1
|
Fasana E, Fregno I, Galli C, Soldà T, Molinari M. ER-to-lysosome-associated degradation acts as failsafe mechanism upon ERAD dysfunction. EMBO Rep 2024; 25:2773-2785. [PMID: 38773321 PMCID: PMC11169228 DOI: 10.1038/s44319-024-00165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
The endoplasmic reticulum (ER) produces proteins destined to organelles of the endocytic and secretory pathways, the plasma membrane, and the extracellular space. While native proteins are transported to their intra- or extracellular site of activity, folding-defective polypeptides are retro-translocated across the ER membrane into the cytoplasm, poly-ubiquitylated and degraded by 26 S proteasomes in a process called ER-associated degradation (ERAD). Large misfolded polypeptides, such as polymers of alpha1 antitrypsin Z (ATZ) or mutant procollagens, fail to be dislocated across the ER membrane and instead enter ER-to-lysosome-associated degradation (ERLAD) pathways. Here, we show that pharmacological or genetic inhibition of ERAD components, such as the α1,2-mannosidase EDEM1 or the OS9 ERAD lectins triggers the delivery of the canonical ERAD clients Null Hong Kong (NHK) and BACE457Δ to degradative endolysosomes under control of the ER-phagy receptor FAM134B and the LC3 lipidation machinery. Our results reveal that ERAD dysfunction is compensated by the activation of FAM134B-driven ERLAD pathways that ensure efficient lysosomal clearance of orphan ERAD clients.
Collapse
Affiliation(s)
- Elisa Fasana
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Ilaria Fregno
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Carmela Galli
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Tatiana Soldà
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Maurizio Molinari
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland.
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
2
|
Cao H, Zhou X, Xu B, Hu H, Guo J, Ma Y, Wang M, Li N, Jun Z. Advances in the study of protein folding and endoplasmic reticulum-associated degradation in mammal cells. J Zhejiang Univ Sci B 2024; 25:212-232. [PMID: 38453636 PMCID: PMC10918413 DOI: 10.1631/jzus.b2300403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/03/2023] [Indexed: 03/09/2024]
Abstract
The endoplasmic reticulum is a key site for protein production and quality control. More than one-third of proteins are synthesized and folded into the correct three-dimensional conformation in the endoplasmic reticulum. However, during protein folding, unfolded and/or misfolded proteins are prone to occur, which may lead to endoplasmic reticulum stress. Organisms can monitor the quality of the proteins produced by endoplasmic reticulum quality control (ERQC) and endoplasmic reticulum-associated degradation (ERAD), which maintain endoplasmic reticulum protein homeostasis by degrading abnormally folded proteins. The underlying mechanisms of protein folding and ERAD in mammals have not yet been fully explored. Therefore, this paper reviews the process and function of protein folding and ERAD in mammalian cells, in order to help clinicians better understand the mechanism of ERAD and to provide a scientific reference for the treatment of diseases caused by abnormal ERAD.
Collapse
Affiliation(s)
- Hong Cao
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Xuchang Zhou
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Bowen Xu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Han Hu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Jianming Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Yuwei Ma
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Miao Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Nan Li
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China.
| | - Zou Jun
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
3
|
Hayashi Y, Takatori S, Warsame WY, Tomita T, Fujisawa T, Ichijo H. TOLLIP acts as a cargo adaptor to promote lysosomal degradation of aberrant ER membrane proteins. EMBO J 2023; 42:e114272. [PMID: 37929762 PMCID: PMC10690474 DOI: 10.15252/embj.2023114272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Endoplasmic reticulum (ER) proteostasis is maintained by various catabolic pathways. Lysosomes clear entire ER portions by ER-phagy, while proteasomes selectively clear misfolded or surplus aberrant proteins by ER-associated degradation (ERAD). Recently, lysosomes have also been implicated in the selective clearance of aberrant ER proteins, but the molecular basis remains unclear. Here, we show that the phosphatidylinositol-3-phosphate (PI3P)-binding protein TOLLIP promotes selective lysosomal degradation of aberrant membrane proteins, including an artificial substrate and motoneuron disease-causing mutants of VAPB and Seipin. These cargos are recognized by TOLLIP through its misfolding-sensing intrinsically disordered region (IDR) and ubiquitin-binding CUE domain. In contrast to ER-phagy receptors, which clear both native and aberrant proteins by ER-phagy, TOLLIP selectively clears aberrant cargos by coupling them with the PI3P-dependent lysosomal trafficking without promoting bulk ER turnover. Moreover, TOLLIP depletion augments ER stress after ERAD inhibition, indicating that TOLLIP and ERAD cooperatively safeguard ER proteostasis. Our study identifies TOLLIP as a unique type of cargo-specific adaptor dedicated to the clearance of aberrant ER cargos and provides insights into molecular mechanisms underlying lysosome-mediated quality control of membrane proteins.
Collapse
Affiliation(s)
- Yuki Hayashi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | | | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
4
|
Kuang Z, Liu X, Zhang N, Dong J, Sun C, Yin M, Wang Y, Liu L, Xiao D, Zhou X, Feng Y, Song D, Deng H. USP2 promotes tumor immune evasion via deubiquitination and stabilization of PD-L1. Cell Death Differ 2023; 30:2249-2264. [PMID: 37670038 PMCID: PMC10589324 DOI: 10.1038/s41418-023-01219-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
The abnormal upregulation of programmed death ligand-1 (PD-L1) on tumor cells impedes T-cell mediated cytotoxicity through PD-1 engagement, and further exploring the mechanisms regulation of PD-L1 in cancers may enhance the clinical efficacy of PD-L1 blockade. Here, using single-guide RNAs (sgRNAs) screening system, we identify ubiquitin-specific processing protease 2 (USP2) as a novel regulator of PD-L1 stabilization for tumor immune evasion. USP2 directly interacts with and increases PD-L1 abundance in colorectal and prostate cancer cells. Our results show that Thr288, Arg292 and Asp293 at USP2 control its binding to PD-L1 through deconjugating the K48-linked polyubiquitination at lysine 270 of PD-L1. Depletion of USP2 causes endoplasmic reticulum (ER)-associated degradation of PD-L1, thus attenuates PD-L1/PD-1 interaction and sensitizes cancer cells to T cell-mediated killing. Meanwhile, USP2 ablation-induced PD-L1 clearance enhances antitumor immunity in mice via increasing CD8+ T cells infiltration and reducing immunosuppressive infiltration of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), whereas PD-L1 overexpression reverses the tumor growth suppression by USP2 silencing. USP2-depletion combination with anti-PD-1 also exhibits a synergistic anti-tumor effect. Furthermore, analysis of clinical tissue samples indicates that USP2 is positively associated with PD-L1 expression in cancer. Collectively, our data reveal a crucial role of USP2 for controlling PD-L1 stabilization in tumor cells, and highlight USP2 as a potential therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Zean Kuang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaojia Liu
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jingwen Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Cuicui Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Mingxiao Yin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuting Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lu Liu
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, 266034, China
| | - Dian Xiao
- Beijing Institute of Pharmacology and Toxicology, National Engineering Research Center for the Emergency Drug, Beijing, 100850, China
| | - Xinbo Zhou
- Beijing Institute of Pharmacology and Toxicology, National Engineering Research Center for the Emergency Drug, Beijing, 100850, China
| | - Yanchun Feng
- National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Danqing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
5
|
Sukhoplyasova M, Keith AM, Perrault EM, Vorndran HE, Jordahl AS, Yates ME, Pastor A, Li Z, Freaney ML, Deshpande RA, Adams DB, Guerriero CJ, Shi S, Kleyman TR, Kashlan OB, Brodsky JL, Buck TM. Lhs1 dependent ERAD is determined by transmembrane domain context. Biochem J 2023; 480:1459-1473. [PMID: 37702403 PMCID: PMC11040695 DOI: 10.1042/bcj20230075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
Transmembrane proteins have unique requirements to fold and integrate into the endoplasmic reticulum (ER) membrane. Most notably, transmembrane proteins must fold in three separate environments: extracellular domains fold in the oxidizing environment of the ER lumen, transmembrane domains (TMDs) fold within the lipid bilayer, and cytosolic domains fold in the reducing environment of the cytosol. Moreover, each region is acted upon by a unique set of chaperones and monitored by components of the ER associated quality control machinery that identify misfolded domains in each compartment. One factor is the ER lumenal Hsp70-like chaperone, Lhs1. Our previous work established that Lhs1 is required for the degradation of the unassembled α-subunit of the epithelial sodium channel (αENaC), but not the homologous β- and γENaC subunits. However, assembly of the ENaC heterotrimer blocked the Lhs1-dependent ER associated degradation (ERAD) of the α-subunit, yet the characteristics that dictate the specificity of Lhs1-dependent ERAD substrates remained unclear. We now report that Lhs1-dependent substrates share a unique set of features. First, all Lhs1 substrates appear to be unglycosylated, and second they contain two TMDs. Each substrate also contains orphaned or unassembled TMDs. Additionally, interfering with inter-subunit assembly of the ENaC trimer results in Lhs1-dependent degradation of the entire complex. Finally, our work suggests that Lhs1 is required for a subset of ERAD substrates that also require the Hrd1 ubiquitin ligase. Together, these data provide hints as to the identities of as-yet unconfirmed substrates of Lhs1 and potentially of the Lhs1 homolog in mammals, GRP170.
Collapse
Affiliation(s)
- Maria Sukhoplyasova
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Abigail M. Keith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Emma M. Perrault
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Hannah E. Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Alexa S. Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Megan E. Yates
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Ashutosh Pastor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Zachary Li
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Michael L. Freaney
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Riddhi A. Deshpande
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - David B. Adams
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | | | - Shujie Shi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Ossama B. Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Teresa M. Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| |
Collapse
|
6
|
Badawi S, Mohamed FE, Varghese DS, Ali BR. Genetic disruption of mammalian endoplasmic reticulum-associated protein degradation: Human phenotypes and animal and cellular disease models. Traffic 2023. [PMID: 37188482 DOI: 10.1111/tra.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.
