1
|
Jain N, Gomkale R, Rehling P. TOM-TIM23 supercomplex formation. Methods Enzymol 2024; 707:3-22. [PMID: 39488380 DOI: 10.1016/bs.mie.2024.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Mitochondria import the vast majority of proteins from the cytosol. Protein translocation machineries in outer and inner membranes facilitate precursor recognition and transport. Most mitochondrial proteins utilize N-terminal presequences as targeting signals that eventually direct them across the inner mitochondrial membrane. These precursors are transported by the TOM complex across the outer-, and subsequently by the TIM23 complex across the inner membrane. During this process the translocases align and the polypeptide chain is translocated across both membranes in a coupled manner. A transient precursor-containing TOM-TIM23 supercomplex is formed. This TOM-TIM23 supercomplex provides a fascinating import intermediate which can be stabilized if the precursor contains a tightly folded moiety at the C-terminus that is not able to pass through the TOM complex. Such a supercomplex can be generated during in vitro import, and in vivo. The stabilized TOM-TIM23 supercomplex can be purified for downstream analysis. The possibility of pausing translocation at this step provides a means to understand the mechanisms underlying precursor translocation.
Collapse
Affiliation(s)
- Naintara Jain
- Institute for Cellular Biochemistry, University of Goettingen, Goettingen, Germany
| | - Ridhima Gomkale
- Institute for Cellular Biochemistry, University of Goettingen, Goettingen, Germany
| | - Peter Rehling
- Institute for Cellular Biochemistry, University of Goettingen, Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Goettingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany.
| |
Collapse
|
2
|
Genge MG, Roy Chowdhury S, Dohnálek V, Yunoki K, Hirashima T, Endo T, Doležal P, Mokranjac D. Two domains of Tim50 coordinate translocation of proteins across the two mitochondrial membranes. Life Sci Alliance 2023; 6:e202302122. [PMID: 37748811 PMCID: PMC10520260 DOI: 10.26508/lsa.202302122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Hundreds of mitochondrial proteins with N-terminal presequences are translocated across the outer and inner mitochondrial membranes via the TOM and TIM23 complexes, respectively. How translocation of proteins across two mitochondrial membranes is coordinated is largely unknown. Here, we show that the two domains of Tim50 in the intermembrane space, named core and PBD, both have essential roles in this process. Building upon the surprising observation that the two domains of Tim50 can complement each other in trans, we establish that the core domain contains the main presequence-binding site and serves as the main recruitment point to the TIM23 complex. On the other hand, the PBD plays, directly or indirectly, a critical role in cooperation of the TOM and TIM23 complexes and supports the receptor function of Tim50. Thus, the two domains of Tim50 both have essential but distinct roles and together coordinate translocation of proteins across two mitochondrial membranes.
Collapse
Affiliation(s)
- Marcel G Genge
- Biocenter-Department of Cell Biology, LMU Munich, Munich, Germany
| | | | - Vít Dohnálek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kaori Yunoki
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Takashi Hirashima
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Toshiya Endo
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Dejana Mokranjac
- Biocenter-Department of Cell Biology, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
4
|
Kadam A, Jadiya P, Tomar D. Post-translational modifications and protein quality control of mitochondrial channels and transporters. Front Cell Dev Biol 2023; 11:1196466. [PMID: 37601094 PMCID: PMC10434574 DOI: 10.3389/fcell.2023.1196466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Mitochondria play a critical role in energy metabolism and signal transduction, which is tightly regulated by proteins, metabolites, and ion fluxes. Metabolites and ion homeostasis are mainly mediated by channels and transporters present on mitochondrial membranes. Mitochondria comprise two distinct compartments, the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM), which have differing permeabilities to ions and metabolites. The OMM is semipermeable due to the presence of non-selective molecular pores, while the IMM is highly selective and impermeable due to the presence of specialized channels and transporters which regulate ion and metabolite fluxes. These channels and transporters are modulated by various post-translational modifications (PTMs), including phosphorylation, oxidative modifications, ions, and metabolites binding, glycosylation, acetylation, and others. Additionally, the mitochondrial protein quality control (MPQC) system plays a crucial role in ensuring efficient molecular flux through the mitochondrial membranes by selectively removing mistargeted or defective proteins. Inefficient functioning of the transporters and channels in mitochondria can disrupt cellular homeostasis, leading to the onset of various pathological conditions. In this review, we provide a comprehensive overview of the current understanding of mitochondrial channels and transporters in terms of their functions, PTMs, and quality control mechanisms.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
5
|
Makki A, Rehling P. Protein transport along the presequence pathway. Biol Chem 2023; 404:807-812. [PMID: 37155927 DOI: 10.1515/hsz-2023-0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Most mitochondrial proteins are nuclear-encoded and imported by the protein import machinery based on specific targeting signals. The proteins that carry an amino-terminal targeting signal (presequence) are imported via the presequence import pathway that involves the translocases of the outer and inner membranes - TOM and TIM23 complexes. In this article, we discuss how mitochondrial matrix and inner membrane precursor proteins are imported along the presequence pathway in Saccharomyces cerevisiae with a focus on the dynamics of the TIM23 complex, and further update with some of the key findings that advanced the field in the last few years.
Collapse
Affiliation(s)
- Abhijith Makki
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077 Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Göttingen, Germany
| |
Collapse
|
6
|
Jain N, Gomkale R, Bernhard O, Rehling P, Cruz-Zaragoza LD. A quantitative fluorescence-based approach to study mitochondrial protein import. EMBO Rep 2023; 24:e55760. [PMID: 36938994 PMCID: PMC10157374 DOI: 10.15252/embr.202255760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/22/2023] [Accepted: 02/17/2023] [Indexed: 03/21/2023] Open
Abstract
Mitochondria play central roles in cellular energy production and metabolism. Most proteins required to carry out these functions are synthesized in the cytosol and imported into mitochondria. A growing number of metabolic disorders arising from mitochondrial dysfunction can be traced to errors in mitochondrial protein import. The mechanisms underlying the import of precursor proteins are commonly studied using radioactively labeled precursor proteins imported into purified mitochondria. Here, we establish a fluorescence-based import assay to analyze protein import into mitochondria. We show that fluorescently labeled precursors enable import analysis with similar sensitivity to those using radioactive precursors, yet they provide the advantage of quantifying import with picomole resolution. We adapted the import assay to a 96-well plate format allowing for fast analysis in a screening-compatible format. Moreover, we show that fluorescently labeled precursors can be used to monitor the assembly of the F1 F0 ATP synthase in purified mitochondria. Thus, we provide a sensitive fluorescence-based import assay that enables quantitative and fast import analysis.
Collapse
Affiliation(s)
- Naintara Jain
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Ridhima Gomkale
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Olaf Bernhard
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.,Max Planck Institute for Multidisciplinary Science, Göttingen, Germany
| | | |
Collapse
|
7
|
Protein import motor complex reacts to mitochondrial misfolding by reducing protein import and activating mitophagy. Nat Commun 2022; 13:5164. [PMID: 36056001 PMCID: PMC9440083 DOI: 10.1038/s41467-022-32564-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
Mitophagy is essential to maintain mitochondrial function and prevent diseases. It activates upon mitochondria depolarization, which causes PINK1 stabilization on the mitochondrial outer membrane. Strikingly, a number of conditions, including mitochondrial protein misfolding, can induce mitophagy without a loss in membrane potential. The underlying molecular details remain unclear. Here, we report that a loss of mitochondrial protein import, mediated by the pre-sequence translocase-associated motor complex PAM, is sufficient to induce mitophagy in polarized mitochondria. A genome-wide CRISPR/Cas9 screen for mitophagy inducers identifies components of the PAM complex. Protein import defects are able to induce mitophagy without a need for depolarization. Upon mitochondrial protein misfolding, PAM dissociates from the import machinery resulting in decreased protein import and mitophagy induction. Our findings extend the current mitophagy model to explain mitophagy induction upon conditions that do not affect membrane polarization, such as mitochondrial protein misfolding. Mitophagy activation is mediated by mitochondrial depolarization. Here, the authors show that mitochondrial protein misfolding can activate mitophagy in a depolarization-independent manner mediated by a protein import reduction.
