1
|
Rabuffo C, Schmidt MR, Yadav P, Tong P, Carloni R, Barcons-Simon A, Cosentino RO, Krebs S, Matthews KR, Allshire RC, Siegel TN. Inter-chromosomal transcription hubs shape the 3D genome architecture of African trypanosomes. Nat Commun 2024; 15:10716. [PMID: 39715762 DOI: 10.1038/s41467-024-55285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024] Open
Abstract
The eukaryotic nucleus exhibits a highly organized 3D genome architecture, with RNA transcription and processing confined to specific nuclear structures. While intra-chromosomal interactions, such as promoter-enhancer dynamics, are well-studied, the role of inter-chromosomal interactions remains poorly understood. Investigating these interactions in mammalian cells is challenging due to large genome sizes and the need for deep sequencing. Additionally, transcription-dependent 3D topologies in mixed cell populations further complicate analyses. To address these challenges, we used high-resolution DNA-DNA contact mapping (Micro-C) in Trypanosoma brucei, a parasite with continuous RNA polymerase II (RNAPII) transcription and polycistronic transcription units (PTUs). With approximately 300 transcription start sites (TSSs), this genome organization simplifies data interpretation. To minimize scaffolding artifacts, we also generated a highly contiguous phased genome assembly using ultra-long sequencing reads. Our Micro-C analysis revealed an intricate 3D genome organization. While the T. brucei genome displays features resembling chromosome territories, its chromosomes are arranged around polymerase-specific transcription hubs. RNAPI-transcribed genes cluster, as expected from their localization to the nucleolus. However, we also found that RNAPII TSSs form distinct inter-chromosomal transcription hubs with other RNAPII TSSs. These findings highlight the evolutionary significance of inter-chromosomal transcription hubs and provide new insights into genome organization in T. brucei.
Collapse
Affiliation(s)
- Claudia Rabuffo
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Markus R Schmidt
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Prateek Yadav
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Pin Tong
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Roberta Carloni
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Anna Barcons-Simon
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Raúl O Cosentino
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Stefan Krebs
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Keith R Matthews
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
2
|
Girasol MJ, Briggs EM, Marques CA, Batista JM, Beraldi D, Burchmore R, Lemgruber L, McCulloch R. Immunoprecipitation of RNA-DNA hybrid interacting proteins in Trypanosoma brucei reveals conserved and novel activities, including in the control of surface antigen expression needed for immune evasion by antigenic variation. Nucleic Acids Res 2023; 51:11123-11141. [PMID: 37843098 PMCID: PMC10639054 DOI: 10.1093/nar/gkad836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
RNA-DNA hybrids are epigenetic features of genomes that provide a diverse and growing range of activities. Understanding of these functions has been informed by characterising the proteins that interact with the hybrids, but all such analyses have so far focused on mammals, meaning it is unclear if a similar spectrum of RNA-DNA hybrid interactors is found in other eukaryotes. The African trypanosome is a single-cell eukaryotic parasite of the Discoba grouping and displays substantial divergence in several aspects of core biology from its mammalian host. Here, we show that DNA-RNA hybrid immunoprecipitation coupled with mass spectrometry recovers 602 putative interactors in T. brucei mammal- and insect-infective cells, some providing activities also found in mammals and some lineage-specific. We demonstrate that loss of three factors, two putative helicases and a RAD51 paralogue, alters T. brucei nuclear RNA-DNA hybrid and DNA damage levels. Moreover, loss of each factor affects the operation of the parasite immune survival mechanism of antigenic variation. Thus, our work reveals the broad range of activities contributed by RNA-DNA hybrids to T. brucei biology, including new functions in host immune evasion as well as activities likely fundamental to eukaryotic genome function.
Collapse
Affiliation(s)
- Mark J Girasol
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
- University of the Philippines Manila, College of Medicine, Manila, Philippines
| | - Emma M Briggs
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
- University of Edinburgh, Institute for Immunology and Infection Research, School of Biological Sciences, Edinburgh, UK
| | - Catarina A Marques
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - José M Batista
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - Dario Beraldi
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - Richard Burchmore
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - Leandro Lemgruber
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - Richard McCulloch
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| |
Collapse
|
3
|
López-Escobar L, Hänisch B, Halliday C, Ishii M, Akiyoshi B, Dean S, Sunter JD, Wheeler RJ, Gull K. Stage-specific transcription activator ESB1 regulates monoallelic antigen expression in Trypanosoma brucei. Nat Microbiol 2022; 7:1280-1290. [PMID: 35879525 PMCID: PMC9352583 DOI: 10.1038/s41564-022-01175-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
Variant surface glycoprotein (VSG) coats bloodstream form Trypanosoma brucei parasites, and monoallelic VSG expression underpins the antigenic variation necessary for pathogenicity. One of thousands of VSG genes is transcribed by RNA polymerase I in a singular nuclear structure called the expression site body (ESB), but how monoallelic VSG transcription is achieved remains unclear. Using a localization screen of 153 proteins we found one, ESB-specific protein 1 (ESB1), that localized only to the ESB and is expressed only in VSG-expressing life cycle stages. ESB1 associates with DNA near the active VSG promoter and is necessary for VSG expression, with overexpression activating inactive VSG promoters. Mechanistically, ESB1 is necessary for recruitment of a subset of ESB components, including RNA polymerase I, revealing that the ESB has separately assembled subdomains. Because many trypanosomatid parasites have divergent ESB1 orthologues yet do not undergo antigenic variation, ESB1 probably represents an important class of transcription regulators.
Collapse
Affiliation(s)
| | - Benjamin Hänisch
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Clare Halliday
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Samuel Dean
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jack Daniel Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| | | | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Florini F, Visone JE, Deitsch KW. Shared Mechanisms for Mutually Exclusive Expression and Antigenic Variation by Protozoan Parasites. Front Cell Dev Biol 2022; 10:852239. [PMID: 35350381 PMCID: PMC8957917 DOI: 10.3389/fcell.2022.852239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2022] [Indexed: 01/05/2023] Open
Abstract
Cellular decision-making at the level of gene expression is a key process in the development and evolution of every organism. Variations in gene expression can lead to phenotypic diversity and the development of subpopulations with adaptive advantages. A prime example is the mutually exclusive activation of a single gene from within a multicopy gene family. In mammals, this ranges from the activation of one of the two immunoglobulin (Ig) alleles to the choice in olfactory sensory neurons of a single odorant receptor (OR) gene from a family of more than 1,000. Similarly, in parasites like Trypanosoma brucei, Giardia lamblia or Plasmodium falciparum, the process of antigenic variation required to escape recognition by the host immune system involves the monoallelic expression of vsg, vsp or var genes, respectively. Despite the importance of this process, understanding how this choice is made remains an enigma. The development of powerful techniques such as single cell RNA-seq and Hi-C has provided new insights into the mechanisms these different systems employ to achieve monoallelic gene expression. Studies utilizing these techniques have shown how the complex interplay between nuclear architecture, physical interactions between chromosomes and different chromatin states lead to single allele expression. Additionally, in several instances it has been observed that high-level expression of a single gene is preceded by a transient state where multiple genes are expressed at a low level. In this review, we will describe and compare the different strategies that organisms have evolved to choose one gene from within a large family and how parasites employ this strategy to ensure survival within their hosts.
Collapse
Affiliation(s)
| | | | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
5
|
Cordon-Obras C, Gomez-Liñan C, Torres-Rusillo S, Vidal-Cobo I, Lopez-Farfan D, Barroso-Del Jesus A, Rojas-Barros D, Carrington M, Navarro M. Identification of sequence-specific promoters driving polycistronic transcription initiation by RNA polymerase II in trypanosomes. Cell Rep 2022; 38:110221. [PMID: 35021094 DOI: 10.1016/j.celrep.2021.110221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
Protein-coding genes in trypanosomes occur in polycistronic transcription units (PTUs). How RNA polymerase II (Pol II) initiates transcription of PTUs has not been resolved; the current model favors chromatin modifications inducing transcription rather than sequence-specific promoters. Here, we uncover core promoters by functional characterization of Pol II peaks identified by chromatin immunoprecipitation sequencing (ChIP-seq). Two distinct promoters are located between divergent PTUs, each driving unidirectional transcription. Detailed analysis identifies a 75-bp promoter that is necessary and sufficient to drive full reporter expression and contains functional motifs. Analysis of further promoters suggests transcription initiation is regulated and promoters are either focused or dispersed. In contrast to the previous model of unregulated and promoter-independent transcription initiation, we find that sequence-specific promoters determine the initiation of Pol II transcription of protein-coding genes PTUs. These findings in Trypanosoma brucei suggest that in addition of chromatin modifications, promoter motifs-based regulation of gene expression is deeply conserved among eukaryotes.
Collapse
Affiliation(s)
- Carlos Cordon-Obras
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Claudia Gomez-Liñan
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Sara Torres-Rusillo
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Isabel Vidal-Cobo
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Diana Lopez-Farfan
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Alicia Barroso-Del Jesus
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Domingo Rojas-Barros
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain.
| |
Collapse
|
6
|
Faria JRC. A nuclear enterprise: zooming in on nuclear organization and gene expression control in the African trypanosome. Parasitology 2021; 148:1237-1253. [PMID: 33407981 PMCID: PMC8311968 DOI: 10.1017/s0031182020002437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022]
Abstract
African trypanosomes are early divergent protozoan parasites responsible for high mortality and morbidity as well as a great economic burden among the world's poorest populations. Trypanosomes undergo antigenic variation in their mammalian hosts, a highly sophisticated immune evasion mechanism. Their nuclear organization and mechanisms for gene expression control present several conventional features but also a number of striking differences to the mammalian counterparts. Some of these unorthodox characteristics, such as lack of controlled transcription initiation or enhancer sequences, render their monogenic antigen transcription, which is critical for successful antigenic variation, even more enigmatic. Recent technological developments have advanced our understanding of nuclear organization and gene expression control in trypanosomes, opening novel research avenues. This review is focused on Trypanosoma brucei nuclear organization and how it impacts gene expression, with an emphasis on antigen expression. It highlights several dedicated sub-nuclear bodies that compartmentalize specific functions, whilst outlining similarities and differences to more complex eukaryotes. Notably, understanding the mechanisms underpinning antigen as well as general gene expression control is of great importance, as it might help designing effective control strategies against these organisms.
