1
|
Garrido-Casado M, Asensio-Juárez G, Talayero VC, Vicente-Manzanares M. Engines of change: Nonmuscle myosin II in mechanobiology. Curr Opin Cell Biol 2024; 87:102344. [PMID: 38442667 DOI: 10.1016/j.ceb.2024.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
The emergence of mechanobiology has unveiled complex mechanisms by which cells adjust intracellular force production to their needs. Most communicable intracellular forces are generated by myosin II, an actin-associated molecular motor that transforms adenosine triphosphate (ATP) hydrolysis into contraction in nonmuscle and muscle cells. Myosin II-dependent force generation is tightly regulated, and deregulation is associated with specific pathologies. Here, we focus on the role of myosin II (nonmuscle myosin II, NMII) in force generation and mechanobiology. We outline the regulation and molecular mechanism of force generation by NMII, focusing on the actual outcome of contraction, that is, force application to trigger mechanosensitive events or the building of dissipative structures. We describe how myosin II-generated forces drive two major types of events: modification of the cellular morphology and/or triggering of genetic programs, which enhance the ability of cells to adapt to, or modify, their microenvironment. Finally, we address whether targeting myosin II to impair or potentiate its activity at the motor level is a viable therapeutic strategy, as illustrated by recent examples aimed at modulating cardiac myosin II function in heart disease.
Collapse
Affiliation(s)
- Marina Garrido-Casado
- Molecular Mechanisms Program, Centro de Investigación del Cáncer/ Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain
| | - Gloria Asensio-Juárez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer/ Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain
| | - Vanessa C Talayero
- Molecular Mechanisms Program, Centro de Investigación del Cáncer/ Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer/ Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
2
|
Maw JJ, Coker JA, Arya T, Goins CM, Sonawane D, Han SH, Rees MG, Ronan MM, Roth JA, Wang NS, Heemers HV, Macdonald JD, Stauffer SR. Discovery and Characterization of Selective, First-in-Class Inhibitors of Citron Kinase. J Med Chem 2024; 67:2631-2666. [PMID: 38330278 DOI: 10.1021/acs.jmedchem.3c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Citron kinase (CITK) is an AGC-family serine/threonine kinase that regulates cytokinesis. Despite knockdown experiments implicating CITK as an anticancer target, no selective CITK inhibitors exist. We transformed a previously reported kinase inhibitor with weak off-target CITK activity into a first-in-class CITK chemical probe, C3TD879. C3TD879 is a Type I kinase inhibitor which potently inhibits CITK catalytic activity (biochemical IC50 = 12 nM), binds directly to full-length human CITK in cells (NanoBRET Kd < 10 nM), and demonstrates favorable DMPK properties for in vivo evaluation. We engineered exquisite selectivity for CITK (>17-fold versus 373 other human kinases), making C3TD879 the first chemical probe suitable for interrogating the complex biology of CITK. Our small-molecule CITK inhibitors could not phenocopy the effects of CITK knockdown in cell proliferation, cell cycle progression, or cytokinesis assays, providing preliminary evidence that the structural roles of CITK may be more important than its kinase activity.
Collapse
Affiliation(s)
- Joshua J Maw
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Jesse A Coker
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Tarun Arya
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Christopher M Goins
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Dhiraj Sonawane
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Sang Hoon Han
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge Massachusetts 02142, United States
| | - Melissa M Ronan
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge Massachusetts 02142, United States
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge Massachusetts 02142, United States
| | - Nancy S Wang
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Hannelore V Heemers
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Jonathan D Macdonald
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Shaun R Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| |
Collapse
|
3
|
Wang T, Rao D, Yu C, Sheng J, Luo Y, Xia L, Huang W. RHO GTPase family in hepatocellular carcinoma. Exp Hematol Oncol 2022; 11:91. [DOI: 10.1186/s40164-022-00344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRHO GTPases are a subfamily of the RAS superfamily of proteins, which are highly conserved in eukaryotic species and have important biological functions, including actin cytoskeleton reorganization, cell proliferation, cell polarity, and vesicular transport. Recent studies indicate that RHO GTPases participate in the proliferation, migration, invasion and metastasis of cancer, playing an essential role in the tumorigenesis and progression of hepatocellular carcinoma (HCC). This review first introduces the classification, structure, regulators and functions of RHO GTPases, then dissects its role in HCC, especially in migration and metastasis. Finally, we summarize inhibitors targeting RHO GTPases and highlight the issues that should be addressed to improve the potency of these inhibitors.
Collapse
|
4
|
Koh SP, Pham NP, Piekny A. Seeing is believing: tools to study the role of Rho GTPases during cytokinesis. Small GTPases 2022; 13:211-224. [PMID: 34405757 PMCID: PMC9707540 DOI: 10.1080/21541248.2021.1957384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytokinesis is required to cleave the daughter cells at the end of mitosis and relies on the spatiotemporal control of RhoA GTPase. Cytokinesis failure can lead to changes in cell fate or aneuploidy, which can be detrimental during development and/or can lead to cancer. However, our knowledge of the pathways that regulate RhoA during cytokinesis is limited, and the role of other Rho family GTPases is not clear. This is largely because the study of Rho GTPases presents unique challenges using traditional cell biological and biochemical methods, and they have pleiotropic functions making genetic studies difficult to interpret. The recent generation of optogenetic tools and biosensors that control and detect active Rho has overcome some of these challenges and is helping to elucidate the role of RhoA in cytokinesis. However, improvements are needed to reveal the role of other Rho GTPases in cytokinesis, and to identify the molecular mechanisms that control Rho activity. This review examines some of the outstanding questions in cytokinesis, and explores tools for the imaging and control of Rho GTPases.
Collapse
Affiliation(s)
- Su Pin Koh
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Nhat Phi Pham
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada,CONTACT Alisa Piekny Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| |
Collapse
|
5
|
Iegiani G, Di Cunto F, Pallavicini G. Inhibiting microcephaly genes as alternative to microtubule targeting agents to treat brain tumors. Cell Death Dis 2021; 12:956. [PMID: 34663805 PMCID: PMC8523548 DOI: 10.1038/s41419-021-04259-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
Medulloblastoma (MB) and gliomas are the most frequent high-grade brain tumors (HGBT) in children and adulthood, respectively. The general treatment for these tumors consists in surgery, followed by radiotherapy and chemotherapy. Despite the improvement in patient survival, these therapies are only partially effective, and many patients still die. In the last decades, microtubules have emerged as interesting molecular targets for HGBT, as various microtubule targeting agents (MTAs) have been developed and tested pre-clinically and clinically with encouraging results. Nevertheless, these treatments produce relevant side effects since they target microtubules in normal as well as in cancerous cells. A possible strategy to overcome this toxicity could be to target proteins that control microtubule dynamics but are required by HGBT cells much more than in normal cell types. The genes mutated in primary hereditary microcephaly (MCPH) are ubiquitously expressed in proliferating cells, but under normal conditions are selectively required during brain development, in neural progenitors. There is evidence that MB and glioma cells share molecular profiles with progenitors of cerebellar granules and of cortical radial glia cells, in which MCPH gene functions are fundamental. Moreover, several studies indicate that MCPH genes are required for HGBT expansion. Among the 25 known MCPH genes, we focus this review on KNL1, ASPM, CENPE, CITK and KIF14, which have been found to control microtubule stability during cell division. We summarize the current knowledge about the molecular basis of their interaction with microtubules. Moreover, we will discuss data that suggest these genes are promising candidates as HGBT-specific targets.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy
| | - Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy.
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy.
| |
Collapse
|
6
|
Pereira Zambalde E, Bayraktar R, Schultz Jucoski T, Ivan C, Rodrigues AC, Mathias C, knutsen E, Silveira de Lima R, Fiori Gradia D, de Souza Fonseca Ribeiro EM, Hannash S, Adrian Calin G, Carvalhode Oliveira J. A novel lncRNA derived from an ultraconserved region: lnc- uc.147, a potential biomarker in luminal A breast cancer. RNA Biol 2021; 18:416-429. [PMID: 34387142 PMCID: PMC8677017 DOI: 10.1080/15476286.2021.1952757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/02/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023] Open
Abstract
The human genome contains 481 ultraconserved regions (UCRs), which are genomic stretches of over 200 base pairs conserved among human, rat, and mouse. The majority of these regions are transcriptionally active (T-UCRs), and several have been found to be differentially expressed in tumours. Some T-UCRs have been functionally characterized, but of those few have been associated to breast cancer (BC). Using TCGA data, we found 302 T-UCRs related to clinical features in BC: 43% were associated with molecular subtypes, 36% with oestrogen-receptor positivity, 17% with HER2 expression, 12% with stage, and 10% with overall survival. The expression levels of 12 T-UCRs were further analysed in a cohort of 82 Brazilian BC patients using RT-qPCR. We found that uc.147 is high expressed in luminal A and B patients. For luminal A, a subtype usually associated with better prognosis, high uc.147 expression was associated with a poor prognosis and suggested as an independent prognostic factor. The lncRNA from uc.147 (lnc-uc.147) is located in the nucleus. Northern blotting results show that uc.147 is a 2,8 kb monoexonic trancript, and its sequence was confirmed by RACE. The silencing of uc.147 increases apoptosis, arrests cell cycle, and reduces cell viability and colony formation in BC cell lines. Additionally, we identifed 19 proteins that interact with lnc-uc.147 through mass spectrometry and demonstrated a high correlation of lnc-uc.147 with the neighbour gene expression and miR-18 and miR-190b. This is the first study to analyse the expression of all T-UCRs in BC and to functionally assess the lnc-uc.147.