Collapse
|
8
|
Genge MG, Mokranjac D. Coordinated Translocation of Presequence-Containing Precursor Proteins Across Two Mitochondrial Membranes: Knowns and Unknowns of How TOM and TIM23 Complexes Cooperate With Each Other. Front Physiol 2022; 12:806426. [PMID: 35069261 PMCID: PMC8770809 DOI: 10.3389/fphys.2021.806426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
The vast majority of mitochondrial proteins are encoded in the nuclear genome and synthesized on cytosolic ribosomes as precursor proteins with specific mitochondrial targeting signals. Mitochondrial targeting signals are very diverse, however, about 70% of mitochondrial proteins carry cleavable, N-terminal extensions called presequences. These amphipathic helices with one positively charged and one hydrophobic surface target proteins to the mitochondrial matrix with the help of the TOM and TIM23 complexes in the outer and inner membranes, respectively. Translocation of proteins across the two mitochondrial membranes does not take place independently of each other. Rather, in the intermembrane space, where the two complexes meet, components of the TOM and TIM23 complexes form an intricate network of protein-protein interactions that mediates initially transfer of presequences and then of the entire precursor proteins from the outer to the inner mitochondrial membrane. In this Mini Review, we summarize our current understanding of how the TOM and TIM23 complexes cooperate with each other and highlight some of the future challenges and unresolved questions in the field.
Collapse
Affiliation(s)
| | - Dejana Mokranjac
- Biozentrum — Department of Cell Biology, LMU Munich, Munich, Germany
| |
Collapse
|
9
|
Mapping protein interactions in the active TOM-TIM23 supercomplex. Nat Commun 2021; 12:5715. [PMID: 34588454 PMCID: PMC8481542 DOI: 10.1038/s41467-021-26016-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/19/2021] [Indexed: 11/10/2022] Open
Abstract
Nuclear-encoded mitochondrial proteins destined for the matrix have to be transported across two membranes. The TOM and TIM23 complexes facilitate the transport of precursor proteins with N-terminal targeting signals into the matrix. During transport, precursors are recognized by the TIM23 complex in the inner membrane for handover from the TOM complex. However, we have little knowledge on the organization of the TOM-TIM23 transition zone and on how precursor transfer between the translocases occurs. Here, we have designed a precursor protein that is stalled during matrix transport in a TOM-TIM23-spanning manner and enables purification of the translocation intermediate. Combining chemical cross-linking with mass spectrometric analyses and structural modeling allows us to map the molecular environment of the intermembrane space interface of TOM and TIM23 as well as the import motor interactions with amino acid resolution. Our analyses provide a framework for understanding presequence handover and translocation during matrix protein transport. The TOM and TIM23 complexes facilitate the transport of nuclear-encoded proteins into the mitochondrial matrix. Here, the authors use a stalled client protein to purify the translocation supercomplex and gain insight into the TOM-TIM23 interface and the mechanism of protein handover from the TOM to the TIM23 complex.
Collapse
|
10
|
Dimogkioka AR, Lees J, Lacko E, Tokatlidis K. Protein import in mitochondria biogenesis: guided by targeting signals and sustained by dedicated chaperones. RSC Adv 2021; 11:32476-32493. [PMID: 35495482 PMCID: PMC9041937 DOI: 10.1039/d1ra04497d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/25/2021] [Indexed: 12/31/2022] Open
Abstract
Mitochondria have a central role in cellular metabolism; they are responsible for the biosynthesis of amino acids, lipids, iron-sulphur clusters and regulate apoptosis. About 99% of mitochondrial proteins are encoded by nuclear genes, so the biogenesis of mitochondria heavily depends on protein import pathways into the organelle. An intricate system of well-studied import machinery facilitates the import of mitochondrial proteins. In addition, folding of the newly synthesized proteins takes place in a busy environment. A system of folding helper proteins, molecular chaperones and co-chaperones, are present to maintain proper conformation and thus avoid protein aggregation and premature damage. The components of the import machinery are well characterised, but the targeting signals and how they are recognised and decoded remains in some cases unclear. Here we provide some detail on the types of targeting signals involved in the protein import process. Furthermore, we discuss the very elaborate chaperone systems of the intermembrane space that are needed to overcome the particular challenges for the folding process in this compartment. The mechanisms that sustain productive folding in the face of aggregation and damage in mitochondria are critical components of the stress response and play an important role in cell homeostasis.
Collapse
Affiliation(s)
- Anna-Roza Dimogkioka
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow University Avenue Glasgow G12 8QQ Scotland UK
| | - Jamie Lees
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow University Avenue Glasgow G12 8QQ Scotland UK
| | - Erik Lacko
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow University Avenue Glasgow G12 8QQ Scotland UK
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow University Avenue Glasgow G12 8QQ Scotland UK
| |
Collapse
|
11
|
Callegari S, Cruz-Zaragoza LD, Rehling P. From TOM to the TIM23 complex - handing over of a precursor. Biol Chem 2021; 401:709-721. [PMID: 32074073 DOI: 10.1515/hsz-2020-0101] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
Mitochondrial precursor proteins with amino-terminal presequences are imported via the presequence pathway, utilizing the TIM23 complex for inner membrane translocation. Initially, the precursors pass the outer membrane through the TOM complex and are handed over to the TIM23 complex where they are sorted into the inner membrane or translocated into the matrix. This handover process depends on the receptor proteins at the inner membrane, Tim50 and Tim23, which are critical for efficient import. In this review, we summarize key findings that shaped the current concepts of protein translocation along the presequence import pathway, with a particular focus on the precursor handover process from TOM to the TIM23 complex. In addition, we discuss functions of the human TIM23 pathway and the recently uncovered pathogenic mutations in TIM50.
Collapse
Affiliation(s)
- Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Luis Daniel Cruz-Zaragoza
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany.,Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| |
Collapse
|
12
|
Transmembrane Coordination of Preprotein Recognition and Motor Coupling by the Mitochondrial Presequence Receptor Tim50. Cell Rep 2021; 30:3092-3104.e4. [PMID: 32130909 DOI: 10.1016/j.celrep.2020.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/13/2019] [Accepted: 02/07/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial preproteins contain amino-terminal presequences directing them to the presequence translocase of the mitochondrial inner membrane (TIM23 complex). Depending on additional downstream import signals, TIM23 either inserts preproteins into the inner membrane or translocates them into the matrix. Matrix import requires the coupling of the presequence translocase-associated motor (PAM) to TIM23. The molecular mechanisms coordinating preprotein recognition by TIM23 in the intermembrane space (IMS) with PAM activation in the matrix are unknown. Here we show that subsequent to presequence recognition in the IMS, the Tim50 matrix domain facilitates the recruitment of the coupling factor Pam17. Next, the IMS domain of Tim50 promotes PAM recruitment to TIM23. Finally, the Tim50 transmembrane segment stimulates the matrix-directed import-driving force exerted by PAM. We propose that recognition of preprotein segments in the IMS and transfer of signal information across the inner membrane by Tim50 determine import motor activation.
Collapse
|
13
|
Palmer CS, Anderson AJ, Stojanovski D. Mitochondrial protein import dysfunction: mitochondrial disease, neurodegenerative disease and cancer. FEBS Lett 2021; 595:1107-1131. [PMID: 33314127 DOI: 10.1002/1873-3468.14022] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
The majority of proteins localised to mitochondria are encoded by the nuclear genome, with approximately 1500 proteins imported into mammalian mitochondria. Dysfunction in this fundamental cellular process is linked to a variety of pathologies including neuropathies, cardiovascular disorders, myopathies, neurodegenerative diseases and cancer, demonstrating the importance of mitochondrial protein import machinery for cellular function. Correct import of proteins into mitochondria requires the co-ordinated activity of multimeric protein translocation and sorting machineries located in both the outer and inner mitochondrial membranes, directing the imported proteins to the destined mitochondrial compartment. This dynamic process maintains cellular homeostasis, and its dysregulation significantly affects cellular signalling pathways and metabolism. This review summarises current knowledge of the mammalian mitochondrial import machinery and the pathological consequences of mutation of its components. In addition, we will discuss the role of mitochondrial import in cancer, and our current understanding of the role of mitochondrial import in neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Catherine S Palmer
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
14
|
Singh AP, Salvatori R, Aftab W, Kohler A, Carlström A, Forne I, Imhof A, Ott M. Molecular Connectivity of Mitochondrial Gene Expression and OXPHOS Biogenesis. Mol Cell 2020; 79:1051-1065.e10. [PMID: 32877643 DOI: 10.1016/j.molcel.2020.07.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023]
Abstract
Mitochondria contain their own gene expression systems, including membrane-bound ribosomes dedicated to synthesizing a few hydrophobic subunits of the oxidative phosphorylation (OXPHOS) complexes. We used a proximity-dependent biotinylation technique, BioID, coupled with mass spectrometry to delineate in baker's yeast a comprehensive network of factors involved in biogenesis of mitochondrial encoded proteins. This mitochondrial gene expression network (MiGENet) encompasses proteins involved in transcription, RNA processing, translation, or protein biogenesis. Our analyses indicate the spatial organization of these processes, thereby revealing basic mechanistic principles and the proteins populating strategically important sites. For example, newly synthesized proteins are directly handed over to ribosomal tunnel exit-bound factors that mediate membrane insertion, co-factor acquisition, or their mounting into OXPHOS complexes in a special early assembly hub. Collectively, the data reveal the connectivity of mitochondrial gene expression, reflecting a unique tailoring of the mitochondrial gene expression system.