Collapse
Affiliation(s)
- Joana R. C. Faria
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, DundeeDD1 5EH, UK
| |
Collapse
|
7
|
Saha A, Gaurav AK, Pandya UM, Afrin M, Sandhu R, Nanavaty V, Schnur B, Li B. TbTRF suppresses the TERRA level and regulates the cell cycle-dependent TERRA foci number with a TERRA binding activity in its C-terminal Myb domain. Nucleic Acids Res 2021; 49:5637-5653. [PMID: 34048580 PMCID: PMC8191777 DOI: 10.1093/nar/gkab401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/05/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Telomere repeat-containing RNA (TERRA) has been identified in multiple organisms including Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis. T. brucei regularly switches its major surface antigen, VSG, to evade the host immune response. VSG is expressed exclusively from subtelomeric expression sites, and we have shown that telomere proteins play important roles in the regulation of VSG silencing and switching. In this study, we identify several unique features of TERRA and telomere biology in T. brucei. First, the number of TERRA foci is cell cycle-regulated and influenced by TbTRF, the duplex telomere DNA binding factor in T. brucei. Second, TERRA is transcribed by RNA polymerase I mainly from a single telomere downstream of the active VSG. Third, TbTRF binds TERRA through its C-terminal Myb domain, which also has the duplex DNA binding activity, in a sequence-specific manner and suppresses the TERRA level without affecting its half-life. Finally, levels of the telomeric R-loop and telomere DNA damage were increased upon TbTRF depletion. Overexpression of an ectopic allele of RNase H1 that resolves the R-loop structure in TbTRF RNAi cells can partially suppress these phenotypes, revealing an underlying mechanism of how TbTRF helps maintain telomere integrity.
Collapse
Affiliation(s)
- Arpita Saha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Amit Kumar Gaurav
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Unnati M Pandya
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Marjia Afrin
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Ranjodh Sandhu
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Vishal Nanavaty
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Brittny Schnur
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.,Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Black JA, Crouch K, Lemgruber L, Lapsley C, Dickens N, Tosi LRO, Mottram JC, McCulloch R. Trypanosoma brucei ATR Links DNA Damage Signaling during Antigenic Variation with Regulation of RNA Polymerase I-Transcribed Surface Antigens. Cell Rep 2021; 30:836-851.e5. [PMID: 31968257 PMCID: PMC6988115 DOI: 10.1016/j.celrep.2019.12.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/19/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022] Open
Abstract
Trypanosoma brucei evades mammalian immunity by using recombination to switch its surface-expressed variant surface glycoprotein (VSG), while ensuring that only one of many subtelomeric multigene VSG expression sites are transcribed at a time. DNA repair activities have been implicated in the catalysis of VSG switching by recombination, not transcriptional control. How VSG switching is signaled to guide the appropriate reaction or to integrate switching into parasite growth is unknown. Here, we show that the loss of ATR, a DNA damage-signaling protein kinase, is lethal, causing nuclear genome instability and increased VSG switching through VSG-localized damage. Furthermore, ATR loss leads to the increased transcription of silent VSG expression sites and expression of mixed VSGs on the cell surface, effects that are associated with the altered localization of RNA polymerase I and VEX1. This work shows that ATR acts in antigenic variation both through DNA damage signaling and surface antigen expression control. Loss of the repair protein kinase ATR in Trypanosoma brucei is lethal Loss of T. brucei ATR alters VSG coat expression needed for immune evasion Monoallelic RNA polymerase I VSG expression is undermined by ATR loss ATR loss leads to expression of subtelomeric VSGs, indicative of recombination
Collapse
Affiliation(s)
- Jennifer Ann Black
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900 SP, Brazil
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Nicholas Dickens
- Marine Science Lab, FAU Harbor Branch Oceanographic Institute, 5600 US 1 North, Fort Pierce, FL 34946, USA
| | - Luiz R O Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900 SP, Brazil
| | - Jeremy C Mottram
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
9
|
Spatial integration of transcription and splicing in a dedicated compartment sustains monogenic antigen expression in African trypanosomes. Nat Microbiol 2021; 6:289-300. [PMID: 33432154 PMCID: PMC7610597 DOI: 10.1038/s41564-020-00833-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Highly selective gene expression is a key requirement for antigenic variation in several pathogens, allowing evasion of host immune responses and maintenance of persistent infections 1. African trypanosomes, parasites that cause lethal diseases in humans and livestock, employ an antigenic variation mechanism that involves monogenic antigen expression from a pool of >2600 antigen-coding genes 2. In other eukaryotes, the expression of individual genes can be enhanced by mechanisms involving the juxtaposition of otherwise distal chromosomal loci in the three-dimensional nuclear space 3–5. However, trypanosomes lack classical enhancer sequences or regulated transcription initiation 6,7. In this context, it has remained unclear how genome architecture contributes to monogenic transcription elongation and transcript processing. Here, we show that the single expressed antigen coding gene displays a specific inter-chromosomal interaction with a major mRNA splicing locus. Chromosome conformation capture (Hi-C) revealed a dynamic reconfiguration of this inter-chromosomal interaction upon activation of another antigen. Super-resolution microscopy showed the interaction to be heritable and splicing dependent. We find a specific association of the two genomic loci with the antigen exclusion complex, whereby VEX1 occupied the splicing locus and VEX2 the antigen coding locus. Following VEX2 depletion, loss of monogenic antigen expression was accompanied by increased interactions between previously silent antigen genes and the splicing locus. Our results reveal a mechanism to ensure monogenic expression, where antigen transcription and mRNA splicing occur in a specific nuclear compartment. These findings suggest a new means of post-transcriptional gene regulation.
Collapse
|
10
|
Damasceno JD, Marques CA, Black J, Briggs E, McCulloch R. Read, Write, Adapt: Challenges and Opportunities during Kinetoplastid Genome Replication. Trends Genet 2020; 37:21-34. [PMID: 32993968 PMCID: PMC9213392 DOI: 10.1016/j.tig.2020.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
The genomes of all organisms are read throughout their growth and development, generating new copies during cell division and encoding the cellular activities dictated by the genome’s content. However, genomes are not invariant information stores but are purposefully altered in minor and major ways, adapting cellular behaviour and driving evolution. Kinetoplastids are eukaryotic microbes that display a wide range of such read–write genome activities, in many cases affecting critical aspects of their biology, such as host adaptation. Here we discuss the range of read–write genome changes found in two well-studied kinetoplastid parasites, Trypanosoma brucei and Leishmania, focusing on recent work that suggests such adaptive genome variation is linked to novel strategies the parasites use to replicate their unconventional genomes. Polycistronic transcription dominates and shapes kinetoplastid genomes, inevitably leading to clashes with DNA replication. By harnessing the resultant DNA damage for adaptation, kinetoplastids have huge potential for dynamic read–write genome variation. Major origins of DNA replication are confined to the boundaries of polycistronic transcription units in the Trypanosoma brucei and Leishmania genomes, putatively limiting DNA damage. Subtelomeres may lack this arrangement, generating read–write hotspots. In T. brucei, early replication of the highly transcribed subtelomeric variant surface glycoprotein (VSG) expression site may ensure replication-transcription clashes within this site to trigger DNA recombination, an event critical for antigenic variation. Leishmania genomes show extensive aneuploidy and copy number variation. Notably, DNA replication requires recombination factors and relies on post-S phase replication of subtelomeres. Evolution of compartmentalised DNA replication programmes underpin important aspects of genome biology in kinetoplastids, illustrating the consolidation of genome maintenance strategies to promote genome plasticity.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Catarina A Marques
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Jennifer Black
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Emma Briggs
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK; Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
11
|
Saura A, Iribarren PA, Rojas‐Barros D, Bart JM, López‐Farfán D, Andrés‐León E, Vidal‐Cobo I, Boehm C, Alvarez VE, Field MC, Navarro M. SUMOylated SNF2PH promotes variant surface glycoprotein expression in bloodstream trypanosomes. EMBO Rep 2019; 20:e48029. [PMID: 31693280 PMCID: PMC6893287 DOI: 10.15252/embr.201948029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
SUMOylation is a post-translational modification that positively regulates monoallelic expression of the trypanosome variant surface glycoprotein (VSG). The presence of a highly SUMOylated focus associated with the nuclear body, where the VSG gene is transcribed, further suggests an important role of SUMOylation in regulating VSG expression. Here, we show that SNF2PH, a SUMOylated plant homeodomain (PH)-transcription factor, is upregulated in the bloodstream form of the parasite and enriched at the active VSG telomere. SUMOylation promotes the recruitment of SNF2PH to the VSG promoter, where it is required to maintain RNA polymerase I and thus to regulate VSG transcript levels. Further, ectopic overexpression of SNF2PH in insect forms, but not of a mutant lacking the PH domain, induces the expression of bloodstream stage-specific surface proteins. These data suggest that SNF2PH SUMOylation positively regulates VSG monoallelic transcription, while the PH domain is required for the expression of bloodstream-specific surface proteins. Thus, SNF2PH functions as a positive activator, linking expression of infective form surface proteins and VSG regulation, thereby acting as a major regulator of pathogenicity.
Collapse
Affiliation(s)
- Andreu Saura
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | | | - Domingo Rojas‐Barros
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | - Jean M Bart
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | - Diana López‐Farfán
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | - Eduardo Andrés‐León
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | - Isabel Vidal‐Cobo
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| | | | | | - Mark C Field
- School of Life SciencesUniversity of DundeeDundeeUK
- Biology CentreInstitute of ParasitologyCzech Academy of SciencesCeske BudejoviceCzech Republic
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina “López‐Neyra”CSIC (IPBLN‐CSIC)GranadaSpain
| |
Collapse
|
12
|
Sima N, McLaughlin EJ, Hutchinson S, Glover L. Escaping the immune system by DNA repair and recombination in African trypanosomes. Open Biol 2019; 9:190182. [PMID: 31718509 PMCID: PMC6893398 DOI: 10.1098/rsob.190182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
African trypanosomes escape the mammalian immune response by antigenic variation-the periodic exchange of one surface coat protein, in Trypanosoma brucei the variant surface glycoprotein (VSG), for an immunologically distinct one. VSG transcription is monoallelic, with only one VSG being expressed at a time from a specialized locus, known as an expression site. VSG switching is a predominantly recombination-driven process that allows VSG sequences to be recombined into the active expression site either replacing the currently active VSG or generating a 'new' VSG by segmental gene conversion. In this review, we describe what is known about the factors that influence this process, focusing specifically on DNA repair and recombination.
