1
|
Lai PJ, Tseng WC, Chen HA, Hsu RH, Chien YH, Hwu WL, Lee NC. Double-outlet right ventricle in a patient with Takenouchi-Kosaki syndrome. Pediatr Neonatol 2024:S1875-9572(24)00226-2. [PMID: 39755496 DOI: 10.1016/j.pedneo.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 01/06/2025] Open
Affiliation(s)
- Po-Jung Lai
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chieh Tseng
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-An Chen
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Rai-Hseng Hsu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Boulgakoff L, D'Amato G, Miquerol L. Molecular Regulation of Cardiac Conduction System Development. Curr Cardiol Rep 2024; 26:943-952. [PMID: 38990492 DOI: 10.1007/s11886-024-02094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW The cardiac conduction system, composed of pacemaker cells and conducting cardiomyocytes, orchestrates the propagation of electrical activity to synchronize heartbeats. The conduction system plays a crucial role in the development of cardiac arrhythmias. In the embryo, the cells of the conduction system derive from the same cardiac progenitors as the contractile cardiomyocytes and and the key question is how this choice is made during development. RECENT FINDINGS This review focuses on recent advances in developmental biology using the mouse as animal model to better understand the cellular origin and molecular regulations that control morphogenesis of the cardiac conduction system, including the latest findings in single-cell transcriptomics. The conducting cell fate is acquired during development starting with pacemaking activity and last with the formation of a complex fast-conducting network. Cardiac conduction system morphogenesis is controlled by complex transcriptional and gene regulatory networks that differ in the components of the cardiac conduction system.
Collapse
Affiliation(s)
| | - Gaetano D'Amato
- Aix-Marseille Université, CNRS IBDM UMR7288, Marseille, France
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS IBDM UMR7288, Marseille, France.
| |
Collapse
|
3
|
Zubrzycki M, Schramm R, Costard-Jäckle A, Grohmann J, Gummert JF, Zubrzycka M. Cardiac Development and Factors Influencing the Development of Congenital Heart Defects (CHDs): Part I. Int J Mol Sci 2024; 25:7117. [PMID: 39000221 PMCID: PMC11241401 DOI: 10.3390/ijms25137117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The traditional description of cardiac development involves progression from a cardiac crescent to a linear heart tube, which in the phase of transformation into a mature heart forms a cardiac loop and is divided with the septa into individual cavities. Cardiac morphogenesis involves numerous types of cells originating outside the initial cardiac crescent, including neural crest cells, cells of the second heart field origin, and epicardial progenitor cells. The development of the fetal heart and circulatory system is subject to regulatation by both genetic and environmental processes. The etiology for cases with congenital heart defects (CHDs) is largely unknown, but several genetic anomalies, some maternal illnesses, and prenatal exposures to specific therapeutic and non-therapeutic drugs are generally accepted as risk factors. New techniques for studying heart development have revealed many aspects of cardiac morphogenesis that are important in the development of CHDs, in particular transposition of the great arteries.
Collapse
Affiliation(s)
- Marek Zubrzycki
- Department of Surgery for Congenital Heart Defects, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany;
| | - Rene Schramm
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (J.F.G.)
| | - Angelika Costard-Jäckle
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (J.F.G.)
| | - Jochen Grohmann
- Department of Congenital Heart Disease/Pediatric Cardiology, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany;
| | - Jan F. Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (J.F.G.)
| | - Maria Zubrzycka
- Department of Clinical Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
4
|
Peng T, Ding M, Yan H, Zhang P, Tian R, Guo Y, Zheng L. Endurance exercise upregulates mtp expression in aged Drosophila to ameliorate age-related diastolic dysfunction and extend lifespan. Physiol Rep 2024; 12:e15929. [PMID: 38307709 PMCID: PMC10837045 DOI: 10.14814/phy2.15929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 02/04/2024] Open
Abstract
Diastolic dysfunction is a major cardiac dysfunction, and an important predisposing factor is age. Although exercise training is often used for the prevention and treatment of cardiovascular disease nowadays, little is currently known about whether exercise interventions associated with the slowing of cardiac aging are related to mtp-related pathways. In the present study, the UAS/Tub-Gal4 system was used to knockdown whole-body mtp expression levels in Drosophila, which underwent 2 weeks of endurance training. By conducting different assays and quantifying different indicators, we sought to investigate the relationship between mtp, exercise, and age-related diastolic dysfunction. We found that (1) Drosophila in the mtpRNAi youth group exhibited age-related diastolic dysfunction and had a significantly shorter mean lifespan. (2) Endurance exercise could improve diastolic dysfunction and prolong lifespan in aged Drosophila. (3) Endurance exercise could increase the expression levels of apolpp and Acox3, and decrease the levels of TC, LDL-C, and TG in the aged group. In summary, aging causes age-associated diastolic dysfunction in Drosophila, and systemic knockdown of mtp causes premature age-associated diastolic dysfunction in young Drosophila. Besides, endurance exercise improves age-related diastolic dysfunction and prolongs lifespan.
Collapse
Affiliation(s)
- Tianhang Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan ProvinceHunan Normal UniversityChangshaChina
| | - Meng Ding
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan ProvinceHunan Normal UniversityChangshaChina
| | - Hanhui Yan
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan ProvinceHunan Normal UniversityChangshaChina
| | - Ping Zhang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan ProvinceHunan Normal UniversityChangshaChina
| | - Rui Tian
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan ProvinceHunan Normal UniversityChangshaChina
| | - Yin Guo
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan ProvinceHunan Normal UniversityChangshaChina
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan ProvinceHunan Normal UniversityChangshaChina
| |
Collapse
|
5
|
Saha S, Spinelli L, Castro Mondragon JA, Kervadec A, Lynott M, Kremmer L, Roder L, Krifa S, Torres M, Brun C, Vogler G, Bodmer R, Colas AR, Ocorr K, Perrin L. Genetic architecture of natural variation of cardiac performance from flies to humans. eLife 2022; 11:82459. [DOI: 10.7554/elife.82459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Deciphering the genetic architecture of human cardiac disorders is of fundamental importance but their underlying complexity is a major hurdle. We investigated the natural variation of cardiac performance in the sequenced inbred lines of the Drosophila Genetic Reference Panel (DGRP). Genome-wide associations studies (GWAS) identified genetic networks associated with natural variation of cardiac traits which were used to gain insights as to the molecular and cellular processes affected. Non-coding variants that we identified were used to map potential regulatory non-coding regions, which in turn were employed to predict transcription factors (TFs) binding sites. Cognate TFs, many of which themselves bear polymorphisms associated with variations of cardiac performance, were also validated by heart-specific knockdown. Additionally, we showed that the natural variations associated with variability in cardiac performance affect a set of genes overlapping those associated with average traits but through different variants in the same genes. Furthermore, we showed that phenotypic variability was also associated with natural variation of gene regulatory networks. More importantly, we documented correlations between genes associated with cardiac phenotypes in both flies and humans, which supports a conserved genetic architecture regulating adult cardiac function from arthropods to mammals. Specifically, roles for PAX9 and EGR2 in the regulation of the cardiac rhythm were established in both models, illustrating that the characteristics of natural variations in cardiac function identified in Drosophila can accelerate discovery in humans.
Collapse
Affiliation(s)
- Saswati Saha
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Lionel Spinelli
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | | | - Anaïs Kervadec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Michaela Lynott
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Laurent Kremmer
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Laurence Roder
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Sallouha Krifa
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Magali Torres
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Christine Brun
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
- CNRS
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Alexandre R Colas
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Laurent Perrin
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
- CNRS
| |
Collapse
|
6
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
7
|
Ecovoiu AA, Ratiu AC, Micheu MM, Chifiriuc MC. Inter-Species Rescue of Mutant Phenotype-The Standard for Genetic Analysis of Human Genetic Disorders in Drosophila melanogaster Model. Int J Mol Sci 2022; 23:2613. [PMID: 35269756 PMCID: PMC8909942 DOI: 10.3390/ijms23052613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Drosophila melanogaster (the fruit fly) is arguably a superstar of genetics, an astonishing versatile experimental model which fueled no less than six Nobel prizes in medicine. Nowadays, an evolving research endeavor is to simulate and investigate human genetic diseases in the powerful D. melanogaster platform. Such a translational experimental strategy is expected to allow scientists not only to understand the molecular mechanisms of the respective disorders but also to alleviate or even cure them. In this regard, functional gene orthology should be initially confirmed in vivo by transferring human or vertebrate orthologous transgenes in specific mutant backgrounds of D. melanogaster. If such a transgene rescues, at least partially, the mutant phenotype, then it qualifies as a strong candidate for modeling the respective genetic disorder in the fruit fly. Herein, we review various examples of inter-species rescue of relevant mutant phenotypes of the fruit fly and discuss how these results recommend several human genes as candidates to study and validate genetic variants associated with human diseases. We also consider that a wider implementation of this evolutionist exploratory approach as a standard for the medicine of genetic disorders would allow this particular field of human health to advance at a faster pace.