Collapse
Affiliation(s)
- Erika Pereira Zambalde
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Tayana Schultz Jucoski
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Cristina Ivan
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Carolina Rodrigues
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Carolina Mathias
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Erik knutsen
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Medical Biology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
| | | | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | | | - Samir Hannash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Adrian Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaqueline Carvalhode Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
7
|
Abstract
Aspergillus fumigatus gives rise to invasive aspergillosis in immunocompromised individuals. The rise of A. fumigatus antifungal resistance threatens a limited arsenal of treatment options. Here, we use genetic and molecular approaches to dissect the contribution of the citron homology (CNH) domain of the guanine nucleotide exchange factor Rom2 in regulating the biosynthesis of the essential and unique fungal cell wall, an important target of antifungal compounds. The CNH domain plays an essential role as a stabilizer for the small GTPase Rho1, a key regulator of glucan biosynthesis. This work provides a model for their interaction, revealing a promising molecular mechanism to explore in the quest for novel antifungal compounds. Aspergillus fumigatus is a human opportunistic pathogen showing emerging resistance against a limited repertoire of antifungal agents available. The GTPase Rho1 has been identified as an important regulator of the cell wall integrity signaling pathway that regulates the composition of the cell wall, a structure that is unique to fungi and serves as a target for antifungal compounds. Rom2, the guanine nucleotide exchange factor to Rho1, contains a C-terminal citron homology (CNH) domain of unknown function that is found in many other eukaryotic genes. Here, we show that the Rom2 CNH domain interacts directly with Rho1 to modulate β-glucan and chitin synthesis. We report the structure of the Rom2 CNH domain, revealing that it adopts a seven-bladed β-propeller fold containing three unusual loops. A model of the Rho1–Rom2 CNH complex suggests that the Rom2 CNH domain interacts with the Rho1 Switch II motif. This work uncovers the role of the Rom2 CNH domain as a scaffold for Rho1 signaling in fungal cell wall biosynthesis.
Collapse
|
8
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
9
|
Garrido-Casado M, Asensio-Juárez G, Vicente-Manzanares M. Nonmuscle Myosin II Regulation Directs Its Multiple Roles in Cell Migration and Division. Annu Rev Cell Dev Biol 2021; 37:285-310. [PMID: 34314591 DOI: 10.1146/annurev-cellbio-042721-105528] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marina Garrido-Casado
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Gloria Asensio-Juárez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
10
|
MITF Promotes Cell Growth, Migration and Invasion in Clear Cell Renal Cell Carcinoma by Activating the RhoA/YAP Signal Pathway. Cancers (Basel) 2021; 13:cancers13122920. [PMID: 34208068 PMCID: PMC8230652 DOI: 10.3390/cancers13122920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Microphthalmia-associated transcription factor (MITF) has been reported to play a role in the progression of melanoma and other cancer types. However, the biological role of MITF in clear cell renal cell carcinoma (ccRCC) is largely unknown. In this study, we elucidate the role of MITF in the progression of ccRCC. MITF- and MITF-mediated signaling pathways were investigated in ccRCC cell through MITF knockdown as well as overexpression of MITF in vitro and in vivo. MITF contributed to cell proliferation, migration, invasion and tumor growth in ccRCC through activation of the RhoA/YAP signaling pathways. This study suggests that MITF has potential as a therapeutic target in ccRCC. Abstract Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor involved in the lineage-specific regulation of melanocytes, osteoclasts and mast cells. MITF is also involved in the progression of melanomas and other carcinomas, including the liver, pancreas and lung. However, the role of MITF in clear cell renal cell carcinoma (ccRCC) is largely unknown. This study investigates the functional role of MITF in cancer and the molecular mechanism underlying disease progression in ccRCC. MITF knockdown inhibited cell proliferation and shifted the cell cycle in ccRCC cells. In addition, MITF knockdown reduced wound healing, cell migration and invasion compared with the controls. Conversely, MITF overexpression in SN12C and SNU482 cells increased cell migration and invasion. Overexpression of MITF activated the RhoA/YAP signaling pathway, which regulates cell proliferation and invasion, and increased YAP signaling promoted cell cycle-related protein expression. Additionally, tumor formation was impaired by MITF knockdown and enhanced by MITF overexpression in vivo. In summary, MITF expression was associated with aggressive tumor behavior, and increased the migratory and invasive capabilities of ccRCC cells. These effects were reversed by MITF suppression. These results suggest that MITF is a potential therapeutic target for the treatment of ccRCC.
Collapse
|
11
|
Pallavicini G, Gai M, Iegiani G, Berto GE, Adrait A, Couté Y, Di Cunto F. Goldberg-Shprintzen syndrome protein KIF1BP is a CITK interactor implicated in cytokinesis. J Cell Sci 2021; 134:jcs250902. [PMID: 34100550 DOI: 10.1242/jcs.250902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
Goldberg-Shprintzen disease (GOSHS) is a rare microcephaly syndrome accompanied by intellectual disability, dysmorphic facial features, peripheral neuropathy and Hirschsprung disease. It is associated with recessive mutations in the gene encoding kinesin family member 1-binding protein (KIF1BP, also known as KIFBP). The encoded protein regulates axon microtubules dynamics, kinesin attachment and mitochondrial biogenesis, but it is not clear how its loss could lead to microcephaly. We identified KIF1BP in the interactome of citron kinase (CITK, also known as CIT), a protein produced by the primary hereditary microcephaly 17 (MCPH17) gene. KIF1BP and CITK interact under physiological conditions in mitotic cells. Similar to CITK, KIF1BP is enriched at the midbody ring and is required for cytokinesis. The association between KIF1BP and CITK can be influenced by CITK activity, and the two proteins may antagonize each other for their midbody localization. KIF1BP knockdown decreases microtubule stability, increases KIF23 midbody levels and impairs midbody localization of KIF14, as well as of chromosome passenger complex. These data indicate that KIF1BP is a CITK interactor involved in midbody maturation and abscission, and suggest that cytokinesis failure may contribute to the microcephaly phenotype observed in GOSHS.
Collapse
Affiliation(s)
- Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, Turin 10123, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin 10126, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, Turin 10123, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin 10126, Italy
| | - Gaia Elena Berto
- Neuroscience Institute Cavalieri Ottolenghi, Turin 10123, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin 10126, Italy
| | - Annie Adrait
- Univ. Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut national de la santé et de la recherche médicale (INSERM), Interdisciplinary Research Institute of Grenoble (IRIG), Laboratoire Biologie à Grande Echelle (BGE), 38000 Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut national de la santé et de la recherche médicale (INSERM), Interdisciplinary Research Institute of Grenoble (IRIG), Laboratoire Biologie à Grande Echelle (BGE), 38000 Grenoble, France
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Turin 10123, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin 10126, Italy
| |
Collapse
|
12
|
Pejskova P, Reilly ML, Bino L, Bernatik O, Dolanska L, Ganji RS, Zdrahal Z, Benmerah A, Cajanek L. KIF14 controls ciliogenesis via regulation of Aurora A and is important for Hedgehog signaling. J Cell Biol 2021; 219:151721. [PMID: 32348467 PMCID: PMC7265313 DOI: 10.1083/jcb.201904107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/20/2019] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Primary cilia play critical roles in development and disease. Their assembly and disassembly are tightly coupled to cell cycle progression. Here, we present data identifying KIF14 as a regulator of cilia formation and Hedgehog (HH) signaling. We show that RNAi depletion of KIF14 specifically leads to defects in ciliogenesis and basal body (BB) biogenesis, as its absence hampers the efficiency of primary cilium formation and the dynamics of primary cilium elongation, and disrupts the localization of the distal appendage proteins SCLT1 and FBF1 and components of the IFT-B complex. We identify deregulated Aurora A activity as a mechanism contributing to the primary cilium and BB formation defects seen after KIF14 depletion. In addition, we show that primary cilia in KIF14-depleted cells are defective in response to HH pathway activation, independently of the effects of Aurora A. In sum, our data point to KIF14 as a critical node connecting cell cycle machinery, effective ciliogenesis, and HH signaling.
Collapse
Affiliation(s)
- Petra Pejskova
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| | - Madeline Louise Reilly
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris University, Imagine Institute, Paris, France.,Paris Diderot University, Paris, France
| | - Lucia Bino
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| | - Ondrej Bernatik
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| | - Linda Dolanska
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| | | | - Zbynek Zdrahal
- Central European Institute of Technology, Brno, Czech Republic
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris University, Imagine Institute, Paris, France
| | - Lukas Cajanek
- Department of Histology and Embryology, Masaryk University, Faculty of Medicine, Brno, Czech Republic
| |
Collapse
|
13
|
Carim SC, Kechad A, Hickson GRX. Animal Cell Cytokinesis: The Rho-Dependent Actomyosin-Anilloseptin Contractile Ring as a Membrane Microdomain Gathering, Compressing, and Sorting Machine. Front Cell Dev Biol 2020; 8:575226. [PMID: 33117802 PMCID: PMC7575755 DOI: 10.3389/fcell.2020.575226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Cytokinesis is the last step of cell division that partitions the cellular organelles and cytoplasm of one cell into two. In animal cells, cytokinesis requires Rho-GTPase-dependent assembly of F-actin and myosin II (actomyosin) to form an equatorial contractile ring (CR) that bisects the cell. Despite 50 years of research, the precise mechanisms of CR assembly, tension generation and closure remain elusive. This hypothesis article considers a holistic view of the CR that, in addition to actomyosin, includes another Rho-dependent cytoskeletal sub-network containing the scaffold protein, Anillin, and septin filaments (collectively termed anillo-septin). We synthesize evidence from our prior work in Drosophila S2 cells that actomyosin and anillo-septin form separable networks that are independently anchored to the plasma membrane. This latter realization leads to a simple conceptual model in which CR assembly and closure depend upon the micro-management of the membrane microdomains to which actomyosin and anillo-septin sub-networks are attached. During CR assembly, actomyosin contractility gathers and compresses its underlying membrane microdomain attachment sites. These microdomains resist this compression, which builds tension. During CR closure, membrane microdomains are transferred from the actomyosin sub-network to the anillo-septin sub-network, with which they flow out of the CR as it advances. This relative outflow of membrane microdomains regulates tension, reduces the circumference of the CR and promotes actomyosin disassembly all at the same time. According to this hypothesis, the metazoan CR can be viewed as a membrane microdomain gathering, compressing and sorting machine that intrinsically buffers its own tension through coordination of actomyosin contractility and anillo-septin-membrane relative outflow, all controlled by Rho. Central to this model is the abandonment of the dogmatic view that the plasma membrane is always readily deformable by the underlying cytoskeleton. Rather, the membrane resists compression to build tension. The notion that the CR might generate tension through resistance to compression of its own membrane microdomain attachment sites, can account for numerous otherwise puzzling observations and warrants further investigation using multiple systems and methods.
