1
|
Abstract
Constitutive vesicle trafficking is the default pathway used by all cells for movement of intracellular cargoes between subcellular compartments and in and out of the cell. Classically, constitutive trafficking was thought to be continuous and unregulated, in contrast to regulated secretion, wherein vesicles are stored intracellularly until undergoing synchronous membrane fusion following a Ca2+ signal. However, as shown in the literature reviewed here, many continuous trafficking steps can be up- or down-regulated by Ca2+, including several steps associated with human pathologies. Notably, we describe a series of Ca2+ pumps, channels, Ca2+-binding effector proteins, and their trafficking machinery targets that together regulate the flux of cargo in response to genetic alterations as well as baseline and agonist-dependent Ca2+ signals. Here, we review the most recent advances, organized by organellar location, that establish the importance of these components in trafficking steps. Ultimately, we conclude that Ca2+ regulates an expanding series of distinct mechanistic steps. Furthermore, the involvement of Ca2+ in trafficking is complex. For example, in some cases, the same Ca2+ effectors regulate surprisingly distinct trafficking steps, or even the same trafficking step with opposing influences, through binding to different target proteins.
Collapse
Affiliation(s)
- John Sargeant
- Division of Biological Sciences & Center for Structural & Functional Neuroscience, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Jesse C Hay
- Division of Biological Sciences & Center for Structural & Functional Neuroscience, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| |
Collapse
|
2
|
Rolland M, Martin H, Bergamelli M, Sellier Y, Bessières B, Aziza J, Benchoua A, Leruez-Ville M, Gonzalez-Dunia D, Chavanas S. Human cytomegalovirus infection is associated with increased expression of the lissencephaly gene PAFAH1B1 encoding LIS1 in neural stem cells and congenitally infected brains. J Pathol 2021; 254:92-102. [PMID: 33565082 DOI: 10.1002/path.5640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/22/2022]
Abstract
Congenital infection of the central nervous system by human cytomegalovirus (HCMV) is a leading cause of permanent sequelae, including mental retardation or neurodevelopmental abnormalities. The most severe complications include smooth brain or polymicrogyria, which are both indicative of abnormal migration of neural cells, although the underlying mechanisms remain to be determined. To gain better insight on the pathogenesis of such sequelae, we assessed the expression levels of a set of neurogenesis-related genes, using HCMV-infected human neural stem cells derived from embryonic stem cells (NSCs). Among the 84 genes tested, we found dramatically increased expression of the gene PAFAH1B1, encoding LIS1 (lissencephaly-1), in HCMV-infected versus uninfected NSCs. Consistent with these findings, western blotting and immunofluorescence analyses confirmed the increased levels of LIS1 in HCMV-infected NSCs at the protein level. We next assessed the migratory abilities of HCMV-infected NSCs and observed that infection strongly impaired the migration of NSCs, without detectable effect on their proliferation. Moreover, we observed increased immunostaining for LIS1 in brains of congenitally infected fetuses, but not in control samples, highlighting the clinical relevance of our findings. Of note, PAFAH1B1 mutations (resulting in either haploinsufficiency or gain of function) are primary causes of hereditary neurodevelopmental diseases. Notably, mutations resulting in PAFAH1B1 haploinsufficiency cause classic lissencephaly. Taken together, our findings suggest that PAFAH1B1 is a critical target of HCMV infection. They also shine a new light on the pathophysiological basis of the neurological outcomes of congenital HCMV infection, by suggesting that defective neural cell migration might contribute to the pathogenesis of the neurodevelopmental sequelae of infection. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Maude Rolland
- Centre for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, Toulouse, France
| | - Hélène Martin
- Centre for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, Toulouse, France
| | - Mathilde Bergamelli
- Centre for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, Toulouse, France
| | - Yann Sellier
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université Paris Descartes, Paris, France
| | - Bettina Bessières
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université Paris Descartes, Paris, France
| | - Jacqueline Aziza
- Département d'Anatomie Pathologique, IUCT-Oncopôle Toulouse, Toulouse, France
| | | | - Marianne Leruez-Ville
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université Paris Descartes, Paris, France
| | - Daniel Gonzalez-Dunia
- Centre for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, Toulouse, France
| | - Stéphane Chavanas
- Centre for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, Toulouse, France
| |
Collapse
|
3
|
Fernandes ACS, Soares DC, Neves RFC, Koeller CM, Heise N, Adade CM, Frases S, Meyer-Fernandes JR, Saraiva EM, Souto-Padrón T. Endocytosis and Exocytosis in Leishmania amazonensis Are Modulated by Bromoenol Lactone. Front Cell Infect Microbiol 2020; 10:39. [PMID: 32117812 PMCID: PMC7020749 DOI: 10.3389/fcimb.2020.00039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
In the protozoan pathogen Leishmania, endocytosis, and exocytosis occur mainly in the small area of the flagellar pocket membrane, which makes this parasite an interesting model of strikingly polarized internalization and secretion. Moreover, little is known about vesicle recognition and fusion mechanisms, which are essential for both endo/exocytosis in this parasite. In other cell types, vesicle fusion events require the activity of phospholipase A2 (PLA2), including Ca2+-independent iPLA2 and soluble, Ca2+-dependent sPLA2. Here, we studied the role of bromoenol lactone (BEL) inhibition of endo/exocytosis in promastigotes of Leishmania amazonensis. PLA2 activities were assayed in intact parasites, in whole conditioned media, and in soluble and extracellular vesicles (EVs) conditioned media fractions. BEL did not affect the viability of promastigotes, but reduced the differentiation into metacyclic forms. Intact parasites and EVs had BEL-sensitive iPLA2 activity. BEL treatment reduced total EVs secretion, as evidenced by reduced total protein concentration, as well as its size distribution and vesicles in the flagellar pocket of treated parasites as observed by TEM. Membrane proteins, such as acid phosphatases and GP63, became concentrated in the cytoplasm, mainly in multivesicular tubules of the endocytic pathway. BEL also prevented the endocytosis of BSA, transferrin and ConA, with the accumulation of these markers in the flagellar pocket. These results suggested that the activity inhibited by BEL, which is one of the irreversible inhibitors of iPLA2, is required for both endocytosis and exocytosis in promastigotes of L. amazonensis.
