1
|
Lin WJ, Yu H, Pathak A. Gradients in cell density and shape transitions drive collective cell migration into confining environments. SOFT MATTER 2025. [PMID: 39784299 PMCID: PMC11715644 DOI: 10.1039/d3sm01240a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Epithelial cell collectives migrate through tissue interfaces and crevices to orchestrate development processes, tumor invasion, and wound healing. Naturally, the traversal of cell collective through confining environments involves crowding due to narrowing spaces, which seems tenuous given the conventional inverse relationship between cell density and migration. However, the physical transitions required to overcome such epithelial densification for migration across confinements remain unclear. Here, in a system of contiguous microchannels of varying confinements, we show that epithelial (MCF10A) monolayers accumulate higher cell density and undergo fluid-like shape transitions before entering narrower channels. However, overexpression of breast cancer oncogene ErbB2 did not require such accumulation of cell density to migrate across matrix confinement. While wild-type MCF10A cells migrated faster in narrow channels, this confinement sensitivity was reduced after +ErbB2 mutation or with constitutively active RhoA. This physical interpretation of collective cell migration as density and shape transitions in granular matter could advance our understanding of complex living systems.
Collapse
Affiliation(s)
- Wan-Jung Lin
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, USA.
| | - Hongsheng Yu
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, USA.
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, USA.
| |
Collapse
|
2
|
Bagchi A, Sarker B, Zhang J, Foston M, Pathak A. Fast yet force-effective mode of supracellular collective cell migration due to extracellular force transmission. PLoS Comput Biol 2025; 21:e1012664. [PMID: 39787053 PMCID: PMC11717197 DOI: 10.1371/journal.pcbi.1012664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025] Open
Abstract
Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration. Epithelial (MCF10A) cell clusters adhered to soft substrates with aligned collagen fibers (AF) migrate faster with much lesser traction forces, compared to random fibers (RF). Fiber alignment causes higher motility waves and transmission of normal stresses deeper into cell monolayer while minimizing shear stresses and increased cell-division based fluidization. By contrast, fiber randomization induces cellular jamming due to breakage in motility waves, disrupted transmission of normal stresses, and heightened shear driven flow. Using a novel motor-clutch model, we explain that such 'force-effective' fast migration phenotype occurs due to rapid stabilization of contractile forces at the migrating front, enabled by higher frictional forces arising from simultaneous compressive loading of parallel fiber-substrate connections. We also model 'haptotaxis' to show that increasing ligand connectivity (but not continuity) increases migration efficiency. According to our model, increased rate of front stabilization via higher resistance to substrate deformation is sufficient to capture 'durotaxis'. Thus, our findings reveal a new paradigm wherein the rate of leading-edge stabilization determines the efficiency of supracellular collective cell migration.
Collapse
Affiliation(s)
- Amrit Bagchi
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| | - Bapi Sarker
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| | - Jialiang Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Marcus Foston
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
Levandosky K, Copos C. Model supports asymmetric regulation across the intercellular junction for collective cell polarization. PLoS Comput Biol 2024; 20:e1012216. [PMID: 39689113 DOI: 10.1371/journal.pcbi.1012216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/31/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024] Open
Abstract
Symmetry breaking, which is ubiquitous in biological cells, functionally enables directed cell movement and organized embryogenesis. Prior to movement, cells break symmetry to form a well-defined cell front and rear in a process called polarization. In developing and regenerating tissues, collective cell movement requires the coordination of the polarity of the migration machineries of neighboring cells. Though several works shed light on the molecular basis of polarity, fewer studies have focused on the regulation across the cell-cell junction required for collective polarization, thus limiting our ability to connect tissue-level dynamics to subcellular interactions. Here, we investigated how polarity signals are communicated from one cell to its neighbor to ensure coordinated front-to-rear symmetry breaking with the same orientation across the group. In a theoretical setting, we systematically searched a variety of intercellular interactions and identified that co-alignment arrangement of the polarity axes in groups of two and four cells can only be achieved with strong asymmetric regulation of Rho GTPases or enhanced assembly of complementary F-actin structures across the junction. Our results held if we further assumed the presence of an external stimulus, intrinsic cell-to-cell variability, or larger groups. The results underline the potential of using quantitative models to probe the molecular interactions required for macroscopic biological phenomena. Lastly, we posit that asymmetric regulation is achieved through junction proteins and predict that in the absence of cytoplasmic tails of such linker proteins, the likeliness of doublet co-polarity is greatly diminished.