Collapse
Affiliation(s)
- Abeer Prakash Singh
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Roger Salvatori
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Wasim Aftab
- BioMedical Center, Faculty of Medicine, Ludwig Maximilians University of Munich, 82152 Planegg-Martinsried, Germany; Graduate School for Quantitative Biosciences (QBM), Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Andreas Kohler
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Andreas Carlström
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Ignasi Forne
- BioMedical Center, Faculty of Medicine, Ludwig Maximilians University of Munich, 82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- BioMedical Center, Faculty of Medicine, Ludwig Maximilians University of Munich, 82152 Planegg-Martinsried, Germany
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
15
|
Günsel U, Paz E, Gupta R, Mathes I, Azem A, Mokranjac D. InVivo Dissection of the Intrinsically Disordered Receptor Domain of Tim23. J Mol Biol 2020; 432:3326-3337. [PMID: 32277989 DOI: 10.1016/j.jmb.2020.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 01/11/2023]
Abstract
In the intermembrane space (IMS) of mitochondria, the receptor domain of Tim23 has an essential role during translocation of hundreds of different proteins from the cytosol via the TOM and TIM23 complexes in the outer and inner membranes, respectively. This intrinsically disordered domain, which can even extend into the cytosol, was shown, mostly in vitro, to interact with several subunits of the TOM and TIM23 complexes. To obtain molecular understanding of this organizational hub in the IMS, we dissected the IMS domain of Tim23 in vivo. We show that the interaction surface of Tim23 with Tim50 is larger than previously thought and reveal an unexpected interaction of Tim23 with Pam17 in the IMS, impairment of which influences their interaction in the matrix. Furthermore, mutations of two conserved negatively charged residues of Tim23, close to the inner membrane, prevented dimerization of Tim23. The same mutations increased exposure of Tim23 on the mitochondrial surface, whereas dissipation of membrane potential decreased it. Our results reveal an intricate network of Tim23 interactions in the IMS, whose influence is transduced across two mitochondrial membranes, ensuring efficient translocation of proteins into mitochondria.
Collapse
Affiliation(s)
- Umut Günsel
- BMC-Physiological Chemistry, LMU Munich, 82152 Martinsried, Germany
| | - Eyal Paz
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ruhita Gupta
- BMC-Physiological Chemistry, LMU Munich, 82152 Martinsried, Germany
| | | | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dejana Mokranjac
- BMC-Physiological Chemistry, LMU Munich, 82152 Martinsried, Germany.
| |
Collapse
|
16
|
Pacheu-Grau D, Wasilewski M, Oeljeklaus S, Gibhardt CS, Aich A, Chudenkova M, Dennerlein S, Deckers M, Bogeski I, Warscheid B, Chacinska A, Rehling P. COA6 Facilitates Cytochrome c Oxidase Biogenesis as Thiol-reductase for Copper Metallochaperones in Mitochondria. J Mol Biol 2020; 432:2067-2079. [PMID: 32061935 PMCID: PMC7254062 DOI: 10.1016/j.jmb.2020.01.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
The mitochondrial cytochrome c oxidase, the terminal enzyme of the respiratory chain, contains heme and copper centers for electron transfer. The conserved COX2 subunit contains the CuA site, a binuclear copper center. The copper chaperones SCO1, SCO2, and COA6, are required for CuA center formation. Loss of function of these chaperones and the concomitant cytochrome c oxidase deficiency cause severe human disorders. Here we analyzed the molecular function of COA6 and the consequences of COA6 deficiency for mitochondria. Our analyses show that loss of COA6 causes combined complex I and complex IV deficiency and impacts membrane potential-driven protein transport across the inner membrane. We demonstrate that COA6 acts as a thiol-reductase to reduce disulfide bridges of critical cysteine residues in SCO1 and SCO2. Cysteines within the CX3CXNH domain of SCO2 mediate its interaction with COA6 but are dispensable for SCO2-SCO1 interaction. Our analyses define COA6 as thiol-reductase, which is essential for CuA biogenesis.
Collapse
Affiliation(s)
- David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany.
| | - Michał Wasilewski
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland; ReMedy International Research Agenda Unit, Centre of New Technologies, University of Warsaw, Poland
| | - Silke Oeljeklaus
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, D-79104 Freiburg, Germany
| | - Christine Silvia Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Margarita Chudenkova
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, D-79104 Freiburg, Germany
| | - Agnieszka Chacinska
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland; ReMedy International Research Agenda Unit, Centre of New Technologies, University of Warsaw, Poland
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany; Max-Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| |
Collapse
|
17
|
Guan Z, Wang Y, Wang Y, Liu X, Wang Y, Zhang W, Chi X, Dong Y, Liu X, Shao S, Zhan Q. Long non-coding RNA LOC100133669 promotes cell proliferation in oesophageal squamous cell carcinoma. Cell Prolif 2020; 53:e12750. [PMID: 32130753 PMCID: PMC7162797 DOI: 10.1111/cpr.12750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/30/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022] Open
Abstract
Objectives LOC100133669 is a lncRNA whose function during tumorigenesis remains unclear now. Thus, we aimed to explore its clinical significance and function in oesophageal squamous cell carcinoma (ESCC). Materials and Methods ISH was used to detect LOC100133669 expression in ESCC tissues. The full‐length LOC100133669 was identified by using RACE assay. Subcellular distribution of LOC100133669 was examined by nuclear/cytoplasmic RNA fractionation and qPCR. The role of LOC100133669 in ESCC cell growth was determined by colony formation, MTT and flow cytometry experiments in vitro, as well as xenograft tumour experiment in vivo. RNA pull‐down assay was performed to find LOC100133669‐interacted protein, which was further examined by RIP, IP, Western blot and rescue experiments. Results LOC100133669 was upregulated in ESCC tissues compared with adjacent non‐tumour tissues. High LOC100133669 expression was associated with poor prognosis of patients with ESCC. We defined LOC100133669 to be 831 nt in length and mainly localized in the cytoplasm of ESCC cells. Knockdown of LOC100133669 inhibited ESCC cell proliferation and cell cycle progression, while overexpression of LOC100133669 showed the opposite effects. Furthermore, LOC100133669 could bind to Tim50 and upregulated its protein level through inhibiting ubiquitination. Overexpression of Tim50 in part abolished the LOC100133669 depletion–caused inhibitory effect on ESCC cell proliferation. Conclusions LOC100133669 plays an oncogenic role in ESCC and may serve as a promising diagnostic marker and therapeutic target for ESCC patients.
Collapse
Affiliation(s)
- Zhuzhu Guan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yali Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaoxu Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xinming Chi
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, Dalian, China
| | - Yan Dong
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Xuefeng Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shujuan Shao
- Liaoning Key Laboratory of Proteomics, Dalian Medical University, Dalian, China
| | - Qimin Zhan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
18
|
Schlotawa L, Wachs M, Bernhard O, Mayer FJ, Dierks T, Schmidt B, Radhakrishnan K. Recognition and ER Quality Control of Misfolded Formylglycine-Generating Enzyme by Protein Disulfide Isomerase. Cell Rep 2019; 24:27-37.e4. [PMID: 29972788 DOI: 10.1016/j.celrep.2018.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 04/12/2018] [Accepted: 06/01/2018] [Indexed: 11/19/2022] Open
Abstract
Multiple sulfatase deficiency (MSD) is a fatal, inherited lysosomal storage disorder characterized by reduced activities of all sulfatases in patients. Sulfatases require a unique post-translational modification of an active-site cysteine to formylglycine that is catalyzed by the formylglycine-generating enzyme (FGE). FGE mutations that affect intracellular protein stability determine residual enzyme activity and disease severity in MSD patients. Here, we show that protein disulfide isomerase (PDI) plays a pivotal role in the recognition and quality control of MSD-causing FGE variants. Overexpression of PDI reduces the residual activity of unstable FGE variants, whereas inhibition of PDI function rescues the residual activity of sulfatases in MSD fibroblasts. Mass spectrometric analysis of a PDI+FGE variant covalent complex allowed determination of the molecular signature for FGE recognition by PDI. Our findings highlight the role of PDI as a disease modifier in MSD, which may also be relevant for other ER-associated protein folding pathologies.