Collapse
Affiliation(s)
- Anne C S Fernandes
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deivid C Soares
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta F C Neves
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina M Koeller
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila M Adade
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José R Meyer-Fernandes
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaïs Souto-Padrón
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
von Blume J, Hausser A. Lipid-dependent coupling of secretory cargo sorting and trafficking at the trans-Golgi network. FEBS Lett 2019; 593:2412-2427. [PMID: 31344259 PMCID: PMC8048779 DOI: 10.1002/1873-3468.13552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022]
Abstract
In eukaryotic cells, the trans-Golgi network (TGN) serves as a platform for secretory cargo sorting and trafficking. In recent years, it has become evident that a complex network of lipid–lipid and lipid–protein interactions contributes to these key functions. This review addresses the role of lipids at the TGN with a particular emphasis on sphingolipids and diacylglycerol. We further highlight how these lipids couple secretory cargo sorting and trafficking for spatiotemporal coordination of protein transport to the plasma membrane.
Collapse
Affiliation(s)
- Julia von Blume
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Germany
| |
Collapse
|
5
|
Kaczmarek B, Verbavatz JM, Jackson CL. GBF1 and Arf1 function in vesicular trafficking, lipid homoeostasis and organelle dynamics. Biol Cell 2017; 109:391-399. [PMID: 28985001 DOI: 10.1111/boc.201700042] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023]
Abstract
The ADP-ribosylation factor (Arf) small G proteins act as molecular switches to coordinate multiple downstream pathways that regulate membrane dynamics. Their activation is spatially and temporally controlled by the guanine nucleotide exchange factors (GEFs). Members of the evolutionarily conserved GBF/Gea family of Arf GEFs are well known for their roles in formation of coat protein complex I (COPI) vesicles, essential for maintaining the structure and function of the Golgi apparatus. However, studies over the past 10 years have found new functions for these GEFs, along with their substrate Arf1, in lipid droplet metabolism, clathrin-independent endocytosis, signalling at the plasma membrane, mitochondrial dynamics and transport along microtubules. Here, we describe these different functions, focussing in particular on the emerging theme of GFB1 and Arf1 regulation of organelle movement on microtubules.
Collapse
Affiliation(s)
- Beata Kaczmarek
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, F-75013, France
| | - Jean-Marc Verbavatz
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, F-75013, France
| | - Catherine L Jackson
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, F-75013, France
| |
Collapse
|
6
|
Abstract
The Golgi complex is the Grand Central Station of intracellular membrane trafficking in the secretory and endocytic pathways. Anterograde and retrograde export of cargo from the Golgi complex involves a complex interplay between the formation of coated vesicles and membrane tubules, although much less is known about tubule-mediated trafficking. Recent advances using in vitro assays have identified several cytoplasmic phospholipase A2 (PLA2) enzymes that are required for the biogenesis of membrane tubules and their roles in the functional organization of the Golgi complex. In this chapter we describe methods for the cell-free reconstitution of PLA2-dependent Golgi membrane tubule formation. These methods should facilitate the identification of other proteins that regulate this process.
Collapse
|
7
|
Methods for analyzing the role of phospholipase A₂ enzymes in endosome membrane tubule formation. Methods Cell Biol 2015. [PMID: 26360034 DOI: 10.1016/bs.mcb.2015.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cargo export from mammalian endosomal compartments often involves membrane tubules, into which soluble and membrane-bound cargos are segregated for subsequent intracellular transport. These membrane tubules are highly dynamic and their formation is mediated by a variety of endosome-associated proteins. However, little is known about how these membrane tubules are temporally or spatially regulated, so other tubule-associated proteins are likely to be discovered and analyzed. Therefore, methods to examine the biogenesis and regulation of endosome membrane tubules will prove to be valuable for cell biologists. In this chapter, we describe methods for studying this process using both cell-free, in vitro reconstitution assays, and in vivo image analysis tools.