Collapse
Affiliation(s)
- Núria Sima
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Emilia Jane McLaughlin
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Sebastian Hutchinson
- Trypanosome Cell Biology and INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Lucy Glover
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
13
|
Dynamic colocalization of 2 simultaneously active VSG expression sites within a single expression-site body in Trypanosoma brucei. Proc Natl Acad Sci U S A 2019; 116:16561-16570. [PMID: 31358644 PMCID: PMC6697882 DOI: 10.1073/pnas.1905552116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The African trypanosome Trypanosoma brucei expresses a single variant surface glycoprotein (VSG) gene from one of multiple VSG expression sites (ESs) in a stringent monoallelic fashion. The counting mechanism behind this restriction is poorly understood. Unusually for a eukaryote, the active ES is transcribed by RNA polymerase I (Pol I) within a unique Pol I body called the expression-site body (ESB). We have demonstrated the importance of the ESB in restricting the singular expression of VSG. We have generated double-expresser trypanosomes, which simultaneously express 2 ESs at the same time in an unstable dynamic fashion. These cells predominantly contain 1 ESB, and, surprisingly, simultaneous transcription of the 2 ESs is observed only when they are both colocalized within it. Monoallelic exclusion ensures that the African trypanosome Trypanosoma brucei exclusively expresses only 1 of thousands of different variant surface glycoprotein (VSG) coat genes. The active VSG is transcribed from 1 of 15 polycistronic bloodstream-form VSG expression sites (ESs), which are controlled in a mutually exclusive fashion. Unusually, T. brucei uses RNA polymerase I (Pol I) to transcribe the active ES, which is unprecedented among eukaryotes. This active ES is located within a unique extranucleolar Pol I body called the expression-site body (ESB). A stringent restriction mechanism prevents T. brucei from expressing multiple ESs at the same time, although how this is mediated is unclear. By using drug-selection pressure, we generated VSG double-expresser T. brucei lines, which have disrupted monoallelic exclusion, and simultaneously express 2 ESs in a dynamic fashion. The 2 unstably active ESs appear epigenetically similar to fully active ESs as determined by using chromatin immunoprecipitation for multiple epigenetic marks (histones H3 and H1, TDP1, and DNA base J). We find that the double-expresser cells, similar to wild-type single-expresser cells, predominantly contain 1 subnuclear ESB, as determined using Pol I or the ESB marker VEX1. Strikingly, simultaneous transcription of the 2 dynamically transcribed ESs is normally observed only when the 2 ESs are both located within this single ESB. This colocalization is reversible in the absence of drug selection. This discovery that simultaneously active ESs dynamically share a single ESB demonstrates the importance of this unique subnuclear body in restricting the monoallelic expression of VSG.
Collapse
|
14
|
Faria J, Glover L, Hutchinson S, Boehm C, Field MC, Horn D. Monoallelic expression and epigenetic inheritance sustained by a Trypanosoma brucei variant surface glycoprotein exclusion complex. Nat Commun 2019; 10:3023. [PMID: 31289266 PMCID: PMC6617441 DOI: 10.1038/s41467-019-10823-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
The largest gene families in eukaryotes are subject to allelic exclusion, but mechanisms underpinning single allele selection and inheritance remain unclear. Here, we describe a protein complex sustaining variant surface glycoprotein (VSG) allelic exclusion and antigenic variation in Trypanosoma brucei parasites. The VSG-exclusion-1 (VEX1) protein binds both telomeric VSG-associated chromatin and VEX2, an ortholog of nonsense-mediated-decay helicase, UPF1. VEX1 and VEX2 assemble in an RNA polymerase-I transcription-dependent manner and sustain the active, subtelomeric VSG-associated transcription compartment. VSG transcripts and VSG coats become highly heterogeneous when VEX proteins are depleted. Further, the DNA replication-associated chromatin assembly factor, CAF-1, binds to and specifically maintains VEX1 compartmentalisation following DNA replication. Thus, the VEX-complex controls VSG-exclusion, while CAF-1 sustains VEX-complex inheritance in association with the active-VSG. Notably, the VEX2-orthologue and CAF-1 in mammals are also implicated in exclusion and inheritance functions. In trypanosomes, these factors sustain a highly effective and paradigmatic immune evasion strategy.
Collapse
Affiliation(s)
- Joana Faria
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Lucy Glover
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Sebastian Hutchinson
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Cordula Boehm
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Mark C Field
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
15
|
Yagüe-Capilla M, García-Caballero D, Aguilar-Pereyra F, Castillo-Acosta VM, Ruiz-Pérez LM, Vidal AE, González-Pacanowska D. Base excision repair plays an important role in the protection against nitric oxide- and in vivo-induced DNA damage in Trypanosoma brucei. Free Radic Biol Med 2019; 131:59-71. [PMID: 30472364 DOI: 10.1016/j.freeradbiomed.2018.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/22/2018] [Accepted: 11/21/2018] [Indexed: 11/17/2022]
Abstract
Uracil-DNA glycosylase (UNG) initiates the base excision repair pathway by excising uracil from DNA. We have previously shown that Trypanosoma brucei cells defective in UNG exhibit reduced infectivity thus demonstrating the relevance of this glycosylase for survival within the mammalian host. In the early steps of the immune response, nitric oxide (NO) is released by phagocytes, which in combination with oxygen radicals produce reactive nitrogen species (RNS). These species can react with DNA generating strand breaks and base modifications including deaminations. Since deaminated cytosines are the main substrate for UNG, we hypothesized that the glycosylase might confer protection towards nitrosative stress. Our work establishes the occurrence of genotoxic damage in Trypanosoma brucei upon exposure to NO in vitro and shows that deficient base excision repair results in increased levels of damage in DNA and a hypermutator phenotype. We also evaluate the incidence of DNA damage during infection in vivo and show that parasites recovered from mice exhibit higher levels of DNA strand breaks, base deamination and repair foci compared to cells cultured in vitro. Notably, the absence of UNG leads to reduced infectivity and enhanced DNA damage also in animal infections. By analysing mRNA and protein levels, we found that surviving UNG-KO trypanosomes highly express tryparedoxin peroxidase involved in trypanothione/tryparedoxin metabolism. These observations suggest that the immune response developed by the host enhances the activation of genes required to counteract oxidative stress and emphasize the importance of DNA repair pathways in the protection to genotoxic and oxidative stress in trypanosomes.
Collapse
Affiliation(s)
- Miriam Yagüe-Capilla
- Instituto de Parasitología y Biomedicina "López-Neyra". Consejo Superior de Investigaciones Científicas. Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Daniel García-Caballero
- Instituto de Parasitología y Biomedicina "López-Neyra". Consejo Superior de Investigaciones Científicas. Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Fernando Aguilar-Pereyra
- Instituto de Parasitología y Biomedicina "López-Neyra". Consejo Superior de Investigaciones Científicas. Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Víctor M Castillo-Acosta
- Instituto de Parasitología y Biomedicina "López-Neyra". Consejo Superior de Investigaciones Científicas. Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Luis M Ruiz-Pérez
- Instituto de Parasitología y Biomedicina "López-Neyra". Consejo Superior de Investigaciones Científicas. Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Antonio E Vidal
- Instituto de Parasitología y Biomedicina "López-Neyra". Consejo Superior de Investigaciones Científicas. Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina "López-Neyra". Consejo Superior de Investigaciones Científicas. Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain.
| |
Collapse
|
16
|
Müller LSM, Cosentino RO, Förstner KU, Guizetti J, Wedel C, Kaplan N, Janzen CJ, Arampatzi P, Vogel J, Steinbiss S, Otto TD, Saliba AE, Sebra RP, Siegel TN. Genome organization and DNA accessibility control antigenic variation in trypanosomes. Nature 2018; 563:121-125. [PMID: 30333624 PMCID: PMC6784898 DOI: 10.1038/s41586-018-0619-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/03/2018] [Indexed: 01/15/2023]
Abstract
Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses-Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing-that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.
Collapse
Affiliation(s)
- Laura S M Müller
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center Munich, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Raúl O Cosentino
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center Munich, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Konrad U Förstner
- ZB MED - Information Centre for Life Sciences, Cologne, Germany
- TH Köln, Faculty of Information Science and Communication Studies, Cologne, Germany
- Core Unit Systems Medicine, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Julien Guizetti
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carolin Wedel
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Noam Kaplan
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Christian J Janzen
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Panagiota Arampatzi
- Core Unit Systems Medicine, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | | | - Thomas D Otto
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Centre of Immunobiology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Robert P Sebra
- Icahn Institute and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T Nicolai Siegel
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center Munich, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
17
|
Cestari I, Stuart K. Transcriptional Regulation of Telomeric Expression Sites and Antigenic Variation in Trypanosomes. Curr Genomics 2018; 19:119-132. [PMID: 29491740 PMCID: PMC5814960 DOI: 10.2174/1389202918666170911161831] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/03/2017] [Accepted: 05/04/2017] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Trypanosoma brucei uses antigenic variation to evade the host antibody clearance by periodically changing its Variant Surface Glycoprotein (VSGs) coat. T. brucei encode over 2,500 VSG genes and pseudogenes, however they transcribe only one VSG gene at time from one of the 20 telomeric Expression Sites (ESs). VSGs are transcribed in a monoallelic fashion by RNA polymerase I from an extranucleolar site named ES body. VSG antigenic switching occurs by transcriptional switching between telomeric ESs or by recombination of the VSG gene expressed. VSG expression is developmentally regulated and its transcription is controlled by epigenetic mechanisms and influenced by a telomere position effect. CONCLUSION Here, we discuss 1) the molecular basis underlying transcription of telomeric ESs and VSG antigenic switching; 2) the current knowledge of VSG monoallelic expression; 3) the role of inositol phosphate pathway in the regulation of VSG expression and switching; and 4) the developmental regulation of Pol I transcription of procyclin and VSG genes.
Collapse
Affiliation(s)
- Igor Cestari
- Center for Infectious Disease Research, Seattle, WA98109, USA
| | - Ken Stuart
- Center for Infectious Disease Research, Seattle, WA98109, USA
- Department of Global Health, University of Washington, Seattle, WA98195, USA
| |
Collapse
|
18
|
Abstract
Many pathogens evade host immunity by periodically changing the proteins they express on their surface - a phenomenon termed antigenic variation. An extreme form of antigenic variation, based around switching the composition of a Variant Surface Glycoprotein (VSG) coat, is exhibited by the African trypanosome Trypanosoma brucei, which causes human disease. The molecular details of VSG switching in T. brucei have been extensively studied over the last three decades, revealing in increasing detail the machinery and mechanisms by which VSG expression is controlled and altered. However, several key components of the models of T. brucei antigenic variation that have emerged have been challenged through recent discoveries. These discoveries include new appreciation of the importance of gene mosaics in generating huge levels of new VSG variants, the contributions of parasite development and body compartmentation in the host to the infection dynamics and, finally, potential differences in the strategies of antigenic variation and host infection used by the crucial livestock trypanosomes T. congolense and T. vivax. This review will discuss all these observations, which raise questions regarding how secure the existing models of trypanosome antigenic variation are. In addition, we will discuss the importance of continued mathematical modelling to understand the purpose of this widespread immune survival process.
Collapse
|
19
|
Abstract
Protozoan parasites colonize numerous metazoan hosts and insect vectors through their life cycles, with the need to respond quickly and reversibly while encountering diverse and often hostile ecological niches. To succeed, parasites must also persist within individuals until transmission between hosts is achieved. Several parasitic protozoa cause a huge burden of disease in humans and livestock, and here we focus on the parasites that cause malaria and African trypanosomiasis. Efforts to understand how these pathogens adapt to survive in varied host environments, cause disease, and transmit between hosts have revealed a wealth of epigenetic phenomena. Epigenetic switching mechanisms appear to be ideally suited for the regulation of clonal antigenic variation underlying successful parasitism. We review the molecular players and complex mechanistic layers that mediate the epigenetic regulation of virulence gene expression. Understanding epigenetic processes will aid the development of antiparasitic therapeutics.