Collapse
Affiliation(s)
- Katherine Levandosky
- Department of Mathematics, Northeastern University, Boston, Massachusetts, United States of America
| | - Calina Copos
- Department of Mathematics, Northeastern University, Boston, Massachusetts, United States of America
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Li CX, Zhao ZX, Su DB, Yin DC, Ye YJ. In vitro regulation of collective cell migration: Understanding the role of physical and chemical microenvironments. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 195:23-40. [PMID: 39612952 DOI: 10.1016/j.pbiomolbio.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Collective cell migration is the primary mode of cellular movement during embryonic morphogenesis, tissue repair and regeneration, and cancer invasion. Distinct from single-cell migration, collective cell migration involves complex intercellular signaling cascades and force transmission. Consequently, cell collectives exhibit intricate and diverse migration patterns under the influence of the microenvironment in vivo. Investigating the patterns and mechanisms of collective cell migration within complex environmental factors in vitro is essential for elucidating collective cell migration in vivo. This review elucidates the influence of physical and chemical factors in vitro microenvironment on the migration patterns and efficiency of cell collectives, thereby enhancing our comprehension of the phenomenon. Furthermore, we concisely present the effects of characteristic properties of common biomaterials on collective cell migration during tissue repair and regeneration, as well as the features and applications of tumor models of different dimensions (2D substrate or 3D substrate) in vitro. Finally, we highlight the challenges facing the research of collective cell migration behaviors in vitro microenvironment and propose that modulating collective cell migration may represent a potential strategy to promote tissue repair and regeneration and to control tumor invasion and metastasis.
Collapse
Affiliation(s)
- Chang-Xing Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zi-Xu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dan-Bo Su
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ya-Jing Ye
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
5
|
Wang C, Choi HJ, Woodbury L, Lee K. Interpretable Fine-Grained Phenotypes of Subcellular Dynamics via Unsupervised Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403547. [PMID: 39239705 PMCID: PMC11538677 DOI: 10.1002/advs.202403547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Uncovering fine-grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased biological processes. However, this endeavor poses significant technical challenges for unsupervised machine learning, requiring the extraction of features that not only faithfully preserve this heterogeneity but also effectively discriminate between established biological states, all while remaining interpretable. To tackle these challenges, a self-training deep learning framework designed for fine-grained and interpretable phenotyping is presented. This framework incorporates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, an autoencoder-based regularizer is designed to encourage the student DNN to maximize the heterogeneity associated with molecular perturbations. This method enables the acquisition of features with enhanced discriminatory power, while simultaneously preserving the heterogeneity associated with molecular perturbations. This study successfully delineated fine-grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, revealing specific responses to pharmacological perturbations. Remarkably, this framework adeptly captured a concise set of highly interpretable features uniquely linked to these fine-grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability establishes it as a valuable tool for investigating diverse cellular dynamics and their heterogeneity.