Collapse
Affiliation(s)
- Sabrya C. Carim
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Amel Kechad
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
| | - Gilles R. X. Hickson
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
14
|
Shou J, Yu C, Zhang D, Zhang Q. Overexpression of Citron Rho-Interacting Serine/Threonine Kinase Associated with Poor Outcome in Bladder Cancer. J Cancer 2020; 11:4173-4180. [PMID: 32368300 PMCID: PMC7196275 DOI: 10.7150/jca.43435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/15/2020] [Indexed: 01/08/2023] Open
Abstract
Objective: Citron Rho-Interacting Serine/Threonine Kinase (CIT) was originally identified as a binding partner of active forms of the small GTPases Rho and Rac. This kinase participated in the regulation of cytokinesis and loss of CIT was associated with chromosomal instability. Here, we assume that CIT might be a potential prognostic biomarker for bladder cancer. Materials and Methods: The expression and prognostic significance of CIT mRNA were validated on 5 published microarray data sets, including 948 bladder cancer cases. To further confirm the results, we collected 54 non-carcinomatous human bladder tissue samples and 315 bladder cancer tissues from Zhejiang Provincial People's Hospital to detect the protein level of CIT based on the immunohistochemistry analysis. The Kaplan-Meier method and Cox proportional hazards regression model were used in survival analysis. Results: Analysis results showed that high CIT expression was associated with tumor size (p=0.0001), tumor grade (p<0.0001), smoking status (p=0.0143), TNM stage (p=0.0024), pathological tumor stage (p<0.0001) and aggressive phenotypes of bladder cancer. Independent and pooled survival analyses both indicated that overexpression of CIT was significantly associated with poor survival of bladder cancers. Conclusions: In conclusion, these findings indicated that overexpression of CIT was significantly associated with poor survival outcome in bladder cancers. CIT might serve as a promising prognostic biomarker and therapeutic target for bladder cancers.
Collapse
Affiliation(s)
| | | | | | - Qi Zhang
- Department of Urology, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, Zhejiang Province 310014, People's Republic of China
| |
Collapse
|
15
|
Wang S, Zhang Z, Almenar-Queralt A, Leem J, DerMardirossian C, Roth DM, Patel PM, Patel HH, Head BP. Caveolin-1 Phosphorylation Is Essential for Axonal Growth of Human Neurons Derived From iPSCs. Front Cell Neurosci 2019; 13:324. [PMID: 31379509 PMCID: PMC6650578 DOI: 10.3389/fncel.2019.00324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/01/2019] [Indexed: 01/02/2023] Open
Abstract
Proper axonal growth and guidance is essential for neuron differentiation and development. Abnormal neuronal development due to genetic or epigenetic influences can contribute to neurological and mental disorders such as Down syndrome, Rett syndrome, and autism. Identification of the molecular targets that promote proper neuronal growth and differentiation may restore structural and functional neuroplasticity, thus improving functional performance in neurodevelopmental disorders. Using differentiated human neuronal progenitor cells (NPCs) derived from induced pluripotent stem cells (iPSCs), the present study demonstrates that during early stage differentiation of human NPCs, neuron-targeted overexpression constitutively active Rac1 (Rac1CA) and constitutively active Cdc42 (Cdc42CA) enhance expression of P-Cav-1, T-Cav-1, and P-cofilin and increases axonal growth. Similarly, neuron-targeted over-expression of Cav-1 (termed SynCav1) increases axonal development by increasing both axon length and volume. Moreover, inhibition of Cav-1(Y14A) phosphorylation blunts Rac1/Cdc42-mediated both axonal growth and differentiation of human NPCs and SynCav1(Y14A)-treated NPCs exhibited blunted axonal growth. These results suggest that: (1) SynCav1-mediated dendritic and axonal growth in human NPCs is dependent upon P-Cav-1, (2) P-Cav-1 is necessary for proper axonal growth during early stages of neuronal differentiation, and (3) Rac1/Cdc42CA-mediated neuronal growth is in part dependent upon P-Cav-1. In conclusion, Cav-1 phosphorylation is essential for human neuronal axonal growth during early stages of neuronal differentiation.
Collapse
Affiliation(s)
- Shanshan Wang
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Department of Anesthesiology, UC San Diego, La Jolla, CA, United States
| | - Zheng Zhang
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Department of Anesthesiology, UC San Diego, La Jolla, CA, United States
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Joseph Leem
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Department of Anesthesiology, UC San Diego, La Jolla, CA, United States
| | - Celine DerMardirossian
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA, United States.,Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Department of Anesthesiology, UC San Diego, La Jolla, CA, United States
| | - Piyush M Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Department of Anesthesiology, UC San Diego, La Jolla, CA, United States
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Department of Anesthesiology, UC San Diego, La Jolla, CA, United States
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Department of Anesthesiology, UC San Diego, La Jolla, CA, United States
| |
Collapse
|
16
|
El-Amine N, Carim SC, Wernike D, Hickson GRX. Rho-dependent control of the Citron kinase, Sticky, drives midbody ring maturation. Mol Biol Cell 2019; 30:2185-2204. [PMID: 31166845 PMCID: PMC6743463 DOI: 10.1091/mbc.e19-04-0194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rho-dependent proteins control assembly of the cytokinetic contractile ring, yet it remains unclear how those proteins guide ring closure and how they promote subsequent formation of a stable midbody ring. Citron kinase is one important component required for midbody ring formation but its mechanisms of action and relationship with Rho are controversial. Here, we conduct a structure-function analysis of the Drosophila Citron kinase, Sticky, in Schneider's S2 cells. We define two separable and redundant RhoGEF/Pebble-dependent inputs into Sticky recruitment to the nascent midbody ring and show that each input is subsequently required for retention at, and for the integrity of, the mature midbody ring. The first input is via an actomyosin-independent interaction between Sticky and Anillin, a key scaffold also required for midbody ring formation. The second input requires the Rho-binding domain of Sticky, whose boundaries we have defined. Collectively, these results show how midbody ring biogenesis depends on the coordinated actions of Sticky, Anillin, and Rho.
Collapse
Affiliation(s)
- Nour El-Amine
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, QC H3T 1C5, Canada.,Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Sabrya C Carim
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, QC H3T 1C5, Canada
| | - Denise Wernike
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, QC H3T 1C5, Canada
| | - Gilles R X Hickson
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, QC H3T 1C5, Canada.,Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
17
|
Pallavicini G, Berto GE, Di Cunto F. Precision Revisited: Targeting Microcephaly Kinases in Brain Tumors. Int J Mol Sci 2019; 20:ijms20092098. [PMID: 31035417 PMCID: PMC6539168 DOI: 10.3390/ijms20092098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme and medulloblastoma are the most frequent high-grade brain tumors in adults and children, respectively. Standard therapies for these cancers are mainly based on surgical resection, radiotherapy, and chemotherapy. However, intrinsic or acquired resistance to treatment occurs almost invariably in the first case, and side effects are unacceptable in the second. Therefore, the development of new, effective drugs is a very important unmet medical need. A critical requirement for developing such agents is to identify druggable targets required for the proliferation or survival of tumor cells, but not of other cell types. Under this perspective, genes mutated in congenital microcephaly represent interesting candidates. Congenital microcephaly comprises a heterogeneous group of disorders in which brain volume is reduced, in the absence or presence of variable syndromic features. Genetic studies have clarified that most microcephaly genes encode ubiquitous proteins involved in mitosis and in maintenance of genomic stability, but the effects of their inactivation are particularly strong in neural progenitors. It is therefore conceivable that the inhibition of the function of these genes may specifically affect the proliferation and survival of brain tumor cells. Microcephaly genes encode for a few kinases, including CITK, PLK4, AKT3, DYRK1A, and TRIO. In this review, we summarize the evidence indicating that the inhibition of these molecules could exert beneficial effects on different aspects of brain cancer treatment.
Collapse
Affiliation(s)
- Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy.
| | - Gaia E Berto
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
- Neuroscience Institute of Turin (NIT), 10126 Turin, Italy.
| |
Collapse
|
18
|
Sahin I, Kawano Y, Sklavenitis-Pistofidis R, Moschetta M, Mishima Y, Manier S, Sacco A, Carrasco R, Fonseca R, Roccaro AM, Witzig T, Ghobrial IM. Citron Rho-interacting kinase silencing causes cytokinesis failure and reduces tumor growth in multiple myeloma. Blood Adv 2019; 3:995-1002. [PMID: 30940634 PMCID: PMC6457230 DOI: 10.1182/bloodadvances.2018028456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/21/2019] [Indexed: 11/20/2022] Open
Abstract
Citron Rho-interacting serine/threonine kinase (CIT) is a serine/threonine kinase that acts as a key component of the midbody and is essential for cytokinesis. CIT has been reported to be highly expressed in some tumor tissues and to play a role in cancer proliferation; however, the significance of CIT has not been investigated in multiple myeloma (MM). Here, we identified, by protein microarray and immunohistochemistry, that CIT is 1 of the upregulated proteins in the plasma cells of MM patients compared with healthy controls. Analysis of a gene expression profile data set showed that MM patients with high CIT gene expression had significantly worse overall survival compared with MM patients with low CIT gene expression. CIT silencing in MM cell lines induced cytokinesis failure and resulted in decreased MM cell proliferation in vitro and in vivo. TP53 expression was found to be an independent predictor of CIT dependency, with low-TP53 cell lines exhibiting a strong dependency on CIT. This study provides the rationale for CIT being a potential therapeutic target in MM in future trials.