Collapse
Affiliation(s)
- Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA.
| | - David Horn
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
20
|
Castillo-Acosta VM, Ruiz-Pérez LM, Etxebarria J, Reichardt NC, Navarro M, Igarashi Y, Liekens S, Balzarini J, González-Pacanowska D. Carbohydrate-Binding Non-Peptidic Pradimicins for the Treatment of Acute Sleeping Sickness in Murine Models. PLoS Pathog 2016; 12:e1005851. [PMID: 27662652 PMCID: PMC5035034 DOI: 10.1371/journal.ppat.1005851] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022] Open
Abstract
Current treatments available for African sleeping sickness or human African trypanosomiasis (HAT) are limited, with poor efficacy and unacceptable safety profiles. Here, we report a new approach to address treatment of this disease based on the use of compounds that bind to parasite surface glycans leading to rapid killing of trypanosomes. Pradimicin and its derivatives are non-peptidic carbohydrate-binding agents that adhere to the carbohydrate moiety of the parasite surface glycoproteins inducing parasite lysis in vitro. Notably, pradimicin S has good pharmaceutical properties and enables cure of an acute form of the disease in mice. By inducing resistance in vitro we have established that the composition of the sugars attached to the variant surface glycoproteins are critical to the mode of action of pradimicins and play an important role in infectivity. The compounds identified represent a novel approach to develop drugs to treat HAT.
Collapse
Affiliation(s)
- Víctor M. Castillo-Acosta
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada), Spain
| | - Luis M. Ruiz-Pérez
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada), Spain
| | - Juan Etxebarria
- Glycotechnology Laboratory, CIC biomaGUNE, Parque Científico y Tecnológico de Gipuzkoa, San Sebastián, Spain
| | - Niels C. Reichardt
- Glycotechnology Laboratory, CIC biomaGUNE, Parque Científico y Tecnológico de Gipuzkoa, San Sebastián, Spain
- CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), San Sebastián, Spain
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada), Spain
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Sandra Liekens
- KU Leuven, Rega Institute for Medical Research, Leuven, Belgium
| | - Jan Balzarini
- KU Leuven, Rega Institute for Medical Research, Leuven, Belgium
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada), Spain
- * E-mail:
| |
Collapse
|
21
|
Valente M, Timm J, Castillo-Acosta VM, Ruiz-Pérez LM, Balzarini T, Nettleship JE, Bird LE, Rada H, Wilson KS, González-Pacanowska D. Cell cycle regulation and novel structural features of thymidine kinase, an essential enzyme in Trypanosoma brucei. Mol Microbiol 2016; 102:365-385. [PMID: 27426054 DOI: 10.1111/mmi.13467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2016] [Indexed: 11/28/2022]
Abstract
Thymidine kinase (TK) is a key enzyme in the pyrimidine salvage pathway which catalyzes the transfer of the γ-phosphate of ATP to 2'-deoxythymidine (dThd) forming thymidine monophosphate (dTMP). Unlike other type II TKs, the Trypanosoma brucei enzyme (TbTK) is a tandem protein with two TK homolog domains of which only the C-terminal one is active. In this study, we establish that TbTK is essential for parasite viability and cell cycle progression, independently of extracellular pyrimidine concentrations. We show that expression of TbTK is cell cycle regulated and that depletion of TbTK leads to strongly diminished dTTP pools and DNA damage indicating intracellular dThd to be an essential intermediate metabolite for the synthesis of thymine-derived nucleotides. In addition, we report the X-ray structure of the catalytically active domain of TbTK in complex with dThd and dTMP at resolutions up to 2.2 Å. In spite of the high conservation of the active site residues, the structures reveal a widened active site cavity near the nucleobase moiety compared to the human enzyme. Our findings strongly support TbTK as a crucial enzyme in dTTP homeostasis and identify structural differences within the active site that could be exploited in the process of rational drug design.
Collapse
Affiliation(s)
- Maria Valente
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Jennifer Timm
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Víctor M Castillo-Acosta
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Luis M Ruiz-Pérez
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tom Balzarini
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Joanne E Nettleship
- The Oxford Protein Production Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Didcot, Oxfordshire, OX11 0FA, UK
| | - Louise E Bird
- The Oxford Protein Production Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Didcot, Oxfordshire, OX11 0FA, UK
| | - Heather Rada
- The Oxford Protein Production Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, R92 Harwell, Didcot, Oxfordshire, OX11 0FA, UK
| | - Keith S Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK.
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
22
|
Devlin R, Marques CA, Paape D, Prorocic M, Zurita-Leal AC, Campbell SJ, Lapsley C, Dickens N, McCulloch R. Mapping replication dynamics in Trypanosoma brucei reveals a link with telomere transcription and antigenic variation. eLife 2016; 5:e12765. [PMID: 27228154 PMCID: PMC4946898 DOI: 10.7554/elife.12765] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/26/2016] [Indexed: 01/14/2023] Open
Abstract
Survival of Trypanosoma brucei depends upon switches in its protective Variant Surface Glycoprotein (VSG) coat by antigenic variation. VSG switching occurs by frequent homologous recombination, which is thought to require locus-specific initiation. Here, we show that a RecQ helicase, RECQ2, acts to repair DNA breaks, including in the telomeric site of VSG expression. Despite this, RECQ2 loss does not impair antigenic variation, but causes increased VSG switching by recombination, arguing against models for VSG switch initiation through direct generation of a DNA double strand break (DSB). Indeed, we show DSBs inefficiently direct recombination in the VSG expression site. By mapping genome replication dynamics, we reveal that the transcribed VSG expression site is the only telomeric site that is early replicating - a differential timing only seen in mammal-infective parasites. Specific association between VSG transcription and replication timing reveals a model for antigenic variation based on replication-derived DNA fragility.
Collapse
Affiliation(s)
- Rebecca Devlin
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Catarina A Marques
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Paape
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Marko Prorocic
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Andrea C Zurita-Leal
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Samantha J Campbell
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Craig Lapsley
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Nicholas Dickens
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
23
|
VEX1 controls the allelic exclusion required for antigenic variation in trypanosomes. Proc Natl Acad Sci U S A 2016; 113:7225-30. [PMID: 27226299 DOI: 10.1073/pnas.1600344113] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Allelic exclusion underpins antigenic variation and immune evasion in African trypanosomes. These bloodstream parasites use RNA polymerase-I (pol-I) to transcribe just one telomeric variant surface glycoprotein (VSG) gene at a time, producing superabundant and switchable VSG coats. We identified trypanosome VSG exclusion-1 (VEX1) using a genetic screen for defects in telomere-exclusive expression. VEX1 was sequestered by the active VSG and silencing of other VSGs failed when VEX1 was either ectopically expressed or depleted, indicating positive and negative regulation, respectively. Positive regulation affected VSGs and nontelomeric pol-I-transcribed genes, whereas negative regulation primarily affected VSGs. Negative regulation by VEX1 also affected telomeric pol-I-transcribed reporter constructs, but only when they contained blocks of sequence sharing homology with a pol-I-transcribed locus. We conclude that restricted positive regulation due to VEX1 sequestration, combined with VEX1-dependent, possibly homology-dependent silencing, drives a "winner-takes-all" mechanism of allelic exclusion.
Collapse
|
24
|
McCulloch R, Navarro M. The protozoan nucleus. Mol Biochem Parasitol 2016; 209:76-87. [PMID: 27181562 DOI: 10.1016/j.molbiopara.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022]
Abstract
The nucleus is arguably the defining characteristic of eukaryotes, distinguishing their cell organisation from both bacteria and archaea. Though the evolutionary history of the nucleus remains the subject of debate, its emergence differs from several other eukaryotic organelles in that it appears not to have evolved through symbiosis, but by cell membrane elaboration from an archaeal ancestor. Evolution of the nucleus has been accompanied by elaboration of nuclear structures that are intimately linked with most aspects of nuclear genome function, including chromosome organisation, DNA maintenance, replication and segregation, and gene expression controls. Here we discuss the complexity of the nucleus and its substructures in protozoan eukaryotes, with a particular emphasis on divergent aspects in eukaryotic parasites, which shed light on nuclear function throughout eukaryotes and reveal specialisations that underpin pathogen biology.
Collapse
Affiliation(s)
- Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), Avda. del Conocimiento s/n, 18100 Granada, Spain.
| |
Collapse
|
25
|
DNA Recombination Strategies During Antigenic Variation in the African Trypanosome. Microbiol Spectr 2016; 3:MDNA3-0016-2014. [PMID: 26104717 DOI: 10.1128/microbiolspec.mdna3-0016-2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Survival of the African trypanosome in its mammalian hosts has led to the evolution of antigenic variation, a process for evasion of adaptive immunity that has independently evolved in many other viral, bacterial and eukaryotic pathogens. The essential features of trypanosome antigenic variation have been understood for many years and comprise a dense, protective Variant Surface Glycoprotein (VSG) coat, which can be changed by recombination-based and transcription-based processes that focus on telomeric VSG gene transcription sites. However, it is only recently that the scale of this process has been truly appreciated. Genome sequencing of Trypanosoma brucei has revealed a massive archive of >1000 VSG genes, the huge majority of which are functionally impaired but are used to generate far greater numbers of VSG coats through segmental gene conversion. This chapter will discuss the implications of such VSG diversity for immune evasion by antigenic variation, and will consider how this expressed diversity can arise, drawing on a growing body of work that has begun to examine the proteins and sequences through which VSG switching is catalyzed. Most studies of trypanosome antigenic variation have focused on T. brucei, the causative agent of human sleeping sickness. Other work has begun to look at antigenic variation in animal-infective trypanosomes, and we will compare the findings that are emerging, as well as consider how antigenic variation relates to the dynamics of host-trypanosome interaction.
Collapse
|
26
|
Aresta-Branco F, Pimenta S, Figueiredo LM. A transcription-independent epigenetic mechanism is associated with antigenic switching in Trypanosoma brucei. Nucleic Acids Res 2015; 44:3131-46. [PMID: 26673706 PMCID: PMC4838347 DOI: 10.1093/nar/gkv1459] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/28/2015] [Indexed: 12/27/2022] Open
Abstract
Antigenic variation in Trypanosoma brucei relies on periodic switching of variant surface glycoproteins (VSGs), which are transcribed monoallelically by RNA polymerase I from one of about 15 bloodstream expression sites (BES). Chromatin of the actively transcribed BES is depleted of nucleosomes, but it is unclear if this open conformation is a mere consequence of a high rate of transcription, or whether it is maintained by a transcription-independent mechanism. Using an inducible BES-silencing reporter strain, we observed that chromatin of the active BES remains open for at least 24 hours after blocking transcription. This conformation is independent of the cell-cycle stage, but dependent upon TDP1, a high mobility group box protein. For two days after BES silencing, we detected a transient and reversible derepression of several silent BESs within the population, suggesting that cells probe other BESs before commitment to one, which is complete by 48 hours. FACS sorting and subsequent subcloning confirmed that probing cells are switching intermediates capable of returning to the original BES, switch to the probed BES or to a different BES. We propose that regulation of BES chromatin structure is an epigenetic mechanism important for successful antigenic switching.