Collapse
Affiliation(s)
- Chuangqi Wang
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
| | - Hee June Choi
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
- Vascular Biology Program and Department of SurgeryBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Lucy Woodbury
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
- Department of Biomedical EngineeringUniversity of ArkansasFayettevilleAR72701USA
| | - Kwonmoo Lee
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
- Vascular Biology Program and Department of SurgeryBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
6
|
Charbonier F, Zhu J, Slyman R, Allan C, Chaudhuri O. Substrate stress relaxation regulates monolayer fluidity and leader cell formation for collectively migrating epithelia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609529. [PMID: 39253481 PMCID: PMC11383040 DOI: 10.1101/2024.08.26.609529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Collective migration of epithelial tissues is a critical feature of developmental morphogenesis and tissue homeostasis. Coherent motion of cell collectives requires large scale coordination of motion and force generation and is influenced by mechanical properties of the underlying substrate. While tissue viscoelasticity is a ubiquitous feature of biological tissues, its role in mediating collective cell migration is unclear. Here, we have investigated the impact of substrate stress relaxation on the migration of micropatterned epithelial monolayers. Epithelial monolayers exhibit faster collective migration on viscoelastic alginate substrates with slower relaxation timescales, which are more elastic, relative to substrates with faster stress relaxation, which exhibit more viscous loss. Faster migration on slow-relaxing substrates is associated with reduced substrate deformation, greater monolayer fluidity, and enhanced leader cell formation. In contrast, monolayers on fast-relaxing substrates generate substantial substrate deformations and are more jammed within the bulk, with reduced formation of transient lamellipodial protrusions past the monolayer edge leading to slower overall expansion. This work reveals features of collective epithelial dynamics on soft, viscoelastic materials and adds to our understanding of cell-substrate interactions at the tissue scale. Significance Statement Groups of cells must coordinate their movements in order to sculpt organs during development and maintain tissues. The mechanical properties of the underlying substrate on which cells reside are known to influence key aspects of single and collective cell migration. Despite being a nearly universal feature of biological tissues, the role of viscoelasticity (i.e., fluid-like and solid-like behavior) in collective cell migration is unclear. Using tunable engineered biomaterials, we demonstrate that sheets of epithelial cells display enhanced migration on slower-relaxing (more elastic) substrates relative to faster-relaxing (more viscous) substrates. Building our understanding of tissue-substrate interactions and collective cell dynamics provides insights into approaches for tissue engineering and regenerative medicine, and therapeutic interventions to promote health and treat disease.
Collapse
|
7
|
Mao Y, Wickström SA. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 2024; 25:654-670. [PMID: 38600372 DOI: 10.1038/s41580-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.
Collapse
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Kim D, Olson JM, Cooper JA. N-cadherin dynamically regulates pediatric glioma cell migration in complex environments. J Cell Biol 2024; 223:e202401057. [PMID: 38477830 PMCID: PMC10937189 DOI: 10.1083/jcb.202401057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Pediatric high-grade gliomas are highly invasive and essentially incurable. Glioma cells migrate between neurons and glia, along axon tracts, and through extracellular matrix surrounding blood vessels and underlying the pia. Mechanisms that allow adaptation to such complex environments are poorly understood. N-cadherin is highly expressed in pediatric gliomas and associated with shorter survival. We found that intercellular homotypic N-cadherin interactions differentially regulate glioma migration according to the microenvironment, stimulating migration on cultured neurons or astrocytes but inhibiting invasion into reconstituted or astrocyte-deposited extracellular matrix. N-cadherin localizes to filamentous connections between migrating leader cells but to epithelial-like junctions between followers. Leader cells have more surface and recycling N-cadherin, increased YAP1/TAZ signaling, and increased proliferation relative to followers. YAP1/TAZ signaling is dynamically regulated as leaders and followers change position, leading to altered N-cadherin levels and organization. Together, the results suggest that pediatric glioma cells adapt to different microenvironments by regulating N-cadherin dynamics and cell-cell contacts.
Collapse
Affiliation(s)
- Dayoung Kim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James M. Olson
- Clinical Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Jonathan A. Cooper
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
9
|
Seraj H, Nazari MA, Atai AA, Amanpour S, Azadi M. A Review: Biomechanical Aspects of the Fallopian Tube Relevant to its Function in Fertility. Reprod Sci 2024; 31:1456-1485. [PMID: 38472710 DOI: 10.1007/s43032-024-01479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
The fallopian tube (FT) plays a crucial role in the reproductive process by providing an ideal biomechanical and biochemical environment for fertilization and early embryo development. Despite its importance, the biomechanical functions of the FT that originate from its morphological aspects, and ultrastructural aspects, as well as the mechanical properties of FT, have not been studied nor used sufficiently, which limits the understanding of fertilization, mechanotrasduction, and mechanobiology during embryo development, as well as the replication of the FT in laboratory settings for infertility treatments. This paper reviews and revives valuable information on human FT reported in medical literature in the past five decades relevant to the biomechanical aspects of FT. In this review, we summarized the current state of knowledge concerning the morphological, ultrastructural aspects, and mechanical properties of the human FT. We also investigate the potential arising from a thorough consideration of the biomechanical functions and exploring often neglected mechanical aspects. Our investigation encompasses both macroscopic measurements (such as length, diameter, and thickness) and microscopic measurements (including the height of epithelial cells, the percentage of ciliated cells, cilia structure, and ciliary beat frequency). Our primary focus has been on healthy women of reproductive age. We have examined various measurement techniques, encompassing conventional metrology, 2D histological data as well as new spatial measurement techniques such as micro-CT.