Collapse
Affiliation(s)
- Ilyas Sahin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Division of Hematology-Oncology, Lifespan Cancer Institute, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Hematology, Kumamoto University Hospital, Kumamoto, Japan
| | | | - Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yuji Mishima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Salomon Manier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Antonio Sacco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- ASST Spedali Civili di Brescia Clinical Research Development and Phase I Unit-CREA Laboratory, Brescia, Italy
| | - Ruben Carrasco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Rafael Fonseca
- Division of Hematology, Mayo Clinic, Scottsdale, AZ; and
| | - Aldo M Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- ASST Spedali Civili di Brescia Clinical Research Development and Phase I Unit-CREA Laboratory, Brescia, Italy
| | | | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Haiping C, Qi X, Dawei L, Qiang W. [Citron Rho-interacting serine/threonine kinase knockdown suppresses prostate cancer cell proliferation and metastasis by blocking Hippo-YAP pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:257-263. [PMID: 31068310 DOI: 10.12122/j.issn.1673-4254.2019.03.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Citron Rho-interacting serine/threonine kinase (CIT) was identified recently as an oncogene involved in the progression of various malignant tumors, but its role in prostate cancer (PCa) remains unclear. In this study, we aimed to investigate the biological functions of CIT in PCa. METHODS We analyzed the expression of CIT in PCa tissues and its clinical correlations based on the Cancer Genome Atlas (TCGA) and Memorial Sloan-Kettering Cancer Center (MSKCC) dataset. We then examined the effects of RNA interference-mediated CIT silencing on the proliferation, migration and invasion of PC-3 cells using cell counting kit-8, wound healing assay and Transwell assay. We also investigated the effect of CIT silencing on epithelial-mesenchymal transition (EMT) and Hippo-Yap signaling pathway in the cells using Western blotting. RESULTS CIT expression was significantly elevated in PCa tissues from TCGA cohort (P < 0.05). MSKCC dataset analysis showed that an elevated expression of CIT was significantly correlated with N stage (P=0.001), distant metastasis (P < 0.001), Gleason score (P=0.010) and PSA (P=0.004). In cultured PC-3 cells, knockdown of CIT significantly inhibited cell proliferation, migration and invasion, reversed the EMT phenotype and decreased the expression and activity of YAP. CONCLUSIONS CIT might function as an oncogene in PCa by modulating the Hippo-YAP signaling pathway and serve as a candidate therapeutic target for PCa.
Collapse
Affiliation(s)
- Chen Haiping
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Urology, Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Xiang Qi
- Department of Urology, Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Liu Dawei
- Department of Urology, Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Wei Qiang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
Perchey RT, Serres MP, Nowosad A, Creff J, Callot C, Gay A, Manenti S, Margolis RL, Hatzoglou A, Besson A. p27 Kip1 regulates the microtubule bundling activity of PRC1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1630-1639. [PMID: 30327204 DOI: 10.1016/j.bbamcr.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/29/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Cytokinesis begins in anaphase with the formation of the central spindle. PRC1 is a microtubule associated protein that plays an essential role in central spindle formation by crosslinking antiparallel microtubules. We have identified PRC1 as a novel binding partner for p27Kip1 (p27). p27 is a cyclin-CDK inhibitor that causes cell cycle arrest in G1. However, p27 has also been involved in the regulation of G2/M progression and cytokinesis, as well as of other cellular processes, including actin and microtubule cytoskeleton dynamics. We found that p27 interferes with the ability of PRC1 to bind to microtubules, without affecting PRC1 dimerization or its capacity to interact with other partners such as KIF4. In this way, p27 inhibited microtubule bundling by PRC1 in vitro and prevented the extensive microtubule bundling phenotype caused by PRC1 overexpression in cells in culture. Finally, co-expression of p27 or a p27 mutant that does not bind cyclin-CDKs inhibited multinucleation induced by PRC1 overexpression. Together, our results suggest that p27 may participate in the regulation of mitotic progression in a CDK-independent manner by modulating PRC1 activity.
Collapse
Affiliation(s)
- Renaud T Perchey
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Murielle P Serres
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Ada Nowosad
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Justine Creff
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Caroline Callot
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Alexandre Gay
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Stéphane Manenti
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Robert L Margolis
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anastassia Hatzoglou
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Arnaud Besson
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France.
| |
Collapse
|
21
|
Pallavicini G, Sgrò F, Garello F, Falcone M, Bitonto V, Berto GE, Bianchi FT, Gai M, Chiotto AM, Filippi M, Cutrin JC, Ala U, Terreno E, Turco E, Cunto FD. Inactivation of Citron Kinase Inhibits Medulloblastoma Progression by Inducing Apoptosis and Cell Senescence. Cancer Res 2018; 78:4599-4612. [DOI: 10.1158/0008-5472.can-17-4060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/01/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
|
22
|
McKenzie C, D'Avino PP. Investigating cytokinesis failure as a strategy in cancer therapy. Oncotarget 2018; 7:87323-87341. [PMID: 27895316 PMCID: PMC5349991 DOI: 10.18632/oncotarget.13556] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
Effective therapeutics exploit common characteristics shared amongst cancers. As many cancers present chromosomal instability (CIN), one possible approach to treat these cancers could be to increase their CIN above a threshold that would affect their viability. Here, we investigated whether causing polyploidy by cytokinesis failure could represent a useful approach. We show that cytokinesis failure caused by depletion of Citron kinase (CIT-K) dramatically decreased cell proliferation in breast, cervical and colorectal cancer cells. CIT-K depletion activated the Hippo tumor suppressor pathway in normal, but not in cancer cells, indicating that cancer cells have evolved mechanisms to bypass this control. CIT-K depleted cancer cells died via apoptosis in a caspase 7 dependent manner and, consistent with this, p53-deficient HCT116 colon carcinoma cells failed to induce apoptosis after cytokinesis failure. However, other p53-mutated cancer cells were able to initiate apoptosis, indicating that cytokinesis failure can trigger apoptosis through a p53-independent mechanism. Finally, we found that actively dividing and, in some cases, polyploid cancer cells were more susceptible to CIT-K depletion. In sum, our findings indicate that inducing cytokinesis failure could be a promising anti-cancer therapeutic approach for a wide range of cancers, especially those characterized by fast cell proliferation and polyploidy.
Collapse
Affiliation(s)
- Callum McKenzie
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| |
Collapse
|
23
|
Dema A, Macaluso F, Sgrò F, Berto GE, Bianchi FT, Chiotto AA, Pallavicini G, Di Cunto F, Gai M. Citron kinase-dependent F-actin maintenance at midbody secondary ingression sites mediates abscission. J Cell Sci 2018; 131:jcs.209080. [DOI: 10.1242/jcs.209080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/16/2018] [Indexed: 01/22/2023] Open
Abstract
Abscission is the final step of cytokinesis whereby the intercellular bridge (ICB) linking the two daughter cells is cut. The ICB contains a structure called the midbody, required for the recruitment and organization of the abscission machinery. Final midbody severing is mediated by formation of secondary midbody ingression sites, where ESCRT III component CHMP4B is recruited and may mediate membrane fusion. It is presently unknown how cytoskeletal elements cooperate with CHMP4B to mediate abscission. In this report, we show that F-actin is associated with midbody secondary sites and is necessary for abscission. F-actin localization at secondary sites depends on the activity of RhoA and on the abscission regulator CITK. CITK depletion accelerates F-actin loss at the midbody and cytokinesis defects produced by CITK loss are reverted by restoring actin polymerization. Conversely, midbody hyperstabilization produced by CITK and ANLN overexpression is reverted by actin depolymerization. CITK is required for F-actin and ANLN localization at the abscission sites, as well as for CHMP4B recruitment. These results indicate that control of actin dynamics downstream of CITK prepares abscission site for final cut.
Collapse
Affiliation(s)
- Alessandro Dema
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
- FMP-Berlin Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Francesca Macaluso
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - Francesco Sgrò
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - Gaia E. Berto
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Federico T. Bianchi
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Alessandra A. Chiotto
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Gianmarco Pallavicini
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Ferdinando Di Cunto
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Marta Gai
- Dept. of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| |
Collapse
|
24
|
Capalbo L, Mela I, Abad MA, Jeyaprakash AA, Edwardson JM, D'Avino PP. Coordinated regulation of the ESCRT-III component CHMP4C by the chromosomal passenger complex and centralspindlin during cytokinesis. Open Biol 2017; 6:rsob.160248. [PMID: 27784789 PMCID: PMC5090064 DOI: 10.1098/rsob.160248] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/04/2016] [Indexed: 01/14/2023] Open
Abstract
The chromosomal passenger complex (CPC)—composed of Aurora B kinase, Borealin, Survivin and INCENP—surveys the fidelity of genome segregation throughout cell division. The CPC has been proposed to prevent polyploidy by controlling the final separation (known as abscission) of the two daughter cells via regulation of the ESCRT-III CHMP4C component. The molecular details are, however, still unclear. Using atomic force microscopy, we show that CHMP4C binds to and remodels membranes in vitro. Borealin prevents the association of CHMP4C with membranes, whereas Aurora B interferes with CHMP4C's membrane remodelling activity. Moreover, we show that CHMP4C phosphorylation is not required for its assembly into spiral filaments at the abscission site and that two distinctly localized pools of phosphorylated CHMP4C exist during cytokinesis. We also characterized the CHMP4C interactome in telophase cells and show that the centralspindlin complex associates preferentially with unphosphorylated CHMP4C in cytokinesis. Our findings indicate that gradual dephosphorylation of CHMP4C triggers a ‘relay’ mechanism between the CPC and centralspindlin that regulates the timely distribution and activation of CHMP4C for the execution of abscission.
