fusion and vacuole protein sorting) increases the fusion of membranes bearing R-SNARE to those with 3Q-SNAREs far more than it enhances their trans-SNARE pairings. We now report that the fusion of these proteoliposomes is also supported by GST-PX or GST-FYVE, recombinant dimeric proteins which tether by binding the phosphoinositides in both membranes. GST-PX is purely a tether, as it supports fusion without SNARE recognition. GST-PX tethering supports the assembly of new, active SNARE complexes rather than enhancing the function of the fusion-inactive SNARE complexes which had spontaneously formed in the absence of a tether. When SNAREs are more disassembled, as by Sec17, Sec18, and ATP (adenosine triphosphate), HOPS is required, and GST-PX does not suffice. We propose a working model where tethering orients SNARE domains for parallel, active assembly.
Collapse
|
23
|
Mattie S, Kazmirchuk T, Mui J, Vali H, Brett CL. Visualization of SNARE-Mediated Organelle Membrane Hemifusion by Electron Microscopy. Methods Mol Biol 2019; 1860:361-377. [PMID: 30317518 DOI: 10.1007/978-1-4939-8760-3_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SNARE-mediated membrane fusion is required for membrane trafficking as well as organelle biogenesis and homeostasis. The membrane fusion reaction involves sequential formation of hemifusion intermediates, whereby lipid monolayers partially mix on route to complete bilayer merger. Studies of the Saccharomyces cerevisiae lysosomal vacuole have revealed many of the fundamental mechanisms that drive the membrane fusion process, as well as features unique to organelle fusion. However, until recently, it has not been amenable to electron microscopy methods that have been invaluable for studying hemifusion in other model systems. Herein, we describe a method to visualize hemifusion intermediates during homotypic vacuole membrane fusion in vitro by transmission electron microscopy (TEM), electron tomography, and cryogenic electron microscopy (cryoEM). This method facilitates acquisition of invaluable ultrastructural data needed to comprehensively understand how fusogenic lipids and proteins contribute to SNARE-mediated membrane fusion-by-hemifusion and the unique features of organelle versus small-vesicle fusion.
Collapse
Affiliation(s)
- Sevan Mattie
- Department of Biology, Concordia University, Montréal, QC, Canada.,Montreal Neurological Hospital and Institute, McGill University, Montréal, QC, Canada
| | - Tom Kazmirchuk
- Department of Biology, Concordia University, Montréal, QC, Canada
| | - Jeannie Mui
- Facility for Electron Microscopy Research, Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Hojatollah Vali
- Facility for Electron Microscopy Research, Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | | |
Collapse
|
24
|
Karim MA, McNally EK, Samyn DR, Mattie S, Brett CL. Rab-Effector-Kinase Interplay Modulates Intralumenal Fragment Formation during Vacuole Fusion. Dev Cell 2018; 47:80-97.e6. [PMID: 30269949 DOI: 10.1016/j.devcel.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 07/01/2018] [Accepted: 09/01/2018] [Indexed: 01/17/2023]
Abstract
Upon vacuolar lysosome (or vacuole) fusion in S. cerevisiae, a portion of membrane is internalized and catabolized. Formation of this intralumenal fragment (ILF) is important for organelle protein and lipid homeostasis and remodeling. But how ILF formation is optimized for membrane turnover is not understood. Here, we show that fewer ILFs form when the interaction between the Rab-GTPase Ypt7 and its effector Vps41 (a subunit of the tethering complex HOPS) is interrupted by a point mutation (Ypt7-D44N). Subsequent phosphorylation of Vps41 by the casein kinase Yck3 prevents stabilization of trans-SNARE complexes needed for lipid bilayer pore formation. Impairing ILF formation prevents clearance of misfolded proteins from vacuole membranes and promotes organelle permeability and cell death. We propose that HOPS coordinates Rab, kinase, and SNARE cycles to modulate ILF size during vacuole fusion, regulating lipid and protein turnover important for quality control and membrane integrity.
Collapse
Affiliation(s)
- Mahmoud Abdul Karim
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada
| | - Erin Kate McNally
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada
| | - Dieter Ronny Samyn
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada
| | - Sevan Mattie
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada
| | - Christopher Leonard Brett
- Department of Biology, Concordia University, 7141 Sherbrooke St. W., SP, 501.15, Montréal, QC H4R 1R6, Canada.
| |
Collapse
|
25
|
Rizo J. Mechanism of neurotransmitter release coming into focus. Protein Sci 2018; 27:1364-1391. [PMID: 29893445 DOI: 10.1002/pro.3445] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+ -triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+ -dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. The soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs) syntaxin-1, SNAP-25, and synaptobrevin-2 form a tight SNARE complex that brings the vesicle and plasma membranes together and is key for membrane fusion. N-ethyl maleimide sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) disassemble the SNARE complex to recycle the SNAREs for another round of fusion. Munc18-1 and Munc13-1 orchestrate SNARE complex formation in an NSF-SNAP-resistant manner by a mechanism whereby Munc18-1 binds to synaptobrevin and to a self-inhibited "closed" conformation of syntaxin-1, thus forming a template to assemble the SNARE complex, and Munc13-1 facilitates assembly by bridging the vesicle and plasma membranes and catalyzing opening of syntaxin-1. Synaptotagmin-1 functions as the major Ca2+ sensor that triggers release by binding to membrane phospholipids and to the SNAREs, in a tight interplay with complexins that accelerates membrane fusion. Many of these proteins act as both inhibitors and activators of exocytosis, which is critical for the exquisite regulation of neurotransmitter release. It is still unclear how the actions of these various proteins and multiple other components that control release are integrated and, in particular, how they induce membrane fusion, but it can be expected that these fundamental questions can be answered in the near future, building on the extensive knowledge already available.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
26
|
Karim MA, Brett CL. The Na +(K +)/H + exchanger Nhx1 controls multivesicular body-vacuolar lysosome fusion. Mol Biol Cell 2018; 29:317-325. [PMID: 29212874 PMCID: PMC5996954 DOI: 10.1091/mbc.e17-08-0496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/07/2017] [Accepted: 11/28/2017] [Indexed: 01/12/2023] Open
Abstract
Loss-of-function mutations in human endosomal Na+(K+)/H+ exchangers (NHEs) NHE6 and NHE9 are implicated in neurological disorders including Christianson syndrome, autism, and attention deficit and hyperactivity disorder. These mutations disrupt retention of surface receptors within neurons and glial cells by affecting their delivery to lysosomes for degradation. However, the molecular basis of how these endosomal NHEs control endocytic trafficking is unclear. Using Saccharomyces cerevisiae as a model, we conducted cell-free organelle fusion assays to show that transport activity of the orthologous endosomal NHE Nhx1 is important for multivesicular body (MVB)-vacuolar lysosome fusion, the last step of endocytosis required for surface protein degradation. We find that deleting Nhx1 disrupts the fusogenicity of the MVB, not the vacuole, by targeting pH-sensitive machinery downstream of the Rab-GTPase Ypt7 needed for SNARE-mediated lipid bilayer merger. All contributing mechanisms are evolutionarily conserved offering new insight into the etiology of human disorders linked to loss of endosomal NHE function.