Collapse
Affiliation(s)
- Hasan Seraj
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Ali Nazari
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
- Department of Speech and Cognition, CNRS UMR 5216, Grenoble Institute of Technology, Grenoble, France.
| | - Ali Asghar Atai
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Saeid Amanpour
- Vali-E-Asr Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Azadi
- School of Engineering, College of Science and Engineering, San Francisco State University, San Francisco, CA, USA.
| |
Collapse
|
10
|
Lai W, Wang Y, Huang C, Xu H, Zheng X, Li K, Wang J, Lou Z. DIREN mitigates DSS-induced colitis in mice and attenuates collagen deposition via inhibiting the Wnt/β-catenin and focal adhesion pathways. Biomed Pharmacother 2024; 175:116671. [PMID: 38678963 DOI: 10.1016/j.biopha.2024.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND DIREN is a SHE ethnic medicine with stasis-resolving, hemostasis, clearing heat, and removing toxin effects. It is clinically used in the treatment of gastrointestinal bleeding, such as ulcerative colitis (UC). AIM OF THE STUDY Fibrosis is one of the pathological changes in the progression of UC, which can make it challenging to respond to a treatment. We aimed to illuminate the role of DIREN in DSS-induced UC and tried to unveil its related mechanisms from two perspectives: intestinal inflammation and collagen deposition. MATERIALS AND METHODS A 2.5 % dextran sulfate sodium (DSS) water solution was used to induce colitis in mice. The therapeutic effect of DIREN was assessed using the disease activity index, histopathological score, and colon length. Masson and Sirius Red staining was used to observe the fibrosis in the colon. Apoptosis of colonic epithelial cells was observed by TUNEL immunofluorescence staining. RNA-seq observed differential genes and enrichment pathways. Immunohistochemistry and RT-qPCR were used to detect the expression of molecules related to fibrosis and focal adhesion signaling in colon tissue. RESULTS The administration of DIREN resulted in a reduction of disease activity index (DAI) in mice with UC while simultaneously promoting an increase in colon length. DIREN mitigated the loss of goblet cells in the colon of UC mice and maintained the integrity of the intestinal mucosa barrier. Masson staining revealed a reduction in colonic fibrosis with DIREN treatment, while Sirius red staining demonstrated a decrease in collagen Ⅰ deposition. DIREN reduced apoptosis of colonic epithelial cells and the expression of genes, such as CDH2, ITGA1, and TGF-β2. Additionally, the results of GSEA analysis of colon tissue transcriptome showed that the differentially expressed genes were enriched in the focal adhesion pathway. DIREN was found to downregulate the protein expression of BAX, N-cadherin, β-catenin, Integrin A1, and Vinculin while upregulating the protein expression of BCL2. Additionally, it led to the co-expression of N-cadherin and α-SMA. CONCLUSION DIREN exerts a protective effect against DSS-induced UC by ameliorating colonic fibrosis via regulation of focal adhesion and the WNT/β-catenin signaling pathway, thereby inhibiting fibroblast migration and reducing collagen secretion.