Collapse
Affiliation(s)
- Lars Schlotawa
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, UK
| | - Michaela Wachs
- Department of Chemistry, Biochemistry I, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Olaf Bernhard
- Department of Cellular Biochemistry, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Franz J Mayer
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Thomas Dierks
- Department of Chemistry, Biochemistry I, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Bernhard Schmidt
- Department of Cellular Biochemistry, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Karthikeyan Radhakrishnan
- Department of Chemistry, Biochemistry I, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany; Department of Cellular Biochemistry, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| |
Collapse
|
19
|
Tucker K, Park E. Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution. Nat Struct Mol Biol 2019; 26:1158-1166. [PMID: 31740857 DOI: 10.1038/s41594-019-0339-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/23/2019] [Indexed: 11/09/2022]
Abstract
Nearly all mitochondrial proteins are encoded by the nuclear genome and imported into mitochondria after synthesis on cytosolic ribosomes. These precursor proteins are translocated into mitochondria by the TOM complex, a protein-conducting channel in the mitochondrial outer membrane. We have determined high-resolution cryo-EM structures of the core TOM complex from Saccharomyces cerevisiae in dimeric and tetrameric forms. Dimeric TOM consists of two copies each of five proteins arranged in two-fold symmetry: pore-forming β-barrel protein Tom40 and four auxiliary α-helical transmembrane proteins. The pore of each Tom40 has an overall negatively charged inner surface attributed to multiple functionally important acidic patches. The tetrameric complex is essentially a dimer of dimeric TOM, which may be capable of forming higher-order oligomers. Our study reveals the detailed molecular organization of the TOM complex and provides new insights about the mechanism of protein translocation into mitochondria.
Collapse
Affiliation(s)
- Kyle Tucker
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Eunyong Park
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
20
|
Mitochondrial presequence import: Multiple regulatory knobs fine-tune mitochondrial biogenesis and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:930-944. [PMID: 30802482 DOI: 10.1016/j.bbamcr.2019.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
Mitochondria are pivotal organelles for cellular signaling and metabolism, and their dysfunction leads to severe cellular stress. About 60-70% of the mitochondrial proteome consists of preproteins synthesized in the cytosol with an amino-terminal cleavable presequence targeting signal. The TIM23 complex transports presequence signals towards the mitochondrial matrix. Ultimately, the mature protein segments are either transported into the matrix or sorted to the inner membrane. To ensure accurate preprotein import into distinct mitochondrial sub-compartments, the TIM23 machinery adopts specific functional conformations and interacts with different partner complexes. Regulatory subunits modulate the translocase dynamics, tailoring the import reaction to the incoming preprotein. The mitochondrial membrane potential and the ATP generated via oxidative phosphorylation are key energy sources in driving the presequence import pathway. Thus, mitochondrial dysfunctions have rapid repercussions on biogenesis. Cellular mechanisms exploit the presequence import pathway to monitor mitochondrial dysfunctions and mount transcriptional and proteostatic responses to restore functionality.
Collapse
|
21
|
A mutagenesis analysis of Tim50, the major receptor of the TIM23 complex, identifies regions that affect its interaction with Tim23. Sci Rep 2019; 9:2012. [PMID: 30765764 PMCID: PMC6375917 DOI: 10.1038/s41598-018-38353-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/27/2018] [Indexed: 12/03/2022] Open
Abstract
Maintenance of the mitochondrial proteome depends on import of newly made proteins from the cytosol. More than half of mitochondrial proteins are made as precursor proteins with N-terminal extensions called presequences and use the TIM23 complex for translocation into the matrix, the inner mitochondrial membrane and the intermembrane space (IMS). Tim50 is the central receptor of the complex that recognizes precursor proteins in the IMS. Additionally, Tim50 interacts with the IMS domain of the channel forming subunit, Tim23, an interaction that is essential for protein import across the mitochondrial inner membrane. In order to gain deeper insight into the molecular function of Tim50, we used random mutagenesis to determine residues that are important for its function. The temperature-sensitive mutants isolated were defective in import of TIM23-dependent precursor proteins. The residues mutated map to two distinct patches on the surface of Tim50. Notably, mutations in both patches impaired the interaction of Tim50 with Tim23. We propose that two regions of Tim50 play a role in its interaction with Tim23 and thereby affect the import function of the complex.
Collapse
|
22
|
Richter F, Dennerlein S, Nikolov M, Jans DC, Naumenko N, Aich A, MacVicar T, Linden A, Jakobs S, Urlaub H, Langer T, Rehling P. ROMO1 is a constituent of the human presequence translocase required for YME1L protease import. J Cell Biol 2018; 218:598-614. [PMID: 30598479 PMCID: PMC6363466 DOI: 10.1083/jcb.201806093] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/18/2018] [Accepted: 11/26/2018] [Indexed: 01/15/2023] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells and rely on protein import from the cytosol. Richter et al. found ROMO1 as a new constituent of the human mitochondrial import machinery linking protein import to quality control and mitochondrial morphology. The mitochondrial presequence translocation machinery (TIM23 complex) is conserved between the yeast Saccharomyces cerevisiae and humans; however, functional characterization has been mainly performed in yeast. Here, we define the constituents of the human TIM23 complex using mass spectrometry and identified ROMO1 as a new translocase constituent with an exceptionally short half-life. Analyses of a ROMO1 knockout cell line revealed aberrant inner membrane structure and altered processing of the GTPase OPA1. We show that in the absence of ROMO1, mitochondria lose the inner membrane YME1L protease, which participates in OPA1 processing and ROMO1 turnover. While ROMO1 is dispensable for general protein import along the presequence pathway, we show that it participates in the dynamics of TIM21 during respiratory chain biogenesis and is specifically required for import of YME1L. This selective import defect can be linked to charge distribution in the unusually long targeting sequence of YME1L. Our analyses establish an unexpected link between mitochondrial protein import and inner membrane protein quality control.
Collapse
Affiliation(s)
- Frank Richter
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Miroslav Nikolov
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Daniel C Jans
- Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, University Medical Center, Göttingen, Germany
| | - Nataliia Naumenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas MacVicar
- Department of Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Andreas Linden
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, University Medical Center, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Langer
- Department of Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany .,Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
23
|
Inner Mitochondrial Translocase Tim50 Is Central in Adrenal and Testicular Steroid Synthesis. Mol Cell Biol 2018; 39:MCB.00484-18. [PMID: 30348838 DOI: 10.1128/mcb.00484-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/14/2018] [Indexed: 01/24/2023] Open
Abstract
Adrenal and gonadal mitochondrial metabolic activity requires electrons from cofactors, cholesterol, and a substrate for rapid steroid synthesis, an essential requirement for mammalian survival. Substrate activity depends on its environment, which is regulated by chaperones and mitochondrial translocases. Cytochrome P450 side-chain cleavage enzyme (SCC or CYP11A1) catalyzes cholesterol to pregnenolone conversion, although its mechanism of action is not well understood. We find that SCC is directly imported into the mitochondrial matrix, where its N-terminal sequence is cleaved sequentially, after which it becomes activated following the second cleavage, which is dependent on the folding of the protein. Following integration of the SCC C terminus into the TIM23 complex, amino acids 141 to 146 interact with the intermembrane-exposed Tim50 protein, forming a large complex. The absence of Tim50 or its mutation reduced enzymatic activity. For the first time, we report that a protein activated at the matrix remains mostly unfolded and is transported back to the IMS to integrate with the TIM23 translocase complex and align with the Tim50 protein. Amino acid changes that suppress the association of Tim50 with SCC ablate metabolic activity. Thus, the TIM23 complex is the central regulator of metabolism guided by Tim50.
Collapse
|
24
|
Motor recruitment to the TIM23 channel's lateral gate restricts polypeptide release into the inner membrane. Nat Commun 2018; 9:4028. [PMID: 30279421 PMCID: PMC6168564 DOI: 10.1038/s41467-018-06492-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/07/2018] [Indexed: 01/05/2023] Open
Abstract
The presequence translocase of the mitochondrial inner membrane (TIM23 complex) facilitates anterograde precursor transport into the matrix and lateral release of precursors with stop-transfer signal into the membrane (sorting). Sorting requires precursor exit from the translocation channel into the lipid phase through the lateral gate of the TIM23 complex. How the two transport modes are regulated and balanced against each other is unknown. Here we show that the import motor J-protein Pam18, which is essential for matrix import, controls lateral protein release into the lipid bilayer. Constitutively translocase-associated Pam18 obstructs lateral precursor transport. Concomitantly, Mgr2, implicated in precursor quality control, is displaced from the translocase. We conclude that during motor-dependent matrix protein transport, the transmembrane segment of Pam18 closes the lateral gate to promote anterograde polypeptide movement. This finding explains why a motor-free form of the translocase facilitates the lateral movement of precursors with a stop-transfer signal. The mitochondrial TIM23-complex facilitates anterograde precursor transport across the inner membrane into the matrix and lateral release of precursors into the membrane. Here authors show that the import motor J-protein Pam18 controls lateral protein release into the lipid bilayer.