Collapse
|
27
|
Hallmarks of Reversible Separation of Living, Unperturbed Cell Membranes into Two Liquid Phases. Biophys J 2018; 113:2425-2432. [PMID: 29211996 DOI: 10.1016/j.bpj.2017.09.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 01/04/2023] Open
Abstract
Controversy has long surrounded the question of whether spontaneous lateral demixing of membranes into coexisting liquid phases can organize proteins and lipids on micron scales within unperturbed, living cells. A clear answer hinges on observation of hallmarks of a reversible phase transition. Here, by directly imaging micron-scale membrane domains of yeast vacuoles both in vivo and cell free, we demonstrate that the domains arise through a phase separation mechanism. The domains are large, have smooth boundaries, and can merge quickly, consistent with fluid phases. Moreover, the domains disappear above a distinct miscibility transition temperature (Tmix) and reappear below Tmix, over multiple heating and cooling cycles. Hence, large-scale membrane organization in living cells under physiologically relevant conditions can be controlled by tuning a single thermodynamic parameter.
Collapse
|
28
|
Karim MA, Samyn DR, Mattie S, Brett CL. Distinct features of multivesicular body-lysosome fusion revealed by a new cell-free content-mixing assay. Traffic 2017; 19:138-149. [DOI: 10.1111/tra.12543] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Sevan Mattie
- Department of Biology; Concordia University; Montreal Canada
| | | |
Collapse
|
29
|
Harner M, Wickner W. Assembly of intermediates for rapid membrane fusion. J Biol Chem 2017; 293:1346-1352. [PMID: 29208657 DOI: 10.1074/jbc.ra117.000791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/27/2017] [Indexed: 11/06/2022] Open
Abstract
Membrane fusion is essential for intracellular protein sorting, cell growth, hormone secretion, and neurotransmission. Rapid membrane fusion requires tethering and Sec1-Munc18 (SM) function to catalyze R-, Qa-, Qb-, and Qc-SNARE complex assembly in trans, as well as SNARE engagement by the SNARE-binding chaperone Sec17/αSNAP. The hexameric vacuolar HOPS (homotypic fusion and vacuole protein sorting) complex in the yeast Saccharomyces cerevisiae tethers membranes through its affinities for the membrane Rab GTPase Ypt7. HOPS also has specific affinities for the vacuolar SNAREs and catalyzes SNARE complex assembly, but the order of their assembly into a 4-SNARE complex is unclear. We now report defined assembly intermediates on the path to membrane fusion. We found that a prefusion intermediate will assemble with HOPS and the R, Qa, and Qc SNAREs, and that this assembly undergoes rapid fusion upon addition of Qb and Sec17. HOPS-tethered membranes and all four vacuolar SNAREs formed a complex that underwent an even more dramatic burst of fusion upon Sec17p addition. These findings provide initial insights into an ordered fusion pathway consisting of the following intermediates and events: 1) Rab- and HOPS-tethered membranes, 2) a HOPS:R:Qa:Qc trans-complex, 3) a HOPS:4-SNARE trans-complex, 4) an engagement with Sec17, and 5) the rapid lipid rearrangements during fusion. In conclusion, our results indicate that the R:Qa:Qc complex forms in the context of membrane, Ypt7, HOPS, and trans-SNARE assembly and serves as a functional intermediate for rapid fusion after addition of the Qb-SNARE and Sec17 proteins.
Collapse
Affiliation(s)
- Max Harner
- From the Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844
| | - William Wickner
- From the Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844
| |
Collapse
|
30
|
D'Agostino M, Risselada HJ, Lürick A, Ungermann C, Mayer A. A tethering complex drives the terminal stage of SNARE-dependent membrane fusion. Nature 2017; 551:634-638. [PMID: 29088698 DOI: 10.1038/nature24469] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/03/2017] [Indexed: 11/09/2022]
Abstract
Membrane fusion in eukaryotic cells mediates the biogenesis of organelles, vesicular traffic between them, and exo- and endocytosis of important signalling molecules, such as hormones and neurotransmitters. Distinct tasks in intracellular membrane fusion have been assigned to conserved protein systems. Tethering proteins mediate the initial recognition and attachment of membranes, whereas SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein complexes are considered as the core fusion engine. SNARE complexes provide mechanical energy to distort membranes and drive them through a hemifusion intermediate towards the formation of a fusion pore. This last step is highly energy-demanding. Here we combine the in vivo and in vitro fusion of yeast vacuoles with molecular simulations to show that tethering proteins are critical for overcoming the final energy barrier to fusion pore formation. SNAREs alone drive vacuoles only into the hemifused state. Tethering proteins greatly increase the volume of SNARE complexes and deform the site of hemifusion, which lowers the energy barrier for pore opening and provides the driving force. Thereby, tethering proteins assume a crucial mechanical role in the terminal stage of membrane fusion that is likely to be conserved at multiple steps of vesicular traffic. We therefore propose that SNAREs and tethering proteins should be considered as a single, non-dissociable device that drives fusion. The core fusion machinery may then be larger and more complex than previously thought.