Collapse
Affiliation(s)
- Alexandru Al. Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Attila Cristian Ratiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest and Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| |
Collapse
|
8
|
In vivo identification and validation of novel potential predictors for human cardiovascular diseases. PLoS One 2021; 16:e0261572. [PMID: 34919578 PMCID: PMC8682894 DOI: 10.1371/journal.pone.0261572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022] Open
Abstract
Genetics crucially contributes to cardiovascular diseases (CVDs), the global leading cause of death. Since the majority of CVDs can be prevented by early intervention there is a high demand for the identification of predictive causative genes. While genome wide association studies (GWAS) correlate genes and CVDs after diagnosis and provide a valuable resource for such causative candidate genes, often preferentially those with previously known or suspected function are addressed further. To tackle the unaddressed blind spot of understudied genes, we particularly focused on the validation of human heart phenotype-associated GWAS candidates with little or no apparent connection to cardiac function. Building on the conservation of basic heart function and underlying genetics from fish to human we combined CRISPR/Cas9 genome editing of the orthologs of human GWAS candidates in isogenic medaka with automated high-throughput heart rate analysis. Our functional analyses of understudied human candidates uncovered a prominent fraction of heart rate associated genes from adult human patients impacting on the heart rate in embryonic medaka already in the injected generation. Following this pipeline, we identified 16 GWAS candidates with potential diagnostic and predictive power for human CVDs.
Collapse
|
9
|
Rust K, Wodarz A. Transcriptional Control of Apical-Basal Polarity Regulators. Int J Mol Sci 2021; 22:ijms222212340. [PMID: 34830224 PMCID: PMC8624420 DOI: 10.3390/ijms222212340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Cell polarity is essential for many functions of cells and tissues including the initial establishment and subsequent maintenance of epithelial tissues, asymmetric cell division, and morphogenetic movements. Cell polarity along the apical-basal axis is controlled by three protein complexes that interact with and co-regulate each other: The Par-, Crumbs-, and Scrib-complexes. The localization and activity of the components of these complexes is predominantly controlled by protein-protein interactions and protein phosphorylation status. Increasing evidence accumulates that, besides the regulation at the protein level, the precise expression control of polarity determinants contributes substantially to cell polarity regulation. Here we review how gene expression regulation influences processes that depend on the induction, maintenance, or abolishment of cell polarity with a special focus on epithelial to mesenchymal transition and asymmetric stem cell division. We conclude that gene expression control is an important and often neglected mechanism in the control of cell polarity.
Collapse
Affiliation(s)
- Katja Rust
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University, 35037 Marburg, Germany
- Correspondence: (K.R.); (A.W.)
| | - Andreas Wodarz
- Department of Molecular Cell Biology, Institute I for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cluster of Excellence—Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Correspondence: (K.R.); (A.W.)
| |
Collapse
|
10
|
New Insights into the Development and Morphogenesis of the Cardiac Purkinje Fiber Network: Linking Architecture and Function. J Cardiovasc Dev Dis 2021; 8:jcdd8080095. [PMID: 34436237 PMCID: PMC8397066 DOI: 10.3390/jcdd8080095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
The rapid propagation of electrical activity through the ventricular conduction system (VCS) controls spatiotemporal contraction of the ventricles. Cardiac conduction defects or arrhythmias in humans are often associated with mutations in key cardiac transcription factors that have been shown to play important roles in VCS morphogenesis in mice. Understanding of the mechanisms of VCS development is thus crucial to decipher the etiology of conduction disturbances in adults. During embryogenesis, the VCS, consisting of the His bundle, bundle branches, and the distal Purkinje network, originates from two independent progenitor populations in the primary ring and the ventricular trabeculae. Differentiation into fast-conducting cardiomyocytes occurs progressively as ventricles develop to form a unique electrical pathway at late fetal stages. The objectives of this review are to highlight the structure–function relationship between VCS morphogenesis and conduction defects and to discuss recent data on the origin and development of the VCS with a focus on the distal Purkinje fiber network.
Collapse
|
11
|
Differential Spatio-Temporal Regulation of T-Box Gene Expression by microRNAs during Cardiac Development. J Cardiovasc Dev Dis 2021; 8:jcdd8050056. [PMID: 34068962 PMCID: PMC8156480 DOI: 10.3390/jcdd8050056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular development is a complex process that starts with the formation of symmetrically located precardiac mesodermal precursors soon after gastrulation and is completed with the formation of a four-chambered heart with distinct inlet and outlet connections. Multiple transcriptional inputs are required to provide adequate regional identity to the forming atrial and ventricular chambers as well as their flanking regions; i.e., inflow tract, atrioventricular canal, and outflow tract. In this context, regional chamber identity is widely governed by regional activation of distinct T-box family members. Over the last decade, novel layers of gene regulatory mechanisms have been discovered with the identification of non-coding RNAs. microRNAs represent the most well-studied subcategory among short non-coding RNAs. In this study, we sought to investigate the functional role of distinct microRNAs that are predicted to target T-box family members. Our data demonstrated a highly dynamic expression of distinct microRNAs and T-box family members during cardiogenesis, revealing a relatively large subset of complementary and similar microRNA-mRNA expression profiles. Over-expression analyses demonstrated that a given microRNA can distinctly regulate the same T-box family member in distinct cardiac regions and within distinct temporal frameworks, supporting the notion of indirect regulatory mechanisms, and dual luciferase assays on Tbx2, Tbx3 and Tbx5 3' UTR further supported this notion. Overall, our data demonstrated a highly dynamic microRNA and T-box family members expression during cardiogenesis and supported the notion that such microRNAs indirectly regulate the T-box family members in a tissue- and time-dependent manner.
Collapse
|
12
|
Transcriptional Regulation of Postnatal Cardiomyocyte Maturation and Regeneration. Int J Mol Sci 2021; 22:ijms22063288. [PMID: 33807107 PMCID: PMC8004589 DOI: 10.3390/ijms22063288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
During the postnatal period, mammalian cardiomyocytes undergo numerous maturational changes associated with increased cardiac function and output, including hypertrophic growth, cell cycle exit, sarcomeric protein isoform switching, and mitochondrial maturation. These changes come at the expense of loss of regenerative capacity of the heart, contributing to heart failure after cardiac injury in adults. While most studies focus on the transcriptional regulation of embryonic or adult cardiomyocytes, the transcriptional changes that occur during the postnatal period are relatively unknown. In this review, we focus on the transcriptional regulators responsible for these aspects of cardiomyocyte maturation during the postnatal period in mammals. By specifically highlighting this transitional period, we draw attention to critical processes in cardiomyocyte maturation with potential therapeutic implications in cardiovascular disease.
Collapse
|
13
|
Pineda S, Nikolova-Krstevski V, Leimena C, Atkinson AJ, Altekoester AK, Cox CD, Jacoby A, Huttner IG, Ju YK, Soka M, Ohanian M, Trivedi G, Kalvakuri S, Birker K, Johnson R, Molenaar P, Kuchar D, Allen DG, van Helden DF, Harvey RP, Hill AP, Bodmer R, Vogler G, Dobrzynski H, Ocorr K, Fatkin D. Conserved Role of the Large Conductance Calcium-Activated Potassium Channel, K Ca1.1, in Sinus Node Function and Arrhythmia Risk. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003144. [PMID: 33629867 DOI: 10.1161/circgen.120.003144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND KCNMA1 encodes the α-subunit of the large-conductance Ca2+-activated K+ channel, KCa1.1, and lies within a linkage interval for atrial fibrillation (AF). Insights into the cardiac functions of KCa1.1 are limited, and KCNMA1 has not been investigated as an AF candidate gene. METHODS The KCNMA1 gene was sequenced in 118 patients with familial AF. The role of KCa1.1 in normal cardiac structure and function was evaluated in humans, mice, zebrafish, and fly. A novel KCNMA1 variant was functionally characterized. RESULTS A complex KCNMA1 variant was identified in 1 kindred with AF. To evaluate potential disease mechanisms, we first evaluated the distribution of KCa1.1 in normal hearts using immunostaining and immunogold electron microscopy. KCa1.1 was seen throughout the atria and ventricles in humans and mice, with strong expression in the sinus node. In an ex vivo murine sinoatrial node preparation, addition of the KCa1.1 antagonist, paxilline, blunted the increase in beating rate induced by adrenergic receptor stimulation. Knockdown of the KCa1.1 ortholog, kcnma1b, in zebrafish embryos resulted in sinus bradycardia with dilatation and reduced contraction of the atrium and ventricle. Genetic inactivation of the Drosophila KCa1.1 ortholog, slo, systemically or in adult stages, also slowed the heartbeat and produced fibrillatory cardiac contractions. Electrophysiological characterization of slo-deficient flies revealed bursts of action potentials, reflecting increased events of fibrillatory arrhythmias. Flies with cardiac-specific overexpression of the human KCNMA1 mutant also showed increased heart period and bursts of action potentials, similar to the KCa1.1 loss-of-function models. CONCLUSIONS Our data point to a highly conserved role of KCa1.1 in sinus node function in humans, mice, zebrafish, and fly and suggest that KCa1.1 loss of function may predispose to AF.
Collapse
Affiliation(s)
- Santiago Pineda
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Vesna Nikolova-Krstevski
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Christiana Leimena
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Andrew J Atkinson
- Institute of Cardiovascular Sciences, University of Manchester, United Kingdom (A.J.A., H.D.)
| | - Ann-Kristin Altekoester
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Arie Jacoby
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Inken G Huttner
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Yue-Kun Ju
- Bosch Institute, University of Sydney, Camperdown (Y.-K.J., D.G.A.)
| | - Magdalena Soka
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Monique Ohanian
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Gunjan Trivedi
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.)
| | - Sreehari Kalvakuri
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Katja Birker
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Renee Johnson
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Peter Molenaar
- Faculty of Health, Queensland University of Technology (P.M.).,School of Medicine, University of Queensland, Prince Charles Hospital, Brisbane, Queensland, Australia (P.M.)
| | - Dennis Kuchar
- Cardiology Department, St Vincent's Hospital, Darlinghurst (D.K., D.F.)
| | - David G Allen
- Bosch Institute, University of Sydney, Camperdown (Y.-K.J., D.G.A.)
| | - Dirk F van Helden
- University of Newcastle and Hunter Medical Research Institute, NSW, Australia (D.F.v.H.)