Collapse
|
25
|
Reyes A, Melchionda L, Burlina A, Robinson AJ, Ghezzi D, Zeviani M. Mutations in TIMM50 compromise cell survival in OxPhos-dependent metabolic conditions. EMBO Mol Med 2018; 10:emmm.201708698. [PMID: 30190335 PMCID: PMC6180300 DOI: 10.15252/emmm.201708698] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
TIMM50 is an essential component of the TIM23 complex, the mitochondrial inner membrane machinery that imports cytosolic proteins containing a mitochondrial targeting presequence into the mitochondrial inner compartment. Whole exome sequencing (WES) identified compound heterozygous pathogenic mutations in TIMM50 in an infant patient with rapidly progressive, severe encephalopathy. Patient fibroblasts presented low levels of TIMM50 and other components of the TIM23 complex, lower mitochondrial membrane potential, and impaired TIM23-dependent protein import. As a consequence, steady-state levels of several components of mitochondrial respiratory chain were decreased, resulting in decreased respiration and increased ROS production. Growth of patient fibroblasts in galactose shifted energy production metabolism toward oxidative phosphorylation (OxPhos), producing an apparent improvement in most of the above features but also increased apoptosis. Complementation of patient fibroblasts with TIMM50 improved or restored these features to control levels. Moreover, RNASEH1 and ISCU mutant fibroblasts only shared a few of these features with TIMM50 mutant fibroblasts. Our results indicate that mutations in TIMM50 cause multiple mitochondrial bioenergetic dysfunction and that functional TIMM50 is essential for cell survival in OxPhos-dependent conditions.
Collapse
Affiliation(s)
- Aurelio Reyes
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Laura Melchionda
- Unit of Molecular NeurogeneticsFoundation Carlo Besta Neurological Institute‐IRCCSMilanItaly
| | - Alberto Burlina
- Division of Inherited Metabolic DiseasesDepartment of PediatricsUniversity Hospital PadovaPadovaItaly
| | - Alan J Robinson
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Daniele Ghezzi
- Unit of Molecular NeurogeneticsFoundation Carlo Besta Neurological Institute‐IRCCSMilanItaly
| | - Massimo Zeviani
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
26
|
Verechshagina NA, Konstantinov YM, Kamenski PA, Mazunin IO. Import of Proteins and Nucleic Acids into Mitochondria. BIOCHEMISTRY (MOSCOW) 2018; 83:643-661. [DOI: 10.1134/s0006297918060032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Backes S, Herrmann JM. Protein Translocation into the Intermembrane Space and Matrix of Mitochondria: Mechanisms and Driving Forces. Front Mol Biosci 2017; 4:83. [PMID: 29270408 PMCID: PMC5725982 DOI: 10.3389/fmolb.2017.00083] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/24/2017] [Indexed: 11/17/2022] Open
Abstract
Mitochondria contain two aqueous subcompartments, the matrix and the intermembrane space (IMS). The matrix is enclosed by both the inner and outer mitochondrial membranes, whilst the IMS is sandwiched between the two. Proteins of the matrix are synthesized in the cytosol as preproteins, which contain amino-terminal matrix targeting sequences that mediate their translocation through translocases embedded in the outer and inner membrane. For these proteins, the translocation reaction is driven by the import motor which is part of the inner membrane translocase. The import motor employs matrix Hsp70 molecules and ATP hydrolysis to ratchet proteins into the mitochondrial matrix. Most IMS proteins lack presequences and instead utilize the IMS receptor Mia40, which facilitates their translocation across the outer membrane in a reaction that is coupled to the formation of disulfide bonds within the protein. This process requires neither ATP nor the mitochondrial membrane potential. Mia40 fulfills two roles: First, it acts as a holdase, which is crucial in the import of IMS proteins and second, it functions as a foldase, introducing disulfide bonds into newly imported proteins, which induces and stabilizes their natively folded state. For several Mia40 substrates, oxidative folding is an essential prerequisite for their assembly into oligomeric complexes. Interestingly, recent studies have shown that the two functions of Mia40 can be experimentally separated from each other by the use of specific mutants, hence providing a powerful new way to dissect the different physiological roles of Mia40. In this review we summarize the current knowledge relating to the mitochondrial matrix-targeting and the IMS-targeting/Mia40 pathway. Moreover, we discuss the mechanistic properties by which the mitochondrial import motor on the one hand and Mia40 on the other, drive the translocation of their substrates into the organelle. We propose that the lateral diffusion of Mia40 in the inner membrane and the oxidation-mediated folding of incoming polypeptides supports IMS import.
Collapse
Affiliation(s)
- Sandra Backes
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
28
|
Malhotra K, Modak A, Nangia S, Daman TH, Gunsel U, Robinson VL, Mokranjac D, May ER, Alder NN. Cardiolipin mediates membrane and channel interactions of the mitochondrial TIM23 protein import complex receptor Tim50. SCIENCE ADVANCES 2017; 3:e1700532. [PMID: 28879236 PMCID: PMC5580885 DOI: 10.1126/sciadv.1700532] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/04/2017] [Indexed: 05/07/2023]
Abstract
The phospholipid cardiolipin mediates the functional interactions of proteins that reside within energy-conserving biological membranes. However, the molecular basis by which this lipid performs this essential cellular role is not well understood. We address this role of cardiolipin using the multisubunit mitochondrial TIM23 protein transport complex as a model system. The early stages of protein import by this complex require specific interactions between the polypeptide substrate receptor, Tim50, and the membrane-bound channel-forming subunit, Tim23. Using analyses performed in vivo, in isolated mitochondria, and in reductionist nanoscale model membrane systems, we show that the soluble receptor domain of Tim50 interacts with membranes and with specific sites on the Tim23 channel in a manner that is directly modulated by cardiolipin. To obtain structural insights into the nature of these interactions, we obtained the first small-angle x-ray scattering-based structure of the soluble Tim50 receptor in its entirety. Using these structural insights, molecular dynamics simulations combined with a range of biophysical measurements confirmed the role of cardiolipin in driving the association of the Tim50 receptor with lipid bilayers with concomitant structural changes, highlighting the role of key structural elements in mediating this interaction. Together, these results show that cardiolipin is required to mediate specific receptor-channel associations in the TIM23 complex. Our results support a new working model for the dynamic structural changes that occur within the complex during transport. More broadly, this work strongly advances our understanding of how cardiolipin mediates interactions among membrane-associated proteins.
Collapse
Affiliation(s)
- Ketan Malhotra
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Arnab Modak
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Shivangi Nangia
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Tyler H. Daman
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Umut Gunsel
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Victoria L. Robinson
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Dejana Mokranjac
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Eric R. May
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
- Corresponding author.
| |
Collapse
|
29
|
Denkert N, Schendzielorz AB, Barbot M, Versemann L, Richter F, Rehling P, Meinecke M. Cation selectivity of the presequence translocase channel Tim23 is crucial for efficient protein import. eLife 2017; 6. [PMID: 28857742 PMCID: PMC5578737 DOI: 10.7554/elife.28324] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/31/2017] [Indexed: 01/09/2023] Open
Abstract
Virtually all mitochondrial matrix proteins and a considerable number of inner membrane proteins carry a positively charged, N-terminal presequence and are imported by the TIM23 complex (presequence translocase) located in the inner mitochondrial membrane. The voltage-regulated Tim23 channel constitutes the actual protein-import pore wide enough to allow the passage of polypeptides with a secondary structure. In this study, we identify amino acids important for the cation selectivity of Tim23. Structure based mutants show that selectivity is provided by highly conserved, pore-lining amino acids. Mutations of these amino acid residues lead to reduced selectivity properties, reduced protein import capacity and they render the Tim23 channel insensitive to substrates. We thus show that the cation selectivity of the Tim23 channel is a key feature for substrate recognition and efficient protein import. The cells of animals, plants and other eukaryotic organisms contain compartments known as organelles that play many different roles. For example, compartments called mitochondria are responsible for supplying the chemical energy cells need to survive and grow. Two membranes surround each mitochondrion and energy is converted on the surface of the inner one. Mitochondria contain over 1,000 different proteins, most of which are produced in the main part of the cell and have to be transported into the mitochondria. A transport protein called Tim23 is part of a larger group or ‘complex’ of proteins that helps to import many other proteins into the mitochondria. This complex sits in the inner membrane, with the Tim23 protein forming a large, water-filled pore through its core that provides a route for proteins to pass through the membrane. Proteins are made of building blocks called amino acids. The proteins transported by the complex containing Tim23 all have a short chain of amino acids at one end known as an N-terminal presequence. However, it is not clear how the inside of the Tim23 channel identifies and transports this presequence to allow the right proteins to pass through the inner membrane. Denkert, Schendzielorz et al. studied the normal and mutant versions of a Tim23 channel from yeast to find out which parts of the protein are involved in detecting the N-terminal presequence after it enters the pore. The experiments show that there are several amino acids in Tim23 that play important roles in this process. Furthermore, mitochondria containing mutant Tim23 channels, that are less able to identify the N-terminal presequence, are impaired in their ability to import proteins. Tim23 proteins in humans and other organisms also contain most or all of the specific amino acids identified in this study, suggesting that the findings of Denkert, Schendzielorz et al. will also apply to other species. Furthermore, the experimental strategy used in this study could be adapted to investigate transport proteins in other cell compartments.