Collapse
Affiliation(s)
- Massimo D'Agostino
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Herre Jelger Risselada
- Georg-August University, Department of Theoretical Physics, Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany.,Leibniz Institute of Surface Modification, Chemical Department, Permoserstrasse 15, D-04318, Leipzig, Germany
| | - Anna Lürick
- University of Osnabrück, Department of Biology/Chemistry, Barbarastrasse 13, D-49076 Osnabrück, Germany
| | - Christian Ungermann
- University of Osnabrück, Department of Biology/Chemistry, Barbarastrasse 13, D-49076 Osnabrück, Germany
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| |
Collapse
|
31
|
Wickner W, Rizo J. A cascade of multiple proteins and lipids catalyzes membrane fusion. Mol Biol Cell 2017; 28:707-711. [PMID: 28292915 PMCID: PMC5349777 DOI: 10.1091/mbc.e16-07-0517] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 11/11/2022] Open
Abstract
Recent studies suggest revisions to the SNARE paradigm of membrane fusion. Membrane tethers and/or SNAREs recruit proteins of the Sec 1/Munc18 family to catalyze SNARE assembly into trans-complexes. SNARE-domain zippering draws the bilayers into immediate apposition and provides a platform to position fusion triggers such as Sec 17/α-SNAP and/or synaptotagmin, which insert their apolar "wedge" domains into the bilayers, initiating the lipid rearrangements of fusion.
Collapse
Affiliation(s)
- William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 )
| | - Josep Rizo
- Departments of Biophysics, Biochemistry, and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390 )
| |
Collapse
|
32
|
Schwartz ML, Nickerson DP, Lobingier BT, Plemel RL, Duan M, Angers CG, Zick M, Merz AJ. Sec17 (α-SNAP) and an SM-tethering complex regulate the outcome of SNARE zippering in vitro and in vivo. eLife 2017; 6:27396. [PMID: 28925353 PMCID: PMC5643095 DOI: 10.7554/elife.27396] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 09/15/2017] [Indexed: 02/02/2023] Open
Abstract
Zippering of SNARE complexes spanning docked membranes is essential for most intracellular fusion events. Here, we explore how SNARE regulators operate on discrete zippering states. The formation of a metastable trans-complex, catalyzed by HOPS and its SM subunit Vps33, is followed by subsequent zippering transitions that increase the probability of fusion. Operating independently of Sec18 (NSF) catalysis, Sec17 (α-SNAP) either inhibits or stimulates SNARE-mediated fusion. If HOPS or Vps33 are absent, Sec17 inhibits fusion at an early stage. Thus, Vps33/HOPS promotes productive SNARE assembly in the presence of otherwise inhibitory Sec17. Once SNAREs are partially zipped, Sec17 promotes fusion in either the presence or absence of HOPS, but with faster kinetics when HOPS is absent, suggesting that ejection of the SM is a rate-limiting step.
Collapse
Affiliation(s)
- Matthew L Schwartz
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Daniel P Nickerson
- Department of Biology, California State University, San Bernardino, United States
| | - Braden T Lobingier
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Rachael L Plemel
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Mengtong Duan
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Cortney G Angers
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Michael Zick
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Alexey J Merz
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
33
|
Song H, Orr A, Duan M, Merz AJ, Wickner W. Sec17/Sec18 act twice, enhancing membrane fusion and then disassembling cis-SNARE complexes. eLife 2017; 6:e26646. [PMID: 28718762 PMCID: PMC5540461 DOI: 10.7554/elife.26646] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
At physiological protein levels, the slow HOPS- and SNARE-dependent fusion which occurs upon complete SNARE zippering is stimulated by Sec17 and Sec18:ATP without requiring ATP hydrolysis. To stimulate, Sec17 needs its central residues which bind the 0-layer of the SNARE complex and its N-terminal apolar loop. Adding a transmembrane anchor to the N-terminus of Sec17 bypasses this requirement for apolarity of the Sec17 loop, suggesting that the loop functions for membrane binding rather than to trigger bilayer rearrangement. In contrast, when complete C-terminal SNARE zippering is prevented, fusion strictly requires Sec18 and Sec17, and the Sec17 apolar loop has functions beyond membrane anchoring. Thus Sec17 and Sec18 act twice in the fusion cycle, binding to trans-SNARE complexes to accelerate fusion, then hydrolyzing ATP to disassemble cis-SNARE complexes.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, United States
| | - Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, United States
| | - Mengtong Duan
- Departments of Biochemistry, University of Washington, Seattle, United States
| | - Alexey J Merz
- Departments of Biochemistry, University of Washington, Seattle, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, United States
| |
Collapse
|
34
|
Zhang Y. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. Protein Sci 2017; 26:1252-1265. [PMID: 28097727 PMCID: PMC5477538 DOI: 10.1002/pro.3116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are universal molecular engines that drive membrane fusion. Particularly, synaptic SNAREs mediate fast calcium-triggered fusion of neurotransmitter-containing vesicles with plasma membranes for synaptic transmission, the basis of all thought and action. During membrane fusion, complementary SNAREs located on two apposed membranes (often called t- and v-SNAREs) join together to assemble into a parallel four-helix bundle, releasing the energy to overcome the energy barrier for fusion. A long-standing hypothesis suggests that SNAREs act like a zipper to draw the two membranes into proximity and thereby force them to fuse. However, a quantitative test of this SNARE zippering hypothesis was hindered by difficulties to determine the energetics and kinetics of SNARE assembly and to identify the relevant folding intermediates. Here, we first review different approaches that have been applied to study SNARE assembly and then focus on high-resolution optical tweezers. We summarize the folding energies, kinetics, and pathways of both wild-type and mutant SNARE complexes derived from this new approach. These results show that synaptic SNAREs assemble in four distinct stages with different functions: slow N-terminal domain association initiates SNARE assembly; a middle domain suspends and controls SNARE assembly; and rapid sequential zippering of the C-terminal domain and the linker domain directly drive membrane fusion. In addition, the kinetics and pathway of the stagewise assembly are shared by other SNARE complexes. These measurements prove the SNARE zippering hypothesis and suggest new mechanisms for SNARE assembly regulated by other proteins.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale School of MedicineYale UniversityNew HavenConnecticut06511