Collapse
|
8
|
Karasawa K, Inoue K. Overview of PAF-Degrading Enzymes. PLATELET-ACTIVATING FACTOR ACETYLHYDROLASES (PAF-AH) 2015; 38:1-22. [DOI: 10.1016/bs.enz.2015.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Soonthornsit J, Yamaguchi Y, Tamura D, Ishida R, Nakakoji Y, Osako S, Yamamoto A, Nakamura N. Low cytoplasmic pH reduces ER-Golgi trafficking and induces disassembly of the Golgi apparatus. Exp Cell Res 2014; 328:325-39. [PMID: 25257606 DOI: 10.1016/j.yexcr.2014.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 12/18/2022]
Abstract
The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1-2h after the addition of a control medium. The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A2 inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A2 was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus.
Collapse
Affiliation(s)
- Jeerawat Soonthornsit
- Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555, Japan
| | - Yoko Yamaguchi
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Daisuke Tamura
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Ryuichi Ishida
- Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555, Japan
| | - Yoko Nakakoji
- Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555, Japan
| | - Shiho Osako
- Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555, Japan
| | - Akitsugu Yamamoto
- Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, 266 Tamura, Nagahama, Shiga, 526-0829, Japan
| | - Nobuhiro Nakamura
- Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555, Japan; Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| |
Collapse
|
10
|
Capestrano M, Mariggio S, Perinetti G, Egorova AV, Iacobacci S, Santoro M, Di Pentima A, Iurisci C, Egorov MV, Di Tullio G, Buccione R, Luini A, Polishchuk RS. Cytosolic phospholipase A₂ε drives recycling through the clathrin-independent endocytic route. J Cell Sci 2014; 127:977-93. [PMID: 24413173 DOI: 10.1242/jcs.136598] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Previous studies have demonstrated that membrane tubule-mediated transport events in biosynthetic and endocytic routes require phospholipase A2 (PLA2) activity. Here, we show that cytosolic phospholipase A2ε (cPLA2ε, also known as PLA2G4E) is targeted to the membrane compartments of the clathrin-independent endocytic route through a C-terminal stretch of positively charged amino acids, which allows the enzyme to interact with phosphoinositide lipids [especially PI(4,5)P2] that are enriched in clathrin-independent endosomes. Ablation of cPLA2ε suppressed the formation of tubular elements that carry internalized clathrin-independent cargoes, such as MHC-I, CD147 and CD55, back to the cell surface and, therefore, caused their intracellular retention. The ability of cPLA2ε to support recycling through tubule formation relies on the catalytic activity of the enzyme, because the inactive cPLA2ε(S420A) mutant was not able to recover either tubule growth or transport from clathrin-independent endosomes. Taken together, our findings indicate that cPLA2ε is a new important regulator of trafficking processes within the clathrin-independent endocytic and recycling route. The affinity of cPLA2ε for this pathway supports a new hypothesis that different PLA2 enzymes use selective targeting mechanisms to regulate tubule formation locally during specific trafficking steps in the secretory and/or endocytic systems.
Collapse
|
11
|
Abstract
Heterotrimeric G proteins transduce the ligand binding of transmembrane G protein coupled receptors into a variety of intracellular signaling pathways. Recently, heterotrimeric Gβγ subunit signaling at the Golgi complex has been shown to regulate the formation of vesicular transport carriers that deliver cargo from the Golgi to the plasma membrane. In addition to vesicles, membrane tubules have also been shown to mediate export from the Golgi complex, which requires the activity of cytoplasmic phospholipase A2 (PLA2) enzyme activity. Through the use of an in vitro reconstitution assay with isolated Golgi complexes, we provide evidence that Gβ1γ2 signaling also stimulates Golgi membrane tubule formation. In addition, we show that an inhibitor of Gβγ activation of PLA2 enzymes inhibits in vitro Golgi membrane tubule formation. Additionally, purified Gβγ protein stimulates membrane tubules in the presence of low (sub-threshold) cytosol concentrations. Importantly, this Gβγ stimulation of Golgi membrane tubule formation was inhibited by treatment with the PLA2 antagonist ONO-RS-082. These studies indicate that Gβ1γ2 signaling activates PLA2 enzymes required for Golgi membrane tubule formation, thus establishing a new layer of regulation for this process.