Collapse
Affiliation(s)
- Francisco Aresta-Branco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Silvia Pimenta
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| |
Collapse
|
27
|
Bart JM, Cordon-Obras C, Vidal I, Reed J, Perez-Pastrana E, Cuevas L, Field MC, Carrington M, Navarro M. Localization of serum resistance-associated protein in Trypanosoma brucei rhodesiense and transgenic Trypanosoma brucei brucei. Cell Microbiol 2015; 17:1523-35. [PMID: 25924022 DOI: 10.1111/cmi.12454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/10/2015] [Accepted: 04/23/2015] [Indexed: 11/29/2022]
Abstract
African trypanosomes infect a broad range of mammals, but humans and some higher primates are protected by serum trypanosome lytic factors that contain apolipoprotein L1 (ApoL1). In the human-infective subspecies of Trypanosoma brucei, Trypanosoma brucei rhodesiense, a gene product derived from the variant surface glycoprotein gene family member, serum resistance-associated protein (SRA protein), protects against ApoL1-mediated lysis. Protection against trypanosome lytic factor requires the direct interaction between SRA protein and ApoL1 within the endocytic apparatus of the trypanosome, but some uncertainty remains as to the precise mechanism and location of this interaction. In order to provide more insight into the mechanism of SRA-mediated resistance to trypanosome lytic factor, we assessed the localization of SRA in T. b. rhodesiense EATRO3 using a novel monoclonal antibody raised against SRA together with a set of well-characterized endosomal markers. By three-dimensional deconvolved immunofluorescence single-cell analysis, combined with double-labelling immunoelectron microscopy, we found that ≈ 50% of SRA protein localized to the lysosome, with the remaining population being distributed through the endocytic pathway, but apparently absent from the flagellar pocket membrane. These data suggest that the SRA/trypanolytic factor interaction is intracellular, with the concentration within the endosomes potentially crucial for ensuring a high efficiency.
Collapse
Affiliation(s)
- Jean-Mathieu Bart
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Granada, Spain.,Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Cordon-Obras
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Isabel Vidal
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Jennifer Reed
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Laureano Cuevas
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Mark C Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
28
|
Hovel-Miner G, Mugnier M, Papavasiliou FN, Pinger J, Schulz D. A Host-Pathogen Interaction Reduced to First Principles: Antigenic Variation in T. brucei. Results Probl Cell Differ 2015; 57:23-46. [PMID: 26537376 DOI: 10.1007/978-3-319-20819-0_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Antigenic variation is a common microbial survival strategy, powered by diversity in expressed surface antigens across the pathogen population over the course of infection. Even so, among pathogens, African trypanosomes have the most comprehensive system of antigenic variation described. African trypanosomes (Trypanosoma brucei spp.) are unicellular parasites native to sub-Saharan Africa, and the causative agents of sleeping sickness in humans and of n'agana in livestock. They cycle between two habitats: a specific species of fly (Glossina spp. or, colloquially, the tsetse) and the bloodstream of their mammalian hosts, by assuming a succession of proliferative and quiescent developmental forms, which vary widely in cell architecture and function. Key to each of the developmental forms that arise during these transitions is the composition of the surface coat that covers the plasma membrane. The trypanosome surface coat is extremely dense, covered by millions of repeats of developmentally specified proteins: procyclin gene products cover the organism while it resides in the tsetse and metacyclic gene products cover it while in the fly salivary glands, ready to make the transition to the mammalian bloodstream. But by far the most interesting coat is the Variant Surface Glycoprotein (VSG) coat that covers the organism in its infectious form (during which it must survive free living in the mammalian bloodstream). This coat is highly antigenic and elicits robust VSG-specific antibodies that mediate efficient opsonization and complement mediated lysis of the parasites carrying the coat against which the response was made. Meanwhile, a small proportion of the parasite population switches coats, which stimulates a new antibody response to the prevalent (new) VSG species and this process repeats until immune system failure. The disease is fatal unless treated, and treatment at the later stages is extremely toxic. Because the organism is free living in the blood, the VSG:antibody surface represents the interface between pathogen and host, and defines the interaction of the parasite with the immune response. This interaction (cycles of VSG switching, antibody generation, and parasite deletion) results in stereotypical peaks and troughs of parasitemia that were first recognized more than 100 years ago. Essentially, the mechanism of antigenic variation in T. brucei results from a need, at the population level, to maintain an extensive repertoire, to evade the antibody response. In this chapter, we will examine what is currently known about the VSG repertoire, its depth, and the mechanisms that diversify it both at the molecular (DNA) and at the phenotypic (surface displayed) level, as well as how it could interact with antibodies raised specifically against it in the host.
Collapse
Affiliation(s)
- Galadriel Hovel-Miner
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Monica Mugnier
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - F Nina Papavasiliou
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | - Jason Pinger
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Danae Schulz
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
29
|
Abstract
African trypanosomes have been around for more than 100 million years, and have adapted to survival in a very wide host range. While various indigenous African mammalian host species display a tolerant phenotype towards this parasitic infection, and hence serve as perpetual reservoirs, many commercially important livestock species are highly disease susceptible. When considering humans, they too display a highly sensitive disease progression phenotype for infections with Trypanosoma brucei rhodesiense or Trypanosoma brucei gambiense, while being intrinsically resistant to infections with other trypanosome species. As extracellular trypanosomes proliferate and live freely in the bloodstream and lymphatics, they are constantly exposed to the immune system. Due to co-evolution, this environment however no longer poses a hostile threat, but has become the niche environment where trypanosomes thrive and obligatory await transmission through the bites of tsetse flies or other haematophagic vectors, ideally without causing severe side infection-associated pathology to their host. Hence, African trypanosomes have acquired various mechanisms to manipulate and control the host immune response, evading effective elimination. Despite the extensive research into trypanosomosis over the past 40 years, many aspects of the anti-parasite immune response remain to be solved and no vaccine is currently available. Here we review the recent work on the different escape mechanisms employed by African Trypanosomes to ensure infection chronicity and transmission potential.
Collapse
|
30
|
SUMOylation by the E3 ligase TbSIZ1/PIAS1 positively regulates VSG expression in Trypanosoma brucei. PLoS Pathog 2014; 10:e1004545. [PMID: 25474309 PMCID: PMC4256477 DOI: 10.1371/journal.ppat.1004545] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/29/2014] [Indexed: 12/31/2022] Open
Abstract
Bloodstream form trypanosomes avoid the host immune response by switching the expression of their surface proteins between Variant Surface Glycoproteins (VSG), only one of which is expressed at any given time. Monoallelic transcription of the telomeric VSG Expression Site (ES) by RNA polymerase I (RNA pol I) localizes to a unique nuclear body named the ESB. Most work has focused on silencing mechanisms of inactive VSG-ESs, but the mechanisms involved in transcriptional activation of a single VSG-ES remain largely unknown. Here, we identify a highly SUMOylated focus (HSF) in the nucleus of the bloodstream form that partially colocalizes with the ESB and the active VSG-ES locus. SUMOylation of chromatin-associated proteins was enriched along the active VSG-ES transcriptional unit, in contrast to silent VSG-ES or rDNA, suggesting that it is a distinct feature of VSG-ES monoallelic expression. In addition, sequences upstream of the active VSG-ES promoter were highly enriched in SUMOylated proteins. We identified TbSIZ1/PIAS1 as the SUMO E3 ligase responsible for SUMOylation in the active VSG-ES chromatin. Reduction of SUMO-conjugated proteins by TbSIZ1 knockdown decreased the recruitment of RNA pol I to the VSG-ES and the VSG-ES-derived transcripts. Furthermore, cells depleted of SUMO conjugated proteins by TbUBC9 and TbSUMO knockdown confirmed the positive function of SUMO for VSG-ES expression. In addition, the largest subunit of RNA pol I TbRPA1 was SUMOylated in a TbSIZ-dependent manner. Our results show a positive mechanism associated with active VSG-ES expression via post-translational modification, and indicate that chromatin SUMOylation plays an important role in the regulation of VSG-ES. Thus, protein SUMOylation is linked to active gene expression in this protozoan parasite that diverged early in evolution. African trypanosomes have evolved one of the most complex strategies of immune evasion by routinely switching the expression of surface proteins called Variant Surface Glycoproteins (VSG), only one of which is expressed at any given time. Previous work has suggested that the recruitment of a single VSG telomeric locus to a discrete nuclear body (ESB) underlies the mechanism responsible for VSG monoallelic expression. Our findings establish unexpected roles for SUMOylation as a specific post-translational modification that marks the ESB and the VSG-ES chromatin. We describe a highly SUMOylated focus (HSF) as a novel nuclear structure that partially colocalizes with the VSG-ES locus and the nuclear body ESB. Furthermore, chromatin SUMOylation is a distinct feature of the active VSG-ES locus, in contrast to other loci investigated. SUMOylation of chromatin-associated proteins is required for efficient recruitment of the polymerase to the VSG-ES promoter and for VSG-ES expression. Altogether, these data suggest the presence of a large number of SUMOylated proteins associated with monoallelic expression as Protein Group SUMOylation. In contrast to the wealth of literature focused on VSG regulation by silencing, our results indicate a positive mechanism via SUMOylation to regulate VSG expression in the infectious form of this protozoan parasite.
Collapse
|
31
|
Sundaramoorthy S, Vázquez-Novelle MD, Lekomtsev S, Howell M, Petronczki M. Functional genomics identifies a requirement of pre-mRNA splicing factors for sister chromatid cohesion. EMBO J 2014; 33:2623-42. [PMID: 25257310 PMCID: PMC4282572 DOI: 10.15252/embj.201488244] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 08/03/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022] Open
Abstract
Sister chromatid cohesion mediated by the cohesin complex is essential for chromosome segregation during cell division. Using functional genomic screening, we identify a set of 26 pre-mRNA splicing factors that are required for sister chromatid cohesion in human cells. Loss of spliceosome subunits increases the dissociation rate of cohesin from chromatin and abrogates cohesion after DNA replication, ultimately causing mitotic catastrophe. Depletion of splicing factors causes defective processing of the pre-mRNA encoding sororin, a factor required for the stable association of cohesin with chromatin, and an associated reduction of sororin protein level. Expression of an intronless version of sororin and depletion of the cohesin release protein WAPL suppress the cohesion defect in cells lacking splicing factors. We propose that spliceosome components contribute to sister chromatid cohesion and mitotic chromosome segregation through splicing of sororin pre-mRNA. Our results highlight the loss of cohesion as an early cellular consequence of compromised splicing. This may have clinical implications because SF3B1, a splicing factor that we identify to be essential for cohesion, is recurrently mutated in chronic lymphocytic leukaemia.