| |
Collapse
|
35
|
Song H, Wickner W. A short region upstream of the yeast vacuolar Qa-SNARE heptad-repeats promotes membrane fusion through enhanced SNARE complex assembly. Mol Biol Cell 2017. [PMID: 28637767 PMCID: PMC5555656 DOI: 10.1091/mbc.e17-04-0218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Membrane fusion requires that four SNARE domains form a complex. A short conserved region just upstream of the Qa-SNARE heptad-repeat domain promotes SNARE-complex assembly and hence fusion. Whereas SNARE (soluble N-ethylmaleimide–sensitive factor attachment protein receptor) heptad-repeats are well studied, SNAREs also have upstream N-domains of indeterminate function. The assembly of yeast vacuolar SNAREs into complexes for fusion can be studied in chemically defined reactions. Complementary proteoliposomes bearing a Rab:GTP and either the vacuolar R-SNARE or one of the three integrally anchored Q-SNAREs were incubated with the tethering/SM protein complex HOPS and the two other soluble SNAREs (lacking a transmembrane anchor) or their SNARE heptad-repeat domains. Fusion required a transmembrane-anchored R-SNARE on one membrane and an anchored Q-SNARE on the other. The N-domain of the Qb-SNARE was completely dispensable for fusion. Whereas fusion can be promoted by very high concentrations of the Qa-SNARE heptad-repeat domain alone, at physiological concentrations the Qa-SNARE heptad-repeat domain alone has almost no fusion activity. The 181–198 region of Qa, immediately upstream of the SNARE heptad-repeat domain, is required for normal fusion activity with HOPS. This region is needed for normal SNARE complex assembly.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
36
|
Orr A, Song H, Rusin SF, Kettenbach AN, Wickner W. HOPS catalyzes the interdependent assembly of each vacuolar SNARE into a SNARE complex. Mol Biol Cell 2017; 28:975-983. [PMID: 28148647 PMCID: PMC5385945 DOI: 10.1091/mbc.e16-10-0743] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 11/15/2022] Open
Abstract
Sec1/Munc18 proteins are essential for fusion but of unknown function. The yeast vacuole SM protein is a subunit of the HOPS tethering complex. HOPS catalyzes the interdependent association among the vacuole SNAREs at a membrane surface, and the associated SNAREs can be disassembled by the physiological system Sec17/Sec18/ATP. Rab GTPases, their effectors, SNAREs of the R, Qa, Qb, and Qc families, and SM SNARE-binding proteins catalyze intracellular membrane fusion. At the vacuole/lysosome, they are integrated by the homotypic fusion and vacuole protein sorting (HOPS) complex. Two HOPS subunits bind vacuolar Rabs for tethering, another binds the Qc SNARE, and a fourth HOPS subunit, an SM protein, has conserved grooves that bind R- and Qa-SNARE domains. Spontaneous quaternary SNARE complex assembly is very slow. We report an assay of SNARE complex assembly that does not rely on fusion and for which tethering does not coenrich the four SNAREs. HOPS is required in this assay for rapid SNARE complex assembly. Optimal assembly needs HOPS, lipid membranes to which the R- or Qa-SNARE and Ypt7:GTP are integrally bound, and each of the other three SNAREs. Each SNARE assembles into this complex relying on the others, suggesting four-SNARE complex assembly rather than direct binding of each to HOPS. SNAREs can be disassociated by Sec 17/Sec 18/ATP, completing a catalyzed cycle of SNARE assembly and disassembly.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Hongki Song
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Scott F Rusin
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Arminja N Kettenbach
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755.,Norris Cotton Cancer Center, Lebanon, NH 03766
| | - William Wickner
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
37
|
Klink VP, Sharma K, Pant SR, McNeece B, Niraula P, Lawrence GW. Components of the SNARE-containing regulon are co-regulated in root cells undergoing defense. PLANT SIGNALING & BEHAVIOR 2017; 12:e1274481. [PMID: 28010187 PMCID: PMC5351740 DOI: 10.1080/15592324.2016.1274481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 05/23/2023]
Abstract
The term regulon has been coined in the genetic model plant Arabidopsis thaliana, denoting a structural and physiological defense apparatus defined genetically through the identification of the penetration (pen) mutants. The regulon is composed partially by the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) syntaxin PEN1. PEN1 has homology to a Saccharomyces cerevisae gene that regulates a Secretion (Sec) protein, Suppressor of Sec 1 (Sso1p). The regulon is also composed of the β-glucosidase (PEN2) and an ATP binding cassette (ABC) transporter (PEN3). While important in inhibiting pathogen infection, limited observations have been made regarding the transcriptional regulation of regulon genes until now. Experiments made using the model agricultural Glycine max (soybean) have identified co-regulated gene expression of regulon components. The results explain the observation of hundreds of genes expressed specifically in the root cells undergoing the natural process of defense. Data regarding additional G. max genes functioning within the context of the regulon are presented here, including Sec 14, Sec 4 and Sec 23. Other examined G. max homologs of membrane fusion genes include an endosomal bromo domain-containing protein1 (Bro1), syntaxin6 (SYP6), SYP131, SYP71, SYP8, Bet1, coatomer epsilon (ϵ-COP), a coatomer zeta (ζ-COP) paralog and an ER to Golgi component (ERGIC) protein. Furthermore, the effectiveness of biochemical pathways that would function within the context of the regulon ave been examined, including xyloglucan xylosyltransferase (XXT), reticuline oxidase (RO) and galactinol synthase (GS). The experiments have unveiled the importance of the regulon during defense in the root and show how the deposition of callose relates to the process.