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.)
| | - Rolf Bodmer
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Georg Vogler
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Halina Dobrzynski
- Institute of Cardiovascular Sciences, University of Manchester, United Kingdom (A.J.A., H.D.).,Jagiellonian University Medical College, Cracow, Poland (H.D.)
| | - Karen Ocorr
- Development, Aging & Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA (S.P., S.K., K.B., R.B., G.V., K.O.)
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst (V.N.-K., C.L., A.-K.A., C.D.C., A.J., I.G.H., M.S., M.O., G.T., R.J., R.P.H., A.P.H., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington (V.N.-K., I.G.H., R.J., R.P.H., A.P.H., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst (D.K., D.F.)
| |
Collapse
|
14
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
15
|
Gholaminejad A, Zare N, Dana N, Shafie D, Mani A, Javanmard SH. A meta-analysis of microRNA expression profiling studies in heart failure. Heart Fail Rev 2021; 26:997-1021. [PMID: 33443726 DOI: 10.1007/s10741-020-10071-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is a major consequence of many cardiovascular diseases with high rate of morbidity and mortality. Early diagnosis and prevention are hampered by the lack of informative biomarkers. The aim of this study was to perform a meta-analysis of the miRNA expression profiling studies in HF to identify novel candidate biomarkers or/and therapeutic targets. A comprehensive literature search of the PubMed for miRNA expression studies related to HF was carried out. The vote counting and robust rank aggregation meta-analysis methods were used to identify significant meta-signatures of HF-miRs. The targets of HF-miRs were identified, and network construction and gene set enrichment analysis (GSEA) were performed to identify the genes and cognitive pathways most affected by the dysregulation of the miRNAs. The literature search identified forty-five miRNA expression studies related to CHF. Shared meta-signature was identified for 3 up-regulated (miR-21, miR-214, and miR-27b) and 13 down-regulated (miR-133a, miR-29a, miR-29b, miR-451, miR-185, miR-133b, miR-30e, miR-30b, miR-1, miR-150, miR-486, miR-149, and miR-16-5p) miRNAs. Network properties showed miR-29a, miR-21, miR-29b, miR-1, miR-16, miR-133a, and miR-133b have the most degree centrality. GESA identified functionally related sets of genes in signaling and community pathways in HF that are the targets of HF-miRs. The miRNA expression meta-analysis identified sixteen highly significant HF-miRs that are differentially expressed in HF. Further validation in large patient cohorts is required to confirm the significance of these miRs as HF biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Zare
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical, Isfahan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arya Mani
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical, Isfahan, Iran. .,Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
16
|
Xia J, Meng Z, Ruan H, Yin W, Xu Y, Zhang T. Heart Development and Regeneration in Non-mammalian Model Organisms. Front Cell Dev Biol 2020; 8:595488. [PMID: 33251221 PMCID: PMC7673453 DOI: 10.3389/fcell.2020.595488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease is a serious threat to human health and a leading cause of mortality worldwide. Recent years have witnessed exciting progress in the understanding of heart formation and development, enabling cardiac biologists to make significant advance in the field of therapeutic heart regeneration. Most of our understanding of heart development and regeneration, including the genes and signaling pathways, are driven by pioneering works in non-mammalian model organisms, such as fruit fly, fish, frog, and chicken. Compared to mammalian animal models, non-mammalian model organisms have special advantages in high-throughput applications such as disease modeling, drug discovery, and cardiotoxicity screening. Genetically engineered animals of cardiovascular diseases provide valuable tools to investigate the molecular and cellular mechanisms of pathogenesis and to evaluate therapeutic strategies. A large number of congenital heart diseases (CHDs) non-mammalian models have been established and tested for the genes and signaling pathways involved in the diseases. Here, we reviewed the mechanisms of heart development and regeneration revealed by these models, highlighting the advantages of non-mammalian models as tools for cardiac research. The knowledge from these animal models will facilitate therapeutic discoveries and ultimately serve to accelerate translational medicine.
Collapse
Affiliation(s)
- Jianhong Xia
- GMU-GIBH Joint School of Life Sciences, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Zhongxuan Meng
- GMU-GIBH Joint School of Life Sciences, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hongyue Ruan
- GMU-GIBH Joint School of Life Sciences, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yiming Xu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Tiejun Zhang
- GMU-GIBH Joint School of Life Sciences, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Identification and characterization of miRNA expression profiles across five tissues in giant panda. Gene 2020; 769:145206. [PMID: 33059030 DOI: 10.1016/j.gene.2020.145206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
microRNA (miRNA) is a small endogenous noncoding RNA molecule that plays multiple roles in regulating most biological processes. However, for China's national treasure giant panda, a world-famous rare and protected species, reports of its miRNA have been found only in blood and breast milk. To explore the miRNA expression differences between different giant panda tissues, here, we generated the miRNA profiles of five tissues (heart, liver, spleen, lung, and kidney) from four giant pandas with Illumina Hiseq 2500 platform, and filtered the differentially expressed miRNAs (DEmiRs) in each tissue, predicted the target genes of miRNA from each tissue based on the DEmiRs. Then, the GO and KEGG enrichment analysis were conducted using the target genes predicted from DEmiRs in each tissue. The RNA-seq generated an average of 0.718 GB base per sample. A total of 1,256 known miRNAs and 12 novel miRNAs were identified, and there were 215, 131, 185, 83, and 126 tissue-specific DEmiRs filtered in the heart, liver, spleen, lung, and kidney, respectively, including miR-1b-5p, miR-122-5p, miR-143, miR-126-5p, and miR-10b-5p, respectively. The predicted target genes, including MYL2, LRP5, MIF, CFD, and PEBP1 in the heart, liver, spleen, lung, and kidney, respectively, were closely associated with tissue-specific biological functions. The enrichment analysis results of target genes showed tissue-specific characteristics, such as the significantly enriched GO terms extracellular matrix in the heart and insulin-like growth factor binding in the liver. The miRNA profiles of the heart, liver, spleen, lung, and kidney of giant panda have been reported in this study, it reveals the miRNA expression differences between different tissues of the giant panda, and provides valuable genetic resources for the further related molecular genetic research of the rare and protected species giant panda and other mammals.
Collapse
|
18
|
MicroRNAs: roles in cardiovascular development and disease. Cardiovasc Pathol 2020; 50:107296. [PMID: 33022373 DOI: 10.1016/j.carpath.2020.107296] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) comprise a group of disorders ranging from peripheral artery, coronary artery, cardiac valve, cardiac muscle, and congenital heart diseases to arrhythmias and ultimately, heart failure. For all the advances in therapeutics, CVDs are still the leading cause of mortality the world over, hence the significance of a thorough understanding of CVDs at the molecular level. Disparities in the expressions of genes and microRNAs (miRNAs) play a crucial role in the determination of the fate of cellular pathways, which ultimately affect an organism's physiology. Indeed, miRNAs serve as the regulators of gene expressions in that they perform key functions both in several important cellular pathways and in the regulation of the onset of various diseases such as CVDs. Many miRNAs are expressed in embryonic, postnatal, and adult hearts; their aberrant expression or genetic deletion is associated with abnormal cardiac cell differentiation, disruption in heart development, and cardiac dysfunction. A substantial body of evidence implicates miRNAs in CVD development and suggests them as diagnostic biomarkers and intriguing therapeutic tools. The present review provides an overview of the history, biogenesis, and processing of miRNAs, as well as their function in the development, remodeling, and diseases of the heart.
Collapse
|
19
|
Theis JL, Vogler G, Missinato MA, Li X, Nielsen T, Zeng XXI, Martinez-Fernandez A, Walls SM, Kervadec A, Kezos JN, Birker K, Evans JM, O'Byrne MM, Fogarty ZC, Terzic A, Grossfeld P, Ocorr K, Nelson TJ, Olson TM, Colas AR, Bodmer R. Patient-specific genomics and cross-species functional analysis implicate LRP2 in hypoplastic left heart syndrome. eLife 2020; 9:e59554. [PMID: 33006316 PMCID: PMC7581429 DOI: 10.7554/elife.59554] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Congenital heart diseases (CHDs), including hypoplastic left heart syndrome (HLHS), are genetically complex and poorly understood. Here, a multidisciplinary platform was established to functionally evaluate novel CHD gene candidates, based on whole-genome and iPSC RNA sequencing of a HLHS family-trio. Filtering for rare variants and altered expression in proband iPSCs prioritized 10 candidates. siRNA/RNAi-mediated knockdown in healthy human iPSC-derived cardiomyocytes (hiPSC-CM) and in developing Drosophila and zebrafish hearts revealed that LDL receptor-related protein LRP2 is required for cardiomyocyte proliferation and differentiation. Consistent with hypoplastic heart defects, compared to patents the proband's iPSC-CMs exhibited reduced proliferation. Interestingly, rare, predicted-damaging LRP2 variants were enriched in a HLHS cohort; however, understanding their contribution to HLHS requires further investigation. Collectively, we have established a multi-species high-throughput platform to rapidly evaluate candidate genes and their interactions during heart development, which are crucial first steps toward deciphering oligogenic underpinnings of CHDs, including hypoplastic left hearts.