Collapse
Affiliation(s)
- Luisa Capalbo
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Ioanna Mela
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Maria Alba Abad
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - A Arockia Jeyaprakash
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
25
|
Bianchi FT, Gai M, Berto GE, Di Cunto F. Of rings and spines: The multiple facets of Citron proteins in neural development. Small GTPases 2017; 11:122-130. [PMID: 29185861 PMCID: PMC7053930 DOI: 10.1080/21541248.2017.1374325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The Citron protein was originally identified for its capability to specifically bind the active form of RhoA small GTPase, leading to the simplistic hypothesis that it may work as a RhoA downstream effector in actin remodeling. More than two decades later, a much more complex picture has emerged. In particular, it has become clear that in animals, and especially in mammals, the functions of the Citron gene (CIT) are intimately linked to many aspects of central nervous system (CNS) development and function, although the gene is broadly expressed. More specifically, CIT encodes two main isoforms, Citron-kinase (CIT-K) and Citron-N (CIT-N), characterized by complementary expression pattern and different functions. Moreover, in many of their activities, CIT proteins act more as upstream regulators than as downstream effectors of RhoA. Finally it has been found that, besides working through actin, CIT proteins have many crucial functional interactions with the microtubule cytoskeleton and may directly affect genome stability. In this review, we will summarize these advances and illustrate their actual or potential relevance for CNS diseases, including microcephaly and psychiatric disorders.
Collapse
Affiliation(s)
- Federico T Bianchi
- Neuroscience Institute Cavalieri Ottolenghi, Regione Golzole 10, Orbassano, TO, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Gaia E Berto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Golzole 10, Orbassano, TO, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Golzole 10, Orbassano, TO, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
26
|
Bianchi FT, Tocco C, Pallavicini G, Liu Y, Vernì F, Merigliano C, Bonaccorsi S, El-Assawy N, Priano L, Gai M, Berto GE, Chiotto AMA, Sgrò F, Caramello A, Tasca L, Ala U, Neri F, Oliviero S, Mauro A, Geley S, Gatti M, Di Cunto F. Citron Kinase Deficiency Leads to Chromosomal Instability and TP53-Sensitive Microcephaly. Cell Rep 2017; 18:1674-1686. [PMID: 28199840 PMCID: PMC5318669 DOI: 10.1016/j.celrep.2017.01.054] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/16/2016] [Accepted: 01/22/2017] [Indexed: 11/16/2022] Open
Abstract
Mutations in citron (CIT), leading to loss or inactivation of the citron kinase protein (CITK), cause primary microcephaly in humans and rodents, associated with cytokinesis failure and apoptosis in neural progenitors. We show that CITK loss induces DNA damage accumulation and chromosomal instability in both mammals and Drosophila. CITK-deficient cells display "spontaneous" DNA damage, increased sensitivity to ionizing radiation, and defective recovery from radiation-induced DNA lesions. In CITK-deficient cells, DNA double-strand breaks increase independently of cytokinesis failure. Recruitment of RAD51 to DNA damage foci is compromised by CITK loss, and CITK physically interacts with RAD51, suggesting an involvement of CITK in homologous recombination. Consistent with this scenario, in doubly CitK and Trp53 mutant mice, neural progenitor cell death is dramatically reduced; moreover, clinical and neuroanatomical phenotypes are remarkably improved. Our results underscore a crucial role of CIT in the maintenance of genomic integrity during brain development.
Collapse
Affiliation(s)
- Federico Tommaso Bianchi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy.
| | - Chiara Tocco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Gianmarco Pallavicini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
| | - Yifan Liu
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University, 00185 Rome, Italy
| | - Chiara Merigliano
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University, 00185 Rome, Italy
| | - Silvia Bonaccorsi
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University, 00185 Rome, Italy
| | - Nadia El-Assawy
- Department of Neurology and Neurorehabilitation, San Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, 28824 Piancavallo (VB), Italy
| | - Lorenzo Priano
- Department of Neurology and Neurorehabilitation, San Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, 28824 Piancavallo (VB), Italy; Department of Neuroscience, University of Torino, 10126 Torino, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Gaia Elena Berto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
| | - Alessandra Maria Adelaide Chiotto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
| | - Francesco Sgrò
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Alessia Caramello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Laura Tasca
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Francesco Neri
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy
| | | | - Alessandro Mauro
- Department of Neurology and Neurorehabilitation, San Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, 28824 Piancavallo (VB), Italy; Department of Neuroscience, University of Torino, 10126 Torino, Italy
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Maurizio Gatti
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University, 00185 Rome, Italy; Institute of Molecular Biology and Pathology (IBPM), CNR, 00185 Rome, Italy
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy.
| |
Collapse
|
27
|
Up-regulation of CIT promotes the growth of colon cancer cells. Oncotarget 2017; 8:71954-71964. [PMID: 29069760 PMCID: PMC5641103 DOI: 10.18632/oncotarget.18615] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 05/06/2017] [Indexed: 12/18/2022] Open
Abstract
Colon cancer is one of the major causes of cancer mortality worldwide. However, the underlying mechanism and therapeutic targets of colon cancer have not yet been fully elucidated. In the present study, we demonstrate that citron rho-interacting, serine/threonine kinase 21 (CIT) promotes the growth of human colon cancer cells. CIT is overexpressed in human colon cancer tissues and cell lines. High expression of CIT predicts poor survival for patients with colon cancer. In colon cancer cells, CIT knockdown represses cellular proliferation and colony formation. Our in vivo xenograft experiments showed that CIT knockdown reduces the growth rate of colon cancer cells and the final tumor weight. We found that CIT knockdown induces cell cycle arrest and apoptosis in colon cancer cells. Further microarray and bioinformatics analyses indicated that CIT regulates the p53 signaling pathway, which may account for the effects of CIT on colon cancer cells. Taken together, our findings provide evidence that CIT may promote the development of colon cancer, at least in part, through the p53 signaling pathway. Therefore, CIT may be a potential therapeutic target for colon cancer treatment.
Collapse
|
28
|
Abstract
ABSTRACT
Cell division controls the faithful segregation of genomic and cytoplasmic materials between the two nascent daughter cells. Members of the Aurora, Polo and cyclin-dependent (Cdk) kinase families are known to regulate multiple events throughout cell division, whereas another kinase, citron kinase (CIT-K), for a long time has been considered to function solely during cytokinesis, the last phase of cell division. CIT-K was originally proposed to regulate the ingression of the cleavage furrow that forms at the equatorial cortex of the dividing cell after chromosome segregation. However, studies in the last decade have clarified that this kinase is, instead, required for the organization of the midbody in late cytokinesis, and also revealed novel functions of CIT-K earlier in mitosis and in DNA damage control. Moreover, CIT-K mutations have recently been linked to the development of human microcephaly, and CIT-K has been identified as a potential target in cancer therapy. In this Commentary, I describe and re-evaluate the functions and regulation of CIT-K during cell division and its involvement in human disease. Finally, I offer my perspectives on the open questions and future challenges that are necessary to address, in order to fully understand this important and yet unjustly neglected mitotic kinase.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
29
|
E2F-2 Promotes Nuclear Condensation and Enucleation of Terminally Differentiated Erythroblasts. Mol Cell Biol 2016; 37:MCB.00274-16. [PMID: 27795297 PMCID: PMC5192079 DOI: 10.1128/mcb.00274-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022] Open
Abstract
E2F-2 is a retinoblastoma (Rb)-regulated transcription factor induced during terminal erythroid maturation. Cyclin E-mediated Rb hyperphosphorylation induces E2F transcriptional activator functions. We previously reported that deregulated cyclin E activity causes defective terminal maturation of nucleated erythroblasts in vivo Here, we found that these defects are normalized by E2F-2 deletion; however, anemia in mice with deregulated cyclin E is not improved by E2F-2-loss, which itself causes reduced peripheral red blood cell (RBC) counts without altering relative abundances of erythroblast subpopulations. To determine how E2F-2 regulates RBC production, we comprehensively studied erythropoiesis using knockout mice and hematopoietic progenitors. We found that efficient stress erythropoiesis in vivo requires E2F-2, and we also identified an unappreciated role for E2F-2 in erythroblast enucleation. In particular, E2F-2 deletion impairs nuclear condensation, a morphological feature of maturing erythroblasts. Transcriptome profiling of E2F-2-null, mature erythroblasts demonstrated widespread changes in gene expression. Notably, we identified citron Rho-interacting kinase (CRIK), which has known functions in mitosis and cytokinesis, as induced in erythroblasts in an E2F-2-dependent manner, and we found that CRIK activity promotes efficient erythroblast enucleation and nuclear condensation. Together, our data reveal novel, lineage-specific functions for E2F-2 and suggest that some mitotic kinases have specialized roles supporting enucleation of maturing erythroblasts.
Collapse
|
30
|
McKenzie C, Bassi ZI, Debski J, Gottardo M, Callaini G, Dadlez M, D'Avino PP. Cross-regulation between Aurora B and Citron kinase controls midbody architecture in cytokinesis. Open Biol 2016; 6:rsob.160019. [PMID: 27009191 PMCID: PMC4821246 DOI: 10.1098/rsob.160019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytokinesis culminates in the final separation, or abscission, of the two daughter cells at the end of cell division. Abscission relies on an organelle, the midbody, which forms at the intercellular bridge and is composed of various proteins arranged in a precise stereotypic pattern. The molecular mechanisms controlling midbody organization and function, however, are obscure. Here we show that proper midbody architecture requires cross-regulation between two cell division kinases, Citron kinase (CIT-K) and Aurora B, the kinase component of the chromosomal passenger complex (CPC). CIT-K interacts directly with three CPC components and is required for proper midbody architecture and the orderly arrangement of midbody proteins, including the CPC. In addition, we show that CIT-K promotes Aurora B activity through phosphorylation of the INCENP CPC subunit at the TSS motif. In turn, Aurora B controls CIT-K localization and association with its central spindle partners through phosphorylation of CIT-K's coiled coil domain. Our results identify, for the first time, a cross-regulatory mechanism between two kinases during cytokinesis, which is crucial for establishing the stereotyped organization of midbody proteins.