Collapse
Affiliation(s)
- Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Shankar R. Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Brant McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Prakash Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Gary W. Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
38
|
Mattie S, McNally EK, Karim MA, Vali H, Brett CL. How and why intralumenal membrane fragments form during vacuolar lysosome fusion. Mol Biol Cell 2017; 28:309-321. [PMID: 27881666 PMCID: PMC5231899 DOI: 10.1091/mbc.e15-11-0759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 11/11/2022] Open
Abstract
Lysosomal membrane fusion mediates the last step of the autophagy and endocytosis pathways and supports organelle remodeling and biogenesis. Because fusogenic proteins and lipids concentrate in a ring at the vertex between apposing organelle membranes, the encircled area of membrane can be severed and internalized within the lumen as a fragment upon lipid bilayer fusion. How or why this intralumenal fragment forms during fusion, however, is not entirely clear. To better understand this process, we studied fragment formation during homotypic vacuolar lysosome membrane fusion in Saccharomyces cerevisiae Using cell-free fusion assays and light microscopy, we find that GTPase activation and trans-SNARE complex zippering have opposing effects on fragment formation and verify that this affects the morphology of the fusion product and regulates transporter protein degradation. We show that fragment formwation is limited by stalk expansion, a key intermediate of the lipid bilayer fusion reaction. Using electron microscopy, we present images of hemifusion diaphragms that form as stalks expand and propose a model describing how the fusion machinery regulates fragment formation during lysosome fusion to control morphology and protein lifetimes.
Collapse
Affiliation(s)
- Sevan Mattie
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - Erin K McNally
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - Mahmoud A Karim
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Christopher L Brett
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| |
Collapse
|
39
|
D'Agostino M, Risselada HJ, Mayer A. Steric hindrance of SNARE transmembrane domain organization impairs the hemifusion-to-fusion transition. EMBO Rep 2016; 17:1590-1608. [PMID: 27644261 DOI: 10.15252/embr.201642209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/12/2016] [Indexed: 11/09/2022] Open
Abstract
SNAREs fuse membranes in several steps. Trans-SNARE complexes juxtapose membranes, induce hemifused stalk structures, and open the fusion pore. A recent penetration model of fusion proposed that SNAREs force the hydrophilic C-termini of their transmembrane domains through the hydrophobic core of the membrane(s). In contrast, the indentation model suggests that the C-termini open the pore by locally compressing and deforming the stalk. Here we test these models in the context of yeast vacuole fusion. Addition of small hydrophilic tags renders bilayer penetration by the C-termini energetically unlikely. It preserves fusion activity, however, arguing against the penetration model. Addition of large protein tags to the C-termini permits SNARE activation, trans-SNARE pairing, and hemifusion but abolishes pore opening. Fusion proceeds if the tags are detached from the membrane by a hydrophilic spacer or if only one side of the trans-SNARE complex carries a protein tag. Thus, both sides of a trans-SNARE complex can drive pore opening. Our results are consistent with an indentation model in which multiple SNARE C-termini cooperate in opening the fusion pore by locally deforming the inner leaflets.
Collapse
Affiliation(s)
- Massimo D'Agostino
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| | - Herre Jelger Risselada
- Department of Theoretical Physics, Georg-August University, Goettingen, Germany.,Leibniz-Institut für Oberflächenmodifizierung, Leipzig, Germany
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| |
Collapse
|
40
|
Zick M, Wickner W. Improved reconstitution of yeast vacuole fusion with physiological SNARE concentrations reveals an asymmetric Rab(GTP) requirement. Mol Biol Cell 2016; 27:2590-7. [PMID: 27385334 PMCID: PMC4985260 DOI: 10.1091/mbc.e16-04-0230] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/21/2016] [Indexed: 11/11/2022] Open
Abstract
In vitro reconstitution is a powerful approach to deciphering membrane fusion. However, current reconstitutions do not adequately mimic the physiological process. This study takes a big step toward overcoming those shortcomings, achieving fusion with SNARE densities comparable to the native membrane. In vitro reconstitution of homotypic yeast vacuole fusion from purified components enables detailed study of membrane fusion mechanisms. Current reconstitutions have yet to faithfully replicate the fusion process in at least three respects: 1) The density of SNARE proteins required for fusion in vitro is substantially higher than on the organelle. 2) Substantial lysis accompanies reconstituted fusion. 3) The Rab GTPase Ypt7 is essential in vivo but often dispensable in vitro. Here we report that changes in fatty acyl chain composition dramatically lower the density of SNAREs that are required for fusion. By providing more physiological lipids with a lower phase transition temperature, we achieved efficient fusion with SNARE concentrations as low as on the native organelle. Although fused proteoliposomes became unstable at elevated SNARE concentrations, releasing their content after fusion had occurred, reconstituted proteoliposomes with substantially reduced SNARE concentrations fused without concomitant lysis. The Rab GTPase Ypt7 is essential on both membranes for proteoliposome fusion to occur at these SNARE concentrations. Strikingly, it was only critical for Ypt7 to be GTP loaded on membranes bearing the R-SNARE Nyv1, whereas the bound nucleotide of Ypt7 was irrelevant on membranes bearing the Q-SNAREs Vam3 and Vti1.
Collapse
Affiliation(s)
- Michael Zick
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
41
|
Abstract
Intracellular membrane fusion is mediated in most cases by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). However, the assembly of such complexes in vitro is inefficient, and their uncatalysed disassembly is undetectably slow. Here, we focus on the cellular machinery that orchestrates assembly and disassembly of SNARE complexes, thereby regulating processes ranging from vesicle trafficking to organelle fusion to neurotransmitter release. Rapid progress is being made on many fronts, including the development of more realistic cell-free reconstitutions, the application of single-molecule biophysics, and the elucidation of X-ray and high-resolution electron microscopy structures of the SNARE assembly and disassembly machineries 'in action'.