Collapse
Affiliation(s)
- Weizhi Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yingying Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Chen Huang
- The First School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hao Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xunjie Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ke Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jue Wang
- Department of Oncology, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Songyang Institute of Zhejiang Chinese Medical University, Lishui, Zhejiang 323400, China.
| |
Collapse
|
11
|
Marinaro G, Bruno L, Pirillo N, Coluccio ML, Nanni M, Malara N, Battista E, Bruno G, De Angelis F, Cancedda L, Di Mascolo D, Gentile F. The role of elasticity on adhesion and clustering of neurons on soft surfaces. Commun Biol 2024; 7:617. [PMID: 38778159 PMCID: PMC11111731 DOI: 10.1038/s42003-024-06329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The question of whether material stiffness enhances cell adhesion and clustering is still open to debate. Results from the literature are seemingly contradictory, with some reports illustrating that adhesion increases with surface stiffness and others suggesting that the performance of a system of cells is curbed by high values of elasticity. To address the role of elasticity as a regulator in neuronal cell adhesion and clustering, we investigated the topological characteristics of networks of neurons on polydimethylsiloxane (PDMS) surfaces - with values of elasticity (E) varying in the 0.55-2.65 MPa range. Results illustrate that, as elasticity increases, the number of neurons adhering on the surface decreases. Notably, the small-world coefficient - a topological measure of networks - also decreases. Numerical simulations and functional multi-calcium imaging experiments further indicated that the activity of neuronal cells on soft surfaces improves for decreasing E. Experimental findings are supported by a mathematical model, that explains adhesion and clustering of cells on soft materials as a function of few parameters - including the Young's modulus and roughness of the material. Overall, results indicate that - in the considered elasticity interval - increasing the compliance of a material improves adhesion, improves clustering, and enhances communication of neurons.
Collapse
Affiliation(s)
- Giovanni Marinaro
- Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Quartier Hôpital, 4000, Liège, Belgium
| | - Luigi Bruno
- Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036, Rende, Italy
| | - Noemi Pirillo
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Maria Laura Coluccio
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Marina Nanni
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Natalia Malara
- Department of Health Science, University of "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Edmondo Battista
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Giulia Bruno
- Plasmon Nanotechnologies, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Francesco De Angelis
- Plasmon Nanotechnologies, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, 16163, Genoa, Italy.
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70126, Bari, Italy.
| | - Francesco Gentile
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
12
|
Cai G, Li X, Lin SS, Chen SJ, Rodgers NC, Koning KM, Bi D, Liu AP. Matrix confinement modulates 3D spheroid sorting and burst-like collective migration. Acta Biomater 2024; 179:192-206. [PMID: 38490482 PMCID: PMC11263001 DOI: 10.1016/j.actbio.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
While it is known that cells with differential adhesion tend to segregate and preferentially sort, the physical forces governing sorting and invasion in heterogeneous tumors remain poorly understood. To investigate this, we tune matrix confinement, mimicking changes in the stiffness and confinement of the tumor microenvironment, to explore how physical confinement influences individual and collective cell migration in 3D spheroids. High levels of confinement lead to cell sorting while reducing matrix confinement triggers the collective fluidization of cell motion. Cell sorting, which depends on cell-cell adhesion, is crucial to this phenomenon. Burst-like migration does not occur for spheroids that have not undergone sorting, regardless of the degree of matrix confinement. Using computational Self-Propelled Voronoi modeling, we show that spheroid sorting and invasion into the matrix depend on the balance between cell-generated forces and matrix resistance. The findings support a model where matrix confinement modulates 3D spheroid sorting and unjamming in an adhesion-dependent manner, providing insights into the mechanisms of cell sorting and migration in the primary tumor and toward distant metastatic sites. STATEMENT OF SIGNIFICANCE: The mechanical properties of the tumor microenvironment significantly influence cancer cell migration within the primary tumor, yet how these properties affect intercellular interactions in heterogeneous tumors is not well understood. By utilizing calcium and calcium chelators, we dynamically alter collagen-alginate hydrogel stiffness and investigate tumor cell behavior within co-culture spheroids in response to varying degrees of matrix confinement. High confinement is found to trigger cell sorting while reducing confinement for sorted spheroids facilitates collective cell invasion. Notably, without prior sorting, spheroids do not exhibit burst-like migration, regardless of confinement levels. This work establishes that matrix confinement and intercellular adhesion regulate 3D spheroid dynamics, offering insights into cellular organization and migration within the primary tumor.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Xinzhi Li
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Samuel J Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicole C Rodgers
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katherine M Koning
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, USA.
| | - Allen P Liu
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Thomasy SM, Leonard BC, Greiner MA, Skeie JM, Raghunathan VK. Squishy matters - Corneal mechanobiology in health and disease. Prog Retin Eye Res 2024; 99:101234. [PMID: 38176611 PMCID: PMC11193890 DOI: 10.1016/j.preteyeres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.