Collapse
Affiliation(s)
- Jeanne L Theis
- Cardiovascular Genetics Research LaboratoryRochesterUnited States
| | - Georg Vogler
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Maria A Missinato
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Xing Li
- Division of Biomedical Statistics and Informatics, Mayo ClinicRochesterUnited States
| | - Tanja Nielsen
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
- Doctoral Degrees and Habilitations, Department of Biology, Chemistry, and Pharmacy, Freie Universität BerlinBerlinGermany
| | - Xin-Xin I Zeng
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | | | - Stanley M Walls
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Anaïs Kervadec
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - James N Kezos
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Katja Birker
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Jared M Evans
- Division of Biomedical Statistics and Informatics, Mayo ClinicRochesterUnited States
| | - Megan M O'Byrne
- Division of Biomedical Statistics and Informatics, Mayo ClinicRochesterUnited States
| | - Zachary C Fogarty
- Division of Biomedical Statistics and Informatics, Mayo ClinicRochesterUnited States
| | - André Terzic
- Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Molecular and Pharmacology and Experimental Therapeutics, Mayo ClinicLa JollaUnited States
- Center for Regenerative Medicine, Mayo ClinicRochesterUnited States
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo ClinicRochesterUnited States
| | - Paul Grossfeld
- University of California San Diego, Rady’s HospitalSan DiegoUnited States
- Division of General Internal Medicine, Mayo ClinicRochesterUnited States
| | - Karen Ocorr
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Timothy J Nelson
- Department of Molecular and Pharmacology and Experimental Therapeutics, Mayo ClinicLa JollaUnited States
- Center for Regenerative Medicine, Mayo ClinicRochesterUnited States
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo ClinicRochesterUnited States
| | - Timothy M Olson
- Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Molecular and Pharmacology and Experimental Therapeutics, Mayo ClinicLa JollaUnited States
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo ClinicRochesterUnited States
| | - Alexandre R Colas
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Rolf Bodmer
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| |
Collapse
|
20
|
Functional Screening Identifies MicroRNA Regulators of Corin Activity and Atrial Natriuretic Peptide Biogenesis. Mol Cell Biol 2019; 39:MCB.00271-19. [PMID: 31548261 PMCID: PMC6851346 DOI: 10.1128/mcb.00271-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Atrial natriuretic peptide (ANP) represents an attractive therapeutic target in hypertension and heart failure. The biologically active form of ANP is produced by the cardiac serine protease corin, and modulation of its activity might therefore represent a novel approach for ANP augmentation. MicroRNAs (miRNAs) are pervasive regulators of gene expression, but their potential role in regulating corin activity has not been elucidated. Our aim was to systematically identify and characterize miRNA regulators of corin activity in human cardiomyocytes. An assay for measuring serine protease activity in human induced pluripotent stem cell (iPS)-derived cardiomyocytes was used to perform a comprehensive screening of miRNA family inhibitors (n = 42). miRNA 1-3p (miR-1-3p) was identified as a potent inhibitor of corin activity. The interaction between miR-1-3p and a specific target site in the CORIN 3' untranslated region (3' UTR) was confirmed through argonaute 2 (AGO2)-RNA immunoprecipitation and reporter assays. Inhibition of miR-1-3p resulted in upregulation of CORIN gene and protein expression, as well as a concomitant increase in extracellular ANP. Additionally, miR-1-3p was found to interact with and inhibit the expression of several transcriptional activators of ANP gene expression. In conclusion, we have identified a novel regulator of corin activity and ANP biogenesis in human cardiomyocytes that might be of potential future therapeutic utility.
Collapse
|
21
|
Matsunami M, Nozawa M, Suzuki R, Toga K, Masuoka Y, Yamaguchi K, Maekawa K, Shigenobu S, Miura T. Caste-specific microRNA expression in termites: insights into soldier differentiation. INSECT MOLECULAR BIOLOGY 2019; 28:86-98. [PMID: 30126008 DOI: 10.1111/imb.12530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Eusocial insects have polyphenic caste systems in which each caste exhibits characteristic morphology and behaviour. In insects, caste systems arose independently in different lineages, such as Isoptera and Hymenoptera. Although partial molecular mechanisms for the development of eusociality in termites have been clarified by the functional analysis of genes and hormones, the contribution of microRNAs (miRNAs) to caste differentiation is unknown. To understand the role of miRNAs in termite caste polyphenism, we performed small RNA sequencing in a subterranean termite (Reticulitermes speratus) and identified the miRNAs that were specifically expressed in the soldier and worker castes. Of the 550 miRNAs annotated in the R. speratus genome, 74 were conserved in insects and 174 were conserved in other termite species. We found that eight miRNAs (mir-1, mir-125, mir-133, mir-2765, mir-87a and three termite-specific miRNAs) are differentially expressed (DE) in soldiers and workers of R. speratus. This differential expression was experimentally verified for five miRNAs by real-time quantitative PCR. Further, four of the eight DE miRNAs in soldier and worker termite castes were also differentially expressed in hymenopteran castes. The finding that Isoptera and Hymenoptera shared several DE miRNAs amongst castes suggests that these miRNAs evolved independently in these phylogenetically distinct lineages.
Collapse
Affiliation(s)
- M Matsunami
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - M Nozawa
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - R Suzuki
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - K Toga
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Y Masuoka
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - K Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - K Maekawa
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - S Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - T Miura
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Misaki Marine Biological Station, University of Tokyo, Miura, Kanagawa, Japan
| |
Collapse
|
22
|
Specific Cell (Re-)Programming: Approaches and Perspectives. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:71-115. [PMID: 29071403 DOI: 10.1007/10_2017_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many disorders are manifested by dysfunction of key cell types or their disturbed integration in complex organs. Thereby, adult organ systems often bear restricted self-renewal potential and are incapable of achieving functional regeneration. This underlies the need for novel strategies in the field of cell (re-)programming-based regenerative medicine as well as for drug development in vitro. The regenerative field has been hampered by restricted availability of adult stem cells and the potentially hazardous features of pluripotent embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Moreover, ethical concerns and legal restrictions regarding the generation and use of ESCs still exist. The establishment of direct reprogramming protocols for various therapeutically valuable somatic cell types has overcome some of these limitations. Meanwhile, new perspectives for safe and efficient generation of different specified somatic cell types have emerged from numerous approaches relying on exogenous expression of lineage-specific transcription factors, coding and noncoding RNAs, and chemical compounds.It should be of highest priority to develop protocols for the production of mature and physiologically functional cells with properties ideally matching those of their endogenous counterparts. Their availability can bring together basic research, drug screening, safety testing, and ultimately clinical trials. Here, we highlight the remarkable successes in cellular (re-)programming, which have greatly advanced the field of regenerative medicine in recent years. In particular, we review recent progress on the generation of cardiomyocyte subtypes, with a focus on cardiac pacemaker cells. Graphical Abstract.
Collapse
|
23
|
Abstract
Epidemiological and experimental observations tend to prove that environment, lifestyle or nutritional challenges influence heart functions together with genetic factors. Furthermore, when occurring during sensitive windows of heart development, these environmental challenges can induce an 'altered programming' of heart development and shape the future heart disease risk. In the etiology of heart diseases driven by environmental challenges, epigenetics has been highlighted as an underlying mechanism, constituting a bridge between environment and heart health. In particular, micro-RNAs which are involved in each step of heart development and functions seem to play a crucial role in the unfavorable programming of heart diseases. This review describes the latest advances in micro-RNA research in heart diseases driven by early exposure to challenges and discusses the use of micro-RNAs as potential targets in the reversal of the pathophysiology.
Collapse
|
24
|
(Re-)programming of subtype specific cardiomyocytes. Adv Drug Deliv Rev 2017; 120:142-167. [PMID: 28916499 DOI: 10.1016/j.addr.2017.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Adult cardiomyocytes (CMs) possess a highly restricted intrinsic regenerative potential - a major barrier to the effective treatment of a range of chronic degenerative cardiac disorders characterized by cellular loss and/or irreversible dysfunction and which underlies the majority of deaths in developed countries. Both stem cell programming and direct cell reprogramming hold promise as novel, potentially curative approaches to address this therapeutic challenge. The advent of induced pluripotent stem cells (iPSCs) has introduced a second pluripotent stem cell source besides embryonic stem cells (ESCs), enabling even autologous cardiomyocyte production. In addition, the recent achievement of directly reprogramming somatic cells into cardiomyocytes is likely to become of great importance. In either case, different clinical scenarios will require the generation of highly pure, specific cardiac cellular-subtypes. In this review, we discuss these themes as related to the cardiovascular stem cell and programming field, including a focus on the emergent topic of pacemaker cell generation for the development of biological pacemakers and in vitro drug testing.