Collapse
Affiliation(s)
- Richard W Baker
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.,Present address: Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Frederick M Hughson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
42
|
Ma L, Rebane AA, Yang G, Xi Z, Kang Y, Gao Y, Zhang Y. Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis. eLife 2015; 4. [PMID: 26701912 PMCID: PMC4744192 DOI: 10.7554/elife.09580] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022] Open
Abstract
Synaptic-soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins couple their stage-wise folding/assembly to rapid exocytosis of neurotransmitters in a Munc18-1-dependent manner. The functions of the different assembly stages in exocytosis and the role of Munc18-1 in SNARE assembly are not well understood. Using optical tweezers, we observed four distinct stages of assembly in SNARE N-terminal, middle, C-terminal, and linker domains (or NTD, MD, CTD, and LD, respectively). We found that SNARE layer mutations differentially affect SNARE assembly. Comparison of their effects on SNARE assembly and on exocytosis reveals that NTD and CTD are responsible for vesicle docking and fusion, respectively, whereas MD regulates SNARE assembly and fusion. Munc18-1 initiates SNARE assembly and structures t-SNARE C-terminus independent of syntaxin N-terminal regulatory domain (NRD) and stabilizes the half-zippered SNARE complex dependent upon the NRD. Our observations demonstrate distinct functions of SNARE domains whose assembly is intimately chaperoned by Munc18-1. DOI:http://dx.doi.org/10.7554/eLife.09580.001 Plants, animals and other eukaryotes transport many large molecules within their cells inside membrane-bound packages called vesicles. These vesicles can fuse with the membrane of a target compartment in the cell to deliver their contents inside, or fuse with the cell’s membrane to release the contents outside of the cell. Membrane fusion is carried out by a group of proteins called SNAREs. These proteins are embedded on the membranes of both the vesicle and its target, and they bind to each other to form a tight complex. This complex docks the vesicle to the target and then acts like a “zipper” to pull the two membranes close enough to fuse. The best-studied SNARE proteins act in nerve cells and fuse vesicles to the cell’s membrane in order to release molecules called neurotransmitters. This process is essential for communication between nerve cells, and relies on a protein called Munc18-1. However, it is not well understood how SNARE proteins assemble into the complex and how Munc18-1 regulates this process. Ma et al. have now used a tool called “optical tweezers” to pull an assembled SNARE complex apart in the laboratory and then observe how it folds and assembles in a step-by-step process. These experiments showed that the complex assembled in four stages and not three as has been reported in previous work. SNARE proteins are made up of four parts called domains, and Ma et al. observed that the N-terminal domains were the first to bind to each other. Next, the binding progressed to the middle domain, then to the C-terminal domain and finally to the linker domain. An intermediate, half-zippered form was also observed. Ma et al. next analysed each domain in more detail and found that the N-terminal and C-terminal domains drive the docking of vesicles to the target membrane, the middle domain is crucial for assembling the SNARE complex correctly, and all three domains regulate the fusing of the membranes. Further experiments showed that Munc18-1 promoted the assembly of new SNARE complexes and stabilized the half-zippered form, rather than stabilizing the complex after it had fully assembled. This study will provide a new tool to examine many other proteins that regulate SNARE assembly, and a basis to understand the role of SNARE proteins in brain activity. DOI:http://dx.doi.org/10.7554/eLife.09580.002
Collapse
Affiliation(s)
- Lu Ma
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Aleksander A Rebane
- Department of Cell Biology, Yale School of Medicine, New Haven, United States.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States.,Department of Physics, Yale University, New Haven, United States
| | - Guangcan Yang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States.,Department of Physics, Wenzhou University, Wenzhou, China
| | - Zhiqun Xi
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Yuhao Kang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Ying Gao
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| |
Collapse
|
43
|
Three steps forward, two steps back: mechanistic insights into the assembly and disassembly of the SNARE complex. Curr Opin Chem Biol 2015; 29:66-71. [PMID: 26498108 DOI: 10.1016/j.cbpa.2015.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022]
Abstract
Membrane fusion is a tightly controlled process in all eukaryotic cell types. The SNARE family of proteins is required for fusion throughout the exocytic and endocytic trafficking pathways. SNAREs on a transport vesicle interact with the cognate SNAREs on the target membrane, forming an incredibly stable SNARE complex that provides energy for the membranes to fuse, although many aspects of the mechanism remain elusive. Recent advances in single-molecule and high-resolution structural methods provide exciting new insights into how SNARE complexes assemble, including measurements of assembly energetics and identification of intermediates in the assembly pathway. These techniques were also key in elucidating mechanistic details into how the SNARE complex is disassembled, including details of the energetics required for ATP-dependent α-SNAP/NSF-mediated SNARE complex disassembly, and the structural changes that accompany ATP hydrolysis by the disassembly machinery. Additionally, SNARE complex formation and disassembly are tightly regulated processes; innovative biochemical and biophysical characterization has deepened our understanding of how these regulators work to control membrane fusion and exocytosis.
Collapse
|
44
|
Baker RW, Jeffrey PD, Zick M, Phillips BP, Wickner WT, Hughson FM. A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science 2015; 349:1111-4. [PMID: 26339030 DOI: 10.1126/science.aac7906] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Fusion of intracellular transport vesicles requires soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18-family (SM) proteins. Membrane-bridging SNARE complexes are critical for fusion, but their spontaneous assembly is inefficient and may require SM proteins in vivo. We report x-ray structures of Vps33, the SM subunit of the yeast homotypic fusion and vacuole protein-sorting (HOPS) complex, bound to two individual SNAREs. The two SNAREs, one from each membrane, are held in the correct orientation and register for subsequent complex assembly. Vps33 and potentially other SM proteins could thus act as templates for generating partially zipped SNARE assembly intermediates. HOPS was essential to mediate SNARE complex assembly at physiological SNARE concentrations. Thus, Vps33 appears to catalyze SNARE complex assembly through specific SNARE motif recognition.