Collapse
Affiliation(s)
- Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Feda E Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
7
|
Zeng C, Guo J, Wu J, Che T, Huang X, Liu H, Lin Z. HRD1 Promotes Non-small Cell Lung Carcinoma Metastasis by Blocking Autophagy-mediated MIEN1 Degradation. J Biol Chem 2023; 299:104723. [PMID: 37075843 DOI: 10.1016/j.jbc.2023.104723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023] Open
Abstract
Dysregulation of autophagy has been implicated in the development of many diseases, including cancer. Here, we revealed a novel function of the E3 ubiquitin ligase HRD1 in non-small cell lung carcinoma (NSCLC) metastasis by regulating autophagy. Mechanistically, HRD1 inhibits autophagy by promoting ATG3 ubiquitination and degradation. Additionally, a pro-migratory and invasive factor, MIEN1 (migration and invasion enhancer 1), was found to be autophagically degraded upon HRD1 deficiency. Importantly, both HRD1 and MIEN1 expression are upregulated and positively correlated in lung tumors. Based on these results, we proposed a novel mechanism of HRD1 function that the degradation of ATG3 protein by HRD1 leads to autophagy inhibition and MIEN1 release, thus promoting NSCLC metastasis. Therefore, our findings provided new insights into the role of HRD1 in NSCLC metastasis and new therapeutic targets for lung cancer treatment.
Collapse
Affiliation(s)
- Cheng Zeng
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Jing Guo
- Affiliated Three Gorges Central Hospital of Chongqing University, Chongqing, P. R. China
| | - Jiajia Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Tiantian Che
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Xiaoping Huang
- Affiliated Three Gorges Central Hospital of Chongqing University, Chongqing, P. R. China
| | - Huawen Liu
- Affiliated Three Gorges Central Hospital of Chongqing University, Chongqing, P. R. China.
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China.
| |
Collapse
|
8
|
Krshnan L, van de Weijer ML, Carvalho P. Endoplasmic Reticulum-Associated Protein Degradation. Cold Spring Harb Perspect Biol 2022; 14:a041247. [PMID: 35940909 PMCID: PMC9732900 DOI: 10.1101/cshperspect.a041247] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Misfolded, potentially toxic proteins in the lumen and membrane of the endoplasmic reticulum (ER) are eliminated by proteasomes in the cytosol through ER-associated degradation (ERAD). The ERAD process involves the recognition of substrates in the lumen and membrane of the ER, their translocation into the cytosol, ubiquitination, and delivery to the proteasome for degradation. These ERAD steps are performed by membrane-embedded ubiquitin-ligase complexes of different specificity that together cover a wide range of substrates. Besides misfolded proteins, ERAD further contributes to quality control by targeting unassembled and mislocalized proteins. ERAD also targets a restricted set of folded proteins to influence critical ER functions such as sterol biosynthesis, calcium homeostasis, or ER contacts with other organelles. This review describes the ubiquitin-ligase complexes and the principles guiding protein degradation by ERAD.
Collapse
Affiliation(s)
- Logesvaran Krshnan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
9
|
Murase R, Yamamoto A, Hirata Y, Oh-Hashi K. Expression analysis and functional characterization of thioredoxin domain-containing protein 11. Mol Biol Rep 2022; 49:10541-10556. [PMID: 36152228 DOI: 10.1007/s11033-022-07932-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUNDS The endoplasmic reticulum (ER) is a crucial organelle that regulates both the folding, modification and transport of many proteins and senses certain stimuli inside and outside of cells. ER-associated degradation (ERAD), including SEL1L is a crucial mechanism to maintain homeostasis. In this study, we performed comparative proteome analysis in wild-type (wt) and SEL1L-deficient cells. METHODS AND RESULTS We found constitutively high expression of thioredoxin domain-containing protein 11 (TXNDC11) mRNA and protein in our SEL1L-deficient HEK293 cells by RT-PCR and Western blot analysis. The TXNDC11 gene possesses a well-conserved unfolded protein response element (UPRE) around its transcription start site, and ER stress increased TXNDC11 mRNA and luciferase reporter activity via this putative UPRE in HEK293 cells. The amounts of TXNDC11 protein in wild-type and SEL1L-deficient cells with or without thapsigargin (Tg) treatment were parallel to their mRNAs in these cells, which was almost proportional to spliced XBP1 (sXBP1) mRNA expression. The establishment and characterization of TXNDC11-deficient HEK293 cells revealed that the expression of three different ER resident stress sensors, ATF6α, CREB3 and CREB3L2, is regulated by TXNDC11. The rate of disappearance of the three proteins by CHX treatment in wt cells was remarkably different, and the full-length CREB3L2 protein was almost completely degraded within 15 min after CHX treatment. TXNDC11 deficiency increased the expression of each full-length form under resting conditions and delayed their disappearance by CHX treatment. Interestingly, the degree of increase in full-length CREB3/CREB3L2 by TXNDC11 deficiency was apparently higher than that in full-length ATF6α. The increase in these proteins by TXNDC11 deficiency was hardly correlated with the expression of each mRNA. Treatment with ER stress inducers influenced each full-length mature form, and the difference in each full-length form observed in wt and TXNDC11-deficient cells was smaller. CONCLUSION This study demonstrated that TXNDC11 is an ER stress-inducible gene regulated by the IRE1-sXBP1 pathway. In addition, TXNDC11 is involved in the regulation of ATF6α, CREB3 and CREB3L2 protein expression, although the contribution to the stability of these proteins is quite variable. Therefore, its further characterization will provide new insights for understanding protein homeostasis in ER physiology and pathology.
Collapse
Affiliation(s)
- Ryoichi Murase
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Ayumi Yamamoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yoko Hirata
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kentaro Oh-Hashi
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan. .,Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan. .,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
10
|
Avila H, Yu J, Boddu G, Phan A, Truong A, Peddi S, Guo H, Lee SJ, Alba M, Canfield E, Yamamoto V, Paton JC, Paton AW, Lee AS, MacKay JA. Hydra-Elastin-like Polypeptides Increase Rapamycin Potency When Targeting Cell Surface GRP78. Biomacromolecules 2022; 23:3116-3129. [PMID: 35786858 PMCID: PMC10231879 DOI: 10.1021/acs.biomac.2c00048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rapalogues are powerful therapeutic modalities for breast cancer; however, they suffer from low solubility and dose-limiting side effects. To overcome these challenges, we developed a long-circulating multiheaded drug carrier called 5FA, which contains rapamycin-binding domains linked with elastin-like polypeptides (ELPs). To target these "Hydra-ELPs" toward breast cancer, we here linked 5FA with four distinct peptides which are reported to engage the cell surface form of the 78 kDa glucose-regulated protein (csGRP78). To determine if these peptides affected the carrier solubility, this library was characterized by light scattering and mass spectrometry. To guide in vitro selection of the most potent functional carrier for rapamycin, its uptake and inhibition of mTORC1 were monitored in a ductal breast cancer model (BT474). Using flow cytometry to track cellular association, it was found that only the targeted carriers enhanced cellular uptake and were susceptible to proteolysis by SubA, which specifically targets csGRP78. The functional inhibition of mTOR was monitored by Western blot for pS6K, whereby the best carrier L-5FA reduced mTOR activity by 3-fold compared to 5FA or free rapamycin. L-5FA was further visualized using super-resolution confocal laser scanning microscopy, which revealed that targeting increased exposure to the carrier by ∼8-fold. This study demonstrates how peptide ligands for GRP78, such as the L peptide (RLLDTNRPLLPY), may be incorporated into protein-based drug carriers to enhance targeting.
Collapse
Affiliation(s)
- Hugo Avila
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Jingmei Yu
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Geetha Boddu
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Alvin Phan
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Anh Truong
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Shin-Jae Lee
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
- Department of Biomedical Engineering, USC Viterbi School of Engineering, Los Angeles, California 90089, United States
| | - Mario Alba
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Ethan Canfield
- Mass Spectrometry Core, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Vicky Yamamoto
- Department of Biochemistry and Molecular Medicine, USC Keck School of Medicine, Los Angeles, California 90033, United States
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, USC Keck School of Medicine, Los Angeles, California 90033, United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
- Department of Biomedical Engineering, USC Viterbi School of Engineering, Los Angeles, California 90089, United States
- Department of Ophthalmology, USC Keck School of Medicine, Los Angeles, California 90033, United States
| |
Collapse
|
11
|
Miao X, Wu J, Chen H, Lu G. Comprehensive Analysis of the Structure and Function of Peptide:N-Glycanase 1 and Relationship with Congenital Disorder of Deglycosylation. Nutrients 2022; 14:nu14091690. [PMID: 35565658 PMCID: PMC9102325 DOI: 10.3390/nu14091690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
The cytosolic PNGase (peptide:N-glycanase), also known as peptide-N4-(N-acetyl-β-glucosaminyl)-asparagine amidase, is a well-conserved deglycosylation enzyme (EC 3.5.1.52) which catalyzes the non-lysosomal hydrolysis of an N(4)-(acetyl-β-d-glucosaminyl) asparagine residue (Asn, N) into a N-acetyl-β-d-glucosaminyl-amine and a peptide containing an aspartate residue (Asp, D). This enzyme (NGLY1) plays an essential role in the clearance of misfolded or unassembled glycoproteins through a process named ER-associated degradation (ERAD). Accumulating evidence also points out that NGLY1 deficiency can cause an autosomal recessive (AR) human genetic disorder associated with abnormal development and congenital disorder of deglycosylation. In addition, the loss of NGLY1 can affect multiple cellular pathways, including but not limited to NFE2L1 pathway, Creb1/Atf1-AQP pathway, BMP pathway, AMPK pathway, and SLC12A2 ion transporter, which might be the underlying reasons for a constellation of clinical phenotypes of NGLY1 deficiency. The current comprehensive review uncovers the NGLY1’ssdetailed structure and its important roles for participation in ERAD, involvement in CDDG and potential treatment for NGLY1 deficiency.