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - William J Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Wei X, Song H, Semenkovich CF. Insulin-regulated protein palmitoylation impacts endothelial cell function. Arterioscler Thromb Vasc Biol 2013; 34:346-54. [PMID: 24357059 DOI: 10.1161/atvbaha.113.302848] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Defects in insulin signaling are associated with abnormal endothelial cell function, which occurs commonly in cardiovascular disease. Targets of insulin signaling in endothelial cells are incompletely understood. Protein S-palmitoylation, the reversible modification of proteins by the lipid palmitate, is a post-translational process relevant to cell signaling, but little is known about the role of insulin in protein palmitoylation. APPROACH AND RESULTS To test the hypothesis that insulin alters protein palmitoylation in endothelial cells, we combined acyl-biotin exchange chemistry with stable isotope labeling by amino acids in cell culture to perform quantitative proteomic profiling of human endothelial cells. We identified ≈380 putative palmitoylated proteins, of which >200 were not known to be palmitoylated; ≈10% of the putative palmitoylated proteins were induced or suppressed by insulin. Of those potentially affected by insulin, <10 have been implicated in vascular function. For one, platelet-activating factor acetylhydrolase IB subunit gamma (PAFAH1b3; not previously known to be palmitoylated), we confirmed that insulin stimulated palmitoylation without affecting PAFAH1b3 protein abundance. Chemical inhibition of palmitoylation prevented insulin-induced angiogenesis in vitro; knockdown of PAFAH1b3 had the same effect. PAFAH1b3 knockdown also disrupted cell migration. Mutagenesis of cysteines at residues 56 and 206 prevented palmitoylation of PAFAH1b3, abolished its capacity to stimulate cell migration, and inhibited its association with detergent-resistant membranes, which are implicated in cell signaling. Insulin promoted the association of wild-type PAFAH1b3 with detergent-resistant membranes. CONCLUSIONS These findings provide proof of principle for using proteomics to identify novel insulin-inducible palmitoylation targets relevant to endothelial function.
Collapse
Affiliation(s)
- Xiaochao Wei
- From the Division of Endocrinology, Metabolism, and Lipid Research (X.W., H.S., C.F.S.) and Department of Cell Biology and Physiology (C.F.S.), Washington University School of Medicine, St. Louis, MO
| | | | | |
Collapse
|
13
|
Martínez-Alonso E, Tomás M, Martínez-Menárguez JA. Golgi tubules: their structure, formation and role in intra-Golgi transport. Histochem Cell Biol 2013; 140:327-39. [PMID: 23812035 DOI: 10.1007/s00418-013-1114-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2013] [Indexed: 11/28/2022]
Abstract
Tubules are common Golgi elements that can form extensive networks associated with the cis-, lateral and trans-Golgi sides, but despite this, they have almost been forgotten for decades. The molecular mechanisms involved in their formation, elongation and fission are only just beginning to be understood. However, the role of these membranes is not well understood. In the present review, we analyze the mechanisms that induce Golgi tubulation or, conversely, disrupt tubules in order to throw some lights on the nature of these elements. The putative role of these elements in the framework of current models for intra-Golgi transport is also discussed.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of Murcia, 30100 Murcia, Spain
| | | | | |
Collapse
|
14
|
Escamez T, Bahamonde O, Tabares-Seisdedos R, Vieta E, Martinez S, Echevarria D. Developmental dynamics of PAFAH1B subunits during mouse brain development. J Comp Neurol 2013; 520:3877-94. [PMID: 22522921 DOI: 10.1002/cne.23128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Platelet-activating factor (PAF) mediates an array of biological processes in the mammalian central nervous system as a bioactive lipid messenger in synaptic function and dysfunction (plasticity, memory, and neurodegeneration). The intracellular enzyme that deacetylates the PAF (PAFAH1B) is composed of a tetramer of two catalytic subunits, ALPHA1 (PAFAH1B3) and ALPHA2 (PAFAH1B2), and a regulatory dimer of LIS1 (PAFAH1B1). We have investigated the mouse PAFAH1B subunit genes during brain development in normal mice and in mice with a hypomorphic allele for Lis1 (Lis1/sLis1; Cahana et al. [2001] Proc Natl Acad Sci U S A 98:6429-6434). We have analyzed quantitatively (by means of real-time polymerase chain reaction) and qualitatively (by in situ hybridization techniques) the amounts and expression patterns of their transcription in developing and postnatal brain, focusing mainly on differences in two laminated encephalic regions, the forebrain (telencephalon) and hindbrain (cerebellum) separately. The results revealed significant differences in cDNA content between these two brain subdivisions but, more importantly, between the LIS1 complex subunits. In addition, we found significant spatial differences in gene expression patterns. Comparison of results obtained with Lis1/sLis1 analysis also revealed significant temporal and spatial differences in Alpha1 and Lis1 expression levels. Thus, small changes in the amount of the Lis1 gene may differentially regulate expression of Alpha1 and Alpha2, depending on the brain region, which suggests different roles for each LIS1 complex subunit during neural differentiation and neural migration.