Collapse
Affiliation(s)
- Sriramkumar Sundaramoorthy
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms Hertfordshire, UK
| | - María Dolores Vázquez-Novelle
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms Hertfordshire, UK
| | - Sergey Lekomtsev
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms Hertfordshire, UK
| | - Michael Howell
- High-throughput Screening Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms Hertfordshire, UK
| |
Collapse
|
32
|
Denninger V, Rudenko G. FACT plays a major role in histone dynamics affecting VSG expression site control in Trypanosoma brucei. Mol Microbiol 2014; 94:945-62. [PMID: 25266856 PMCID: PMC4625058 DOI: 10.1111/mmi.12812] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2014] [Indexed: 12/21/2022]
Abstract
Chromatin remodelling is involved in the transcriptional regulation of the RNA polymerase I transcribed variant surface glycoprotein (VSG) expression sites (ESs) of Trypanosoma brucei. We show that the T. brucei FACT complex contains the Pob3 and Spt16 subunits, and plays a key role in ES silencing. We see an inverse correlation between transcription and condensed chromatin, whereby FACT knockdown results in ES derepression and more open chromatin around silent ES promoters. Derepressed ESs show increased sensitivity to micrococcal nuclease (MNase) digestion, and a decrease in histones at silent ES promoters but not telomeres. In contrast, FACT knockdown results in more histones at the active ES, correlated with transcription shut-down. ES promoters are derepressed in cells stalled at the G2/M cell cycle stage after knockdown of FACT, but not in G2/M cells stalled after knockdown of cyclin 6. This argues that the observed ES derepression is a direct consequence of histone chaperone activity by FACT at the G2/M cell cycle stage which could affect transcription elongation, rather than an indirect consequence of a cell cycle checkpoint. These experiments highlight the role of the FACT complex in cell cycle-specific chromatin remodelling within VSG ESs.
Collapse
Affiliation(s)
- Viola Denninger
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | | |
Collapse
|
33
|
Jehi SE, Li X, Sandhu R, Ye F, Benmerzouga I, Zhang M, Zhao Y, Li B. Suppression of subtelomeric VSG switching by Trypanosoma brucei TRF requires its TTAGGG repeat-binding activity. Nucleic Acids Res 2014; 42:12899-911. [PMID: 25313155 PMCID: PMC4227783 DOI: 10.1093/nar/gku942] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, in the bloodstream of its mammalian host to evade the host immune response. VSGs are expressed exclusively from subtelomeric loci, and we have previously shown that telomere proteins TbTIF2 and TbRAP1 play important roles in VSG switching and VSG silencing regulation, respectively. We now discover that the telomere duplex DNA-binding factor, TbTRF, also plays a critical role in VSG switching regulation, as a transient depletion of TbTRF leads to significantly more VSG switching events. We solved the NMR structure of the DNA-binding Myb domain of TbTRF, which folds into a canonical helix-loop-helix structure that is conserved to the Myb domains of mammalian TRF proteins. The TbTRF Myb domain tolerates well the bulky J base in T. brucei telomere DNA, and the DNA-binding affinity of TbTRF is not affected by the presence of J both in vitro and in vivo. In addition, we find that point mutations in TbTRF Myb that significantly reduced its in vivo telomere DNA-binding affinity also led to significantly increased VSG switching frequencies, indicating that the telomere DNA-binding activity is critical for TbTRF's role in VSG switching regulation.
Collapse
Affiliation(s)
- Sanaa E Jehi
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Xiaohua Li
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P.R. China
| | - Ranjodh Sandhu
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Imaan Benmerzouga
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Yanxiang Zhao
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
34
|
Mono-allelic VSG expression by RNA polymerase I in Trypanosoma brucei: expression site control from both ends? Gene 2014; 556:68-73. [PMID: 25261847 DOI: 10.1016/j.gene.2014.09.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 02/01/2023]
Abstract
Trypanosoma brucei is a vector borne, lethal protistan parasite of humans and livestock in sub-Saharan Africa. Antigenic variation of its cell surface coat enables the parasite to evade adaptive immune responses and to live freely in the blood of its mammalian hosts. The coat consists of ten million copies of variant surface glycoprotein (VSG) that is expressed from a single VSG gene, drawn from a large repertoire and located near the telomere at one of fifteen so-called bloodstream expression sites (BESs). Thus, antigenic variation is achieved by switching to the expression of a different VSG gene. A BES is a tandem array of expression site-associated genes and a terminal VSG gene. It is polycistronically transcribed by a multifunctional RNA polymerase I (RNAPI) from a short promoter that is located 45-60 kb upstream of the VSG gene. The mechanism(s) restricting VSG expression to a single BES are not well understood. There is convincing evidence that epigenetic silencing and transcription attenuation play important roles. Furthermore, recent data indicated that there is regulation at the level of transcription initiation and that, surprisingly, the VSG mRNA appears to have a role in restricting VSG expression to a single gene. Here, we review BES expression regulation and propose a model in which telomere-directed, epigenetic BES silencing is opposed by BES promoter-directed, activated RNAPI transcription.
Collapse
|
35
|
Jehi SE, Wu F, Li B. Trypanosoma brucei TIF2 suppresses VSG switching by maintaining subtelomere integrity. Cell Res 2014; 24:870-85. [PMID: 24810301 DOI: 10.1038/cr.2014.60] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/11/2014] [Accepted: 04/07/2014] [Indexed: 12/21/2022] Open
Abstract
Subtelomeres consist of sequences adjacent to telomeres and contain genes involved in important cellular functions, as subtelomere instability is associated with several human diseases. Balancing between subtelomere stability and plasticity is particularly important for Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis. T. brucei regularly switches its major variant surface antigen, variant surface glycoprotein (VSG), to evade the host immune response, and VSGs are expressed exclusively from subtelomeres in a strictly monoallelic fashion. Telomere proteins are important for protecting chromosome ends from illegitimate DNA processes. However, whether they contribute to subtelomere integrity and stability has not been well studied. We have identified a novel T. brucei telomere protein, T. brucei TRF-Interacting Factor 2 (TbTIF2), as a functional homolog of mammalian TIN2. A transient depletion of TbTIF2 led to an elevated VSG switching frequency and an increased amount of DNA double-strand breaks (DSBs) in both active and silent subtelomeric bloodstream form expression sites (BESs). Therefore, TbTIF2 plays an important role in VSG switching regulation and is important for subtelomere integrity and stability. TbTIF2 depletion increased the association of TbRAD51 with the telomeric and subtelomeric chromatin, and TbRAD51 deletion further increased subtelomeric DSBs in TbTIF2-depleted cells, suggesting that TbRAD51-mediated DSB repair is the underlying mechanism of subsequent VSG switching. Surprisingly, significantly more TbRAD51 associated with the active BES than with the silent BESs upon TbTIF2 depletion, and TbRAD51 deletion induced much more DSBs in the active BES than in the silent BESs in TbTIF2-depleted cells, suggesting that TbRAD51 preferentially repairs DSBs in the active BES.
Collapse
Affiliation(s)
- Sanaa E Jehi
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA
| | - Fan Wu
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA
| | - Bibo Li
- 1] Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA [2] The Rockefeller University, New York, NY 10065, USA [3] Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA [4] Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
36
|
Cordon-Obras C, Cano J, González-Pacanowska D, Benito A, Navarro M, Bart JM. Trypanosoma brucei gambiense adaptation to different mammalian sera is associated with VSG expression site plasticity. PLoS One 2013; 8:e85072. [PMID: 24376866 PMCID: PMC3871602 DOI: 10.1371/journal.pone.0085072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/21/2013] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma brucei gambiense infection is widely considered an anthroponosis, although it has also been found in wild and domestic animals. Thus, fauna could act as reservoir, constraining the elimination of the parasite in hypo-endemic foci. To better understand the possible maintenance of T. b. gambiense in local fauna and investigate the molecular mechanisms underlying adaptation, we generated adapted cells lines (ACLs) by in vitro culture of the parasites in different mammalian sera. Using specific antibodies against the Variant Surface Glycoproteins (VSGs) we found that serum ACLs exhibited different VSG variants when maintained in pig, goat or human sera. Although newly detected VSGs were independent of the sera used, the consistent appearance of different VSGs suggested remodelling of the co-transcribed genes at the telomeric Expression Site (VSG-ES). Thus, Expression Site Associated Genes (ESAGs) sequences were analysed to investigate possible polymorphism selection. ESAGs 6 and 7 genotypes, encoding the transferrin receptor (TfR), expressed in different ACLs were characterised. In addition, we quantified the ESAG6/7 mRNA levels and analysed transferrin (Tf) uptake. Interestingly, the best growth occurred in pig and human serum ACLs, which consistently exhibited a predominant ESAG7 genotype and higher Tf uptake than those obtained in calf and goat sera. We also detected an apparent selection of specific ESAG3 genotypes in the pig and human serum ACLs, suggesting that other ESAGs could be involved in the host adaptation processes. Altogether, these results suggest a model whereby VSG-ES remodelling allows the parasite to express a specific set of ESAGs to provide selective advantages in different hosts. Finally, pig serum ACLs display phenotypic adaptation parameters closely related to human serum ACLs but distinct to parasites grown in calf and goat sera. These results suggest a better suitability of swine to maintain T. b. gambiense infection supporting previous epidemiological results.
Collapse
Affiliation(s)
- Carlos Cordon-Obras
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Jorge Cano
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Agustin Benito
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, Consejo Superior de Investigaciones Científicas, Granada, Spain
- * E-mail:
| | - Jean-Mathieu Bart
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, Consejo Superior de Investigaciones Científicas, Granada, Spain
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Castillo-Acosta VM, Vidal AE, Ruiz-Pérez LM, Van Damme EJM, Igarashi Y, Balzarini J, González-Pacanowska D. Carbohydrate-binding agents act as potent trypanocidals that elicit modifications in VSG glycosylation and reduced virulence in Trypanosoma brucei. Mol Microbiol 2013; 90:665-79. [PMID: 23926900 DOI: 10.1111/mmi.12359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2013] [Indexed: 01/19/2023]
Abstract
The surface of Trypanosoma brucei is covered by a dense coat of glycosylphosphatidylinositol-anchored glycoproteins. The major component is the variant surface glycoprotein (VSG) which is glycosylated by both paucimannose and oligomannose N-glycans. Surface glycans are poorly accessible and killing mediated by peptide lectin-VSG complexes is hindered by active endocytosis. However, contrary to previous observations, here we show that high-affinity carbohydrate binding agents bind to surface glycoproteins and abrogate growth of T. brucei bloodstream forms. Specifically, binding of the mannose-specific Hippeastrum hybrid agglutinin (HHA) resulted in profound perturbations in endocytosis and parasite lysis. Prolonged exposure to HHA led to the loss of triantennary oligomannose structures in surface glycoproteins as a result of genetic rearrangements that abolished expression of the oligosaccharyltransferase TbSTT3B gene and yielded novel chimeric enzymes. Mutant parasites exhibited markedly reduced infectivity thus demonstrating the importance of specific glycosylation patterns in parasite virulence.