Collapse
Affiliation(s)
- Callum McKenzie
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Zuni I Bassi
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Janusz Debski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Warszawa 02-106, Poland
| | - Marco Gottardo
- Department of Life Sciences, University of Siena, Via A. Moro 4, Siena 53100, Italy
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via A. Moro 4, Siena 53100, Italy
| | - Michal Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Warszawa 02-106, Poland
| | - Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
31
|
Gai M, Bianchi FT, Vagnoni C, Vernì F, Bonaccorsi S, Pasquero S, Berto GE, Sgrò F, Chiotto AM, Annaratone L, Sapino A, Bergo A, Landsberger N, Bond J, Huttner WB, Di Cunto F. ASPM and CITK regulate spindle orientation by affecting the dynamics of astral microtubules. EMBO Rep 2016; 17:1396-1409. [PMID: 27562601 DOI: 10.15252/embr.201541823] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 07/26/2016] [Indexed: 11/09/2022] Open
Abstract
Correct orientation of cell division is considered an important factor for the achievement of normal brain size, as mutations in genes that affect this process are among the leading causes of microcephaly. Abnormal spindle orientation is associated with reduction of the neuronal progenitor symmetric divisions, premature cell cycle exit, and reduced neurogenesis. This mechanism has been involved in microcephaly resulting from mutation of ASPM, the most frequently affected gene in autosomal recessive human primary microcephaly (MCPH), but it is presently unknown how ASPM regulates spindle orientation. In this report, we show that ASPM may control spindle positioning by interacting with citron kinase (CITK), a protein whose loss is also responsible for severe microcephaly in mammals. We show that the absence of CITK leads to abnormal spindle orientation in mammals and insects. In mouse cortical development, this phenotype correlates with increased production of basal progenitors. ASPM is required to recruit CITK at the spindle, and CITK overexpression rescues ASPM phenotype. ASPM and CITK affect the organization of astral microtubules (MT), and low doses of MT-stabilizing drug revert the spindle orientation phenotype produced by their knockdown. Finally, CITK regulates both astral-MT nucleation and stability. Our results provide a functional link between two established microcephaly proteins.
Collapse
Affiliation(s)
- Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federico T Bianchi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Cristiana Vagnoni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnologies "C. Darwin", Sapienza, Università di Roma, Rome, Italy
| | - Silvia Bonaccorsi
- Department of Biology and Biotechnologies "C. Darwin", Sapienza, Università di Roma, Rome, Italy
| | - Selina Pasquero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Gaia E Berto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Sgrò
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandra Ma Chiotto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Bergo
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Nicoletta Landsberger
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Jacqueline Bond
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Wieland B Huttner
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Jungas T, Perchey RT, Fawal M, Callot C, Froment C, Burlet-Schiltz O, Besson A, Davy A. Eph-mediated tyrosine phosphorylation of citron kinase controls abscission. J Cell Biol 2016; 214:555-69. [PMID: 27551053 PMCID: PMC5004443 DOI: 10.1083/jcb.201602057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
Abscission is the last step of cytokinesis, allowing the physical separation of daughter cells at the end of cell division. It has been considered a cell autonomous process, yet Jungas et al. report that Ephrin/Eph signaling controls the completion of abscission. Cytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in cell division. We show that activation of Eph signaling in vitro leads to multinucleation and polyploidy, and we demonstrate that this is caused by alteration of the ultimate step of cytokinesis, abscission. Control of abscission requires Eph kinase activity, and Src and citron kinase (CitK) are downstream effectors in the Eph-induced signal transduction cascade. CitK is phosphorylated on tyrosines in neural progenitors in vivo, and Src kinase directly phosphorylates CitK. We have identified the specific tyrosine residues of CitK that are phosphorylated and show that tyrosine phosphorylation of CitK impairs cytokinesis. Finally, we show that, similar to CitK, Ephrin/Eph signaling controls neuronal ploidy in the developing neocortex. Our study indicates that CitK integrates intracellular and extracellular signals provided by the local environment to coordinate completion of cytokinesis.
Collapse
Affiliation(s)
- Thomas Jungas
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| | - Renaud T Perchey
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1037, Cancer Research Center of Toulouse, 31037 Toulouse, France Centre National de la Recherche Scientifique, ERL 5294, Université de Toulouse, Université Paul Sabatier, 31037 Toulouse, France
| | - Mohamad Fawal
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| | - Caroline Callot
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1037, Cancer Research Center of Toulouse, 31037 Toulouse, France Centre National de la Recherche Scientifique, ERL 5294, Université de Toulouse, Université Paul Sabatier, 31037 Toulouse, France
| | - Carine Froment
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Odile Burlet-Schiltz
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Arnaud Besson
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1037, Cancer Research Center of Toulouse, 31037 Toulouse, France Centre National de la Recherche Scientifique, ERL 5294, Université de Toulouse, Université Paul Sabatier, 31037 Toulouse, France
| | - Alice Davy
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
33
|
Harding BN, Moccia A, Drunat S, Soukarieh O, Tubeuf H, Chitty LS, Verloes A, Gressens P, El Ghouzzi V, Joriot S, Di Cunto F, Martins A, Passemard S, Bielas SL. Mutations in Citron Kinase Cause Recessive Microlissencephaly with Multinucleated Neurons. Am J Hum Genet 2016; 99:511-20. [PMID: 27453579 PMCID: PMC4974106 DOI: 10.1016/j.ajhg.2016.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/05/2016] [Indexed: 01/03/2023] Open
Abstract
Primary microcephaly is a neurodevelopmental disorder that is caused by a reduction in brain size as a result of defects in the proliferation of neural progenitor cells during development. Mutations in genes encoding proteins that localize to the mitotic spindle and centrosomes have been implicated in the pathogenicity of primary microcephaly. In contrast, the contractile ring and midbody required for cytokinesis, the final stage of mitosis, have not previously been implicated by human genetics in the molecular mechanisms of this phenotype. Citron kinase (CIT) is a multi-domain protein that localizes to the cleavage furrow and midbody of mitotic cells, where it is required for the completion of cytokinesis. Rodent models of Cit deficiency highlighted the role of this gene in neurogenesis and microcephaly over a decade ago. Here, we identify recessively inherited pathogenic variants in CIT as the genetic basis of severe microcephaly and neonatal death. We present postmortem data showing that CIT is critical to building a normally sized human brain. Consistent with cytokinesis defects attributed to CIT, multinucleated neurons were observed throughout the cerebral cortex and cerebellum of an affected proband, expanding our understanding of mechanisms attributed to primary microcephaly.
Collapse
Affiliation(s)
- Brian N Harding
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Amanda Moccia
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Séverine Drunat
- Département de Génétique, Protect, Hôpital Robert Debré, Paris 75019, France; INSERM U1141, Hôpital Robert Debré, Paris 75019, France
| | - Omar Soukarieh
- INSERM U1079, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy Centre for Genomic and Personalized Medicine, Rouen 76183, France
| | - Hélène Tubeuf
- INSERM U1079, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy Centre for Genomic and Personalized Medicine, Rouen 76183, France; Interactive Biosoftware, Rouen 76000, France
| | - Lyn S Chitty
- Genetics and Genomic Medicine, UCL Institute of Child Health and Great Ormond Street NHS Foundation Trust, London WC1N 1EH, UK
| | - Alain Verloes
- Département de Génétique, Protect, Hôpital Robert Debré, Paris 75019, France; INSERM U1141, Hôpital Robert Debré, Paris 75019, France
| | - Pierre Gressens
- INSERM U1141, Hôpital Robert Debré, Paris 75019, France; Université Paris Diderot, Hôpital Robert Debré, Paris 75019, France; Center for Developing Brain, King's College, St. Thomas' Campus, London WC2R 2LS, UK
| | | | - Sylvie Joriot
- Service de Neuropédiatrie, Centre Hospitalier Régional Universitaire de Lille, Lille 59037, France
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | | | - Sandrine Passemard
- Département de Génétique, Protect, Hôpital Robert Debré, Paris 75019, France; INSERM U1141, Hôpital Robert Debré, Paris 75019, France; Université Paris Diderot, Hôpital Robert Debré, Paris 75019, France
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
34
|
D'Avino PP, Capalbo L. Regulation of midbody formation and function by mitotic kinases. Semin Cell Dev Biol 2016; 53:57-63. [PMID: 26802517 DOI: 10.1016/j.semcdb.2016.01.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/14/2016] [Indexed: 12/22/2022]
Abstract
Cytokinesis is the final phase of cell division and safeguards the correct distribution of genomic and cytoplasmic materials between the two nascent daughter cells. The final separation, or abscission, of the daughter cells depends on the proper assembly of an organelle at the intercellular bridge, the midbody, which acts as a platform for the recruitment and organisation of various proteins involved in both the control and execution of the abscission process. Recent studies have led to the identification of the mechanisms, signalling pathways and molecules that control the two tightly linked processes of midbody formation and abscission. Here we review our current knowledge of the role that mitotic kinases play in these processes and offer our perspectives on the potential future challenges that await researchers in the field.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Luisa Capalbo
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
35
|
Horton JS, Wakano CT, Speck M, Stokes AJ. Two-pore channel 1 interacts with citron kinase, regulating completion of cytokinesis. Channels (Austin) 2015; 9:21-9. [PMID: 25665131 PMCID: PMC4594595 DOI: 10.4161/19336950.2014.978676] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Two-pore channels (TPC1, 2, and 3) are recently identified endolysosmal ion channels, but remain poorly characterized. In this study, we show for the first time a role for TPC1 in cytokinesis, the final step in cell division. HEK 293 T-REx cells inducibly overexpressing TPC1 demonstrated a lack of proliferation accompanied by multinucleation and an increase in G2/M cycling cells. Increased TPC1 was associated with a concomitant accumulation of active RhoGTP and a decrease in phosphorylated myosin light chain (MLC). Finally, we demonstrated a novel interaction between TPC1 and citron kinase (CIT). These results identify TPC1 as a central component of cytokinetic control, specifically during abscission, and introduce a means by which the endolysosomal system may play an active role in this process.