Collapse
Affiliation(s)
- Teresa Escamez
- Unidad Mixta de Investigación UVEG-UMH-CIBERSAM, Centro de Investigación Biomédica en Red en el Area de Salud Mental, 03550 San Juan de Alicante, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Gutiérrez-Martínez E, Fernández-Ulibarri I, Lázaro-Diéguez F, Johannes L, Pyne S, Sarri E, Egea G. Lipid phosphate phosphatase 3 participates in transport carrier formation and protein trafficking in the early secretory pathway. J Cell Sci 2013; 126:2641-55. [PMID: 23591818 DOI: 10.1242/jcs.117705] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The inhibition of phosphatidic acid phosphatase (PAP) activity by propanolol indicates that diacylglycerol (DAG) is required for the formation of transport carriers at the Golgi and for retrograde trafficking to the ER. Here we report that the PAP2 family member lipid phosphate phosphatase 3 (LPP3, also known as PAP2b) localizes in compartments of the secretory pathway from ER export sites to the Golgi complex. The depletion of human LPP3: (i) reduces the number of tubules generated from the ER-Golgi intermediate compartment and the Golgi, with those formed from the Golgi being longer in LPP3-silenced cells than in control cells; (ii) impairs the Rab6-dependent retrograde transport of Shiga toxin subunit B from the Golgi to the ER, but not the anterograde transport of VSV-G or ssDsRed; and (iii) induces a high accumulation of Golgi-associated membrane buds. LPP3 depletion also reduces levels of de novo synthesized DAG and the Golgi-associated DAG contents. Remarkably, overexpression of a catalytically inactive form of LPP3 mimics the effects of LPP3 knockdown on Rab6-dependent retrograde transport. We conclude that LPP3 participates in the formation of retrograde transport carriers at the ER-Golgi interface, where it transitorily cycles, and during its route to the plasma membrane.
Collapse
Affiliation(s)
- Enric Gutiérrez-Martínez
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Bechler ME, Brown WJ. PAFAH Ib phospholipase A2 subunits have distinct roles in maintaining Golgi structure and function. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:595-601. [PMID: 23262398 DOI: 10.1016/j.bbalip.2012.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 12/27/2022]
Abstract
Recent studies showed that the phospholipase subunits of Platelet Activating Factor Acetylhydrolase (PAFAH) Ib, α1 and α2 partially localize to the Golgi complex and regulate its structure and function. Using siRNA knockdown of individual subunits, we find that α1 and α2 perform overlapping and unique roles in regulating Golgi morphology, assembly, and secretory cargo trafficking. Knockdown of either α1 or α2 reduced secretion of soluble proteins, but neither single knockdown reduced secretion to the same degree as knockdown of both. Knockdown of α1 or α2 inhibited reassembly of an intact Golgi complex to the same extent as knockdown of both. Transport of VSV-G was slowed but at different steps in the secretory pathway: reduction of α1 slowed trans Golgi network to plasma membrane transport, whereas α2 loss reduced endoplasmic reticulum to Golgi trafficking. Similarly, knockdown of either subunit alone disrupted the Golgi complex but with markedly different morphologies. Finally, knockdown of α1, or double knockdown of α1 and α2, resulted in a significant redistribution of kinase dead protein kinase D from the Golgi to the plasma membrane, whereas loss of α2 alone had no such effect. These studies reveal an unexpected complexity in the regulation of Golgi structure and function by PAFAH Ib. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
17
|
Stephens DJ. Functional coupling of microtubules to membranes - implications for membrane structure and dynamics. J Cell Sci 2012; 125:2795-804. [PMID: 22736043 DOI: 10.1242/jcs.097675] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The microtubule network dictates much of the spatial patterning of the cytoplasm, and the coupling of microtubules to membranes controls the structure and positioning of organelles and directs membrane trafficking between them. The connection between membranes and the microtubule cytoskeleton, and the way in which organelles are shaped and moved by interactions with the cytoskeleton, have been studied intensively in recent years. In particular, recent work has expanded our thinking of this topic to include the mechanisms by which membranes are shaped and how cargo is selected for trafficking as a result of coupling to the cytoskeleton. In this Commentary, I will discuss the molecular basis for membrane-motor coupling and the physiological outcomes of this coupling, including the way in which microtubule-based motors affect membrane structure, cargo sorting and vectorial trafficking between organelles. Whereas many core concepts of these processes are now well understood, key questions remain about how the coupling of motors to membranes is established and controlled, about the regulation of cargo and/or motor loading and about the control of directionality.
Collapse
Affiliation(s)
- David J Stephens
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
18
|
Modular organization of the mammalian Golgi apparatus. Curr Opin Cell Biol 2012; 24:467-74. [PMID: 22726585 DOI: 10.1016/j.ceb.2012.05.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/29/2012] [Indexed: 02/07/2023]
Abstract
The Golgi apparatus is essential for post-translational modifications and sorting of proteins in the secretory pathway. In addition, it further performs a broad range of specialized functions. This functional diversity is achieved by combining basic morphological modules of cisternae into higher ordered structures. Linking cisternae into stacks that are further connected through tubules into a continuous Golgi ribbon greatly increases its efficiency and expands its repertoire of functions. During cell division, the different modules of the Golgi are inherited by different mechanisms to maintain its functional and morphological composition.