Collapse
Affiliation(s)
- Xiangguang Miao
- Queen Mary School, Nanchang University, No. 1299 Xuefu Avenue, Honggutan New District, Nanchang 330036, China;
| | - Jin Wu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People’s Hospital, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China;
- Deyang Key Laboratory of Tumor Molecular Research, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang 330006, China
- Correspondence: (H.C.); (G.L.); Tel.: +86-188-0147-4087 (G.L.)
| | - Guanting Lu
- Laboratory of Translational Medicine Research, Department of Pathology, Deyang People’s Hospital, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China;
- Deyang Key Laboratory of Tumor Molecular Research, No. 173 First Section of Taishanbei Road, Jingyang District, Deyang 618000, China
- Correspondence: (H.C.); (G.L.); Tel.: +86-188-0147-4087 (G.L.)
| |
Collapse
|
12
|
Christianson JC, Carvalho P. Order through destruction: how ER-associated protein degradation contributes to organelle homeostasis. EMBO J 2022; 41:e109845. [PMID: 35170763 PMCID: PMC8922271 DOI: 10.15252/embj.2021109845] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is a large, dynamic, and multifunctional organelle. ER protein homeostasis is essential for the coordination of its diverse functions and depends on ER-associated protein degradation (ERAD). The latter process selects target proteins in the lumen and membrane of the ER, promotes their ubiquitination, and facilitates their delivery into the cytosol for degradation by the proteasome. Originally characterized for a role in the degradation of misfolded proteins and rate-limiting enzymes of sterol biosynthesis, the many branches of ERAD now appear to control the levels of a wider range of substrates and influence more broadly the organization and functions of the ER, as well as its interactions with adjacent organelles. Here, we discuss recent mechanistic advances in our understanding of ERAD and of its consequences for the regulation of ER functions.
Collapse
Affiliation(s)
- John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesBotnar Research CentreUniversity of OxfordOxfordUK
| | - Pedro Carvalho
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
13
|
Wang R, Suzuki S, Guest JD, Heller B, Almeda M, Andrianov AK, Marin A, Mariuzza RA, Keck ZY, Foung SKH, Yunus AS, Pierce BG, Toth EA, Ploss A, Fuerst TR. Induction of broadly neutralizing antibodies using a secreted form of the hepatitis C virus E1E2 heterodimer as a vaccine candidate. Proc Natl Acad Sci U S A 2022; 119:e2112008119. [PMID: 35263223 PMCID: PMC8931252 DOI: 10.1073/pnas.2112008119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
SignificanceHepatitis C virus chronically infects approximately 1% of the world's population, making an effective vaccine for hepatitis C virus a major unmet public health need. The membrane-associated E1E2 envelope glycoprotein has been used in clinical studies as a vaccine candidate. However, limited neutralization breadth and difficulty in producing large amounts of homogeneous membrane-associated E1E2 have hampered efforts to develop an E1E2-based vaccine. Our previous work described the design and biochemical validation of a native-like soluble secreted form of E1E2 (sE1E2). Here, we describe the immunogenic characterization of the sE1E2 complex. sE1E2 elicited broadly neutralizing antibodies in immunized mice, with increased neutralization breadth relative to the membrane-associated E1E2, thereby validating this platform as a promising model system for vaccine development.
Collapse
Affiliation(s)
- Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Saori Suzuki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Johnathan D. Guest
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Brigitte Heller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Maricar Almeda
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Roy A. Mariuzza
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Abdul S. Yunus
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Eric A. Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
14
|
Reggiori F, Molinari M. ER-phagy: mechanisms, regulation and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiol Rev 2022; 102:1393-1448. [PMID: 35188422 PMCID: PMC9126229 DOI: 10.1152/physrev.00038.2021] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ER-phagy (reticulo-phagy) defines the degradation of portions of the endoplasmic reticulum (ER) within lysosomes or vacuoles. It is part of the self-digestion (i.e., auto-phagic) programs recycling cytoplasmic material and organelles, which rapidly mobilize metabolites in cells confronted with nutrient shortage. Moreover, selective clearance of ER subdomains participates to the control of ER size and activity during ER stress, the re-establishment of ER homeostasis after ER stress resolution and the removal of ER parts, in which aberrant and potentially cytotoxic material has been segregated. ER-phagy relies on the individual and/or concerted activation of the ER-phagy receptors, ER peripheral or integral membrane proteins that share the presence of LC3/Atg8-binding motifs in their cytosolic domains. ER-phagy involves the physical separation of portions of the ER from the bulk ER network, and their delivery to the endolysosomal/vacuolar catabolic district. This last step is accomplished by a variety of mechanisms including macro-ER-phagy (in which ER fragments are sequestered by double-membrane autophagosomes that eventually fuse with lysosomes/vacuoles), micro-ER-phagy (in which ER fragments are directly engulfed by endosomes/lysosomes/vacuoles), or direct fusion of ER-derived vesicles with lysosomes/vacuoles. ER-phagy is dysfunctional in specific human diseases and its regulators are subverted by pathogens, highlighting its crucial role for cell and organism life.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, grid.4830.fUniversity of Groningen, Netherlands
| | - Maurizio Molinari
- Protein Folding and Quality Control, grid.7722.0Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
15
|
Sim HJ, Cho C, Kim HE, Hong JY, Song EK, Kwon KY, Jang DG, Kim SJ, Lee HS, Lee C, Kwon T, Yang S, Park TJ. Augmented ERAD (ER-associated degradation) activity in chondrocytes is necessary for cartilage development and maintenance. SCIENCE ADVANCES 2022; 8:eabl4222. [PMID: 35061535 PMCID: PMC8782459 DOI: 10.1126/sciadv.abl4222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/29/2021] [Indexed: 05/28/2023]
Abstract
Chondrocytes secrete massive extracellular matrix (ECM) molecules that are produced, folded, and modified in the endoplasmic reticulum (ER). Thus, the ER-associated degradation (ERAD) complex-which removes misfolded and unfolded proteins to maintain proteostasis in the ER- plays an indispensable role in building and maintaining cartilage. Here, we examined the necessity of the ERAD complex in chondrocytes for cartilage formation and maintenance. We show that ERAD gene expression is exponentially increased during chondrogenesis, and disruption of ERAD function causes severe chondrodysplasia in developing embryos and loss of adult articular cartilage. ERAD complex malfunction also causes abnormal accumulation of cartilage ECM molecules and subsequent chondrodysplasia. ERAD gene expression is decreased in damaged cartilage from patients with osteoarthritis (OA), and disruption of ERAD function in articular cartilage leads to cartilage destruction in a mouse OA model.
Collapse
Affiliation(s)
- Hyo Jung Sim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Chanmi Cho
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Korea
- CIRNO, Sungkyunkwan University, Suwon 16419, Korea
- Degenerative Inter Diseases Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Ha Eun Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Ju Yeon Hong
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Eun Kyung Song
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Keun Yeong Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Dong Gil Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Seok-Jung Kim
- Department of Orthopaedic Surgery, Uijeongbu St. Mary’s Hospital, Catholic University of Korea College of Medicine, Uijeongbu 11765, Korea
| | - Hyun-Shik Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Changwook Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Korea
- CIRNO, Sungkyunkwan University, Suwon 16419, Korea
- Degenerative Inter Diseases Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| |
Collapse
|
16
|
SLC26A9 is selected for endoplasmic reticulum associated degradation (ERAD) via Hsp70-dependent targeting of the soluble STAS domain. Biochem J 2021; 478:4203-4220. [PMID: 34821356 PMCID: PMC8826537 DOI: 10.1042/bcj20210644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
SLC26A9, a member of the solute carrier protein family, transports chloride ions across various epithelia. SLC26A9 also associates with other ion channels and transporters linked to human health, and in some cases these heterotypic interactions are essential to support the biogenesis of both proteins. Therefore, understanding how this complex membrane protein is initially folded might provide new therapeutic strategies to overcome deficits in the function of SLC26A9 partners, one of which is associated with Cystic Fibrosis. To this end, we developed a novel yeast expression system for SLC26A9. This facile system has been used extensively with other ion channels and transporters to screen for factors that oversee protein folding checkpoints. As commonly observed for other channels and transporters, we first noted that a substantial fraction of SLC26A9 is targeted for endoplasmic reticulum associated degradation (ERAD), which destroys folding-compromised proteins in the early secretory pathway. We next discovered that ERAD selection requires the Hsp70 chaperone, which can play a vital role in ERAD substrate selection. We then created SLC26A9 mutants and found that the transmembrane-rich domain of SLC26A9 was quite stable, whereas the soluble cytosolic STAS domain was responsible for Hsp70-dependent ERAD. To support data obtained in the yeast model, we were able to recapitulate Hsp70-facilitated ERAD of the STAS domain in human tissue culture cells. These results indicate that a critical barrier to nascent membrane protein folding can reside within a specific soluble domain, one that is monitored by components associated with the ERAD machinery.
Collapse
|
17
|
Li C, Chi H, Deng S, Wang H, Yao H, Wang Y, Chen D, Guo X, Fang JY, He F, Xu J. THADA drives Golgi residency and upregulation of PD-L1 in cancer cells and provides promising target for immunotherapy. J Immunother Cancer 2021; 9:jitc-2021-002443. [PMID: 34341130 PMCID: PMC8330570 DOI: 10.1136/jitc-2021-002443] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/28/2022] Open
Abstract
Background The abnormal upregulation of programmed death-ligand 1 (PD-L1) in cancer cells inhibits T cell-mediated cytotoxicity, but the molecular mechanisms that drive and maintain PD-L1 expression are still incompletely understood. Methods Combined analyses of genomes and proteomics were applied to find potential regulators of PD-L1. In vitro experiments were performed to investigate the regulatory mechanism of PD-L1 by thyroid adenoma associated gene (THADA) using human colorectal cancer (CRC) cells. The prevalence of THADA was analyzed using CRC tissue microarrays by immunohistochemistry. T cell killing assay, programmed cell death 1 binding assay and MC38 transplanted tumor models in C57BL/6 mice were developed to investigate the antitumor effect of THADA. Results THADA is critically required for the Golgi residency of PD-L1, and this non-redundant, coat protein complex II (COPII)-associated mechanism maintains PD-L1 expression in tumor cells. THADA mediated the interaction between PD-L1 as a cargo protein with SEC24A, a module on the COPII trafficking vesicle. Silencing THADA caused absence and endoplasmic reticulum (ER) retention of PD-L1 but not major histocompatibility complex-I, inducing PD-L1 clearance through ER-associated degradation. Targeting THADA substantially enhanced T cell-mediated cytotoxicity, and increased CD8+ T cells infiltration in mouse tumor tissues. Analysis on clinical tissue samples supported a potential role of THADA in upregulating PD-L1 expression in cancer. Conclusions Our data reveal a crucial cellular process for PD-L1 maturation and maintenance in tumor cells, and highlight THADA as a promising target for overcoming PD-L1-dependent immune evasion.