Collapse
Affiliation(s)
- Víctor M Castillo-Acosta
- Instituto de Parasitología y Biomedicina 'López-Neyra'. Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n 18016, Armilla, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Glover L, Hutchinson S, Alsford S, McCulloch R, Field MC, Horn D. Antigenic variation in African trypanosomes: the importance of chromosomal and nuclear context in VSG expression control. Cell Microbiol 2013; 15:1984-93. [PMID: 24047558 PMCID: PMC3963442 DOI: 10.1111/cmi.12215] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 12/24/2022]
Abstract
African trypanosomes are lethal human and animal parasites that use antigenic variation for evasion of host adaptive immunity. To facilitate antigenic variation, trypanosomes dedicate approximately one third of their nuclear genome, including many minichromosomes, and possibly all sub-telomeres, to variant surface glycoprotein (VSG) genes and associated sequences. Antigenic variation requires transcription of a single VSG by RNA polymerase I (Pol-I), with silencing of other VSGs, and periodic switching of the expressed gene, typically via DNA recombination with duplicative translocation of a new VSG to the active site. Thus, telomeric location, epigenetic controls and monoallelic transcription by Pol-I at an extranucleolar site are prominent features of VSGs and their expression, with telomeres, chromatin structure and nuclear organization all making vitally important contributions to monoallelic VSG expression control and switching. We discuss VSG transcription, recombination and replication control within this chromosomal and sub-nuclear context.
Collapse
Affiliation(s)
- Lucy Glover
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
39
|
Mehta GD, Kumar R, Srivastava S, Ghosh SK. Cohesin: functions beyond sister chromatid cohesion. FEBS Lett 2013; 587:2299-312. [PMID: 23831059 DOI: 10.1016/j.febslet.2013.06.035] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 11/22/2022]
Abstract
Faithful segregation of chromosomes during mitosis and meiosis is the cornerstone process of life. Cohesin, a multi-protein complex conserved from yeast to human, plays a crucial role in this process by keeping the sister chromatids together from S-phase to anaphase onset during mitosis and meiosis. Technological advancements have discovered myriad functions of cohesin beyond its role in sister chromatid cohesion (SCC), such as transcription regulation, DNA repair, chromosome condensation, homolog pairing, monoorientation of sister kinetochore, etc. Here, we have focused on such functions of cohesin that are either independent of or dependent on its canonical role of sister chromatid cohesion. At the end, human diseases associated with malfunctioning of cohesin, albeit with mostly unperturbed sister chromatid cohesion, have been discussed.
Collapse
Affiliation(s)
- Gunjan D Mehta
- Department of Biosciences and Bioengineering, Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | | | | | | |
Collapse
|
40
|
Abstract
Faithful transmission of genetic material is essential for the survival of all organisms. Eukaryotic chromosome segregation is driven by the kinetochore that assembles onto centromeric DNA to capture spindle microtubules and govern the movement of chromosomes. Its molecular mechanism has been actively studied in conventional model eukaryotes, such as yeasts, worms, flies and human. However, these organisms are closely related in the evolutionary time scale and it therefore remains unclear whether all eukaryotes use a similar mechanism. The evolutionary origins of the segregation apparatus also remain enigmatic. To gain insights into these questions, it is critical to perform comparative studies. Here, we review our current understanding of the mitotic mechanism in Trypanosoma brucei, an experimentally tractable kinetoplastid parasite that branched early in eukaryotic history. No canonical kinetochore component has been identified, and the design principle of kinetochores might be fundamentally different in kinetoplastids. Furthermore, these organisms do not appear to possess a functional spindle checkpoint that monitors kinetochore-microtubule attachments. With these unique features and the long evolutionary distance from other eukaryotes, understanding the mechanism of chromosome segregation in T. brucei should reveal fundamental requirements for the eukaryotic segregation machinery, and may also provide hints about the origin and evolution of the segregation apparatus.
Collapse
Affiliation(s)
- Bungo Akiyoshi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
41
|
Howard-Till RA, Lukaszewicz A, Novatchkova M, Loidl J. A single cohesin complex performs mitotic and meiotic functions in the protist tetrahymena. PLoS Genet 2013; 9:e1003418. [PMID: 23555314 PMCID: PMC3610610 DOI: 10.1371/journal.pgen.1003418] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 02/12/2013] [Indexed: 01/08/2023] Open
Abstract
The cohesion of sister chromatids in the interval between chromosome replication and anaphase is important for preventing the precocious separation, and hence nondisjunction, of chromatids. Cohesion is accomplished by a ring-shaped protein complex, cohesin; and its release at anaphase occurs when separase cleaves the complex's α-kleisin subunit. Cohesin has additional roles in facilitating DNA damage repair from the sister chromatid and in regulating gene expression. We tested the universality of the present model of cohesion by studying cohesin in the evolutionarily distant protist Tetrahymena thermophila. Localization of tagged cohesin components Smc1p and Rec8p (the α-kleisin) showed that cohesin is abundant in mitotic and meiotic nuclei. RNAi knockdown experiments demonstrated that cohesin is crucial for normal chromosome segregation and meiotic DSB repair. Unexpectedly, cohesin does not detach from chromosome arms in anaphase, yet chromosome segregation depends on the activity of separase (Esp1p). When Esp1p is depleted by RNAi, chromosomes become polytenic as they undergo multiple rounds of replication, but fail to separate. The cohesion of such bundles of numerous chromatids suggests that chromatids may be connected by factors in addition to topological linkage by cohesin rings. Although cohesin is not detected in transcriptionally active somatic nuclei, its loss causes a slight defect in their amitotic division. Notably, Tetrahymena uses a single version of α-kleisin for both mitosis and meiosis. Therefore, we propose that the differentiation of mitotic and meiotic cohesins found in most other model systems is not due to the need of a specialized meiotic cohesin, but due to additional roles of mitotic cohesin.
Collapse
Affiliation(s)
- Rachel A. Howard-Till
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Agnieszka Lukaszewicz
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Kim HS, Park SH, Günzl A, Cross GAM. MCM-BP is required for repression of life-cycle specific genes transcribed by RNA polymerase I in the mammalian infectious form of Trypanosoma brucei. PLoS One 2013; 8:e57001. [PMID: 23451133 PMCID: PMC3581582 DOI: 10.1371/journal.pone.0057001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/16/2013] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma brucei variant surface glycoprotein (VSG) expression is a classic example of allelic exclusion. While the genome of T. brucei contains >2,000 VSG genes and VSG pseudogenes, only one allele is expressed at the surface of each infectious trypanosome and the others are repressed. Along with recombinatorial VSG switching, allelic exclusion provides a major host evasion mechanism for trypanosomes, a phenomenon known as antigenic variation. To extend our understanding of how trypanosomes escape host immunity by differential expression of VSGs, we attempted to identify genes that contribute to VSG silencing, by performing a loss-of-silencing screen in T. brucei using a transposon-mediated random insertional mutagenesis. One identified gene, which we initially named LOS1, encodes a T. brucei MCM-Binding Protein (TbMCM-BP). Here we show that TbMCM-BP is essential for viability of infectious bloodstream-form (BF) trypanosome and is required for proper cell-cycle progression. Tandem affinity purification of TbMCM-BP followed by mass spectrometry identified four subunits (MCM4-MCM7) of the T. brucei MCM complex, a replicative helicase, and MCM8, a subunit that is uniquely co-purified with TbMCM-BP. TbMCM-BP is required not only for repression of subtelomeric VSGs but also for silencing of life-cycle specific, insect-stage genes, procyclin and procyclin-associated genes (PAGs), that are normally repressed in BF trypanosomes and are transcribed by RNA polymerase I. Our study uncovers a functional link between chromosome maintenance and RNA pol I-mediated gene silencing in T. brucei.
Collapse
Affiliation(s)
- Hee-Sook Kim
- Laboratory of Molecular Parasitology, The Rockefeller University, New York, New York, United States of America.
| | | | | | | |
Collapse
|
43
|
Benmerzouga I, Concepción-Acevedo J, Kim HS, Vandoros AV, Cross GAM, Klingbeil MM, Li B. Trypanosoma brucei Orc1 is essential for nuclear DNA replication and affects both VSG silencing and VSG switching. Mol Microbiol 2012; 87:196-210. [PMID: 23216794 DOI: 10.1111/mmi.12093] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2012] [Indexed: 11/29/2022]
Abstract
Binding of the Origin Recognition Complex (ORC) to replication origins is essential for initiation of DNA replication, but ORC has non-essential functions outside of DNA replication, including in heterochromatic gene silencing and telomere maintenance. Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis, uses antigenic variation as a major virulence mechanism to evade the host's immune attack by expressing its major surface antigen, the Variant Surface Glycoprotein (VSG), in a monoallelic manner. An Orc1/Cdc6 homologue has been identified in T. brucei, but its role in DNA replication has not been directly confirmed and its potential involvement in VSG repression or switching has not been thoroughly investigated. In this study, we show that TbOrc1 is essential for nuclear DNA replication in mammalian-infectious bloodstream and tsetse procyclic forms (BF and PF). Depletion of TbOrc1 resulted in derepression of telomere-linked silent VSGs in both BF and PF, and increased VSG switching particularly through the in situ transcriptional switching mechanism. TbOrc1 associates with telomere repeats but appears to do so independently of two known T. brucei telomere proteins, TbRAP1 and TbTRF. We conclude that TbOrc1 has conserved functions in DNA replication and is also required to control telomere-linked VSG expression and VSG switching.
Collapse
Affiliation(s)
- Imaan Benmerzouga
- Center for Gene Regulation in Health & Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Povelones ML, Gluenz E, Dembek M, Gull K, Rudenko G. Histone H1 plays a role in heterochromatin formation and VSG expression site silencing in Trypanosoma brucei. PLoS Pathog 2012; 8:e1003010. [PMID: 23133390 PMCID: PMC3486875 DOI: 10.1371/journal.ppat.1003010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 09/20/2012] [Indexed: 11/30/2022] Open
Abstract
The African sleeping sickness parasite Trypanosoma brucei evades the host immune system through antigenic variation of its variant surface glycoprotein (VSG) coat. Although the T. brucei genome contains ∼1500 VSGs, only one VSG is expressed at a time from one of about 15 subtelomeric VSG expression sites (ESs). For antigenic variation to work, not only must the vast VSG repertoire be kept silent in a genome that is mainly constitutively transcribed, but the frequency of VSG switching must be strictly controlled. Recently it has become clear that chromatin plays a key role in silencing inactive ESs, thereby ensuring monoallelic expression of VSG. We investigated the role of the linker histone H1 in chromatin organization and ES regulation in T. brucei. T. brucei histone H1 proteins have a different domain structure to H1 proteins in higher eukaryotes. However, we show that they play a key role in the maintenance of higher order chromatin structure in bloodstream form T. brucei as visualised by electron microscopy. In addition, depletion of histone H1 results in chromatin becoming generally more accessible to endonucleases in bloodstream but not in insect form T. brucei. The effect on chromatin following H1 knock-down in bloodstream form T. brucei is particularly evident at transcriptionally silent ES promoters, leading to 6–8 fold derepression of these promoters. T. brucei histone H1 therefore appears to be important for the maintenance of repressed chromatin in bloodstream form T. brucei. In particular H1 plays a role in downregulating silent ESs, arguing that H1-mediated chromatin functions in antigenic variation in T. brucei. Trypanosoma brucei causes African sleeping sickness, endemic to sub-Saharan Africa. Bloodstream form T. brucei is covered with a dense coat of variant surface glycoprotein (VSG). Only one VSG is expressed at a time out of a vast repertoire of ∼1500 VSGs. The active VSG is transcribed in a telomeric VSG expression site (ES), and VSG switching allows immune evasion. Exactly how monoallelic exclusion of VSG ESs operates, and how switching between ESs is mediated remains mysterious, although epigenetics and chromatin structure clearly play a major role. The linker histone H1 is thought to orchestrate higher order chromatin structure in eukaryotes, but its exact function is unclear. We investigated the role of histone H1 in the regulation of antigenic variation in T. brucei. We show that histone H1 is associated with chromatin and is required for higher order chromatin structure. Depletion of histone H1 results in derepression of silent VSG ES promoters, indicating that H1-mediated chromatin functions in antigenic variation in T. brucei.