Collapse
|
25
|
Li J, Miao L, Zhao C, Shaikh Qureshi WM, Shieh D, Guo H, Lu Y, Hu S, Huang A, Zhang L, Cai CL, Wan LQ, Xin H, Vincent P, Singer HA, Zheng Y, Cleaver O, Fan ZC, Wu M. CDC42 is required for epicardial and pro-epicardial development by mediating FGF receptor trafficking to the plasma membrane. Development 2017; 144:1635-1647. [PMID: 28465335 PMCID: PMC5450847 DOI: 10.1242/dev.147173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/16/2017] [Indexed: 01/26/2023]
Abstract
The epicardium contributes to multiple cardiac lineages and is essential for cardiac development and regeneration. However, the mechanism of epicardium formation is unclear. This study aimed to establish the cellular and molecular mechanisms underlying the dissociation of pro-epicardial cells (PECs) from the pro-epicardium (PE) and their subsequent translocation to the heart to form the epicardium. We used lineage tracing, conditional deletion, mosaic analysis and ligand stimulation in mice to determine that both villous protrusions and floating cysts contribute to PEC translocation to myocardium in a CDC42-dependent manner. We resolved a controversy by demonstrating that physical contact of the PE with the myocardium constitutes a third mechanism for PEC translocation to myocardium, and observed a fourth mechanism in which PECs migrate along the surface of the inflow tract to reach the ventricles. Epicardial-specific Cdc42 deletion disrupted epicardium formation, and Cdc42 null PECs proliferated less, lost polarity and failed to form villous protrusions and floating cysts. FGF signaling promotes epicardium formation in vivo, and biochemical studies demonstrated that CDC42 is involved in the trafficking of FGF receptors to the cell membrane to regulate epicardium formation. Highlighted article: During epicardial formation in mice, four different mechanisms of pro-epicardial cell translocation to the myocardium can be identified, with CDC42 playing a key role.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Lianjie Miao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.,Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.,School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Chen Zhao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | | | - David Shieh
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Hua Guo
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Yangyang Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Saiyang Hu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Alice Huang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Lu Zhang
- Developmental and Regenerative Biology, Mount Sinai Hospital, New York, NY 10029, USA
| | - Chen-Leng Cai
- Developmental and Regenerative Biology, Mount Sinai Hospital, New York, NY 10029, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th street, Biotech 2147, Troy, NY 12180, USA
| | - Hongbo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.,School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Peter Vincent
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ondine Cleaver
- Molecular Biology, UT Southwestern, Dallas, TX 75390, USA
| | - Zhen-Chuan Fan
- International Collaborative Research Center for Health Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
26
|
Cannon L, Zambon AC, Cammarato A, Zhang Z, Vogler G, Munoz M, Taylor E, Cartry J, Bernstein SI, Melov S, Bodmer R. Expression patterns of cardiac aging in Drosophila. Aging Cell 2017; 16:82-92. [PMID: 28090760 PMCID: PMC5242310 DOI: 10.1111/acel.12559] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2016] [Indexed: 11/27/2022] Open
Abstract
Aging causes cardiac dysfunction, often leading to heart failure and death. The molecular basis of age-associated changes in cardiac structure and function is largely unknown. The fruit fly, Drosophila melanogaster, is well-suited to investigate the genetics of cardiac aging. Flies age rapidly over the course of weeks, benefit from many tools to easily manipulate their genome, and their heart has significant genetic and phenotypic similarities to the human heart. Here, we performed a cardiac-specific gene expression study on aging Drosophila and carried out a comparative meta-analysis with published rodent data. Pathway level transcriptome comparisons suggest that age-related, extra-cellular matrix remodeling and alterations in mitochondrial metabolism, protein handling, and contractile functions are conserved between Drosophila and rodent hearts. However, expression of only a few individual genes similarly changed over time between and even within species. We also examined gene expression in single fly hearts and found significant variability as has been reported in rodents. We propose that individuals may arrive at similar cardiac aging phenotypes via dissimilar transcriptional changes, including those in transcription factors and micro-RNAs. Finally, our data suggest the transcription factor Odd-skipped, which is essential for normal heart development, is also a crucial regulator of cardiac aging.
Collapse
Affiliation(s)
- Leah Cannon
- Development, Aging and Regeneration Program; Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla CA USA
| | - Alexander C. Zambon
- Development, Aging and Regeneration Program; Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla CA USA
- Department of Biopharmaceutical Sciences; Keck Graduate Institute; Claremont CA USA
| | - Anthony Cammarato
- Division of Cardiology; Department of Medicine; Johns Hopkins University; Baltimore MD USA
| | - Zhi Zhang
- Development, Aging and Regeneration Program; Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla CA USA
| | - Georg Vogler
- Development, Aging and Regeneration Program; Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla CA USA
| | - Matthew Munoz
- Department of Biopharmaceutical Sciences; Keck Graduate Institute; Claremont CA USA
| | - Erika Taylor
- Development, Aging and Regeneration Program; Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla CA USA
| | - Jérôme Cartry
- Development, Aging and Regeneration Program; Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla CA USA
| | - Sanford I. Bernstein
- Department of Biology, Molecular Biology Institute, and The Heart Institute; San Diego State University; San Diego CA USA
| | - Simon Melov
- Buck Institute for Research on Aging; Novato CA USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program; Sanford-Burnham-Prebys Medical Discovery Institute; La Jolla CA USA
| |
Collapse
|
27
|
Li J, Liu Y, Jin Y, Wang R, Wang J, Lu S, VanBuren V, Dostal DE, Zhang SL, Peng X. Essential role of Cdc42 in cardiomyocyte proliferation and cell-cell adhesion during heart development. Dev Biol 2016; 421:271-283. [PMID: 27986432 DOI: 10.1016/j.ydbio.2016.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/02/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
Cdc42 is a member of the Rho GTPase family and functions as a molecular switch in regulating cell migration, proliferation, differentiation and survival. However, the role of Cdc42 in heart development remains largely unknown. To determine the function of Cdc42 in heart formation, we have generated a Cdc42 cardiomyocyte knockout (CCKO) mouse line by crossing Cdc42 flox mice with myosin light chain (MLC) 2a-Cre mice. The inactivation of Cdc42 in embryonic cardiomyocytes induced lethality after embryonic day 12.5. Histological analysis of CCKO embryos showed cardiac developmental defects that included thin ventricular walls and ventricular septum defects. Microarray and real-time PCR data also revealed that the expression level of p21 was significantly increased and cyclin B1 was dramatically decreased, suggesting that Cdc42 is required for cardiomyocyte proliferation. Phosphorylated Histone H3 staining confirmed that the inactivation of Cdc42 inhibited cardiomyocytes proliferation. In addition, transmission electron microscope studies showed disorganized sarcomere structure and disruption of cell-cell contact among cardiomyocytes in CCKO hearts. Accordingly, we found that the distribution of N-cadherin/β-Catenin in CCKO cardiomyocytes was impaired. Taken together, our data indicate that Cdc42 is essential for cardiomyocyte proliferation, sarcomere organization and cell-cell adhesion during heart development.
Collapse
Affiliation(s)
- Jieli Li
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Yang Liu
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Yixin Jin
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Rui Wang
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA; Department of Cardiology, Yangpu District Central Hospital, Tongji University, China
| | - Jian Wang
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Sarah Lu
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Vincent VanBuren
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - David E Dostal
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA
| | - Shenyuan L Zhang
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA.
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, USA.
| |
Collapse
|
28
|
Abstract
An increase in stress-associated microRNAs has been observed in the heart after an induced myocardial infarction. Liu and colleagues now demonstrate that one of these stress-associated microRNAs, miR-223-3p, can regulate a component of the voltage-gated channel that mediates rapid outward efflux of potassium during an action potential. Aberrations in the potassium current have been associated with ventricular arrhythmia and heart disease. Strikingly, introducing a small RNA antagonist directed against miR-223-3p into rat hearts, while also inducing a myocardial infarction, resulted in a reduction in arrhythmias. We place these studies in the larger context of the field and discuss the potential of anti-miR-223-3p molecules as new therapeutics for myocardial infarction.
Collapse
Affiliation(s)
- Mithun Mitra
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA;; Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA;; Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
29
|
Burridge PW, Sharma A, Wu JC. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine. Annu Rev Genet 2016; 49:461-84. [PMID: 26631515 DOI: 10.1146/annurev-genet-112414-054911] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regeneration or replacement of lost cardiomyocytes within the heart has the potential to revolutionize cardiovascular medicine. Numerous methodologies have been used to achieve this aim, including the engraftment of bone marrow- and heart-derived cells as well as the identification of modulators of adult cardiomyocyte proliferation. Recently, the conversion of human somatic cells into induced pluripotent stem cells and induced cardiomyocyte-like cells has transformed potential approaches toward this goal, and the engraftment of cardiac progenitors derived from human embryonic stem cells into patients is now feasible. Here we review recent advances in our understanding of the genetic and epigenetic control of human cardiogenesis, cardiac differentiation, and the induced reprogramming of somatic cells to cardiomyocytes. We also cover genetic programs for inducing the proliferation of endogenous cardiomyocytes and discuss the genetic state of cells used in cardiac regenerative medicine.
Collapse
Affiliation(s)
- Paul W Burridge
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305.,Department of Pharmacology.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| | - Arun Sharma
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305
| | - Joseph C Wu
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
30
|
MicroRNAs in non-small cell lung cancer and idiopathic pulmonary fibrosis. J Hum Genet 2016; 62:57-65. [PMID: 27488441 DOI: 10.1038/jhg.2016.98] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022]
Abstract
In spite of advances in the diagnosis and current molecular target therapies of lung cancer, this disease remains the most common cause of cancer-related death worldwide. Approximately 80% of lung cancers is non-small cell lung cancer (NSCLC), and 5-year survival rate of the disease is ~20%. On the other hand, idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease of unknown etiology. IPF is refractory to treatment and has a very low survival rate. Moreover, IPF is frequently associated with lung cancer. However, the common mechanisms shared by these two diseases remain poorly understood. In the post-genome sequence era, the discovery of noncoding RNAs, particularly microRNAs (miRNAs), has had a major impact on most biomedical fields, and these small molecules have been shown to contribute to the pathogenesis of NSCLC and IPF. Investigation of novel RNA networks mediated by miRNAs has improved our understanding of the molecular mechanisms of these diseases. This review summarizes our current knowledge on aberrantly expressed miRNAs regulating NSCLC and IPF based on miRNA expression signatures.