Collapse
Affiliation(s)
- Chushu Li
- Zhongshan-Xuhui Hospital, Institutes of Biomedical Sciences (visiting), Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai, China.,Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chi
- Zhongshan-Xuhui Hospital, Shanghai Xuhui Central Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai, China
| | - Shouyan Deng
- Zhongshan-Xuhui Hospital, Institutes of Biomedical Sciences (visiting), Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai, China.,Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huanbin Wang
- Zhongshan-Xuhui Hospital, Institutes of Biomedical Sciences (visiting), Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai, China
| | - Han Yao
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yungang Wang
- Zhongshan-Xuhui Hospital, Shanghai Xuhui Central Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai, China
| | - Dawei Chen
- Innomodels Biotechnology (Beijing) Co., Ltd, Beijing, China
| | - Xun Guo
- Innomodels Biotechnology (Beijing) Co., Ltd, Beijing, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang He
- Zhongshan-Xuhui Hospital, Shanghai Xuhui Central Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai, China
| | - Jie Xu
- Zhongshan-Xuhui Hospital, Shanghai Xuhui Central Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Shanghai, China
| |
Collapse
|
18
|
Endoplasmic Reticulum-Associated Degradation Controls Virus Protein Homeostasis, Which Is Required for Flavivirus Propagation. J Virol 2021; 95:e0223420. [PMID: 33980593 DOI: 10.1128/jvi.02234-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Many positive-stranded RNA viruses encode polyproteins from which viral proteins are generated by processing the polyproteins. This system produces an equal amount of each viral protein, though the required amounts for each protein are not the same. In this study, we found the extra membrane-anchored nonstructural (NS) proteins of Japanese encephalitis virus and dengue virus are rapidly and selectively degraded by the endoplasmic reticulum-associated degradation (ERAD) pathway. Our gene targeting study revealed that ERAD involving Derlin2 and SEL1L, but not Derlin1, is required for the viral genome replication. Derlin2 is predominantly localized in the convoluted membrane (CM) of the viral replication organelle, and viral NS proteins are degraded in the CM. Hence, these results suggest that viral protein homeostasis is regulated by Derlin2-mediated ERAD in the CM, and this process is critical for the propagation of these viruses. IMPORTANCE The results of this study reveal the cellular ERAD system controls the amount of each viral protein in virus-infected cells and that this "viral protein homeostasis" is critical for viral propagation. Furthermore, we clarified that the "convoluted membrane (CM)," which was previously considered a structure with unknown function, serves as a kind of waste dump where viral protein degradation occurs. We also found that the Derlin2/SEL1L/HRD1-specific pathway is involved in this process, whereas the Derlin1-mediated pathway is not. This novel ERAD-mediated fine-tuning system for the stoichiometries of polyprotein-derived viral proteins may represent a common feature among polyprotein-encoding viruses.
Collapse
|
19
|
Kemme L, Grüneberg M, Reunert J, Rust S, Park J, Westermann C, Wada Y, Schwartz O, Marquardt T. Translational balancing questioned: Unaltered glycosylation during disulfiram treatment in mannosyl-oligosaccharide alpha-1,2-mannnosidase-congenital disorders of glycosylation (MAN1B1-CDG). JIMD Rep 2021; 60:42-55. [PMID: 34258140 PMCID: PMC8260486 DOI: 10.1002/jmd2.12213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022] Open
Abstract
MAN1B1-CDG is a multisystem disorder caused by mutations in MAN1B1, encoding the endoplasmic reticulum mannosyl-oligosaccharide alpha-1,2-mannnosidase. A defect leads to dysfunction within the degradation of misfolded glycoproteins. We present two additional patients with MAN1B1-CDG and a resulting defect in endoplasmic reticulum-associated protein degradation. One patient (P2) is carrying the previously undescribed p.E663K mutation. A therapeutic trial in patient 1 (P1) using disulfiram with the rationale to generate an attenuation of translation and thus a balanced, restored ER glycoprotein synthesis failed. No improvement of the transferrin glycosylation profile was seen.
Collapse
Affiliation(s)
- Lisa Kemme
- University Children's Hospital MünsterMuensterGermany
| | | | | | - Stephan Rust
- University Children's Hospital MünsterMuensterGermany
| | - Julien Park
- University Children's Hospital MünsterMuensterGermany
- Department of Clinical Sciences, NeurosciencesUmeå UniversityUmeåSweden
| | - Cordula Westermann
- Gerhard‐Domagk‐Institute of PathologyUniversity Hospital MuensterMuensterGermany
| | - Yoshinao Wada
- Osaka Medical Center and Research Institute for Maternal and Child HealthOsakaJapan
| | | | | |
Collapse
|
20
|
Fregno I, Fasana E, Soldà T, Galli C, Molinari M. N-glycan processing selects ERAD-resistant misfolded proteins for ER-to-lysosome-associated degradation. EMBO J 2021; 40:e107240. [PMID: 34152647 PMCID: PMC8327951 DOI: 10.15252/embj.2020107240] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Abstract
Efficient degradation of by‐products of protein biogenesis maintains cellular fitness. Strikingly, the major biosynthetic compartment in eukaryotic cells, the endoplasmic reticulum (ER), lacks degradative machineries. Misfolded proteins in the ER are translocated to the cytosol for proteasomal degradation via ER‐associated degradation (ERAD). Alternatively, they are segregated in ER subdomains that are shed from the biosynthetic compartment and are delivered to endolysosomes under control of ER‐phagy receptors for ER‐to‐lysosome‐associated degradation (ERLAD). Demannosylation of N‐linked oligosaccharides targets terminally misfolded proteins for ERAD. How misfolded proteins are eventually marked for ERLAD is not known. Here, we show for ATZ and mutant Pro‐collagen that cycles of de‐/re‐glucosylation of selected N‐glycans and persistent association with Calnexin (CNX) are required and sufficient to mark ERAD‐resistant misfolded proteins for FAM134B‐driven lysosomal delivery. In summary, we show that mannose and glucose processing of N‐glycans are triggering events that target misfolded proteins in the ER to proteasomal (ERAD) and lysosomal (ERLAD) clearance, respectively, regulating protein quality control in eukaryotic cells.
Collapse
Affiliation(s)
- Ilaria Fregno
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Elisa Fasana
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Tatiana Soldà
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Carmela Galli
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Maurizio Molinari
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Fenech EJ, Ben-Dor S, Schuldiner M. Double the Fun, Double the Trouble: Paralogs and Homologs Functioning in the Endoplasmic Reticulum. Annu Rev Biochem 2021; 89:637-666. [PMID: 32569522 DOI: 10.1146/annurev-biochem-011520-104831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolution of eukaryotic genomes has been propelled by a series of gene duplication events, leading to an expansion in new functions and pathways. While duplicate genes may retain some functional redundancy, it is clear that to survive selection they cannot simply serve as a backup but rather must acquire distinct functions required for cellular processes to work accurately and efficiently. Understanding these differences and characterizing gene-specific functions is complex. Here we explore different gene pairs and families within the context of the endoplasmic reticulum (ER), the main cellular hub of lipid biosynthesis and the entry site for the secretory pathway. Focusing on each of the ER functions, we highlight specificities of related proteins and the capabilities conferred to cells through their conservation. More generally, these examples suggest why related genes have been maintained by evolutionary forces and provide a conceptual framework to experimentally determine why they have survived selection.
Collapse
Affiliation(s)
- Emma J Fenech
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| |
Collapse
|
22
|
Structural and Biophysical Characterization of the HCV E1E2 Heterodimer for Vaccine Development. Viruses 2021; 13:v13061027. [PMID: 34072451 PMCID: PMC8227786 DOI: 10.3390/v13061027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
An effective vaccine for the hepatitis C virus (HCV) is a major unmet medical and public health need, and it requires an antigen that elicits immune responses to multiple key conserved epitopes. Decades of research have generated a number of vaccine candidates; based on these data and research through clinical development, a vaccine antigen based on the E1E2 glycoprotein complex appears to be the best choice. One bottleneck in the development of an E1E2-based vaccine is that the antigen is challenging to produce in large quantities and at high levels of purity and antigenic/functional integrity. This review describes the production and characterization of E1E2-based vaccine antigens, both membrane-associated and a novel secreted form of E1E2, with a particular emphasis on the major challenges facing the field and how those challenges can be addressed.
Collapse
|
23
|
Ninagawa S. N-glycan Dependent Protein Quality Control System in the Endoplasmic Reticulum. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2108.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University
| |
Collapse
|
24
|
Ninagawa S. N-glycan Dependent Protein Quality Control System in the Endoplasmic Reticulum. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2108.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University
| |
Collapse
|
25
|
A slowly cleaved viral signal peptide acts as a protein-integral immune evasion domain. Nat Commun 2021; 12:2061. [PMID: 33824318 PMCID: PMC8024260 DOI: 10.1038/s41467-021-21983-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/18/2021] [Indexed: 02/05/2023] Open
Abstract
Stress can induce cell surface expression of MHC-like ligands, including MICA, that activate NK cells. Human cytomegalovirus (HCMV) glycoprotein US9 downregulates the activating immune ligand MICA*008 to avoid NK cell activation, but the underlying mechanism remains unclear. Here, we show that the N-terminal signal peptide is the major US9 functional domain targeting MICA*008 to proteasomal degradation. The US9 signal peptide is cleaved with unusually slow kinetics and this transiently retained signal peptide arrests MICA*008 maturation in the endoplasmic reticulum (ER), and indirectly induces its degradation via the ER quality control system and the SEL1L-HRD1 complex. We further identify an accessory, signal peptide-independent US9 mechanism that directly binds MICA*008 and SEL1L. Collectively, we describe a dual-targeting immunoevasin, demonstrating that signal peptides can function as protein-integral effector domains. Glycoprotein US9 of human cytomegalovirus downregulates the activating immune ligand MICA*008 to avoid NK cell activation. Here, Seidel et al. show that the signal peptide of US9 is cleaved unusually slowly, causing MICA*008 to be retained in the endoplasmic reticulum (ER) and degraded via the ER quality control system.