Collapse
Affiliation(s)
- Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States; California National Primate Research Center, Davis, CA, United States.
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States
| | - Mark A Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | - Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | | |
Collapse
|
14
|
Shvedov NR, Analoui S, Dafalias T, Bedell BL, Gardner TJ, Scott BB. In vivo imaging in transgenic songbirds reveals superdiffusive neuron migration in the adult brain. Cell Rep 2024; 43:113759. [PMID: 38345898 DOI: 10.1016/j.celrep.2024.113759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/01/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Neuron migration is a key phase of neurogenesis, critical for the assembly and function of neuronal circuits. In songbirds, this process continues throughout life, but how these newborn neurons disperse through the adult brain is unclear. We address this question using in vivo two-photon imaging in transgenic zebra finches that express GFP in young neurons and other cell types. In juvenile and adult birds, migratory cells are present at a high density, travel in all directions, and make frequent course changes. Notably, these dynamic migration patterns are well fit by a superdiffusive model. Simulations reveal that these superdiffusive dynamics are sufficient to disperse new neurons throughout the song nucleus HVC. These results suggest that superdiffusive migration may underlie the formation and maintenance of nuclear brain structures in the postnatal brain and indicate that transgenic songbirds are a useful resource for future studies into the mechanisms of adult neurogenesis.
Collapse
Affiliation(s)
- Naomi R Shvedov
- Graduate Program for Neuroscience, Boston University, Boston, MA 02215, USA
| | - Sina Analoui
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Theresia Dafalias
- Graduate Program for Neuroscience, Boston University, Boston, MA 02215, USA
| | - Brooke L Bedell
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Timothy J Gardner
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Benjamin B Scott
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA; Neurophotonics Center, Photonics Center, and Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
15
|
Cai G, Li X, Lin SS, Chen SJ, Rodgers NC, Koning KM, Bi D, Liu AP. Matrix confinement modulates 3D spheroid sorting and burst-like collective migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.23.549940. [PMID: 37546827 PMCID: PMC10401934 DOI: 10.1101/2023.07.23.549940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
While it is known that cells with differential adhesion tend to segregate and preferentially sort, the physical forces governing sorting and invasion in heterogeneous tumors remain poorly understood. To investigate this, we tune matrix confinement, mimicking changes in the stiffness and confinement of the tumor microenvironment, to explore how physical confinement influences individual and collective cell migration in 3D spheroids. High levels of confinement lead to cell sorting while reducing matrix confinement triggers the collective fluidization of cell motion. Cell sorting, which depends on cell-cell adhesion, is crucial to this phenomenon. Burst-like migration does not occur for spheroids that have not undergone sorting, regardless of the degree of matrix confinement. Using computational Self-Propelled Voronoi modeling, we show that spheroid sorting and invasion into the matrix depend on the balance between cell-generated forces and matrix resistance. The findings support a model where matrix confinement modulates 3D spheroid sorting and unjamming in an adhesion-dependent manner, providing insights into the mechanisms of cell sorting and migration in the primary tumor and toward distant metastatic sites.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Xinzhi Li
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Samuel J. Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicole C. Rodgers
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katherine M. Koning
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Allen P. Liu
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Wieland S, Ramsperger AFRM, Gross W, Lehmann M, Witzmann T, Caspari A, Obst M, Gekle S, Auernhammer GK, Fery A, Laforsch C, Kress H. Nominally identical microplastic models differ greatly in their particle-cell interactions. Nat Commun 2024; 15:922. [PMID: 38297000 PMCID: PMC10830523 DOI: 10.1038/s41467-024-45281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Due to the abundance of microplastics in the environment, research about its possible adverse effects is increasing exponentially. Most studies investigating the effect of microplastics on cells still rely on commercially available polystyrene microspheres. However, the choice of these model microplastic particles can affect the outcome of the studies, as even nominally identical model microplastics may interact differently with cells due to different surface properties such as the surface charge. Here, we show that nominally identical polystyrene microspheres from eight different manufacturers significantly differ in their ζ-potential, which is the electrical potential of a particle in a medium at its slipping plane. The ζ-potential of the polystyrene particles is additionally altered after environmental exposure. We developed a microfluidic microscopy platform to demonstrate that the ζ-potential determines particle-cell adhesion strength. Furthermore, we find that due to this effect, the ζ-potential also strongly determines the internalization of the microplastic particles into cells. Therefore, the ζ-potential can act as a proxy of microplastic-cell interactions and may govern adverse effects reported in various organisms exposed to microplastics.