Collapse
|
19
|
Regulation of the Golgi complex by phospholipid remodeling enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1078-88. [PMID: 22562055 DOI: 10.1016/j.bbalip.2012.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/15/2012] [Accepted: 04/13/2012] [Indexed: 11/23/2022]
Abstract
The mammalian Golgi complex is a highly dynamic organelle consisting of stacks of flattened cisternae with associated coated vesicles and membrane tubules that contribute to cargo import and export, intra-cisternal trafficking, and overall Golgi architecture. At the morphological level, all of these structures are continuously remodeled to carry out these trafficking functions. Recent advances have shown that continual phospholipid remodeling by phospholipase A (PLA) and lysophospholipid acyltransferase (LPAT) enzymes, which deacylate and reacylate Golgi phospholipids, respectively, contributes to this morphological remodeling. Here we review the identification and characterization of four cytoplasmic PLA enzymes and one integral membrane LPAT that participate in the dynamic functional organization of the Golgi complex, and how some of these enzymes are integrated to determine the relative abundance of COPI vesicle and membrane tubule formation. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
|
20
|
Odell AF, Hollstein M, Ponnambalam S, Walker JH. A VE-cadherin-PAR3-α-catenin complex regulates the Golgi localization and activity of cytosolic phospholipase A(2)α in endothelial cells. Mol Biol Cell 2012; 23:1783-96. [PMID: 22398721 PMCID: PMC3338442 DOI: 10.1091/mbc.e11-08-0694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The rapid regulation of phospholipase A2 activity is essential for vascular function. Evidence is found for a VE-cadherin–α-catenin–PAR3 complex regulating the reversible association of cPLA2α with the Golgi apparatus in confluent endothelial cells. This regulation is important for controlling both cPLA2α activity and angiogenesis. Phospholipase A2 enzymes hydrolyze phospholipids to liberate arachidonic acid for the biosynthesis of prostaglandins and leukotrienes. In the vascular endothelium, group IV phospholipase A2α (cPLA2α) enzyme activity is regulated by reversible association with the Golgi apparatus. Here we provide evidence for a plasma membrane cell adhesion complex that regulates endothelial cell confluence and simultaneously controls cPLA2α localization and enzymatic activity. Confluent endothelial cells display pronounced accumulation of vascular endothelial cadherin (VE-cadherin) at cell–cell junctions, and mechanical wounding of the monolayer stimulates VE-cadherin complex disassembly and cPLA2α release from the Golgi apparatus. VE-cadherin depletion inhibits both recruitment of cPLA2α to the Golgi and formation of tubules by endothelial cells. Perturbing VE-cadherin and increasing the soluble cPLA2α fraction also stimulated arachidonic acid and prostaglandin production. Of importance, reverse genetics shows that α-catenin and δ-catenin, but not β-catenin, regulates cPLA2α Golgi localization linked to cell confluence. Furthermore, cPLA2α Golgi localization also required partitioning defective protein 3 (PAR3) and annexin A1. Disruption of F-actin internalizes VE-cadherin and releases cPLA2α from the adhesion complex and Golgi apparatus. Finally, depletion of either PAR3 or α-catenin promotes cPLA2α-dependent endothelial tubule formation. Thus a VE-cadherin–PAR3–α-catenin adhesion complex regulates cPLA2α recruitment to the Golgi apparatus, with functional consequences for vascular physiology.
Collapse
Affiliation(s)
- Adam F Odell
- Endothelial Cell Biology Unit, Institute for Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | | | | | | |
Collapse
|
21
|
Abstract
The organization and function of eukaryotic cells rely on the action of many different molecular motor proteins. Cytoplasmic dynein drives the movement of a wide range of cargoes towards the minus ends of microtubules, and these events are needed, not just at the single-cell level, but are vital for correct development. In the present paper, I review recent progress on understanding dynein's mechanochemistry, how it is regulated and how it binds to such a plethora of cargoes. The importance of a number of accessory factors in these processes is discussed.