Collapse
Affiliation(s)
- Richard W Baker
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michael Zick
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Ben P Phillips
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - William T Wickner
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Frederick M Hughson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
45
|
The Energetics of Streptococcal Enolase Octamer Formation: The Quantitative Contributions of the Last Eight Amino Acids at the Carboxy-Terminus. PLoS One 2015; 10:e0135754. [PMID: 26287818 PMCID: PMC4546058 DOI: 10.1371/journal.pone.0135754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/25/2015] [Indexed: 11/25/2022] Open
Abstract
The enolase produced by Streptococcus pyogenes is a homo-octamer whose overall shape resembles that of a donut. The octamer is best described as a tetramer of dimers. As such, it contains two types of interfaces. The first is common to almost all enolases as most enolases that have been studied are dimers. The second is unique to the octamers and includes residues near the carboxy-terminus. The primary sequence of the enolase contains 435 residues with an added 19 as an N-terminal hexahistine tag. We have systematically truncated the carboxy-terminus, individually removing the first 8 residues. This gave rise to a series of eight structures containing respectively, 435, 434, 433, 432, 431, 430, 429 and 427 residues. The truncations cause the protein to gradually dissociate from octamers to enzymatically inactive monomers with very small amounts of intermediate tetramers and dimers. We have evaluated the contributions of the missing residues to the monomer/octamer equilibrium using a combination of analytical ultracentrifugation and activity assays. For the dissociation reaction,
octamer ⇐⇒ 8 monomer
truncation of all eight C-terminal residues resulted in a diminution in the standard Gibbs energy of dissociation of about 59 kJ/mole of octamer relative to the full length protein. Considering that this change is spread over eight subunits, this translates to a change in standard Gibbs interaction energy of less than 8 kJ/mole of monomer distributed over the eight monomers. The resulting proteins, containing 434, 433, 432, 431, 430, 429 and 427 residues per monomer, showed intermediate free energies of dissociation. Finally, three other mutations were introduced into our reference protein to establish how they influenced the equilibrium. The main importance of this work is it shows that for homo-multimeric proteins a small change in the standard Gibbs interaction energy between subunits can have major physiological effects.
Collapse
|
46
|
Abstract
Sec17 [soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein; α-SNAP] and Sec18 (NSF) perform ATP-dependent disassembly of cis-SNARE complexes, liberating SNAREs for subsequent assembly of trans-complexes for fusion. A mutant of Sec17, with limited ability to stimulate Sec18, still strongly enhanced fusion when ample Sec18 was supplied, suggesting that Sec17 has additional functions. We used fusion reactions where the four SNAREs were initially separate, thus requiring no disassembly by Sec18. With proteoliposomes bearing asymmetrically disposed SNAREs, tethering and trans-SNARE pairing allowed slow fusion. Addition of Sec17 did not affect the levels of trans-SNARE complex but triggered sudden fusion of trans-SNARE paired proteoliposomes. Sec18 did not substitute for Sec17 in triggering fusion, but ADP- or ATPγS-bound Sec18 enhanced this Sec17 function. The extent of the Sec17 effect varied with the lipid headgroup and fatty acyl composition of the proteoliposomes. Two mutants further distinguished the two Sec17 functions: Sec17(L291A,L292A) did not stimulate Sec18 to disassemble cis-SNARE complex but triggered the fusion of trans-SNARE paired membranes. Sec17(F21S,M22S), with diminished apolar character to its hydrophobic loop, fully supported Sec18-mediated SNARE complex disassembly but had lost the capacity to stimulate the fusion of trans-SNARE paired membranes. To model the interactions of SNARE-bound Sec17 with membranes, we show that Sec17, but not Sec17(F21S,M22S), interacted synergistically with the soluble SNARE domains to enable their stable association with liposomes. We propose a model in which Sec17 binds to trans-SNARE complexes, oligomerizes, and inserts apolar loops into the apposed membranes, locally disturbing the lipid bilayer and thereby lowering the energy barrier for fusion.
Collapse
|
47
|
Abstract
Exocytosis is a highly regulated process that consists of multiple functionally, kinetically and/or morphologically definable stages such as recruitment, targeting, tethering and docking of secretory vesicles with the plasma membrane, priming of the fusion machinery and calcium-triggered membrane fusion. After fusion, the membrane around the secretory vesicle is incorporated into the plasma membrane and the granule releases its contents. The proteins involved in these processes belong to several highly conserved families: Rab GTPases, SNAREs (soluble NSF-attachment protein receptors), α-SNAP (α-NSF attachment protein), NSF (N-ethylmaleimide-sensitive factor), Munc13 and -18, complexins and synaptotagmins. In the present article, the molecules of exocytosis are reviewed, using human sperm as a model system. Sperm exocytosis is driven by isoforms of the same proteinaceous fusion machinery mentioned above, with their functions orchestrated in a hierarchically organized and unidirectional signalling cascade. In addition to the universal exocytosis regulator calcium, this cascade includes other second messengers such as diacylglycerol, inositol 1,4,5-trisphosphate and cAMP, as well as the enzymes that synthesize them and their target proteins. Of special interest is the cAMP-binding protein Epac (exchange protein directly activated by cAMP) due in part to its enzymatic activity towards Rap. The activation of Epac and Rap leads to a highly localized calcium signal which, together with assembly of the SNARE complex, governs the final stages of exocytosis. The source of this releasable calcium is the secretory granule itself.