Collapse
Affiliation(s)
- Jaime S Horton
- a Laboratory of Experimental Medicine; John A. Burns School of Medicine ; University of Hawaii ; Honolulu , HI USA
| | | | | | | |
Collapse
|
36
|
Sgrò F, Bianchi FT, Falcone M, Pallavicini G, Gai M, Chiotto AMA, Berto GE, Turco E, Chang YJ, Huttner WB, Di Cunto F. Tissue-specific control of midbody microtubule stability by Citron kinase through modulation of TUBB3 phosphorylation. Cell Death Differ 2015; 23:801-13. [PMID: 26586574 DOI: 10.1038/cdd.2015.142] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 09/13/2015] [Accepted: 09/29/2015] [Indexed: 01/02/2023] Open
Abstract
Cytokinesis, the physical separation of daughter cells at the end of cell cycle, is commonly considered a highly stereotyped phenomenon. However, in some specialized cells this process may involve specific molecular events that are still largely unknown. In mammals, loss of Citron-kinase (CIT-K) leads to massive cytokinesis failure and apoptosis only in neuronal progenitors and in male germ cells, resulting in severe microcephaly and testicular hypoplasia, but the reasons for this specificity are unknown. In this report we show that CIT-K modulates the stability of midbody microtubules and that the expression of tubulin β-III (TUBB3) is crucial for this phenotype. We observed that TUBB3 is expressed in proliferating CNS progenitors, with a pattern correlating with the susceptibility to CIT-K loss. More importantly, depletion of TUBB3 in CIT-K-dependent cells makes them resistant to CIT-K loss, whereas TUBB3 overexpression increases their sensitivity to CIT-K knockdown. The loss of CIT-K leads to a strong decrease in the phosphorylation of S444 on TUBB3, a post-translational modification associated with microtubule stabilization. CIT-K may promote this event by interacting with TUBB3 and by recruiting at the midbody casein kinase-2α (CK2α) that has previously been reported to phosphorylate the S444 residue. Indeed, CK2α is lost from the midbody in CIT-K-depleted cells. Moreover, expression of the nonphosphorylatable TUBB3 mutant S444A induces cytokinesis failure, whereas expression of the phospho-mimetic mutant S444D rescues the cytokinesis failure induced by both CIT-K and CK2α loss. Altogether, our findings reveal that expression of relatively low levels of TUBB3 in mitotic cells can be detrimental for their cytokinesis and underscore the importance of CIT-K in counteracting this event.
Collapse
Affiliation(s)
- F Sgrò
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - F T Bianchi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - M Falcone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - G Pallavicini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - M Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - A M A Chiotto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - G E Berto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - E Turco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Y J Chang
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - W B Huttner
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - F Di Cunto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Neuroscience Institute of Turin, Turin, Italy
| |
Collapse
|
37
|
Spindle Assembly and Chromosome Segregation Requires Central Spindle Proteins in Drosophila Oocytes. Genetics 2015; 202:61-75. [PMID: 26564158 DOI: 10.1534/genetics.115.181081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/06/2015] [Indexed: 11/18/2022] Open
Abstract
Oocytes segregate chromosomes in the absence of centrosomes. In this situation, the chromosomes direct spindle assembly. It is still unclear in this system which factors are required for homologous chromosome bi-orientation and spindle assembly. The Drosophila kinesin-6 protein Subito, although nonessential for mitotic spindle assembly, is required to organize a bipolar meiotic spindle and chromosome bi-orientation in oocytes. Along with the chromosomal passenger complex (CPC), Subito is an important part of the metaphase I central spindle. In this study we have conducted genetic screens to identify genes that interact with subito or the CPC component Incenp. In addition, the meiotic mutant phenotype for some of the genes identified in these screens were characterized. We show, in part through the use of a heat-shock-inducible system, that the Centralspindlin component RacGAP50C and downstream regulators of cytokinesis Rho1, Sticky, and RhoGEF2 are required for homologous chromosome bi-orientation in metaphase I oocytes. This suggests a novel function for proteins normally involved in mitotic cell division in the regulation of microtubule-chromosome interactions. We also show that the kinetochore protein, Polo kinase, is required for maintaining chromosome alignment and spindle organization in metaphase I oocytes. In combination our results support a model where the meiotic central spindle and associated proteins are essential for acentrosomal chromosome segregation.
Collapse
|
38
|
D'Avino PP, Capalbo L. New Auroras on the Roles of the Chromosomal Passenger Complex in Cytokinesis: Implications for Cancer Therapies. Front Oncol 2015; 5:221. [PMID: 26528433 PMCID: PMC4604319 DOI: 10.3389/fonc.2015.00221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/28/2015] [Indexed: 11/24/2022] Open
Abstract
The chromosomal passenger complex (CPC), composed of a kinase component, Aurora B, the scaffolding subunit inner centromeric protein, Borealin, and Survivin, is a key regulator of cell division. It controls multiple events, from chromosome condensation in prophase to the final separation or abscission of the two daughter cells. The essential functions of the CPC during metaphase, however, have always hindered an accurate study of its role during cytokinesis. The recent development of small molecule inhibitors against Aurora B and the use of elegant technologies such as chemical genetics have offered new approaches to study the functions of the CPC at the end of cell division. Here, we review the recent findings about the roles of the CPC in controlling the assembly of the cleavage furrow, central spindle, and midbody. We will also discuss the crucial function of this complex in controlling abscission timing in order to prevent abscission when lagging chromatin is present at the cleavage site, thereby avoiding the formation of genetically abnormal daughter cells. Finally, we offer our perspective on how to exploit the potential therapeutic applications of inhibiting CPC activity during cytokinesis in cancer cells.
Collapse
Affiliation(s)
| | - Luisa Capalbo
- Department of Pathology, University of Cambridge , Cambridge , UK
| |
Collapse
|
39
|
Jack of all trades: functional modularity in the adherens junction. Curr Opin Cell Biol 2015; 36:32-40. [DOI: 10.1016/j.ceb.2015.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/20/2015] [Accepted: 06/30/2015] [Indexed: 11/22/2022]
|
40
|
Zhao Z, Manser E. Myotonic dystrophy kinase-related Cdc42-binding kinases (MRCK), the ROCK-like effectors of Cdc42 and Rac1. Small GTPases 2015; 6:81-8. [PMID: 26090570 DOI: 10.1080/21541248.2014.1000699] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cdc42 is a member of the Rho GTPase protein family that plays key roles in local F-actin organization through a number of kinase and non-kinase effector proteins. The myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs), and the RhoA binding coiled-coil containing kinases (ROCKs) are widely expressed members of the Dystrophia myotonica protein kinase (DMPK) family. The MRCK proteins are ∼190 kDa multi-domain proteins expressed in all cells and coordinate certain acto-myosin networks. Notably MRCK is a key regulator of myosin18A and myosin IIA/B, and through phosphorylation of their common regulatory light chains (MYL9 or MLC2) to promote actin stress fiber contractility. The MRCK kinases are regulated by Cdc42, which is required for cell polarity and directional migration; MRCK links to the acto-myosin complex through interaction with a coiled-coil containing adaptor proteins LRAP35a/b. The biological activities of MRCK in model organisms such as worms and flies confirm it as a myosin II activator. In mammalian cell culture MRCK can be critical for cancer cell migration and neurite outgrowth. We review the current literatures regarding MRCK and highlight the similarities and differences between MRCK and ROCK kinases.
Collapse
Affiliation(s)
- Zhuoshen Zhao
- a sGSK Group; Institute of Molecular and Cell Biology (IMCB) ; Singapore
| | | |
Collapse
|
41
|
Abstract
Cell division ends with the physical separation of the two daughter cells, a process known as cytokinesis. This final event ensures that nuclear and cytoplasmic contents are accurately partitioned between the two nascent cells. Cytokinesis is one of the most dramatic changes in cell shape and requires an extensive reorganization of the cell's cytoskeleton. Here, we describe the cytoskeletal structures, factors, and signaling pathways that orchestrate this robust and yet highly dynamic process in animal cells. Finally, we discuss possible future directions in this growing area of cell division research and its implications in human diseases, including cancer.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari c/o Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, 00185 Roma, Italy
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK-London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| |
Collapse
|
42
|
Chircop M. Rho GTPases as regulators of mitosis and cytokinesis in mammalian cells. Small GTPases 2014; 5:29770. [PMID: 24988197 DOI: 10.4161/sgtp.29770] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rho GTPases regulate a diverse range of cellular functions primarily through their ability to modulate microtubule dynamics and the actin-myosin cytoskeleton. Both of these cytoskeletal structures are crucial for a mitotic cell division. Specifically, their assembly and disassembly is tightly regulated in a temporal manner to ensure that each mitotic stage occurs in the correct sequential order and not prematurely until the previous stage is completed. Thus, it is not surprising that the Rho GTPases, RhoA, and Cdc42, have reported roles in several stages of mitosis: cell cortex stiffening during cell rounding, mitotic spindle formation, and bi-orient attachment of the spindle microtubules to the kinetochore and during cytokinesis play multiple roles in establishing the division plane, assembly, and activation of the contractile ring, membrane ingression, and abscission. Here, I review the molecular mechanisms regulating the spatial and temporal activation of RhoA and Cdc42 during mitosis, and how this is critical for mitotic progression and completion.