Collapse
|
26
|
Molinari M. ER-phagy responses in yeast, plants, and mammalian cells and their crosstalk with UPR and ERAD. Dev Cell 2021; 56:949-966. [PMID: 33765438 DOI: 10.1016/j.devcel.2021.03.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/24/2022]
Abstract
ER-phagy, literally endoplasmic reticulum (ER)-eating, defines the constitutive or regulated clearance of ER portions within metazoan endolysosomes or yeast and plant vacuoles. The advent of electron microscopy led to the first observations of ER-phagy over 60 years ago, but only recently, with the discovery of a set of regulatory proteins named ER-phagy receptors, has it been dissected mechanistically. ER-phagy receptors are activated by a variety of pleiotropic and ER-centric stimuli. They promote ER fragmentation and engage luminal, membrane-bound, and cytosolic factors, eventually driving lysosomal clearance of select ER domains along with their content. After short historical notes, this review introduces the concept of ER-phagy responses (ERPRs). ERPRs ensure lysosomal clearance of ER portions expendable during nutrient shortage, nonfunctional, present in excess, or containing misfolded proteins. They cooperate with unfolded protein responses (UPRs) and with ER-associated degradation (ERAD) in determining ER size, function, and homeostasis.
Collapse
Affiliation(s)
- Maurizio Molinari
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland; School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
27
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
28
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
29
|
Fujita H, Aratani S, Mizoguchi I, Yagishita N, Nakajima T. Enhanced expression of synoviolin in peripheral blood from obese/overweight donors. Exp Ther Med 2020; 20:121. [PMID: 33005247 PMCID: PMC7523271 DOI: 10.3892/etm.2020.9249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/06/2019] [Indexed: 01/01/2023] Open
Abstract
Obesity is currently a major medical and societal issue. Synoviolin (SYVN1) is an E3 ubiquitin ligase involved in endoplasmic reticulum (ER) stress. Overexpression of Syvn1 has been found in genetically obese mice (ob/ob and db/db), and treatment with a Syvn1 inhibitor suppresses weight gain in some mouse models (C57BL/6J and db/db). However, SYVN1 expression in humans has not yet been elucidated. In the present study, 35 human volunteers were analyzed, and the expression level of SYVN1 mRNA in peripheral blood mononuclear cells (PBMCs) was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. Expression of SYVN1 mRNA was significantly increased in PBMCs from volunteers with a BMI ≥25.0, compared with volunteers with a BMI <25.0. In addition, PCR array and RT-qPCR of ER stress-responsive genes revealed that the expression of activating transcription factor 6 (ATF6), which plays an important role in the transcriptional activation of SYVN1, was increased in PBMCs from volunteers with a BMI ≥25.0. These results suggest that the ATF6-SYVN1 axis might be an important pathway in the progression of obesity.
Collapse
Affiliation(s)
- Hidetoshi Fujita
- Department of Locomotor Science, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Future Medical Science, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Satoko Aratani
- Department of Locomotor Science, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
- Industry-University Cooperation (BioMimetics Sympathies Inc.), Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Naoko Yagishita
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa 216-8511, Japan
| | - Toshihiro Nakajima
- Department of Locomotor Science, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Future Medical Science, Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
- Industry-University Cooperation (BioMimetics Sympathies Inc.), Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa 216-8511, Japan
- Integrated Gene Editing Section (iGES), Tokyo Medical University Hospital, Shinjuku-ku, Tokyo, Japan
- Medical Research Center, Tokyo Medical University Hospital, Tokyo 160-0023, Japan
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
- Bayside Misato Medical Center, Kochi, Kochi 781-0112, Japan
| |
Collapse
|
30
|
Gariballa N, Ali BR. Endoplasmic Reticulum Associated Protein Degradation (ERAD) in the Pathology of Diseases Related to TGFβ Signaling Pathway: Future Therapeutic Perspectives. Front Mol Biosci 2020; 7:575608. [PMID: 33195419 PMCID: PMC7658374 DOI: 10.3389/fmolb.2020.575608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
The transforming growth factor signaling pathway (TGFβ) controls a wide range of cellular activities in adulthood as well as during embryogenesis including cell growth, differentiation, apoptosis, immunological responses and other cellular functions. Therefore, germline mutations in components of the pathway have given rise to a heterogeneous spectrum of hereditary diseases with variable phenotypes associated with malformations in the cardiovascular, muscular and skeletal systems. Our extensive literature and database searches revealed 47 monogenic diseases associated with germline mutations in 24 out of 41 gene variant encoding for TGFβ components. Most of the TGFβ components are membrane or secretory proteins and they are therefore expected to pass through the endoplasmic reticulum (ER), where fidelity of proteins folding is stringently monitored via the ER quality control machineries. Elucidation of the molecular mechanisms of mutant proteins’ folding and trafficking showed the implication of ER associated protein degradation (ERAD) in the pathogenesis of some of the diseases. For example, hereditary hemorrhagic telangiectasia types 1 and 2 (HHT1 and HHT2) and familial pulmonary arterial hypertension (FPAH) associated with mutations in Endoglin, ALK1 and BMPR2 components of the signaling pathway, respectively, have all exhibited loss of function phenotype as a result of ER retention of some of their disease-causing variants. In some cases, this has led to premature protein degradation through the proteasomal pathway. We anticipate that ERAD will be involved in the mechanisms of other TGFβ signaling components and therefore warrants further research. In this review, we highlight advances in ER quality control mechanisms and their modulation as a potential therapeutic target in general with particular focus on prospect of their implementation in the treatment of monogenic diseases associated with TGFβ components including HHT1, HHT2, and PAH. In particular, we emphasis the need to establish disease mechanisms and to implement such novel approaches in modulating the molecular pathway of mutant TGFβ components in the quest for restoring protein folding and trafficking as a therapeutic approach.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
31
|
van de Weijer ML, Krshnan L, Liberatori S, Guerrero EN, Robson-Tull J, Hahn L, Lebbink RJ, Wiertz EJHJ, Fischer R, Ebner D, Carvalho P. Quality Control of ER Membrane Proteins by the RNF185/Membralin Ubiquitin Ligase Complex. Mol Cell 2020; 79:768-781.e7. [PMID: 32738194 PMCID: PMC7482433 DOI: 10.1016/j.molcel.2020.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/06/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) are degraded by ER-associated degradation (ERAD). Although ERAD components involved in degradation of luminal substrates are well characterized, much less is known about quality control of membrane proteins. Here, we analyzed the degradation pathways of two short-lived ER membrane model proteins in mammalian cells. Using a CRISPR-Cas9 genome-wide library screen, we identified an ERAD branch required for quality control of a subset of membrane proteins. Using biochemical and mass spectrometry approaches, we showed that this ERAD branch is defined by an ER membrane complex consisting of the ubiquitin ligase RNF185, the ubiquitin-like domain containing proteins TMUB1/2 and TMEM259/Membralin, a poorly characterized protein. This complex cooperates with cytosolic ubiquitin ligase UBE3C and p97 ATPase in degrading their membrane substrates. Our data reveal that ERAD branches have remarkable specificity for their membrane substrates, suggesting that multiple, perhaps combinatorial, determinants are involved in substrate selection. The RNF185 ubiquitin ligase, Membralin, and TMUB1/2 assemble into an ERAD complex RNF185/Membralin complex targets membrane proteins, including CYP51A1 and TMUB2 RNF185/Membralin and TEB4 ERAD complexes recognize distinct substrate features TEB4 ERAD complex recognizes substrates through their transmembrane domain
Collapse
Affiliation(s)
- Michael L van de Weijer
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Logesvaran Krshnan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sabrina Liberatori
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Elena Navarro Guerrero
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Jacob Robson-Tull
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Lilli Hahn
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Robert Jan Lebbink
- Medical Microbiology, University Medical Center Utrecht, 3584 Utrecht, the Netherlands
| | - Emmanuel J H J Wiertz
- Medical Microbiology, University Medical Center Utrecht, 3584 Utrecht, the Netherlands
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Daniel Ebner
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
32
|
Salt stress induces endoplasmic reticulum stress-responsive genes in a grapevine rootstock. PLoS One 2020; 15:e0236424. [PMID: 32730292 PMCID: PMC7392237 DOI: 10.1371/journal.pone.0236424] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022] Open
Abstract
Grapevines, although adapted to occasional drought or salt stress, are relatively sensitive to growth- and yield-limiting salinity stress. To understand the molecular mechanisms of salt tolerance and endoplasmic reticulum (ER) stress and identify genes commonly regulated by both stresses in grapevine, we investigated transcript profiles in leaves of the salt-tolerant grapevine rootstock 1616C under salt- and ER-stress. Among 1643 differentially expressed transcripts at 6 h post-treatment in leaves, 29 were unique to ER stress, 378 were unique to salt stress, and 16 were common to both stresses. At 24 h post-treatment, 243 transcripts were unique to ER stress, 1150 were unique to salt stress, and 168 were common to both stresses. GO term analysis identified genes in categories including ‘oxidative stress’, ‘protein folding’, ‘transmembrane transport’, ‘protein phosphorylation’, ‘lipid transport’, ‘proteolysis’, ‘photosynthesis’, and ‘regulation of transcription’. The expression of genes encoding transporters, transcription factors, and proteins involved in hormone biosynthesis increased in response to both ER and salt stresses. KEGG pathway analysis of differentially expressed genes for both ER and salt stress were divided into four main categories including; carbohydrate metabolism, amino acid metabolism, signal transduction and lipid metabolism. Differential expression of several genes was confirmed by qRT-PCR analysis, which validated our microarray results. We identified transcripts for genes that might be involved in salt tolerance and also many genes differentially expressed under both ER and salt stresses. Our results could provide new insights into the mechanisms of salt tolerance and ER stress in plants and should be useful for genetic improvement of salt tolerance in grapevine.