Collapse
|
31
|
Nimura K, Yamamoto M, Takeichi M, Saga K, Takaoka K, Kawamura N, Nitta H, Nagano H, Ishino S, Tanaka T, Schwartz RJ, Aburatani H, Kaneda Y. Regulation of alternative polyadenylation by Nkx2-5 and Xrn2 during mouse heart development. eLife 2016; 5. [PMID: 27331609 PMCID: PMC4982761 DOI: 10.7554/elife.16030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/21/2016] [Indexed: 11/21/2022] Open
Abstract
Transcription factors organize gene expression profiles by regulating promoter activity. However, the role of transcription factors after transcription initiation is poorly understood. Here, we show that the homeoprotein Nkx2-5 and the 5’-3’ exonuclease Xrn2 are involved in the regulation of alternative polyadenylation (APA) during mouse heart development. Nkx2-5 occupied not only the transcription start sites (TSSs) but also the downstream regions of genes, serving to connect these regions in primary embryonic cardiomyocytes (eCMs). Nkx2-5 deficiency affected Xrn2 binding to target loci and resulted in increases in RNA polymerase II (RNAPII) occupancy and in the expression of mRNAs with long 3’untranslated regions (3’ UTRs) from genes related to heart development. siRNA-mediated suppression of Nkx2-5 and Xrn2 led to heart looping anomaly. Moreover, Nkx2-5 genetically interacts with Xrn2 because Nkx2-5+/-Xrn2+/-, but neither Nkx2-5+/-nor Xrn2+/-, newborns exhibited a defect in ventricular septum formation, suggesting that the association between Nkx2-5 and Xrn2 is essential for heart development. Our results indicate that Nkx2-5 regulates not only the initiation but also the usage of poly(A) sites during heart development. Our findings suggest that tissue-specific transcription factors is involved in the regulation of APA. DOI:http://dx.doi.org/10.7554/eLife.16030.001 About one in every hundred babies is born with problems that either affect the structure of the heart or how it works. These problems are known as congenital heart disease, and result when the development of the heart is disrupted. How the heart develops is determined by thousands of genes whose activity or “expression” must be precisely regulated. Proteins called transcription factors can control gene expression; therefore, researchers may discover new ways of treating congenital heart disease if they can understand how transcription factors work during normal heart development. To produce a protein, the information in a gene must first be “transcribed” to form a molecule of messenger RNA (mRNA). Not all of the mRNA sequence is subsequently “translated” to form the protein; this includes a stretch at the end of the mRNA called the 3’ untranslated region. The length of the 3’ untranslated region for a particular mRNA may vary depending on the type of cell it has been produced in, and this length can influence how efficiently the mRNA is translated to form a protein. However, it was not clear what changes the length of the 3’ untranslated region. Nimura et al. have now studied mice to investigate the role of a transcription factor called Nkx2-5, which was known to be important for heart development. This revealed that in addition to its expected role in starting the transcription of genes that are important for heart development, Nkx2-5 also controls the length of 3’ untranslated regions of certain mRNAs. To do so, Nkx2-5 binds to a protein called Xrn2 that stops transcription when the end of the gene is reached. Mouse embryos that lacked Nkx2-5 produced mRNAs containing long 3’ untranslated regions from genes related to the development of the heart. Furthermore, suppressing the activity of both Nkx2-5 and Xrn2 resulted in the embryos developing heart defects. The findings of Nimura et al. suggest that transcription factors found in specific tissues are responsible for the different lengths of 3’ untranslated regions in mRNAs in different tissues. Furthermore, incorrectly regulating the length of these regions appears to be linked to the development of congenital heart disease. The next step is to understand exactly how the failure to correctly regulate the length of 3’ untranslated regions contributes to congenital heart disease. DOI:http://dx.doi.org/10.7554/eLife.16030.002
Collapse
Affiliation(s)
- Keisuke Nimura
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masamichi Yamamoto
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Makiko Takeichi
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kotaro Saga
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katsuyoshi Takaoka
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Norihiko Kawamura
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirohisa Nitta
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiromichi Nagano
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Saki Ishino
- Center for Medical Research and Education, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsuya Tanaka
- Center for Medical Research and Education, Osaka University Graduate School of Medicine, Suita, Japan
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, Unites States
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
32
|
Taghli-Lamallem O, Plantié E, Jagla K. Drosophila in the Heart of Understanding Cardiac Diseases: Modeling Channelopathies and Cardiomyopathies in the Fruitfly. J Cardiovasc Dev Dis 2016; 3:jcdd3010007. [PMID: 29367558 PMCID: PMC5715700 DOI: 10.3390/jcdd3010007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/23/2016] [Accepted: 02/06/2016] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases and, among them, channelopathies and cardiomyopathies are a major cause of death worldwide. The molecular and genetic defects underlying these cardiac disorders are complex, leading to a large range of structural and functional heart phenotypes. Identification of molecular and functional mechanisms disrupted by mutations causing channelopathies and cardiomyopathies is essential to understanding the link between an altered gene and clinical phenotype. The development of animal models has been proven to be efficient for functional studies in channelopathies and cardiomyopathies. In particular, the Drosophila model has been largely applied for deciphering the molecular and cellular pathways affected in these inherited cardiac disorders and for identifying their genetic modifiers. Here we review the utility and the main contributions of the fruitfly models for the better understanding of channelopathies and cardiomyopathies. We also discuss the investigated pathological mechanisms and the discoveries of evolutionarily conserved pathways which reinforce the value of Drosophila in modeling human cardiac diseases.
Collapse
Affiliation(s)
- Ouarda Taghli-Lamallem
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France.
| | - Emilie Plantié
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France.
| | - Krzysztof Jagla
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
33
|
Wu M, Wu D, Wang C, Guo Z, Li B, Zuo Z. Hexabromocyclododecane exposure induces cardiac hypertrophy and arrhythmia by inhibiting miR-1 expression via up-regulation of the homeobox gene Nkx2.5. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:304-313. [PMID: 26476318 DOI: 10.1016/j.jhazmat.2015.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/25/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
Hexabromocyclododecane (HBCD) is one of the most widely used brominated flame retardants. Although studies have reported that HBCD can cause a wide range of toxic effects on animals including humans, limited information can be found about its cardiac toxicity. In the present study, zebrafish embryos were exposed to HBCD at low concentrations of 0, 2, 20 and 200 nM. The results showed that HBCD exposure could induce cardiac hypertrophy and increased deposition of collagen. In addition, disordered calcium (Ca(2+)) handling was observed in H9C2 rat cardiomyocyte cells exposed to HBCD. Using small RNA sequencing and real-time quantitative PCR, HBCD exposure was shown to induce significant changes in the miRNA expression profile associated with the cardiovascular system. Further findings indicated that miR-1, which was depressed by Nkx2.5, might play a fundamental role in mediating cardiac hypertrophy and arrhythmia via its target genes Mef2a and Irx5 after HBCD treatment. HBCD exposure induced an arrhythmogenic disorder, which was triggered by the imbalance of Ryr2, Serca2a and Ncx1 expression, inducing Ca(2+) overload in the sarcoplasmic reticulum and high Ca(2+)-ATPase activities in the H9C2 cells.
Collapse
Affiliation(s)
- Meifang Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Di Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhizhun Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Bowen Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
34
|
Wang J, Xu R, Wu J, Li Z. MicroRNA-137 Negatively Regulates H₂O₂-Induced Cardiomyocyte Apoptosis Through CDC42. Med Sci Monit 2015; 21:3498-504. [PMID: 26566162 PMCID: PMC4648110 DOI: 10.12659/msm.894648] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Oxidative stress, inducing cardiomyocyte apoptosis or myocardial ischemia, is the major denominator of many cardiac diseases. In this study, we intended to explore the regulatory function of microRNA-137 (miR-137) in oxidative stress-induced cardiomyocyte apoptosis. MATERIAL AND METHODS Cardiomyocytes were extracted from newborn C57BL/6 mice and cultured in vitro. Apoptosis was induced by H2O2, and evaluated by TUNEL assay. The effect of cardiomyocyte apoptosis on gene expression of miR-137 was evaluated by qRT-PCR. Lentivirus was used to stably down-regulate miR-137, and the subsequent effects of miR-137 down-regulation on cardiomyocyte apoptosis, its targeted gene CDC42, and caspase pathway were evaluated by TUNEL assay, dual-luciferase reporter assay, and Western blot assay, respectively. Finally, CDC42 was down-regulated by siRNA and its effect on miR-137-mediated cardiomyocyte apoptosis protection was examined. RESULTS H2O2 induced significant apoptosis and up-regulated miR-137 in cardiomyocytes, whereas lentivirus-mediated miR-137 down-regulation protected against apoptosis. CDC42 was the direct target gene of miR-137 and proteins of CDC42, caspase-3, and caspase-9 were all regulated by miR-137 down-regulation in cardiomyocyte apoptosis. SiRNA-mediated CDC42 down-regulation reversed the protection of miR-137 down-regulation against cardiomyocyte apoptosis. CONCLUSIONS Our work demonstrated miR-137 and CDC42 are critical regulators in cardiomyocyte apoptosis. It may help to identify the molecular targets to prevent myocardial injury in human patients.