Collapse
Affiliation(s)
- Simon Wieland
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Anja F R M Ramsperger
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Wolfgang Gross
- Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Moritz Lehmann
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Thomas Witzmann
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Anja Caspari
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Martin Obst
- Experimental Biogeochemistry, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Günter K Auernhammer
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Andreas Fery
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
17
|
Kim D, Olson JM, Cooper JA. N-cadherin dynamically regulates pediatric glioma cell migration in complex environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.04.535599. [PMID: 38260559 PMCID: PMC10802396 DOI: 10.1101/2023.04.04.535599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Pediatric high-grade gliomas are highly invasive and essentially incurable. Glioma cells migrate between neurons and glia, along axon tracts, and through extracellular matrix surrounding blood vessels and underlying the pia. Mechanisms that allow adaptation to such complex environments are poorly understood. N-cadherin is highly expressed in pediatric gliomas and associated with shorter survival. We found that inter-cellular homotypic N-cadherin interactions differentially regulate glioma migration according to the microenvironment, stimulating migration on cultured neurons or astrocytes but inhibiting invasion into reconstituted or astrocyte-deposited extracellular matrix. N-cadherin localizes to filamentous connections between migrating leader cells but to epithelial-like junctions between followers. Leader cells have more surface and recycling N-cadherin, increased YAP1/TAZ signaling, and increased proliferation relative to followers. YAP1/TAZ signaling is dynamically regulated as leaders and followers change position, leading to altered N-cadherin levels and organization. Together, the results suggest that pediatric glioma cells adapt to different microenvironments by regulating N-cadherin dynamics and cell-cell contacts.
Collapse
Affiliation(s)
- Dayoung Kim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - James M Olson
- Clinical Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Jonathan A Cooper
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| |
Collapse
|
18
|
Cheng L, Yue H, Zhang H, Liu Q, Du L, Liu X, Xie J, Shen Y. The influence of microenvironment stiffness on endothelial cell fate: Implication for occurrence and progression of atherosclerosis. Life Sci 2023; 334:122233. [PMID: 37918628 DOI: 10.1016/j.lfs.2023.122233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Atherosclerosis, the primary cause of cardiovascular diseases (CVDs), is characterized by phenotypic changes in fibrous proliferation, chronic inflammation and lipid accumulation mediated by vascular endothelial cells (ECs) and vascular smooth muscle cells (SMCs) which are correlated with the stiffening and ectopic remodeling of local extracellular matrix (ECM). The native residents, ECs and SMCs, are not only affected by various chemical factors including inflammatory mediators and chemokines, but also by a range of physical stimuli, such as shear stress and ECM stiffness, presented in the microenvironmental niche. Especially, ECs, as a semi-selective barrier, can sense mechanical forces, respond quickly to changes in mechanical loading and provide context-specific adaptive responses to restore homeostasis. However, blood arteries undergo stiffening and lose their elasticity with age. Reports have shown that the ECM stiffening could influence EC fate by changing the cell adhesion, spreading, proliferation, cell to cell contact, migration and even communication with SMCs. The cell behaviour changes mediated by ECM stiffening are dependent on the activation of a signaling cascade of mechanoperception and mechanotransduction. Although the substantial evidence directly indicates the importance of ECM stiffening on the native ECs, the understanding about this complex interplay is still largely limited. In this review, we systematically summarize the roles of ECM stiffening on the behaviours of endothelial cells and elucidate the underlying details in biological mechanism, aiming to provide the process of how ECs integrate ECM mechanics and the highlights for bioaffinity of tissue-specific engineered scaffolds.