Collapse
|
22
|
A Cdk5-dependent switch regulates Lis1/Ndel1/dynein-driven organelle transport in adult axons. J Neurosci 2012; 31:17207-19. [PMID: 22114287 DOI: 10.1523/jneurosci.4108-11.2011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lissencephaly is a human developmental brain abnormality caused by LIS1 haploinsufficiency. This disorder is in large part attributed to altered mitosis and migration in the developing brain. LIS1 and an interacting protein, NDEL1, bind to cytoplasmic dynein, a microtubule motor protein. While the tripartite complex is clearly important for developmental events, we are intrigued by the fact that Lis1 and Ndel1 expression remain high in the adult mouse nervous system. Dynein plays a crucial role in retrograde axonal transport, a process that is used by mature neurons. Here, we monitored acidic organelles moving in axons of adult rat sensory neurons to determine whether Lis1 and Ndel1 contribute to axonal transport. Lis1 RNAi significantly reduced axon transport of these organelles. Ndel1 RNAi had little impact, but combined Lis1 and Ndel1 RNAi caused a more severe phenotype than Lis1 RNAi alone, essentially shutting down transport. Lis1 overexpression stimulated retrograde transport, while a Lis1 dynein-binding mutant severely disrupted transport. Overexpression of Ndel1 or a Lis1 Ndel1-binding mutant only mildly perturbed transport. However, expressing a mutant Ndel1 lacking key phosphorylation sites shut down transport completely, as did a dominant-negative Cdk5 construct. We propose that, in axons, unphosphorylated Ndel1 inhibits the capacity of dynein to transport acidic organelles. Phosphorylation of Ndel1 by Cdk5 not only reduces this inhibition but also allows Lis1 to further stimulate the cargo transport capacity of dynein. Our data raise the possibility that defects in a Lis1/Ndel1 regulatory switch could contribute to neurodegenerative diseases linked to axonal pathology in adults.
Collapse
|
23
|
Bechler ME, de Figueiredo P, Brown WJ. A PLA1-2 punch regulates the Golgi complex. Trends Cell Biol 2011; 22:116-24. [PMID: 22130221 DOI: 10.1016/j.tcb.2011.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 12/14/2022]
Abstract
The mammalian Golgi complex, trans Golgi network (TGN) and ER-Golgi intermediate compartment (ERGIC) are comprised of membrane cisternae, coated vesicles and membrane tubules, all of which contribute to membrane trafficking and maintenance of their unique architectures. Recently, a new cast of players was discovered to regulate the Golgi and ERGIC: four unrelated cytoplasmic phospholipase A (PLA) enzymes, cPLA(2)α (GIVA cPLA(2)), PAFAH Ib (GVIII PLA(2)), iPLA(2)-β (GVIA-2 iPLA(2)) and iPLA(1)γ. These ubiquitously expressed enzymes regulate membrane trafficking from specific Golgi subcompartments, although there is evidence for some functional redundancy between PAFAH Ib and cPLA(2)α. Three of these enzymes, PAFAH Ib, cPLA(2)α and iPLA(2)-β, exert effects on Golgi structure and function by inducing the formation of membrane tubules. We review our current understanding of how PLA enzymes regulate Golgi and ERGIC morphology and function.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
24
|
Ye S, Fowler TW, Pavlos NJ, Ng PY, Liang K, Feng Y, Zheng M, Kurten R, Manolagas SC, Zhao H. LIS1 regulates osteoclast formation and function through its interactions with dynein/dynactin and Plekhm1. PLoS One 2011; 6:e27285. [PMID: 22073305 PMCID: PMC3207863 DOI: 10.1371/journal.pone.0027285] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022] Open
Abstract
Microtubule organization and lysosomal secretion are both critical for the activation and function of osteoclasts, highly specialized polykaryons that are responsible for bone resorption and skeletal homeostasis. Here, we have identified a novel interaction between microtubule regulator LIS1 and Plekhm1, a lysosome-associated protein implicated in osteoclast secretion. Decreasing LIS1 expression by shRNA dramatically attenuated osteoclast formation and function, as shown by a decreased number of mature osteoclasts differentiated from bone marrow macrophages, diminished resorption pits formation, and reduced level of CTx-I, a bone resorption marker. The ablated osteoclast formation in LIS1-depleted macrophages was associated with a significant decrease in macrophage proliferation, osteoclast survival and differentiation, which were caused by reduced activation of ERK and AKT by M-CSF, prolonged RANKL-induced JNK activation and declined expression of NFAT-c1, a master transcription factor of osteoclast differentiation. Consistent with its critical role in microtubule organization and dynein function in other cell types, we found that LIS1 binds to and colocalizes with dynein in osteoclasts. Loss of LIS1 led to disorganized microtubules and aberrant dynein function. More importantly, the depletion of LIS1 in osteoclasts inhibited the secretion of Cathepsin K, a crucial lysosomal hydrolase for bone degradation, and reduced the motility of osteoclast precursors. These results indicate that LIS1 is a previously unrecognized regulator of osteoclast formation, microtubule organization, and lysosomal secretion by virtue of its ability to modulate dynein function and Plekhm1.
Collapse
Affiliation(s)
- Shiqiao Ye
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
A variety of secretory cargoes move through the Golgi, but the pathways and mechanisms of this traffic are still being debated. Here, we evaluate the strengths and weaknesses of five current models for Golgi traffic: (1) anterograde vesicular transport between stable compartments, (2) cisternal progression/maturation, (3) cisternal progression/maturation with heterotypic tubular transport, (4) rapid partitioning in a mixed Golgi, and (5) stable compartments as cisternal progenitors. Each model is assessed for its ability to explain a set of key observations encompassing multiple cell types. No single model can easily explain all of the observations from diverse organisms. However, we propose that cisternal progression/maturation is the best candidate for a conserved core mechanism of Golgi traffic, and that some cells elaborate this core mechanism by means of heterotypic tubular transport between cisternae.