Collapse
Affiliation(s)
- Junnan Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Rihao Xu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Junduo Wu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Zhibo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
35
|
Abstract
The microRNAs and microRNA clusters have been implicated in normal cardiac development and also disease, including cardiac hypertrophy, cardiomyopathy, heart failure, and arrhythmias. Since a microRNA cluster has from two to dozens of microRNAs, the expression of a microRNA cluster could have a substantial impact on its target genes. In the present study, the configuration and distribution of microRNA clusters in the mouse genome were examined at various inter-microRNA distances. Three important microRNA clusters that are significantly impacted during adult cardiac aging, the miR-17-92, miR-106a-363, and miR-106b-25, were also examined in terms of their genomic location, RNA transcript character, sequence homology, and their relationship with the corresponding microRNA families. Multiple microRNAs derived from the three clusters potentially target various protein components of the cdc42-SRF signaling pathway, which regulates cytoskeleton dynamics associated with cardiac structure and function. The data indicate that aging impacted the expression of both guide and passenger strands of the microRNA clusters; nutrient stress also affected the expression of the three microRNA clusters. The miR-17-92, miR-106a-363, and miR-106b-25 clusters are likely to impact the Cdc42-SRF signaling pathway and thereby affect cardiac morphology and function during pathological conditions and the aging process.
Collapse
|
36
|
Abstract
Many of the major discoveries in the fields of genetics and developmental biology have been made using the fruit fly, Drosophila melanogaster. With regard to heart development, the conserved network of core cardiac transcription factors that underlies cardiogenesis has been studied in great detail in the fly, and the importance of several signaling pathways that regulate heart morphogenesis, such as Slit/Robo, was first shown in the fly model. Recent technological advances have led to a large increase in the genomic data available from patients with congenital heart disease (CHD). This has highlighted a number of candidate genes and gene networks that are potentially involved in CHD. To validate genes and genetic interactions among candidate CHD-causing alleles and to better understand heart formation in general are major tasks. The specific limitations of the various cardiac model systems currently employed (mammalian and fish models) provide a niche for the fly model, despite its evolutionary distance to vertebrates and humans. Here, we review recent advances made using the Drosophila embryo that identify factors relevant for heart formation. These underline how this model organism still is invaluable for a better understanding of CHD.
Collapse
|
37
|
Meganathan K, Sotiriadou I, Natarajan K, Hescheler J, Sachinidis A. Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development. Int J Cardiol 2015; 183:117-28. [PMID: 25662074 DOI: 10.1016/j.ijcard.2015.01.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/19/2014] [Accepted: 01/25/2015] [Indexed: 02/08/2023]
Abstract
Several in-vivo heart developmental models have been applied to decipher the cardiac developmental patterning encompassing early, dorsal, cardiac and visceral mesoderm as well as various transcription factors such as Gata, Hand, Tin, Dpp, Pnr. The expression of cardiac specific transcription factors, such as Gata4, Tbx5, Tbx20, Tbx2, Tbx3, Mef2c, Hey1 and Hand1 are of fundamental significance for the in-vivo cardiac development. Not only the transcription factors, but also the signaling molecules involved in cardiac development were conserved among various species. Enrichment of the bone morphogenic proteins (BMPs) in the anterior lateral plate mesoderm is essential for the initiation of myocardial differentiation and the cardiac developmental process. Moreover, the expression of a number of cardiac transcription factors and structural genes initiate cardiac differentiation in the medial mesoderm. Other signaling molecules such as TGF-beta, IGF-1/2 and the fibroblast growth factor (FGF) play a significant role in cardiac repair/regeneration, ventricular heart development and specification of early cardiac mesoderm, respectively. The role of the Wnt signaling in cardiac development is still controversial discussed, as in-vitro results differ dramatically in relation to the animal models. Embryonic stem cells (ESC) were utilized as an important in-vitro model for the elucidation of the cardiac developmental processes since they can be easily manipulated by numerous signaling molecules, growth factors, small molecules and genetic manipulation. Finally, in the present review the dynamic role of the long noncoding RNA and miRNAs in the regulation of cardiac development are summarized and discussed.
Collapse
Affiliation(s)
- Kesavan Meganathan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Isaia Sotiriadou
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Karthick Natarajan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Jürgen Hescheler
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Agapios Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.
| |
Collapse
|
38
|
Sohi G, Dilworth FJ. Noncoding RNAs as epigenetic mediators of skeletal muscle regeneration. FEBS J 2015; 282:1630-46. [PMID: 25483175 DOI: 10.1111/febs.13170] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/16/2022]
Abstract
Skeletal muscle regeneration is a well-characterized biological process in which resident adult stem cells must undertake a series of cell-fate decisions to ensure efficient repair of the damaged muscle fibers while also maintaining the stem cell niche. Satellite cells, the main stem cell contributing to the repaired muscle fiber, are maintained in a quiescent state in healthy muscle. Upon injury, the satellite cells become activated, and proliferate to expand the muscle progenitor cell population before returning to the quiescent state or differentiating to become myofibers. Importantly, the determination of cell fate is controlled at the epigenetic level in response to environmental cues. In this review, we discuss our current understanding of the role played by noncoding RNAs (both miRNAs and long-noncoding RNAs) in the epigenetic control of muscle regeneration.
Collapse
Affiliation(s)
- Gurjeev Sohi
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada
| | | |
Collapse
|
39
|
Vogler G, Liu J, Iafe TW, Migh E, Mihály J, Bodmer R. Cdc42 and formin activity control non-muscle myosin dynamics during Drosophila heart morphogenesis. ACTA ACUST UNITED AC 2014; 206:909-22. [PMID: 25267295 PMCID: PMC4178965 DOI: 10.1083/jcb.201405075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cdc42 and the formins dDAAM and Diaphanous play pivotal roles in heart lumen formation through the spatiotemporal regulation of the actomyosin network. During heart formation, a network of transcription factors and signaling pathways guide cardiac cell fate and differentiation, but the genetic mechanisms orchestrating heart assembly and lumen formation remain unclear. Here, we show that the small GTPase Cdc42 is essential for Drosophila melanogaster heart morphogenesis and lumen formation. Cdc42 genetically interacts with the cardiogenic transcription factor tinman; with dDAAM which belongs to the family of actin organizing formins; and with zipper, which encodes nonmuscle myosin II. Zipper is required for heart lumen formation, and its spatiotemporal activity at the prospective luminal surface is controlled by Cdc42. Heart-specific expression of activated Cdc42, or the regulatory formins dDAAM and Diaphanous caused mislocalization of Zipper and induced ectopic heart lumina, as characterized by luminal markers such as the extracellular matrix protein Slit. Placement of Slit at the lumen surface depends on Cdc42 and formin function. Thus, Cdc42 and formins play pivotal roles in heart lumen formation through the spatiotemporal regulation of the actomyosin network.
Collapse
Affiliation(s)
- Georg Vogler
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Jiandong Liu
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Timothy W Iafe
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Ede Migh
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6726 Szeged, Hungary
| | - József Mihály
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6726 Szeged, Hungary
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| |
Collapse
|
40
|
Waardenberg AJ, Ramialison M, Bouveret R, Harvey RP. Genetic networks governing heart development. Cold Spring Harb Perspect Med 2014; 4:a013839. [PMID: 25280899 PMCID: PMC4208705 DOI: 10.1101/cshperspect.a013839] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Animal genomes contain a code for construction of the body plan from a fertilized egg. Understanding how genome information is deciphered to create the complex multilayered regulatory systems that drive organismal development, and which become altered in disease, is one of the greatest challenges in the biological sciences. The development of methods that effectively represent and communicate the complexity inherent in gene regulatory networks remains a major barrier. This review introduces the philosophy of systems biology and discusses recent progress in understanding the development of the heart at a systems biology level.
Collapse
Affiliation(s)
- Ashley J Waardenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Mirana Ramialison
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia St. Vincent's Clinical School, University of New South Wales Medicine, Kensington, New South Wales 2052, Australia Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria 3010, Australia
| | - Romaric Bouveret
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia St. Vincent's Clinical School, University of New South Wales Medicine, Kensington, New South Wales 2052, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia St. Vincent's Clinical School, University of New South Wales Medicine, Kensington, New South Wales 2052, Australia School of Biotechnology and Biomolecular Sciences, University of New South Wales Faculty of Science, New South Wales 2052, Australia Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
41
|
Gladman JT, Yadava RS, Mandal M, Yu Q, Kim YK, Mahadevan MS. NKX2-5, a modifier of skeletal muscle pathology due to RNA toxicity. Hum Mol Genet 2014; 24:251-64. [PMID: 25168381 DOI: 10.1093/hmg/ddu443] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
RNA toxicity is implicated in a number of disorders; especially those associated with expanded repeat sequences, such as myotonic dystrophy (DM1). Previously, we have shown increased NKX2-5 expression in RNA toxicity associated with DM1. Here, we investigate the relationship between NKX2-5 expression and muscle pathology due to RNA toxicity. In skeletal muscle from mice with RNA toxicity and individuals with DM1, expression of Nkx2-5 or NKX2-5 and its downstream targets are significantly correlated with severity of histopathology. Using C2C12 myoblasts, we show that over-expression of NKX2-5 or mutant DMPK 3'UTR results in myogenic differentiation defects, which can be rescued by knockdown of Nkx2-5, despite continued toxic RNA expression. Furthermore, in a mouse model of NKX2-5 over-expression, we find defects in muscle regeneration after induced damage, similar to those seen in mice with RNA toxicity. Using mouse models of Nkx2-5 over-expression and depletion, we find that NKX2-5 levels modify disease phenotypes in mice with RNA toxicity.