Collapse
|
33
|
George G, Ninagawa S, Yagi H, Saito T, Ishikawa T, Sakuma T, Yamamoto T, Imami K, Ishihama Y, Kato K, Okada T, Mori K. EDEM2 stably disulfide-bonded to TXNDC11 catalyzes the first mannose trimming step in mammalian glycoprotein ERAD. eLife 2020; 9:53455. [PMID: 32065582 PMCID: PMC7039678 DOI: 10.7554/elife.53455] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/07/2020] [Indexed: 01/05/2023] Open
Abstract
Sequential mannose trimming of N-glycan (Man9GlcNAc2 -> Man8GlcNAc2 -> Man7GlcNAc2) facilitates endoplasmic reticulum-associated degradation of misfolded glycoproteins (gpERAD). Our gene knockout experiments in human HCT116 cells have revealed that EDEM2 is required for the first step. However, it was previously shown that purified EDEM2 exhibited no α1,2-mannosidase activity toward Man9GlcNAc2 in vitro. Here, we found that EDEM2 was stably disulfide-bonded to TXNDC11, an endoplasmic reticulum protein containing five thioredoxin (Trx)-like domains. C558 present outside of the mannosidase homology domain of EDEM2 was linked to C692 in Trx5, which solely contains the CXXC motif in TXNDC11. This covalent bonding was essential for mannose trimming and subsequent gpERAD in HCT116 cells. Furthermore, EDEM2-TXNDC11 complex purified from transfected HCT116 cells converted Man9GlcNAc2 to Man8GlcNAc2(isomerB) in vitro. Our results establish the role of EDEM2 as an initiator of gpERAD, and represent the first clear demonstration of in vitro mannosidase activity of EDEM family proteins.
Collapse
Affiliation(s)
- Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Taiki Saito
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Koshi Imami
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
34
|
Bhattacharya A, Qi L. ER-associated degradation in health and disease - from substrate to organism. J Cell Sci 2019; 132:132/23/jcs232850. [PMID: 31792042 DOI: 10.1242/jcs.232850] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The recent literature has revolutionized our view on the vital importance of endoplasmic reticulum (ER)-associated degradation (ERAD) in health and disease. Suppressor/enhancer of Lin-12-like (Sel1L)-HMG-coA reductase degradation protein 1 (Hrd1)-mediated ERAD has emerged as a crucial determinant of normal physiology and as a sentinel against disease pathogenesis in the body, in a largely substrate- and cell type-specific manner. In this Review, we highlight three features of ERAD, constitutive versus inducible ERAD, quality versus quantity control of ERAD and ERAD-mediated regulation of nuclear gene transcription, through which ERAD exerts a profound impact on a number of physiological processes.
Collapse
Affiliation(s)
- Asmita Bhattacharya
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA.,Graduate Program of Genetics, Genomics and Development, Cornell University, Ithaca, NY 14853, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA .,Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
35
|
The Expression of Myeloproliferative Neoplasm-Associated Calreticulin Variants Depends on the Functionality of ER-Associated Degradation. Cancers (Basel) 2019; 11:cancers11121921. [PMID: 31810292 PMCID: PMC6966542 DOI: 10.3390/cancers11121921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Mutations in CALR observed in myeloproliferative neoplasms (MPN) were recently shown to be pathogenic via their interaction with MPL and the subsequent activation of the Janus Kinase – Signal Transducer and Activator of Transcription (JAK-STAT) pathway. However, little is known on the impact of those variant CALR proteins on endoplasmic reticulum (ER) homeostasis. Methods: The impact of the expression of Wild Type (WT) or mutant CALR on ER homeostasis was assessed by quantifying the expression level of Unfolded Protein Response (UPR) target genes, splicing of X-box Binding Protein 1 (XBP1), and the expression level of endogenous lectins. Pharmacological and molecular (siRNA) screens were used to identify mechanisms involved in CALR mutant proteins degradation. Coimmunoprecipitations were performed to define more precisely actors involved in CALR proteins disposal. Results: We showed that the expression of CALR mutants alters neither ER homeostasis nor the sensitivity of hematopoietic cells towards ER stress-induced apoptosis. In contrast, the expression of CALR variants is generally low because of a combination of secretion and protein degradation mechanisms mostly mediated through the ER-Associated Degradation (ERAD)-proteasome pathway. Moreover, we identified a specific ERAD network involved in the degradation of CALR variants. Conclusions: We propose that this ERAD network could be considered as a potential therapeutic target for selectively inhibiting CALR mutant-dependent proliferation associated with MPN, and therefore attenuate the associated pathogenic outcomes.
Collapse
|
36
|
Shi J, Hu X, Guo Y, Wang L, Ji J, Li J, Zhang ZR. A technique for delineating the unfolding requirements for substrate entry into retrotranslocons during endoplasmic reticulum-associated degradation. J Biol Chem 2019; 294:20084-20096. [PMID: 31748412 DOI: 10.1074/jbc.ra119.010019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/13/2019] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum-associated degradation (ERAD) pathway mediates the endoplasmic reticulum-to-cytosol retrotranslocation of defective proteins through protein complexes called retrotranslocons. Defective proteins usually have complex conformations and topologies, and it is unclear how ERAD can thread these conformationally diverse protein substrates through the retrotranslocons. Here, we investigated the substrate conformation flexibility necessary for transport via retrotranslocons on the ERAD-L, ERAD-M, and HIV-encoded protein Vpu-hijacked ERAD branches. To this end, we appended various ERAD substrates with specific domains whose conformations were tunable in flexibility or tightness by binding to appropriate ligands. With this technique, we could define the capacity of specific retrotranslocons in disentangling very tight, less tight but well-folded, and unstructured conformations. The Hrd1 complex, the retrotranslocon on the ERAD-L branch, permitted the passage of substrates with a proteinase K-resistant tight conformation, whereas the E3 ligase gp78-mediated ERAD-M allowed passage only of nearly completely disordered but not well-folded substrates and thus may have the least unfoldase activity. Vpu-mediated ERAD, containing a potential retrotranslocon, could unfold well-folded substrates for successful retrotranslocation. However, substrate retrotranslocation in Vpu-mediated ERAD was blocked by enhanced conformational tightness of the substrate. On the basis of these findings, we propose a mechanism underlying polypeptide movement through the endoplasmic reticulum membrane. We anticipate that our biochemical system paves the way for identifying the factors necessary for the retrotranslocation of membrane proteins.
Collapse
Affiliation(s)
- Junfen Shi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Xianyan Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Yuan Guo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Linhan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Jia Ji
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Jiqiang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China .,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| |
Collapse
|
37
|
Sun Z, Brodsky JL. Protein quality control in the secretory pathway. J Cell Biol 2019; 218:3171-3187. [PMID: 31537714 PMCID: PMC6781448 DOI: 10.1083/jcb.201906047] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
Protein folding is inherently error prone, especially in the endoplasmic reticulum (ER). Even with an elaborate network of molecular chaperones and protein folding facilitators, misfolding can occur quite frequently. To maintain protein homeostasis, eukaryotes have evolved a series of protein quality-control checkpoints. When secretory pathway quality-control pathways fail, stress response pathways, such as the unfolded protein response (UPR), are induced. In addition, the ER, which is the initial hub of protein biogenesis in the secretory pathway, triages misfolded proteins by delivering substrates to the proteasome or to the lysosome/vacuole through ER-associated degradation (ERAD) or ER-phagy. Some misfolded proteins escape the ER and are instead selected for Golgi quality control. These substrates are targeted for degradation after retrieval to the ER or delivery to the lysosome/vacuole. Here, we discuss how these guardian pathways function, how their activities intersect upon induction of the UPR, and how decisions are made to dispose of misfolded proteins in the secretory pathway.
Collapse
Affiliation(s)
- Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
38
|
Needham PG, Guerriero CJ, Brodsky JL. Chaperoning Endoplasmic Reticulum-Associated Degradation (ERAD) and Protein Conformational Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033928. [PMID: 30670468 DOI: 10.1101/cshperspect.a033928] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Misfolded proteins compromise cellular homeostasis. This is especially problematic in the endoplasmic reticulum (ER), which is a high-capacity protein-folding compartment and whose function requires stringent protein quality-control systems. Multiprotein complexes in the ER are able to identify, remove, ubiquitinate, and deliver misfolded proteins to the 26S proteasome for degradation in the cytosol, and these events are collectively termed ER-associated degradation, or ERAD. Several steps in the ERAD pathway are facilitated by molecular chaperone networks, and the importance of ERAD is highlighted by the fact that this pathway is linked to numerous protein conformational diseases. In this review, we discuss the factors that constitute the ERAD machinery and detail how each step in the pathway occurs. We then highlight the underlying pathophysiology of protein conformational diseases associated with ERAD.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
39
|
Fregno I, Molinari M. Proteasomal and lysosomal clearance of faulty secretory proteins: ER-associated degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD) pathways. Crit Rev Biochem Mol Biol 2019; 54:153-163. [PMID: 31084437 DOI: 10.1080/10409238.2019.1610351] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
About 40% of the eukaryotic cell's proteins are inserted co- or post-translationally in the endoplasmic reticulum (ER), where they attain the native structure under the assistance of resident molecular chaperones and folding enzymes. Subsequently, these proteins are secreted from cells or are transported to their sites of function at the plasma membrane or in organelles of the secretory and endocytic compartments. Polypeptides that are not delivered within the ER (mis-localized proteins, MLPs) are rapidly destroyed by cytosolic proteasomes, with intervention of the membrane protease ZMPSTE24 if they remained trapped in the SEC61 translocation machinery. Proteins that enter the ER, but fail to attain the native structure are rapidly degraded to prevent toxic accumulation of aberrant gene products. The ER does not contain degradative devices and the majority of misfolded proteins generated in this biosynthetic compartment are dislocated across the membrane for degradation by cytosolic 26S proteasomes by mechanisms and pathways collectively defined as ER-associated degradation (ERAD). Proteins that do not engage ERAD factors, that enter aggregates or polymers, are too large, display chimico/physical features that prevent dislocation across the ER membrane (ERAD-resistant misfolded proteins) are delivered to endo-lysosome for clearance, by mechanisms and pathways collectively defined as ER-to-lysosomes-associated degradation (ERLAD). Emerging evidences lead us to propose ERLAD as an umbrella term that includes the autophagic and non-autophagic pathways activated and engaged by ERAD-resistant misfolded proteins generated in the ER for delivery to degradative endo-lysosomes.