Collapse
|
48
|
Pieren M, Desfougères Y, Michaillat L, Schmidt A, Mayer A. Vacuolar SNARE protein transmembrane domains serve as nonspecific membrane anchors with unequal roles in lipid mixing. J Biol Chem 2015; 290:12821-32. [PMID: 25817997 DOI: 10.1074/jbc.m115.647776] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 12/23/2022] Open
Abstract
Membrane fusion is induced by SNARE complexes that are anchored in both fusion partners. SNAREs zipper up from the N to C terminus bringing the two membranes into close apposition. Their transmembrane domains (TMDs) might be mere anchoring devices, deforming bilayers by mechanical force. Structural studies suggested that TMDs might also perturb lipid structure by undergoing conformational transitions or by zipping up into the bilayer. Here, we tested this latter hypothesis, which predicts that the activity of SNAREs should depend on the primary sequence of their TMDs. We replaced the TMDs of all vacuolar SNAREs (Nyv1, Vam3, and Vti1) by a lipid anchor, by a TMD from a protein unrelated to the membrane fusion machinery, or by artificial leucine-valine sequences. Individual exchange of the native SNARE TMDs against an unrelated transmembrane anchor or an artificial leucine-valine sequence yielded normal fusion activities. Fusion activity was also preserved upon pairwise exchange of the TMDs against unrelated peptides, which eliminates the possibility for specific TMD-TMD interactions. Thus, a specific primary sequence or zippering beyond the SNARE domains is not a prerequisite for fusion. Lipid-anchored Vti1 was fully active, and lipid-anchored Nyv1 permitted the reaction to proceed up to hemifusion, and lipid-anchored Vam3 interfered already before hemifusion. The unequal contribution of proteinaceous TMDs on Vam3 and Nyv1 suggests that Q- and R-SNAREs might make different contributions to the hemifusion intermediate and the opening of the fusion pore. Furthermore, our data support the view that SNARE TMDs serve as nonspecific membrane anchors in vacuole fusion.
Collapse
Affiliation(s)
- Michel Pieren
- From the Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Yann Desfougères
- From the Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Lydie Michaillat
- From the Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Andrea Schmidt
- From the Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Andreas Mayer
- From the Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| |
Collapse
|
49
|
Orr A, Wickner W, Rusin SF, Kettenbach AN, Zick M. Yeast vacuolar HOPS, regulated by its kinase, exploits affinities for acidic lipids and Rab:GTP for membrane binding and to catalyze tethering and fusion. Mol Biol Cell 2014; 26:305-15. [PMID: 25411340 PMCID: PMC4294677 DOI: 10.1091/mbc.e14-08-1298] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acidic lipids act as coreceptors with Ypt7p to bind the HOPS complex to support membrane tethering and fusion. After phosphorylation by the vacuolar kinase Yck3p, phospho-HOPS needs both Ypt7p:GTP and acidic lipids to support fusion. Fusion of yeast vacuoles requires the Rab GTPase Ypt7p, four SNAREs (soluble N-ethylmaleimide–sensitive factor attachment protein receptors), the SNARE disassembly chaperones Sec17p/Sec18p, vacuolar lipids, and the Rab-effector complex HOPS (homotypic fusion and vacuole protein sorting). Two HOPS subunits have direct affinity for Ypt7p. Although vacuolar fusion has been reconstituted with purified components, the functional relationships between individual lipids and Ypt7p:GTP have remained unclear. We now report that acidic lipids function with Ypt7p as coreceptors for HOPS, supporting membrane tethering and fusion. After phosphorylation by the vacuolar kinase Yck3p, phospho-HOPS needs both Ypt7p:GTP and acidic lipids to support fusion.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - William Wickner
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Scott F Rusin
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Arminja N Kettenbach
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 Norris Cotton Cancer Center, Lebanon, NH 03756
| | - Michael Zick
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
50
|
Zick M, Wickner WT. A distinct tethering step is vital for vacuole membrane fusion. eLife 2014; 3:e03251. [PMID: 25255215 PMCID: PMC4200421 DOI: 10.7554/elife.03251] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022] Open
Abstract
Past experiments with reconstituted proteoliposomes, employing assays that infer membrane fusion from fluorescent lipid dequenching, have suggested that vacuolar SNAREs alone suffice to catalyze membrane fusion in vitro. While we could replicate these results, we detected very little fusion with the more rigorous assay of lumenal compartment mixing. Exploring the discrepancies between lipid-dequenching and content-mixing assays, we surprisingly found that the disposition of the fluorescent lipids with respect to SNAREs had a striking effect. Without other proteins, the association of SNAREs in trans causes lipid dequenching that cannot be ascribed to fusion or hemifusion. Tethering of the SNARE-bearing proteoliposomes was required for efficient lumenal compartment mixing. While the physiological HOPS tethering complex caused a few-fold increase of trans-SNARE association, the rate of content mixing increased more than 100-fold. Thus tethering has a role in promoting membrane fusion that extends beyond simply increasing the amount of total trans-SNARE complex. DOI:http://dx.doi.org/10.7554/eLife.03251.001 Cells of higher organisms contain compartments called organelles and structures called vesicles that transfer molecules and proteins between these organelles. Each organelle and each vesicle is enclosed within a membrane, and these membranes must fuse together to allow these transfers to take place. A certain group of proteins, called SNAREs, have a central role in these fusion events. Since membrane fusion is difficult to observe directly, many researchers have used a method called ‘fluorescent lipid dequenching’ to study it indirectly. In this approach, one fraction of vesicles is labeled with two fluorescent molecules, with one of these molecules quenching the fluorescence of the other. However, when a labeled vesicle fuses with an unlabeled vesicle, the surface concentrations of the fluorescent molecules are diluted. This reduces the amount of quenching and the resulting increase in fluorescence can be measured. Experiments utilizing this technique had suggested that SNARE proteins are sufficient for fusion to take place, and that no other protein complexes need to be present. However, when a different assay method called ‘lumenal compartment mixing’ was used, little fusion was seen when the only proteins present were the SNAREs. The lumenal compartment mixing approach relies on measuring the degree of mixing between the contents of two vesicles. To address these conflicting results, Zick and Wickner used both methods to study fusion in a yeast-based system. The lumenal compartment mixing approach, which is the more reliable method, revealed that rapid and efficient membrane fusion in fact requires another protein complex, called HOPS, to hold the two membrane vesicles together. Zick and Wickner found that the HOPS complex does not enable fusion by just increasing the amount of interactions between the SNARE proteins. Rather, it seems to facilitate the formation of a particular quality of SNARE interactions. Future work is needed to work out how the SNARE complexes become ‘fusion-competent’, and to explore the mechanism that allows the HOPS complex to assist in the formation of fusion-competent SNARE complexes. DOI:http://dx.doi.org/10.7554/eLife.03251.002
Collapse
Affiliation(s)
- Michael Zick
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - William T Wickner
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|