Collapse
Affiliation(s)
- Jordan T Gladman
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Ramesh S Yadava
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mahua Mandal
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Qing Yu
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yun K Kim
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mani S Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
42
|
MiRiad Roles for MicroRNAs in Cardiac Development and Regeneration. Cells 2014; 3:724-50. [PMID: 25055156 PMCID: PMC4197632 DOI: 10.3390/cells3030724] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/25/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
Cardiac development is an exquisitely regulated process that is sensitive to perturbations in transcriptional activity and gene dosage. Accordingly, congenital heart abnormalities are prevalent worldwide, and are estimated to occur in approximately 1% of live births. Recently, small non-coding RNAs, known as microRNAs, have emerged as critical components of the cardiogenic regulatory network, and have been shown to play numerous roles in the growth, differentiation, and morphogenesis of the developing heart. Moreover, the importance of miRNA function in cardiac development has facilitated the identification of prospective therapeutic targets for patients with congenital and acquired cardiac diseases. Here, we discuss findings attesting to the critical role of miRNAs in cardiogenesis and cardiac regeneration, and present evidence regarding the therapeutic potential of miRNAs for cardiovascular diseases.
Collapse
|
43
|
Swope D, Kramer J, King TR, Cheng YS, Kramer SG. Cdc42 is required in a genetically distinct subset of cardiac cells during Drosophila dorsal vessel closure. Dev Biol 2014; 392:221-32. [PMID: 24949939 DOI: 10.1016/j.ydbio.2014.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/19/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
The embryonic heart tube is formed by the migration and subsequent midline convergence of two bilateral heart fields. In Drosophila the heart fields are organized into two rows of cardioblasts (CBs). While morphogenesis of the dorsal ectoderm, which lies directly above the Drosophila dorsal vessel (DV), has been extensively characterized, the migration and concomitant fundamental factors facilitating DV formation remain poorly understood. Here we provide evidence that DV closure occurs at multiple independent points along the A-P axis of the embryo in a "buttoning" pattern, divergent from the zippering mechanism observed in the overlying epidermis during dorsal closure. Moreover, we demonstrate that a genetically distinct subset of CBs is programmed to make initial contact with the opposing row. To elucidate the cellular mechanisms underlying this process, we examined the role of Rho GTPases during cardiac migration using inhibitory and overexpression approaches. We found that Cdc42 shows striking cell-type specificity during DV formation. Disruption of Cdc42 function specifically prevents CBs that express the homeobox gene tinman from completing their dorsal migration, resulting in a failure to make connections with their partnering CBs. Conversely, neighboring CBs that express the orphan nuclear receptor, seven-up, are not sensitive to Cdc42 inhibition. Furthermore, this phenotype was specific to Cdc42 and was not observed upon perturbation of Rac or Rho function. Together with the observation that DV closure occurs through the initial contralateral pairing of tinman-expressing CBs, our studies suggest that the distinct buttoning mechanism we propose for DV closure is elaborated through signaling pathways regulating Cdc42 activity in this cell type.
Collapse
Affiliation(s)
- David Swope
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Joseph Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Tiffany R King
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA; Graduate Program in Cell and Developmental Biology, Rutgers Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Yi-Shan Cheng
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Sunita G Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA; Graduate Program in Cell and Developmental Biology, Rutgers Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA.
| |
Collapse
|
44
|
Methods to assess Drosophila heart development, function and aging. Methods 2014; 68:265-72. [PMID: 24727147 DOI: 10.1016/j.ymeth.2014.03.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 12/11/2022] Open
Abstract
In recent years the Drosophila heart has become an established model for many different aspects of human cardiac disease. This model has allowed identification of disease-causing mechanisms underlying congenital heart disease and cardiomyopathies and has permitted the study of underlying genetic, metabolic and age-related contributions to heart function. In this review we discuss methods currently employed in the analysis of the Drosophila heart structure and function, such as optical methods to infer heart function and performance, electrophysiological and mechanical approaches to characterize cardiac tissue properties, and conclude with histological techniques used in the study of heart development and adult structure.
Collapse
|
45
|
Transcriptional networks regulating the costamere, sarcomere, and other cytoskeletal structures in striated muscle. Cell Mol Life Sci 2013; 71:1641-56. [PMID: 24218011 DOI: 10.1007/s00018-013-1512-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
Abstract
Structural abnormalities in striated muscle have been observed in numerous transcription factor gain- and loss-of-function phenotypes in animal and cell culture model systems, indicating that transcription is important in regulating the cytoarchitecture. While most characterized cytoarchitectural defects are largely indistinguishable by histological and ultrastructural criteria, analysis of dysregulated gene expression in each mutant phenotype has yielded valuable information regarding specific structural gene programs that may be uniquely controlled by each of these transcription factors. Linking the formation and maintenance of each subcellular structure or subset of proteins within a cytoskeletal compartment to an overlapping but distinct transcription factor cohort may enable striated muscle to control cytoarchitectural function in an efficient and specific manner. Here we summarize the available evidence that connects transcription factors, those with established roles in striated muscle such as MEF2 and SRF, as well as other non-muscle transcription factors, to the regulation of a defined cytoskeletal structure. The notion that genes encoding proteins localized to the same subcellular compartment are coordinately transcriptionally regulated may prompt rationally designed approaches that target specific transcription factor pathways to correct structural defects in muscle disease.
Collapse
|
46
|
Pan JB, Ji N, Pan W, Hong R, Wang H, Ji ZL. High-throughput identification of off-targets for the mechanistic study of severe adverse drug reactions induced by analgesics. Toxicol Appl Pharmacol 2013; 274:24-34. [PMID: 24176876 DOI: 10.1016/j.taap.2013.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/01/2013] [Accepted: 10/17/2013] [Indexed: 01/18/2023]
Abstract
Drugs may induce adverse drug reactions (ADRs) when they unexpectedly bind to proteins other than their therapeutic targets. Identification of these undesired protein binding partners, called off-targets, can facilitate toxicity assessment in the early stages of drug development. In this study, a computational framework was introduced for the exploration of idiosyncratic mechanisms underlying analgesic-induced severe adverse drug reactions (SADRs). The putative analgesic-target interactions were predicted by performing reverse docking of analgesics or their active metabolites against human/mammal protein structures in a high-throughput manner. Subsequently, bioinformatics analyses were undertaken to identify ADR-associated proteins (ADRAPs) and pathways. Using the pathways and ADRAPs that this analysis identified, the mechanisms of SADRs such as cardiac disorders were explored. For instance, 53 putative ADRAPs and 24 pathways were linked with cardiac disorders, of which 10 ADRAPs were confirmed by previous experiments. Moreover, it was inferred that pathways such as base excision repair, glycolysis/glyconeogenesis, ErbB signaling, calcium signaling, and phosphatidyl inositol signaling likely play pivotal roles in drug-induced cardiac disorders. In conclusion, our framework offers an opportunity to globally understand SADRs at the molecular level, which has been difficult to realize through experiments. It also provides some valuable clues for drug repurposing.
Collapse
Affiliation(s)
- Jian-Bo Pan
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Nan Ji
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Wen Pan
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Ru Hong
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Hao Wang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zhi-Liang Ji
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
47
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
48
|
Abstract
Heart development involves the precise orchestration of gene expression during cardiac differentiation and morphogenesis by evolutionarily conserved regulatory networks. miRNAs (microRNAs) play important roles in the post-transcriptional regulation of gene expression, and recent studies have established critical functions for these tiny RNAs in almost every facet of cardiac development and disease. The realization that miRNAs are amenable to therapeutic manipulation has also generated considerable interest in the potential of miRNA-based drugs for the treatment of a number of human diseases, including cardiovascular disease. In the present review, I discuss well-established and emerging roles of miRNAs in cardiac development, their relevance to congenital heart disease and unresolved questions in the field for future investigation, as well as emerging therapeutic possibilities for cardiac regeneration.
Collapse
|
49
|
Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. EMBO J 2013; 32:1805-16. [PMID: 23756463 PMCID: PMC3981183 DOI: 10.1038/emboj.2013.134] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/23/2013] [Indexed: 02/07/2023] Open
Abstract
Cardiogenesis in mammals requires exquisite control of gene expression and faulty regulation of transcriptional programs underpins congenital heart disease (CHD), the most common defect among live births. Similarly, many adult cardiac diseases involve transcriptional changes and sometimes have a developmental basis. Long non-coding RNAs (lncRNAs) are a novel class of transcripts that regulate cellular processes by controlling gene expression; however, detailed insights into their biological and mechanistic functions are only beginning to emerge. Here, we discuss recent findings suggesting that lncRNAs are important factors in regulation of mammalian cardiogenesis and in the pathogenesis of CHD as well as adult cardiac disease. We also outline potential methodological and conceptual considerations for future studies of lncRNAs in the heart and other contexts.
Collapse
|
50
|
Asgari S. MicroRNA functions in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:388-97. [PMID: 23103375 DOI: 10.1016/j.ibmb.2012.10.005] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 05/14/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are generated in all eukaryotes and viruses. Their role as master regulators of gene expression in various biological processes has only been fully appreciated over the last decade. Accumulating evidence suggests that alterations in the expression of miRNAs may lead to disorders, including developmental defects, diseases and cancer. Here, I review what is currently known about miRNA functions in insects to provide an insight into their diverse roles in insect biology.
Collapse
Affiliation(s)
- Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, St Lucia, QLD 4072, Australia.
| |
Collapse
|