Collapse
Affiliation(s)
- Ilaria Fregno
- a Institute for Research in Biomedicine, Faculty of Biomedical Sciences , Università della Svizzera italiana (USI) , Bellinzona , Switzerland
| | - Maurizio Molinari
- a Institute for Research in Biomedicine, Faculty of Biomedical Sciences , Università della Svizzera italiana (USI) , Bellinzona , Switzerland.,b School of Life Sciences , École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| |
Collapse
|
40
|
Moreno-Carranza B, Robles JP, Cruces-Solís H, Ferrer-Ríos MG, Aguilar-Rivera E, Yupanki M, Martínez de la Escalera G, Clapp C. Sequence optimization and glycosylation of vasoinhibin: Pitfalls of recombinant production. Protein Expr Purif 2019; 161:49-56. [PMID: 31051246 DOI: 10.1016/j.pep.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 11/28/2022]
Abstract
Vasoinhibin belongs to a family of proteins with antiangiogenic properties derived by proteolytic cleavage from the hormone prolactin (PRL). Vasoinhibin isoforms range from the first 79 to the first 159 residues of PRL. In an attempt to increase the yield of recombinant vasoinhibin and avoid incorrect intra- and inter-disulfide bond formation, the cDNA sequence comprising the first 123 amino acids of human PRL, in which cysteine 58 was or not mutated to serine, was codon-optimized. The optimized constructs achieved a 6-fold increase in mRNA expression but showed no change in protein production and reduced protein secretion when expressed in human embryo kidney (HEK293T/17) cells. Limited vasoinhibin levels associated with the activation of the unfolded protein response (UPR) and endoplasmic reticulum-associated degradation (ERAD) as revealed by the upregulation of UPR (Bip, Xbp-1, and Chop) and ERAD (Hrd1, Os9, and Sel1l) target genes. Mutation to serine introduced a new N-glycosylation site and associated with increased glycosylation and release of glycosylated vasoinhibin isoforms having reduced antiangiogenic properties. We conclude that overexpression and excessive glycosylation lead to protein degradation and reduced bioactivity, respectively, negatively affecting the production of recombinant vasoinhibin in mammalian cells.
Collapse
Affiliation(s)
- Bibiana Moreno-Carranza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230, Querétaro, México
| | - Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230, Querétaro, México
| | - Hugo Cruces-Solís
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230, Querétaro, México
| | | | - Eduardo Aguilar-Rivera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230, Querétaro, México
| | - Marco Yupanki
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230, Querétaro, México
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230, Querétaro, México.
| |
Collapse
|
41
|
Nowakowska-Gołacka J, Sominka H, Sowa-Rogozińska N, Słomińska-Wojewódzka M. Toxins Utilize the Endoplasmic Reticulum-Associated Protein Degradation Pathway in Their Intoxication Process. Int J Mol Sci 2019; 20:E1307. [PMID: 30875878 PMCID: PMC6471375 DOI: 10.3390/ijms20061307] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/25/2022] Open
Abstract
Several bacterial and plant AB-toxins are delivered by retrograde vesicular transport to the endoplasmic reticulum (ER), where the enzymatically active A subunit is disassembled from the holotoxin and transported to the cytosol. In this process, toxins subvert the ER-associated degradation (ERAD) pathway. ERAD is an important part of cellular regulatory mechanism that targets misfolded proteins to the ER channels, prior to their retrotranslocation to the cytosol, ubiquitination and subsequent degradation by a protein-degrading complex, the proteasome. In this article, we present an overview of current understanding of the ERAD-dependent transport of AB-toxins to the cytosol. We describe important components of ERAD and discuss their significance for toxin transport. Toxin recognition and disassembly in the ER, transport through ER translocons and finally cytosolic events that instead of overall proteasomal degradation provide proper folding and cytotoxic activity of AB-toxins are discussed as well. We also comment on recent reports presenting medical applications for toxin transport through the ER channels.
Collapse
Affiliation(s)
- Jowita Nowakowska-Gołacka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Hanna Sominka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Natalia Sowa-Rogozińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Monika Słomińska-Wojewódzka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
42
|
Vitale M, Bakunts A, Orsi A, Lari F, Tadè L, Danieli A, Rato C, Valetti C, Sitia R, Raimondi A, Christianson JC, van Anken E. Inadequate BiP availability defines endoplasmic reticulum stress. eLife 2019; 8:41168. [PMID: 30869076 PMCID: PMC6417858 DOI: 10.7554/elife.41168] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
How endoplasmic reticulum (ER) stress leads to cytotoxicity is ill-defined. Previously we showed that HeLa cells readjust homeostasis upon proteostatically driven ER stress, triggered by inducible bulk expression of secretory immunoglobulin M heavy chain (μs) thanks to the unfolded protein response (UPR; Bakunts et al., 2017). Here we show that conditions that prevent that an excess of the ER resident chaperone (and UPR target gene) BiP over µs is restored lead to µs-driven proteotoxicity, i.e. abrogation of HRD1-mediated ER-associated degradation (ERAD), or of the UPR, in particular the ATF6α branch. Such conditions are tolerated instead upon removal of the BiP-sequestering first constant domain (CH1) from µs. Thus, our data define proteostatic ER stress to be a specific consequence of inadequate BiP availability, which both the UPR and ERAD redeem.
Collapse
Affiliation(s)
- Milena Vitale
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Anush Bakunts
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Orsi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Federica Lari
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Laura Tadè
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Danieli
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Rato
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Caterina Valetti
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Roberto Sitia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - John C Christianson
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Eelco van Anken
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
43
|
Coelho JPL, Stahl M, Bloemeke N, Meighen-Berger K, Alvira CP, Zhang ZR, Sieber SA, Feige MJ. A network of chaperones prevents and detects failures in membrane protein lipid bilayer integration. Nat Commun 2019; 10:672. [PMID: 30737405 PMCID: PMC6368539 DOI: 10.1038/s41467-019-08632-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
A fundamental step in membrane protein biogenesis is their integration into the lipid bilayer with a defined orientation of each transmembrane segment. Despite this, it remains unclear how cells detect and handle failures in this process. Here we show that single point mutations in the membrane protein connexin 32 (Cx32), which cause Charcot-Marie-Tooth disease, can cause failures in membrane integration. This leads to Cx32 transport defects and rapid degradation. Our data show that multiple chaperones detect and remedy this aberrant behavior: the ER-membrane complex (EMC) aids in membrane integration of low-hydrophobicity transmembrane segments. If they fail to integrate, these are recognized by the ER-lumenal chaperone BiP. Ultimately, the E3 ligase gp78 ubiquitinates Cx32 proteins, targeting them for degradation. Thus, cells use a coordinated system of chaperones for the complex task of membrane protein biogenesis, which can be compromised by single point mutations, causing human disease.
Collapse
Affiliation(s)
- João P L Coelho
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Matthias Stahl
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
- SciLifeLab, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Nicolas Bloemeke
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Kevin Meighen-Berger
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Carlos Piedrafita Alvira
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Stephan A Sieber
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Matthias J Feige
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany.
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstr. 2a, 85748, Garching, Germany.
| |
Collapse
|
44
|
Mehrtash AB, Hochstrasser M. Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope. Semin Cell Dev Biol 2018; 93:111-124. [PMID: 30278225 DOI: 10.1016/j.semcdb.2018.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/01/2023]
Abstract
Numerous nascent proteins undergo folding and maturation within the luminal and membrane compartments of the endoplasmic reticulum (ER). Despite the presence of various factors in the ER that promote protein folding, many proteins fail to properly fold and assemble and are subsequently degraded. Regulatory proteins in the ER also undergo degradation in a way that is responsive to stimuli or the changing needs of the cell. As in most cellular compartments, the ubiquitin-proteasome system (UPS) is responsible for the majority of the degradation at the ER-in a process termed ER-associated degradation (ERAD). Autophagic processes utilizing ubiquitin-like protein-conjugating systems also play roles in protein degradation at the ER. The ER is continuous with the nuclear envelope (NE), which consists of the outer nuclear membrane (ONM) and inner nuclear membrane (INM). While ERAD is known also to occur at the NE, only some of the ERAD ubiquitin-ligation pathways function at the INM. Protein degradation machineries in the ER/NE target a wide variety of substrates in multiple cellular compartments, including the cytoplasm, nucleoplasm, ER lumen, ER membrane, and the NE. Here, we review the protein degradation machineries of the ER and NE and the underlying mechanisms dictating recognition and processing of substrates by these machineries.
Collapse
Affiliation(s)
- Adrian B Mehrtash
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520, CT, USA.