Collapse
Affiliation(s)
- Megan L. Povelones
- Division of Cell and Molecular Biology, Imperial College London, South Kensington, London, United Kingdom
| | - Eva Gluenz
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Marcin Dembek
- Division of Cell and Molecular Biology, Imperial College London, South Kensington, London, United Kingdom
| | - Keith Gull
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gloria Rudenko
- Division of Cell and Molecular Biology, Imperial College London, South Kensington, London, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Abstract
Temporal and spatial organization of the nucleus is critical for the control of transcription, mRNA processing and the assembly of ribosomes. This includes the occupancy of specific territories by mammalian chromosomes, the presence of subnuclear compartments such as the nucleolus and Cajal bodies and the division of chromatin between active and inactive states. These latter are commonly associated with the location of DNA within euchromatin and heterochromatin respectively; critically these distinctions arise through modifications to chromatin-associated proteins, including histones, as well as the preferential localization of heterochromatin at the nuclear periphery. Most research on nuclear organization has focused on metazoa and fungi; however, recent technical advances have made more divergent eukaryotes accessible to study, with some surprising results. For example, the organization of heterochromatin is mediated in metazoan nuclei in large part by lamins, the prototypical intermediate filament proteins. Despite the presence of heterochromatin, detected both biochemically and by EM in most eukaryotic organisms, until this year lamins were thought to be restricted to metazoan taxa, and the proteins comprising the lamina in other lineages were unknown. Recent work indicates the presence of lamin orthologs in amoeba, while trypanosomatids possess a large coiled-coil protein, NUP-1, that performs functions analogous to lamins. These data indicate that the presence of a nuclear lamina is substantially more widespread than previously thought, with major implications for the evolution of eukaryotic gene expression mechanisms. We discuss these and other recent findings on the organization of nuclei in diverse organisms, and the implications of these findings for the evolutionary origin of eukaryotes.
Collapse
Affiliation(s)
- Mark C Field
- Department of Pathology; University of Cambridge, Cambridge, UK.
| | | | | | | | | |
Collapse
|
46
|
Third target of rapamycin complex negatively regulates development of quiescence in Trypanosoma brucei. Proc Natl Acad Sci U S A 2012; 109:14399-404. [PMID: 22908264 DOI: 10.1073/pnas.1210465109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
African trypanosomes are protozoan parasites transmitted by a tsetse fly vector to a mammalian host. The life cycle includes highly proliferative forms and quiescent forms, the latter being adapted to host transmission. The signaling pathways controlling the developmental switch between the two forms remain unknown. Trypanosoma brucei contains two target of rapamycin (TOR) kinases, TbTOR1 and TbTOR2, and two TOR complexes, TbTORC1 and TbTORC2. Surprisingly, two additional TOR kinases are encoded in the T. brucei genome. We report that TbTOR4 associates with an Armadillo domain-containing protein (TbArmtor), a major vault protein, and LST8 to form a unique TOR complex, TbTORC4. Depletion of TbTOR4 caused irreversible differentiation of the parasite into the quiescent form. AMP and hydrolysable analogs of cAMP inhibited TbTOR4 expression and induced the stumpy quiescent form. Our results reveal unexpected complexity in TOR signaling and show that TbTORC4 negatively regulates differentiation of the proliferative form into the quiescent form.
Collapse
|
47
|
Abstract
The African trypanosome Trypanosoma brucei is a flagellated unicellular parasite transmitted by tsetse flies that causes African sleeping sickness in sub-Saharan Africa. Trypanosomes are highly adapted for life in the hostile environment of the mammalian bloodstream, and have various adaptations to their cell biology that facilitate immune evasion. These include a specialized morphology, with most nutrient uptake occurring in the privileged location of the flagellar pocket. In addition, trypanosomes show extremely high rates of recycling of a protective VSG (variant surface glycoprotein) coat, whereby host antibodies are stripped off of the VSG before it is re-used. VSG recycling therefore functions as a mechanism for cleaning the VSG coat, allowing trypanosomes to survive in low titres of anti-VSG antibodies. Lastly, T. brucei has developed an extremely sophisticated strategy of antigenic variation of its VSG coat allowing it to evade host antibodies. A single trypanosome has more than 1500 VSG genes, most of which are located in extensive silent arrays. Strikingly, most of these silent VSGs are pseudogenes, and we are still in the process of trying to understand how non-intact VSGs are recombined to produce genes encoding functional coats. Only one VSG is expressed at a time from one of approximately 15 telomeric VSG ES (expression site) transcription units. It is becoming increasingly clear that chromatin remodelling must play a critical role in ES control. Hopefully, a better understanding of these unique trypanosome adaptations will eventually allow us to disrupt their ability to multiply in the mammalian bloodstream.
Collapse
|
48
|
Epigenetic mechanisms, nuclear architecture and the control of gene expression in trypanosomes. Expert Rev Mol Med 2012; 14:e13. [PMID: 22640744 DOI: 10.1017/erm.2012.7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The control of gene expression, and more significantly gene cohorts, requires tight transcriptional coordination and is an essential feature of probably all cells. In higher eukaryotes, the mechanisms used involve controlled modifications to both local and global DNA environments, principally through changes in chromatin structure as well as cis-element-driven mechanisms. Although the mechanisms regulating chromatin in terms of transcriptional permissiveness and the relation to developmental programmes and responses to the environment are becoming better understood for animal and fungal cells, it is only just beginning to become clear how these processes operate in other taxa, including the trypanosomatids. Recent advances are now illuminating how African trypanosomes regulate higher-order chromatin structure, and, further, how these mechanisms impact on the expression of major surface antigens that are of fundamental importance to life-cycle progression. It is now apparent that several mechanisms are rather more similar between animal and fungal cells and trypanosomes than it originally appeared, but some aspects do involve gene products unique to trypanosomes. Therefore, both evolutionarily common and novel mechanisms cohabit in trypanosomes, offering both important biological insights and possible therapeutic opportunity.
Collapse
|
49
|
NUP-1 Is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLoS Biol 2012; 10:e1001287. [PMID: 22479148 PMCID: PMC3313915 DOI: 10.1371/journal.pbio.1001287] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 02/07/2012] [Indexed: 11/19/2022] Open
Abstract
NUP1, the first example of a nuclear lamin analog in nonmetazoans, performs roles similar to those of lamins in maintaining the structure and organization of the nucleus in Trypanosoma brucei. A unifying feature of eukaryotic nuclear organization is genome segregation into transcriptionally active euchromatin and transcriptionally repressed heterochromatin. In metazoa, lamin proteins preserve nuclear integrity and higher order heterochromatin organization at the nuclear periphery, but no non-metazoan lamin orthologues have been identified, despite the likely presence of nucleoskeletal elements in many lineages. This suggests a metazoan-specific origin for lamins, and therefore that distinct protein elements must compose the nucleoskeleton in other lineages. The trypanosomatids are highly divergent organisms and possess well-documented but remarkably distinct mechanisms for control of gene expression, including polycistronic transcription and trans-splicing. NUP-1 is a large protein localizing to the nuclear periphery of Trypanosoma brucei and a candidate nucleoskeletal component. We sought to determine if NUP-1 mediates heterochromatin organization and gene regulation at the nuclear periphery by examining the influence of NUP-1 knockdown on morphology, chromatin positioning, and transcription. We demonstrate that NUP-1 is essential and part of a stable network at the inner face of the trypanosome nuclear envelope, since knockdown cells have abnormally shaped nuclei with compromised structural integrity. NUP-1 knockdown also disrupts organization of nuclear pore complexes and chromosomes. Most significantly, we find that NUP-1 is required to maintain the silenced state of developmentally regulated genes at the nuclear periphery; NUP-1 knockdown results in highly specific mis-regulation of telomere-proximal silenced variant surface glycoprotein (VSG) expression sites and procyclin loci, indicating a disruption to normal chromatin organization essential to life-cycle progression. Further, NUP-1 depletion leads to increased VSG switching and therefore appears to have a role in control of antigenic variation. Thus, analogous to vertebrate lamins, NUP-1 is a major component of the nucleoskeleton with key roles in organization of the nuclear periphery, heterochromatin, and epigenetic control of developmentally regulated loci. Eukaryotes—fungi, plants, animals, and many unicellular organisms—are defined by the presence of a cell nucleus that contains the chromosomes and is enveloped by a lipid membrane lined on the inner face with a protein network called the lamina. Among other functions, the lamina serves as an anchorage site for the ends of chromosomes. In multicellular animals (metazoa), the lamina comprises a few related proteins called lamins, which are very important for many functions related to the nucleus; abnormal lamins result in multiple nuclear defects and diseases, including inappropriate gene expression and premature aging. Until now, however, lamins had been found only in metazoa; no protein of equivalent function had been identified in plants, fungi, or unicellular organisms. Here, we describe a protein from African trypanosomes—the single-cell parasites that cause sleeping sickness—that fulfils many lamin-like roles, including maintaining nuclear structure and organizing the chromosomes of this organism. We show that this protein, which we call NUP-1 for nuclear periphery protein-1, is vital for the antigenic variation mechanisms that allow the parasite to escape the host immune response. We propose that NUP-1 is a lamin analogue that performs similar functions in trypanosomes to those of authentic lamins in metazoa. These findings, we believe, have important implications for understanding the evolution of the nucleus.
Collapse
|
50
|
Niller HH, Banati F, Ay E, Minarovits J. Microbe-Induced Epigenetic Alterations. PATHO-EPIGENETICS OF DISEASE 2012:419-455. [DOI: 10.1007/978-1-4614-3345-3_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|