Collapse
Affiliation(s)
- Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
26
|
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111:6130-85. [PMID: 21910409 PMCID: PMC3196595 DOI: 10.1021/cr200085w] [Citation(s) in RCA: 846] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Jian Cao
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Yuan-Hao Hsu
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
27
|
Chansard M, Hong JH, Park YU, Park SK, Nguyen MD. Ndel1, Nudel (Noodle): flexible in the cell? Cytoskeleton (Hoboken) 2011; 68:540-54. [PMID: 21948775 DOI: 10.1002/cm.20532] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 02/06/2023]
Abstract
Nuclear distribution element-like 1 (Ndel1 or Nudel) was firstly described as a regulator of the cytoskeleton in microtubule and intermediate filament dynamics and microtubule-based transport. Emerging evidence indicates that Ndel1 also serves as a docking platform for signaling proteins and modulates enzymatic activities (kinase, ATPase, oligopeptidase, GTPase). Through these structural and signaling functions, Ndel1 plays a role in diverse cellular processes (e.g., mitosis, neurogenesis, neurite outgrowth, and neuronal migration). Furthermore, Ndel1 is linked to the etiology of various mental illnesses and neurodegenerative disorders. In the present review, we summarize the physiological and pathological functions associated with Ndel1. We further advance the concept that Ndel1 interfaces GTPases-mediated processes (endocytosis, vesicles morphogenesis/signaling) and cytoskeletal dynamics to impact cell signaling and behaviors. This putative mechanism may affect cellular functionalities and may contribute to shed light into the causes of devastating human diseases.
Collapse
Affiliation(s)
- Mathieu Chansard
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
28
|
Bechler ME, Doody AM, Ha KD, Judson BL, Chen I, Brown WJ. The phospholipase A₂ enzyme complex PAFAH Ib mediates endosomal membrane tubule formation and trafficking. Mol Biol Cell 2011; 22:2348-59. [PMID: 21593204 PMCID: PMC3128536 DOI: 10.1091/mbc.e09-12-1064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
For the first time, a cytoplasmic phospholipase A2 enzyme, platelet-activating factor acetylhydrolase (I)b, is described that is directly involved in the formation of membrane
tubules from endosomes and trafficking through the endocytic recycling pathway. Previous studies have shown that membrane tubule–mediated export from endosomal compartments requires a cytoplasmic phospholipase A2 (PLA2) activity. Here we report that the cytoplasmic PLA2 enzyme complex platelet-activating factor acetylhydrolase (PAFAH) Ib, which consists of α1, α2, and LIS1 subunits, regulates the distribution and function of endosomes. The catalytic subunits α1 and α2 are located on early-sorting endosomes and the central endocytic recycling compartment (ERC) and their overexpression, but not overexpression of their catalytically inactive counterparts, induced endosome membrane tubules. In addition, overexpression α1 and α2 altered normal endocytic trafficking; transferrin was recycled back to the plasma membrane directly from peripheral early-sorting endosomes instead of making an intermediate stop in the ERC. Consistent with these results, small interfering RNA–mediated knockdown of α1 and α2 significantly inhibited the formation of endosome membrane tubules and delayed the recycling of transferrin. In addition, the results agree with previous reports that PAFAH Ib α1 and α2 expression levels affect the distribution of endosomes within the cell through interactions with the dynein regulator LIS1. These studies show that PAFAH Ib regulates endocytic membrane trafficking through novel mechanisms involving both PLA2 activity and LIS1-dependent dynein function.
Collapse
Affiliation(s)
- Marie E Bechler
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
29
|
Schmidt JA, Kalkofen DN, Donovan KW, Brown WJ. A role for phospholipase A2 activity in membrane tubule formation and TGN trafficking. Traffic 2010; 11:1530-6. [PMID: 20874826 DOI: 10.1111/j.1600-0854.2010.01115.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have investigated the role of phospholipase A(2) (PLA(2) ) enzymes in generating membrane tubules at the trans-Golgi network (TGN). Constitutive TGN membrane tubules and those induced by over-expressing kinase dead protein kinase D were inhibited by the PLA(2) inhibitors ONO-RS-082 (ONO) and bromoenol lactone. These antagonists also inhibited secretory delivery of both soluble and transmembrane cargoes. Finally, use of the reversible antagonist ONO and time-lapse imaging revealed for the first time that PLA(2) antagonists inhibit the initiation of membrane tubule formation at the TGN. Thus, PLA(2) enzymes appear to have an important role in the earliest steps of membrane tubule formation at the TGN, which are utilized for membrane trafficking.
Collapse
Affiliation(s)
- John A Schmidt
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|