Collapse
Affiliation(s)
- Niels Denkert
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | | | - Mariam Barbot
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Lennart Versemann
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Frank Richter
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Göttinger Zentrum für Molekulare Biowissenschaften, Göttingen, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Göttinger Zentrum für Molekulare Biowissenschaften, Göttingen, Germany.,European Neuroscience Institute Göttingen, Göttingen, Germany
| |
Collapse
|
30
|
Straub SP, Stiller SB, Wiedemann N, Pfanner N. Dynamic organization of the mitochondrial protein import machinery. Biol Chem 2017; 397:1097-1114. [PMID: 27289000 DOI: 10.1515/hsz-2016-0145] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023]
Abstract
Mitochondria contain elaborate machineries for the import of precursor proteins from the cytosol. The translocase of the outer mitochondrial membrane (TOM) performs the initial import of precursor proteins and transfers the precursors to downstream translocases, including the presequence translocase and the carrier translocase of the inner membrane, the mitochondrial import and assembly machinery of the intermembrane space, and the sorting and assembly machinery of the outer membrane. Although the protein translocases can function as separate entities in vitro, recent studies revealed a close and dynamic cooperation of the protein import machineries to facilitate efficient transfer of precursor proteins in vivo. In addition, protein translocases were found to transiently interact with distinct machineries that function in the respiratory chain or in the maintenance of mitochondrial membrane architecture. Mitochondrial protein import is embedded in a regulatory network that ensures protein biogenesis, membrane dynamics, bioenergetic activity and quality control.
Collapse
|
31
|
Role of Tim17 Transmembrane Regions in Regulating the Architecture of Presequence Translocase and Mitochondrial DNA Stability. Mol Cell Biol 2017; 37:MCB.00491-16. [PMID: 27994013 DOI: 10.1128/mcb.00491-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/11/2016] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial life cycle and protein import are intricate cellular processes, which require precise coordination between the transport machineries of outer and inner mitochondrial membranes. Presequence translocase performs the indispensable function of translocating preproteins having N-terminal targeting sequences across the inner membrane. Tim23 forms the core of the voltage-gated import channel, while Tim17 is presumed to maintain the stoichiometry of the translocase. However, mechanistic insights into how Tim17 coordinates these regulatory events within the complex remained elusive. We demonstrate that Tim17 harbors conserved G/AXXXG/A motifs within its transmembrane regions and plays an imperative role in the translocase assembly through interaction with Tim23. Tandem motifs are highly essential, as most of the amino acid substitutions lead to nonviability due to the complete destabilization of the TIM23 channel. Importantly, Tim17 transmembrane regions regulate the dynamic assembly of translocase to form either the TIM23 (PAM)-complex or TIM23 (SORT)-complex by recruiting the presequence translocase-associated motor (PAM) machinery or Tim21, respectively. To a greater significance, tim17 mutants displayed mitochondrial DNA (mtDNA) instability, membrane potential loss, and defective import, resulting in organellar dysfunction. We conclude that the integrity of Tim17 transmembrane regions is critical for mitochondrial function and protein turnover.
Collapse
|
32
|
Demishtein-Zohary K, Günsel U, Marom M, Banerjee R, Neupert W, Azem A, Mokranjac D. Role of Tim17 in coupling the import motor to the translocation channel of the mitochondrial presequence translocase. eLife 2017; 6. [PMID: 28165323 PMCID: PMC5308891 DOI: 10.7554/elife.22696] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/06/2017] [Indexed: 12/24/2022] Open
Abstract
The majority of mitochondrial proteins use N-terminal presequences for targeting to mitochondria and are translocated by the presequence translocase. During translocation, proteins, threaded through the channel in the inner membrane, are handed over to the import motor at the matrix face. Tim17 is an essential, membrane-embedded subunit of the translocase; however, its function is only poorly understood. Here, we functionally dissected its four predicted transmembrane (TM) segments. Mutations in TM1 and TM2 impaired the interaction of Tim17 with Tim23, component of the translocation channel, whereas mutations in TM3 compromised binding of the import motor. We identified residues in the matrix-facing region of Tim17 involved in binding of the import motor. Our results reveal functionally distinct roles of different regions of Tim17 and suggest how they may be involved in handing over the proteins, during their translocation into mitochondria, from the channel to the import motor of the presequence translocase. DOI:http://dx.doi.org/10.7554/eLife.22696.001
Collapse
Affiliation(s)
- Keren Demishtein-Zohary
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Umut Günsel
- BMC-Physiological Chemistry, LMU Munich, Martinsried, Germany
| | - Milit Marom
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rupa Banerjee
- BMC-Physiological Chemistry, LMU Munich, Martinsried, Germany
| | - Walter Neupert
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
33
|
Abstract
Mitochondria have to import the vast majority of their proteins, which are synthesized as precursors on cytosolic ribosomes. The translocase of the outer membrane (TOM complex) forms the general entry gate for the precursor proteins, which are subsequently sorted by protein machineries into the mitochondrial subcompartments: the outer and inner membrane, the intermembrane space and the mitochondrial matrix. The transport across and into the inner membrane is driven by the membrane potential, which is generated by the respiratory chain. Recent studies revealed that the lipid composition of mitochondrial membranes is important for the biogenesis of mitochondrial proteins. Cardiolipin and phosphatidylethanolamine exhibit unexpectedly specific functions for the activity of distinct protein translocases. Both phospholipids are required for full activity of respiratory chain complexes and thus to maintain the membrane potential for protein import. In addition, cardiolipin is required to maintain structural integrity of mitochondrial protein translocases. Finally, the low sterol content in the mitochondrial outer membrane may contribute to the targeting of some outer membrane proteins with a single α-helical membrane anchor. Altogether, mitochondrial lipids modulate protein import on various levels involving precursor targeting, membrane potential generation, stability and activity of protein translocases.
Collapse
|
34
|
Schendzielorz AB, Schulz C, Lytovchenko O, Clancy A, Guiard B, Ieva R, van der Laan M, Rehling P. Two distinct membrane potential-dependent steps drive mitochondrial matrix protein translocation. J Cell Biol 2016; 216:83-92. [PMID: 28011846 PMCID: PMC5223606 DOI: 10.1083/jcb.201607066] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/30/2016] [Accepted: 11/28/2016] [Indexed: 12/03/2022] Open
Abstract
Schendzielorz et al. report that mitochondrial precursors display different dependencies on the membrane potential (Δψ) for translocation. Two distinct Δψ-dependent steps promote precursor translocation, the first driving presequence translocation and the second acting on the mature portion of the polypeptide chain. Two driving forces energize precursor translocation across the inner mitochondrial membrane. Although the membrane potential (Δψ) is considered to drive translocation of positively charged presequences through the TIM23 complex (presequence translocase), the activity of the Hsp70-powered import motor is crucial for the translocation of the mature protein portion into the matrix. In this study, we show that mitochondrial matrix proteins display surprisingly different dependencies on the Δψ. However, a precursor’s hypersensitivity to a reduction of the Δψ is not linked to the respective presequence, but rather to the mature portion of the polypeptide chain. The presequence translocase constituent Pam17 is specifically recruited by the receptor Tim50 to promote the transport of hypersensitive precursors into the matrix. Our analyses show that two distinct Δψ-driven translocation steps energize precursor passage across the inner mitochondrial membrane. The Δψ- and Pam17-dependent import step identified in this study is positioned between the two known energy-dependent steps: Δψ-driven presequence translocation and adenosine triphosphate–driven import motor activity.