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA; Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520, CT, USA.
| |
Collapse
|
45
|
Human Cytomegalovirus Tropism Modulator UL148 Interacts with SEL1L, a Cellular Factor That Governs Endoplasmic Reticulum-Associated Degradation of the Viral Envelope Glycoprotein gO. J Virol 2018; 92:JVI.00688-18. [PMID: 29997207 DOI: 10.1128/jvi.00688-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022] Open
Abstract
UL148 is a viral endoplasmic reticulum (ER)-resident glycoprotein that contributes to human cytomegalovirus (HCMV) cell tropism. The influence of UL148 on tropism correlates with its potential to promote the expression of glycoprotein O (gO), a viral envelope glycoprotein that participates in a heterotrimeric complex with glycoproteins H and L that is required for infectivity. In an effort to gain insight into the mechanism, we used mass spectrometry to identify proteins that coimmunoprecipitate from infected cells with UL148. This approach led us to identify an interaction between UL148 and SEL1L, a factor that plays key roles in ER-associated degradation (ERAD). In pulse-chase experiments, gO was less stable in cells infected with UL148-null mutant HCMV than during wild-type infection, suggesting a potential functional relevance for the interaction with SEL1L. To investigate whether UL148 regulates gO abundance by influencing ERAD, small interfering RNA (siRNA) silencing of either SEL1L or its partner, Hrd1, was carried out in the context of infection. Knockdown of these ERAD factors strongly enhanced levels of gO but not other viral glycoproteins, and the effect was amplified in the presence of UL148. Furthermore, pharmacological inhibition of ERAD showed similar results. Silencing of SEL1L during infection also stabilized an interaction of gO with the ER lectin OS-9, which likewise suggests that gO is an ERAD substrate. Taken together, our results identify an intriguing interaction of UL148 with the ERAD machinery and demonstrate that gO behaves as a constitutive ERAD substrate during infection. These findings have implications for understanding the regulation of HCMV cell tropism.IMPORTANCE Viral glycoproteins in large part determine the cell types that an enveloped virus can infect and hence play crucial roles in transmission and pathogenesis. The glycoprotein H/L heterodimer (gH/gL) is part of the conserved membrane fusion machinery that all herpesviruses use to enter cells. In human cytomegalovirus (HCMV), gH/gL participates in alternative complexes in virions, one of which is a trimer of gH/gL with glycoprotein O (gO). Here, we show that gO is constitutively degraded during infection by the endoplasmic reticulum-associated degradation (ERAD) pathway and that UL148, a viral factor that regulates HCMV cell tropism, interacts with the ERAD machinery and slows gO decay. Since gO is required for cell-free virus to enter new host cells but dispensable for cell-associated spread that resists antibody neutralization, our findings imply that the posttranslational instability of a viral glycoprotein provides a basis for viral mechanisms to modulate tropism and spread.
Collapse
|
46
|
van der Goot AT, Pearce MMP, Leto DE, Shaler TA, Kopito RR. Redundant and Antagonistic Roles of XTP3B and OS9 in Decoding Glycan and Non-glycan Degrons in ER-Associated Degradation. Mol Cell 2018; 70:516-530.e6. [PMID: 29706535 DOI: 10.1016/j.molcel.2018.03.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/15/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
Abstract
Glycoproteins engaged in unproductive folding in the ER are marked for degradation by a signal generated by progressive demannosylation of substrate N-glycans that is decoded by ER lectins, but how the two lectins, OS9 and XTP3B, contribute to non-glycosylated protein triage is unknown. We generated cell lines with homozygous deletions of both lectins individually and in combination. We found that OS9 and XTP3B redundantly promote glycoprotein degradation and stabilize the SEL1L/HRD1 dislocon complex, that XTP3B profoundly inhibits the degradation of non-glycosylated proteins, and that OS9 antagonizes this inhibition. The relative expression of OS9 and XTP3B and the distribution of glycan and non-glycan degrons within the same protein contribute to the fidelity and processivity of glycoprotein triage and, therefore, determine the fates of newly synthesized proteins in the early secretory pathway.
Collapse
Affiliation(s)
| | | | - Dara E Leto
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Ron R Kopito
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Shin Y, Vavra U, Veit C, Strasser R. The glycan-dependent ERAD machinery degrades topologically diverse misfolded proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:246-259. [PMID: 29396984 PMCID: PMC5900737 DOI: 10.1111/tpj.13851] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 05/18/2023]
Abstract
Many soluble and integral membrane proteins fold in the endoplasmic reticulum (ER) with the help of chaperones and folding factors. Despite these efforts, protein folding is intrinsically error prone and amino acid changes, alterations in post-translational modifications or cellular stress can cause protein misfolding. Folding-defective non-native proteins are cleared from the ER and typically undergo ER-associated degradation (ERAD). Here, we investigated whether different misfolded glycoproteins require the same set of ERAD factors and are directed to HRD1 complex-mediated degradation in plants. We generated a series of glycoprotein ERAD substrates harboring a misfolded domain from Arabidopsis STRUBBELIG or the BRASSINOSTEROID INSENSITVE 1 receptor fused to different membrane anchoring regions. We show that single pass and multispanning ERAD substrates are subjected to glycan-dependent degradation by the HRD1 complex. However, the presence of a powerful ER exit signal in the multispanning ERAD substrates causes competition with ER quality control and targeting of misfolded glycoproteins to the vacuole. Our results demonstrate that the same machinery is used for degradation of topologically different misfolded glycoproteins in the ER of plants.
Collapse
Affiliation(s)
- Yun‐Ji Shin
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| |
Collapse
|
48
|
Quan H, Fan Q, Li C, Wang YY, Wang L. The transcriptional profiles and functional implications of long non-coding RNAs in the unfolded protein response. Sci Rep 2018; 8:4981. [PMID: 29563563 PMCID: PMC5862980 DOI: 10.1038/s41598-018-23289-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/08/2018] [Indexed: 01/03/2023] Open
Abstract
The unfolded protein response (UPR) is activated, when the folding capacity is compromised in the endoplasmic reticulum (ER). To date, most studies focused on the coding genes and microRNAs in UPR. Other non-coding RNAs affected by UPR and their roles in UPR have not been systematically studied. Long noncoding RNAs (lncRNAs) are increasingly recognized as powerful epigenetic regulators. In this study, we transcriptomically profiled the lncRNAs and mRNAs from mouse embryonic fibroblasts under ER stress, and identified many differentially expressed lncRNAs and mRNAs. Genomic location and mRNA-lncRNA co-expression analyses predicted a number of lncRNAs, which potentially regulate the expression of UPR genes. In particular, FR229754, an exonic sense lncRNA, is significantly up-regulated in UPR. FR229754 overlaps with Sel1l, and their expressions correlated with each other. Sel1l is involved in the ER-associated protein degradation. Silencing of FR229754 did not much affect the expression of Sel1l, but markedly reduced the levels of BiP/GRP78/Hspa5, a major ER chaperon up-regulated in UPR. Probing with pathway-specific inhibitors showed that up-regulation of FR229754 and Sel1 depended on the activation of PERK. Together, our study identified a number of candidate lncRNAs and paved the way for future characterization of their functions in UPR.
Collapse
Affiliation(s)
- Hongyang Quan
- Department of Physiology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing, 100005, China.,Patent Examination Corporation, State Intellectual Property Office, 2028 Tianfu Avenue South, Chengdu, 610213, China
| | - Qianqian Fan
- Department of Physiology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing, 100005, China.,National Research Institute for Family Planning, 12 Da Hui Si, Beijing, 100080, China
| | - Chuang Li
- Department of Physiology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Yan-Ying Wang
- Department of Physiology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Lin Wang
- Department of Physiology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing, 100005, China.
| |
Collapse
|
49
|
Vincenz-Donnelly L, Holthusen H, Körner R, Hansen EC, Presto J, Johansson J, Sawarkar R, Hartl FU, Hipp MS. High capacity of the endoplasmic reticulum to prevent secretion and aggregation of amyloidogenic proteins. EMBO J 2018; 37:337-350. [PMID: 29247078 PMCID: PMC5793802 DOI: 10.15252/embj.201695841] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023] Open
Abstract
Protein aggregation is associated with neurodegeneration and various other pathologies. How specific cellular environments modulate the aggregation of disease proteins is not well understood. Here, we investigated how the endoplasmic reticulum (ER) quality control system handles β-sheet proteins that were designed de novo to form amyloid-like fibrils. While these proteins undergo toxic aggregation in the cytosol, we find that targeting them to the ER (ER-β) strongly reduces their toxicity. ER-β is retained within the ER in a soluble, polymeric state, despite reaching very high concentrations exceeding those of ER-resident molecular chaperones. ER-β is not removed by ER-associated degradation (ERAD) but interferes with ERAD of other proteins. These findings demonstrate a remarkable capacity of the ER to prevent the formation of insoluble β-aggregates and the secretion of potentially toxic protein species. Our results also suggest a generic mechanism by which proteins with exposed β-sheet structure in the ER interfere with proteostasis.
Collapse
Affiliation(s)
- Lisa Vincenz-Donnelly
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Hauke Holthusen
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Roman Körner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Erik C Hansen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jenny Presto
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Centre for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Jan Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Centre for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
50
|
Glaeser K, Urban M, Fenech E, Voloshanenko O, Kranz D, Lari F, Christianson JC, Boutros M. ERAD-dependent control of the Wnt secretory factor Evi. EMBO J 2018; 37:embj.201797311. [PMID: 29378775 PMCID: PMC5813261 DOI: 10.15252/embj.201797311] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/01/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
Active regulation of protein abundance is an essential strategy to modulate cellular signaling pathways. Within the Wnt signaling cascade, regulated degradation of β-catenin by the ubiquitin-proteasome system (UPS) affects the outcome of canonical Wnt signaling. Here, we found that abundance of the Wnt cargo receptor Evi (Wls/GPR177), which is required for Wnt protein secretion, is also regulated by the UPS through endoplasmic reticulum (ER)-associated degradation (ERAD). In the absence of Wnt ligands, Evi is ubiquitinated and targeted for ERAD in a VCP-dependent manner. Ubiquitination of Evi involves the E2-conjugating enzyme UBE2J2 and the E3-ligase CGRRF1. Furthermore, we show that a triaging complex of Porcn and VCP determines whether Evi enters the secretory or the ERAD pathway. In this way, ERAD-dependent control of Evi availability impacts the scale of Wnt protein secretion by adjusting the amount of Evi to meet the requirement of Wnt protein export. As Wnt and Evi protein levels are often dysregulated in cancer, targeting regulatory ERAD components might be a useful approach for therapeutic interventions.
Collapse
Affiliation(s)
- Kathrin Glaeser
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Manuela Urban
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Emma Fenech
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Oksana Voloshanenko
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Dominique Kranz
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Federica Lari
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | | | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|