Collapse
Affiliation(s)
- Megan Chircop
- Children's Medical Research Institute; The University of Sydney; Westmead, Australia
| |
Collapse
|
43
|
Berto GE, Iobbi C, Camera P, Scarpa E, Iampietro C, Bianchi F, Gai M, Sgrò F, Cristofani F, Gärtner A, Dotti CG, Di Cunto F. The DCR protein TTC3 affects differentiation and Golgi compactness in neurons through specific actin-regulating pathways. PLoS One 2014; 9:e93721. [PMID: 24695496 PMCID: PMC3973554 DOI: 10.1371/journal.pone.0093721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/06/2014] [Indexed: 01/10/2023] Open
Abstract
In neuronal cells, actin remodeling plays a well known role in neurite extension but is also deeply involved in the organization of intracellular structures, such as the Golgi apparatus. However, it is still not very clear which mechanisms may regulate actin dynamics at the different sites. In this report we show that high levels of the TTC3 protein, encoded by one of the genes of the Down Syndrome Critical Region (DCR), prevent neurite extension and disrupt Golgi compactness in differentiating primary neurons. These effects largely depend on the capability of TTC3 to promote actin polymerization through signaling pathways involving RhoA, ROCK, CIT-N and PIIa. However, the functional relationships between these molecules differ significantly if considering the TTC3 activity on neurite extension or on Golgi organization. Finally, our results reveal an unexpected stage-dependent requirement for F-actin in Golgi organization at different stages of neuronal differentiation.
Collapse
Affiliation(s)
- Gaia Elena Berto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- * E-mail: (GEB); (FDC)
| | - Cristina Iobbi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paola Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Scarpa
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Corinne Iampietro
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federico Bianchi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesco Sgrò
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Flavio Cristofani
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Annette Gärtner
- VIB Center for the Biology of Disease – VIB, Leuven, Belgium
| | - Carlos G. Dotti
- VIB Center for the Biology of Disease – VIB, Leuven, Belgium
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- * E-mail: (GEB); (FDC)
| |
Collapse
|
44
|
El Amine N, Kechad A, Jananji S, Hickson GRX. Opposing actions of septins and Sticky on Anillin promote the transition from contractile to midbody ring. ACTA ACUST UNITED AC 2014; 203:487-504. [PMID: 24217622 PMCID: PMC3824009 DOI: 10.1083/jcb.201305053] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During cytokinesis, closure of the actomyosin contractile ring (CR) is coupled to the formation of a midbody ring (MR), through poorly understood mechanisms. Using time-lapse microscopy of Drosophila melanogaster S2 cells, we show that the transition from the CR to the MR proceeds via a previously uncharacterized maturation process that requires opposing mechanisms of removal and retention of the scaffold protein Anillin. The septin cytoskeleton acts on the C terminus of Anillin to locally trim away excess membrane from the late CR/nascent MR via internalization, extrusion, and shedding, whereas the citron kinase Sticky acts on the N terminus of Anillin to retain it at the mature MR. Simultaneous depletion of septins and Sticky not only disrupted MR formation but also caused earlier CR oscillations, uncovering redundant mechanisms of CR stability that can partly explain the essential role of Anillin in this process. Our findings highlight the relatedness of the CR and MR and suggest that membrane removal is coordinated with CR disassembly.
Collapse
Affiliation(s)
- Nour El Amine
- Centre de Cancérologie Charles Bruneau, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montréal, Québec H3T 1C5, Canada
| | | | | | | |
Collapse
|
45
|
Weiss EL. Hippo unleashed! Proteome-scale analysis reveals new views of Hippo pathway biology. Sci Signal 2013; 6:pe36. [PMID: 24255176 DOI: 10.1126/scisignal.2004857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In animals, Hippo pathways control cell proliferation and morphogenesis, regulate tissue architecture, and restrain tumorigenesis. A recent surge in interest has linked these pathways to cell junction proteins and cell polarity proteins, as well as the microtubule cytoskeleton. Three large-scale protein interaction studies, including one by Couzens et al. in this week's issue, have dramatically increased the scope of information about Hippo pathways. In addition to adding nuance to mechanistic interactions that were already known or suspected, these works implicate membrane trafficking, activity of the phosphatase PP6, and cytokinetic regulation in Hippo signaling. A mechanism of pathway inhibition involving the endosomal-lysosomal axis emerges, and dramatic remodeling of protein interactions upon phosphatase inhibition is revealed. Overall, these studies provide a rich new resource for the expanded study of this highly conserved pathway.
Collapse
Affiliation(s)
- Eric L Weiss
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
46
|
Wang W, Li X, Huang J, Feng L, Dolinta KG, Chen J. Defining the protein-protein interaction network of the human hippo pathway. Mol Cell Proteomics 2013; 13:119-31. [PMID: 24126142 DOI: 10.1074/mcp.m113.030049] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hippo pathway, which is conserved from Drosophila to mammals, has been recognized as a tumor suppressor signaling pathway governing cell proliferation and apoptosis, two key events involved in organ size control and tumorigenesis. Although several upstream regulators, the conserved kinase cascade and key downstream effectors including nuclear transcriptional factors have been defined, the global organization of this signaling pathway is not been fully understood. Thus, we conducted a proteomic analysis of human Hippo pathway, which revealed the involvement of an extensive protein-protein interaction network in this pathway. The mass spectrometry data were deposited to ProteomeXchange with identifier PXD000415. Our data suggest that 550 interactions within 343 unique protein components constitute the central protein-protein interaction landscape of human Hippo pathway. Our study provides a glimpse into the global organization of Hippo pathway, reveals previously unknown interactions within this pathway, and uncovers new potential components involved in the regulation of this pathway. Understanding these interactions will help us further dissect the Hippo signaling-pathway and extend our knowledge of organ size control.
Collapse
Affiliation(s)
- Wenqi Wang
- Department of Experimental Radiation Oncology, Unit 66, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|
47
|
Thumkeo D, Watanabe S, Narumiya S. Physiological roles of Rho and Rho effectors in mammals. Eur J Cell Biol 2013; 92:303-15. [PMID: 24183240 DOI: 10.1016/j.ejcb.2013.09.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 02/06/2023] Open
Abstract
Rho GTPase is a master regulator controlling cytoskeleton in multiple contexts such as cell migration, adhesion and cytokinesis. Of several Rho GTPases in mammals, the best characterized is the Rho subfamily including ubiquitously expressed RhoA and its homologs RhoB and RhoC. Upon binding GTP, Rho exerts its functions through downstream Rho effectors, such as ROCK, mDia, Citron, PKN, Rhophilin and Rhotekin. Until recently, our knowledge about functions of Rho and Rho effectors came mostly from in vitro studies utilizing cultured cells, and their physiological roles in vivo were largely unknown. However, gene-targeting studies of Rho and its effectors have now unraveled their tissue- and cell-specific roles and provide deeper insight into the physiological function of Rho signaling in vivo. In this article, we briefly describe previous studies of the function of Rho and its effectors in vitro and then review and discuss recent studies on knockout mice of Rho and its effectors.
Collapse
Affiliation(s)
- Dean Thumkeo
- Department of Pharmacology, Kyoto University Faculty of Medicine, Sakyo-ku, Kyoto 606-8501, Japan; Innovation Center for Immunoregulation, Technologies and Drugs (AK Project), Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
48
|
Citron kinase controls a molecular network required for midbody formation in cytokinesis. Proc Natl Acad Sci U S A 2013; 110:9782-7. [PMID: 23716662 DOI: 10.1073/pnas.1301328110] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytokinesis partitions cytoplasmic and genomic materials at the end of cell division. Failure in this process causes polyploidy, which in turn can generate chromosomal instability, a hallmark of many cancers. Successful cytokinesis requires cooperative interaction between contractile ring and central spindle components, but how this cooperation is established is poorly understood. Here we show that Sticky (Sti), the Drosophila ortholog of the contractile ring component Citron kinase (CIT-K), interacts directly with two kinesins, Nebbish [the fly counterpart of human kinesin family member 14 (KIF14)] and Pavarotti [the Drosophila ortholog of human mitotic kinesin-like protein 1 (MKLP1)], and that in turn these kinesins interact with each other and with another central spindle protein, Fascetto [the fly ortholog of protein regulator of cytokinesis 1 (PRC1)]. Sti recruits Nebbish to the cleavage furrow, and both proteins are required for midbody formation and proper localization of Pavarotti and Fascetto. These functions require Sti kinase activity, indicating that Sti plays both structural and regulatory roles in midbody formation. Finally, we show that CIT-K's role in midbody formation is conserved in human cells. Our findings indicate that CIT-K is likely to act at the top of the midbody-formation hierarchy by connecting and regulating a molecular network of contractile ring components and microtubule-associated proteins.
Collapse
|
49
|
Lee KY, Davies T, Mishima M. Cytokinesis microtubule organisers at a glance. J Cell Sci 2013; 125:3495-500. [PMID: 22991411 DOI: 10.1242/jcs.094672] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Kian-Yong Lee
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
50
|
Watanabe S, De Zan T, Ishizaki T, Narumiya S. Citron kinase mediates transition from constriction to abscission through its coiled-coil domain. J Cell Sci 2013; 126:1773-84. [PMID: 23444367 DOI: 10.1242/jcs.116608] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytokinesis is initiated by constriction of the cleavage furrow, and completed with separation of the two daughter cells by abscission. Control of transition from constriction to abscission is therefore crucial for cytokinesis. However, the underlying mechanism is largely unknown. Here, we analyze the role of Citron kinase (Citron-K) that localizes at the cleavage furrow and the midbody, and dissect its action mechanisms during this transition. Citron-K forms a stable ring-like structure at the midbody and its depletion affects the maintenance of the intercellular bridge, resulting in fusion of two daughter cells after the cleavage furrow ingression. RNA interference (RNAi) targeting Citron-K reduced accumulation of RhoA, Anillin, and septins at the intercellular bridge in mid telophase, and impaired concentration and maintenance of KIF14 and PRC1 at the midbody in late telophase. RNAi rescue experiments revealed that these functions of Citron-K are mediated by its coiled-coil (CC) domain, and not by its kinase domain. The C-terminal part of CC contains a Rho-binding domain and a cluster-forming region and is important for concentrating Citron-K from the cleavage furrow to the midbody. The N-terminal part of CC directly binds to KIF14, and this interaction is required for timely transfer of Citron-K to the midbody after furrow ingression. We propose that the CC-domain-mediated translocation and actions of Citron-K ensure proper stabilization of the midbody structure during the transition from constriction to abscission.
Collapse
Affiliation(s)
- Sadanori Watanabe
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan.
| | | | | | | |
Collapse
|