Collapse
Affiliation(s)
- Alexander Benjamin Schendzielorz
- Department of Cellular Biochemistry, University Medical Center Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Christian Schulz
- Department of Cellular Biochemistry, University Medical Center Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Oleksandr Lytovchenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Anne Clancy
- Department of Molecular Biology, University Medical Center Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Unité Propre de Service, 31062 Toulouse, France.,Institute of Biochemistry and Molecular Biology, Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Martin van der Laan
- Institute of Biochemistry and Molecular Biology, Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Georg-August-Universität Göttingen, 37073 Göttingen, Germany .,Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
35
|
Shahrour MA, Staretz-Chacham O, Dayan D, Stephen J, Weech A, Damseh N, Pri Chen H, Edvardson S, Mazaheri S, Saada A, Hershkovitz E, Shaag A, Huizing M, Abu-Libdeh B, Gahl WA, Azem A, Anikster Y, Vilboux T, Elpeleg O, Malicdan MC. Mitochondrial epileptic encephalopathy, 3-methylglutaconic aciduria and variable complex V deficiency associated with TIMM50 mutations. Clin Genet 2016; 91:690-696. [PMID: 27573165 DOI: 10.1111/cge.12855] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/26/2022]
Abstract
Mitochondrial encephalopathies are a heterogeneous group of disorders that, usually carry grave prognosis. Recently a homozygous mutation, Gly372Ser, in the TIMM50 gene, was reported in an abstract form, in three sibs who suffered from intractable epilepsy and developmental delay accompanied by 3-methylglutaconic aciduria. We now report on four patients from two unrelated families who presented with severe intellectual disability and seizure disorder, accompanied by slightly elevated lactate level, 3-methylglutaconic aciduria and variable deficiency of mitochondrial complex V. Using exome analysis we identified two homozygous missense mutations, Arg217Trp and Thr252Met, in the TIMM50 gene. The TIMM50 protein is a subunit of TIM23 complex, the mitochondrial import machinery. It serves as the major receptor in the intermembrane space, binding to proteins which cross the mitochondrial inner membrane on their way to the matrix. The mutations, which affected evolutionary conserved residues and segregated with the disease in the families, were neither present in large cohorts of control exome analyses nor in our ethnic specific exome cohort. Given the phenotypic similarity, we conclude that missense mutations in TIMM50 are likely manifesting by severe intellectual disability and epilepsy accompanied by 3-methylglutaconic aciduria and variable mitochondrial complex V deficiency. 3-methylglutaconic aciduria is emerging as an important biomarker for mitochondrial dysfunction, in particular for mitochondrial membrane defects.
Collapse
Affiliation(s)
- M A Shahrour
- Department of Pediatrics, Al-Makassed Islamic Hospital, Jerusalem, Israel
| | - O Staretz-Chacham
- Metabolic Disease Unit, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheba, Israel
| | - D Dayan
- Department of Biochemistry & Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - J Stephen
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - A Weech
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - N Damseh
- Department of Pediatrics, Al-Makassed Islamic Hospital, Jerusalem, Israel
| | - H Pri Chen
- Department of Biochemistry & Molecular Biology, Tel Aviv University, Tel Aviv, Israel.,Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Graduate Partnerships Program, Tel Aviv University, Tel Aviv, Israel, and the National Institutes of Health, Bethesda, MD, USA
| | - S Edvardson
- Pediatric Neurology Unit, Hadassah, Hebrew University Medical Center Jerusalem, Jerusalem, Israel
| | - S Mazaheri
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - A Saada
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center Jerusalem, Jerusalem, Israel
| | -
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - E Hershkovitz
- Metabolic Disease Unit, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheba, Israel
| | - A Shaag
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Huizing
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - B Abu-Libdeh
- Department of Pediatrics, Al-Makassed Islamic Hospital, Jerusalem, Israel
| | - W A Gahl
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - A Azem
- Department of Biochemistry & Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Y Anikster
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - T Vilboux
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Medical Genomics, Inova Translational Medicine Institute, Fairfax, VA, USA
| | - O Elpeleg
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - M C Malicdan
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Demishtein-Zohary K, Azem A. The TIM23 mitochondrial protein import complex: function and dysfunction. Cell Tissue Res 2016; 367:33-41. [DOI: 10.1007/s00441-016-2486-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/05/2016] [Indexed: 01/16/2023]
|
37
|
Fielden LF, Kang Y, Newton HJ, Stojanovski D. Targeting mitochondria: how intravacuolar bacterial pathogens manipulate mitochondria. Cell Tissue Res 2016; 367:141-154. [PMID: 27515462 DOI: 10.1007/s00441-016-2475-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
Abstract
Manipulation of host cell function by bacterial pathogens is paramount for successful invasion and creation of a niche conducive to bacterial replication. Mitochondria play a role in many important cellular processes including energy production, cellular calcium homeostasis, lipid metabolism, haeme biosynthesis, immune signalling and apoptosis. The sophisticated integration of host cell processes by the mitochondrion have seen it emerge as a key target during bacterial infection of human host cells. This review highlights the targeting and interaction of this dynamic organelle by intravacuolar bacterial pathogens and the way that the modulation of mitochondrial function might contribute to pathogenesis.
Collapse
Affiliation(s)
- Laura F Fielden
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yilin Kang
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3000, Australia.
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
38
|
Feng W, Zhang Y, Deng H, Li SJ. Interaction of divalent metal ions with human translocase of inner membrane of mitochondria Tim23. Biochem Biophys Res Commun 2016; 475:76-80. [PMID: 27178215 DOI: 10.1016/j.bbrc.2016.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/08/2016] [Indexed: 11/26/2022]
Abstract
The preprotein translocase of the inner membrane of mitochondria (TIM23 complex) is the main entry gate for proteins of the matrix and the inner membrane. Tim23p, the core component of TIM23 complex, forms the import pore across the inner membrane and exerts a key function in the protein import. However, the interaction of divalent metal ions with Tim23p and the contribution in the interaction of presequence peptide with Tim23p are still unknown. Herein, we investigated the interaction of divalent metal ions with the intermembrane space domain of Tim23p (Tim23IMS) and the interaction of presequence peptides with Tim23IMS in presence of Ca(2+) ion by fluorescence spectroscopy in vitro. The static fluorescence quenching indicates the existence of strong binding between divalent metal ions and Tim23IMS. The order of the binding strength is Ca(2+), Mg(2+), Cu(2+), Mn(2+), and Co(2+) (from strong to weak). Moreover, the interaction of presequence peptides with Tim23IMS is weakened in presence of Ca(2+) ion, which implicates that Ca(2+) ion may play an important role in the protein import by TIM23 complex.
Collapse
Affiliation(s)
- Wei Feng
- School of Physics Science, Department of Biophysics, Nankai University, Tianjin 300071, PR China
| | - Yongqiang Zhang
- School of Physics Science, Department of Biophysics, Nankai University, Tianjin 300071, PR China
| | - Honghua Deng
- School of Physics Science, Department of Biophysics, Nankai University, Tianjin 300071, PR China
| | - Shu Jie Li
- School of Physics Science, Department of Biophysics, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
39
|
Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J Bioenerg Biomembr 2016; 49:75-99. [DOI: 10.1007/s10863-016-9662-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
|
40
|
Li J, Sha B. The structure of Tim50(164-361) suggests the mechanism by which Tim50 receives mitochondrial presequences. Acta Crystallogr F Struct Biol Commun 2015; 71:1146-51. [PMID: 26323300 PMCID: PMC4555921 DOI: 10.1107/s2053230x15013102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 07/07/2015] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial preproteins are transported through the translocase of the outer membrane (TOM) complex. Tim50 and Tim23 then transfer preproteins with N-terminal targeting presequences through the intermembrane space (IMS) across the inner membrane. The crystal structure of the IMS domain of Tim50 [Tim50(164-361)] has previously been determined to 1.83 Å resolution. Here, the crystal structure of Tim50(164-361) at 2.67 Å resolution that was crystallized using a different condition is reported. Compared with the previously determined Tim50(164-361) structure, significant conformational changes occur within the protruding β-hairpin of Tim50 and the nearby helix A2. These findings indicate that the IMS domain of Tim50 exhibits significant structural plasticity within the putative presequence-binding groove, which may play important roles in the function of Tim50 as a receptor protein in the TIM complex that interacts with the presequence and multiple other proteins. More interestingly, the crystal packing indicates that helix A1 from the neighboring monomer docks into the putative presequence-binding groove of Tim50(164-361), which may mimic the scenario of Tim50 and the presequence complex. Tim50 may recognize and bind the presequence helix by utilizing the inner side of the protruding β-hairpin through hydrophobic interactions. Therefore, the protruding β-hairpin of Tim50 may play critical roles in receiving the presequence and recruiting Tim23 for subsequent protein translocations.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bingdong Sha
- Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
41
|
Bohnert M, Pfanner N, van der Laan M. Mitochondrial machineries for insertion of membrane proteins. Curr Opin Struct Biol 2015; 33:92-102. [DOI: 10.1016/j.sbi.2015.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/13/2015] [Accepted: 07/27/2015] [Indexed: 01/08/2023]
|
42
|
Wang L, Huang J, Jiang M, Chen Q, Jiang Z, Feng H. CAMK1 phosphoinositide signal-mediated protein sorting and transport network in human hepatocellular carcinoma (HCC) by biocomputation. Cell Biochem Biophys 2015; 70:1011-6. [PMID: 24825433 DOI: 10.1007/s12013-014-0011-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We data-analyzed and constructed the high-expression CAMK1 phosphoinositide signal-mediated protein sorting and transport network in human hepatocellular carcinoma (HCC) compared with low-expression (fold change ≥ 2) no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) in GEO data set, using integration of gene regulatory network inference method with gene ontology (GO). Our result showed that CAMK1 transport subnetwork upstream KCNQ3, LCN2, NKX2_5, NUP62, SORT1, STX1A activated CAMK1, and downstream CAMK1-activated AFP, ENAH, KPNA2, SLC4A3; CAMK1 signal subnetwork upstream BRCA1, DKK1, GPSM2, LEF1, NR5A1, NUP62, SORT1, SSTR5, TBL3 activated CAMK1, and downstream CAMK1-activated MAP2K6, SFRP4, SSTR5, TSHB, UBE2C in HCC. We proposed that CAMK1 activated network enhanced endosome to lysosome transport, endosome transport via multivesicular body sorting pathway, Golgi to endosome transport, intracellular protein transmembrane transport, intracellular protein transport, ion transport, mRNA transport, plasma membrane to endosome transport, potassium ion transport, protein transport, vesicle-mediated transport, anion transport, intracellular transport, androgen receptor signaling pathway, cell surface receptor-linked signal transduction, hormone-mediated signaling, induction of apoptosis by extracellular signals, signal transduction by p53 class mediator resulting in transcription of p21 class mediator, signal transduction resulting in induction of apoptosis, phosphoinositide-mediated signaling, Wnt receptor signaling pathway, as a result of inducing phosphoinositide signal-mediated protein sorting, and transport in HCC. Our hypothesis was verified by CAMK1 functional regulation subnetwork containing positive regulation of calcium ion transport via voltage gated calcium channel, cell proliferation, DNA repair, exocytosis, I-kappaB kinase/NF-kappaB cascade, immunoglobulin-mediated immune response, mast cell activation, natural killer cell-mediated cytotoxicity directed against tumor cell target, protein ubiquitination, sodium ion transport, survival gene product activity, T cell-mediated cytotoxicity, transcription, transcription from RNA polymerase II promoter, transcription initiation from RNA polymerase II promoter, transcription via serum response element binding, exit from mitosis, ubiquitin ligase activity during mitotic cell cycle, regulation of angiogenesis, apoptosis, cell growth, cell proliferation, cyclin-dependent protein kinase activity, gene expression, insulin secretion, steroid biosynthesis, transcription from RNA polymerase II promoter, transcription from RNA polymerase III promoter, cell cycle, cell migration, DNA recombination, and protein metabolism; also by CAMK1 negative functional regulation subnetwork including negative regulation of apoptosis, cell proliferation, centriole replication, fatty acid biosynthesis, lipoprotein lipase activity, MAPK activity, progression through cell cycle, transcription, transcription from RNA polymerase II promoter, cell growth, phosphorylation, and ubiquitin ligase activity during mitotic cell cycle in HCC.
Collapse
Affiliation(s)
- Lin Wang
- Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China,
| | | | | | | | | | | |
Collapse
|
43
|
A presequence-binding groove in Tom70 supports import of Mdl1 into mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1850-9. [PMID: 25958336 DOI: 10.1016/j.bbamcr.2015.04.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 11/21/2022]
Abstract
The translocase of the outer mitochondrial membrane (TOM complex) is the general entry gate into mitochondria for almost all imported proteins. A variety of specific receptors allow the TOM complex to recognize targeting signals of various precursor proteins that are transported along different import pathways. Aside from the well-characterized presequence receptors Tom20 and Tom22 a third TOM receptor, Tom70, binds proteins of the carrier family containing multiple transmembrane segments. Here we demonstrate that Tom70 directly binds to presequence peptides using a dedicated groove. A single point mutation in the cavity of this pocket (M551R) reduces the presequence binding affinity of Tom70 ten-fold and selectively impairs import of the presequence-containing precursor Mdl1 but not the ADP/ATP carrier (AAC). Hence Tom70 contributes to the presequence import pathway by recognition of the targeting signal of the Mdl1 precursor.
Collapse
|
44
|
Schulz C, Schendzielorz A, Rehling P. Unlocking the presequence import pathway. Trends Cell Biol 2015; 25:265-75. [DOI: 10.1016/j.tcb.2014.12.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
|
45
|
Cooperation of protein machineries in mitochondrial protein sorting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1119-29. [DOI: 10.1016/j.bbamcr.2015.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
|
46
|
A Perspective on Transport of Proteins into Mitochondria: A Myriad of Open Questions. J Mol Biol 2015; 427:1135-58. [DOI: 10.1016/j.jmb.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 11/22/2022]
|
47
|
Horvath SE, Rampelt H, Oeljeklaus S, Warscheid B, van der Laan M, Pfanner N. Role of membrane contact sites in protein import into mitochondria. Protein Sci 2015; 24:277-97. [PMID: 25514890 DOI: 10.1002/pro.2625] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/08/2014] [Indexed: 12/13/2022]
Abstract
Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long-standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence-carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.
Collapse
Affiliation(s)
- Susanne E Horvath
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Mgr2 functions as lateral gatekeeper for preprotein sorting in the mitochondrial inner membrane. Mol Cell 2014; 56:641-52. [PMID: 25454944 DOI: 10.1016/j.molcel.2014.10.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/14/2014] [Accepted: 10/09/2014] [Indexed: 11/21/2022]
Abstract
The majority of preproteins destined for mitochondria carry N-terminal presequences. The presequence translocase of the inner mitochondrial membrane (TIM23 complex) plays a central role in protein sorting. Preproteins are either translocated through the TIM23 complex into the matrix or are laterally released into the inner membrane. We report that the small hydrophobic protein Mgr2 controls the lateral release of preproteins. Mgr2 interacts with preproteins in transit through the TIM23 complex. Overexpression of Mgr2 delays preprotein release, whereas a lack of Mgr2 promotes preprotein sorting into the inner membrane. Preproteins with a defective inner membrane sorting signal are translocated into the matrix in wild-type mitochondria but are released into the inner membrane in Mgr2-deficient mitochondria. We conclude that Mgr2 functions as a lateral gatekeeper of the mitochondrial presequence translocase, providing quality control for the membrane sorting of preproteins.
Collapse
|
49
|
Höhr AIC, Straub SP, Warscheid B, Becker T, Wiedemann N. Assembly of β-barrel proteins in the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:74-88. [PMID: 25305573 DOI: 10.1016/j.bbamcr.2014.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/15/2022]
Abstract
Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Sebastian P Straub
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany; Abteilung Biochemie und Funktionelle Proteomik, Institut für Biologie II, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
50
|
Molecular basis of the dynamic structure of the TIM23 complex in the mitochondrial intermembrane space. Structure 2014; 22:1501-11. [PMID: 25263020 DOI: 10.1016/j.str.2014.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 07/04/2014] [Accepted: 07/19/2014] [Indexed: 11/20/2022]
Abstract
The presequence translocase TIM23 is a highly dynamic complex in which its subunits can adopt multiple conformations and undergo association-dissociation to facilitate import of proteins into mitochondria. Despite the importance of protein-protein interactions in TIM23, little is known about the molecular details of these processes. Using nuclear magnetic resonance spectroscopy, we characterized the dynamic interaction network of the intermembrane space domains of Tim23, Tim21, Tim50, and Tom22 at single-residue level. We show that Tim23(IMS) contains multiple sites to efficiently interact with the intermembrane space domain of Tim21 and to bind to Tim21, Tim50, and Tom22. In addition, we reveal the atomic details of the dynamic Tim23(IMS)-Tim21(IMS) complex. The combined data support a central role of the intermembrane space domain of Tim23 in the formation and regulation of the presequence translocase.
Collapse
|