Collapse
Affiliation(s)
- Lin Cheng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hongyan Yue
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Huaiyi Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Qiao Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lingyu Du
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; JinFeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
19
|
Xin Y, Li K, Huang M, Liang C, Siemann D, Wu L, Tan Y, Tang X. Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine. Oncogene 2023; 42:3457-3490. [PMID: 37864030 PMCID: PMC10656290 DOI: 10.1038/s41388-023-02844-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Evidence from physical sciences in oncology increasingly suggests that the interplay between the biophysical tumor microenvironment and genetic regulation has significant impact on tumor progression. Especially, tumor cells and the associated stromal cells not only alter their own cytoskeleton and physical properties but also remodel the microenvironment with anomalous physical properties. Together, these altered mechano-omics of tumor tissues and their constituents fundamentally shift the mechanotransduction paradigms in tumorous and stromal cells and activate oncogenic signaling within the neoplastic niche to facilitate tumor progression. However, current findings on tumor biophysics are limited, scattered, and often contradictory in multiple contexts. Systematic understanding of how biophysical cues influence tumor pathophysiology is still lacking. This review discusses recent different schools of findings in tumor biophysics that have arisen from multi-scale mechanobiology and the cutting-edge technologies. These findings range from the molecular and cellular to the whole tissue level and feature functional crosstalk between mechanotransduction and oncogenic signaling. We highlight the potential of these anomalous physical alterations as new therapeutic targets for cancer mechanomedicine. This framework reconciles opposing opinions in the field, proposes new directions for future cancer research, and conceptualizes novel mechanomedicine landscape to overcome the inherent shortcomings of conventional cancer diagnosis and therapies.
Collapse
Grants
- R35 GM150812 NIGMS NIH HHS
- This work was financially supported by National Natural Science Foundation of China (Project no. 11972316, Y.T.), Shenzhen Science and Technology Innovation Commission (Project no. JCYJ20200109142001798, SGDX2020110309520303, and JCYJ20220531091002006, Y.T.), General Research Fund of Hong Kong Research Grant Council (PolyU 15214320, Y. T.), Health and Medical Research Fund (HMRF18191421, Y.T.), Hong Kong Polytechnic University (1-CD75, 1-ZE2M, and 1-ZVY1, Y.T.), the Cancer Pilot Research Award from UF Health Cancer Center (X. T.), the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM150812 (X. T.), the National Science Foundation under grant number 2308574 (X. T.), the Air Force Office of Scientific Research under award number FA9550-23-1-0393 (X. T.), the University Scholar Program (X. T.), UF Research Opportunity Seed Fund (X. T.), the Gatorade Award (X. T.), and the National Science Foundation REU Site at UF: Engineering for Healthcare (Douglas Spearot and Malisa Sarntinoranont). We are deeply grateful for the insightful discussions with and generous support from all members of Tang (UF)’s and Tan (PolyU)’s laboratories and all staff members of the MAE/BME/ECE/Health Cancer Center at UF and BME at PolyU.
- National Natural Science Foundation of China (National Science Foundation of China)
- Shenzhen Science and Technology Innovation Commission
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Chenyu Liang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar Siemann
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Lizi Wu
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
20
|
Bernabé-Rubio M, Ali S, Bhosale PG, Goss G, Mobasseri SA, Tapia-Rojo R, Zhu T, Hiratsuka T, Battilocchi M, Tomás IM, Ganier C, Garcia-Manyes S, Watt FM. Myc-dependent dedifferentiation of Gata6 + epidermal cells resembles reversal of terminal differentiation. Nat Cell Biol 2023; 25:1426-1438. [PMID: 37735598 PMCID: PMC10567550 DOI: 10.1038/s41556-023-01234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Dedifferentiation is the process by which terminally differentiated cells acquire the properties of stem cells. During mouse skin wound healing, the differentiated Gata6-lineage positive cells of the sebaceous duct are able to dedifferentiate. Here we have integrated lineage tracing and single-cell mRNA sequencing to uncover the underlying mechanism. Gata6-lineage positive and negative epidermal stem cells in wounds are transcriptionally indistinguishable. Furthermore, in contrast to reprogramming of induced pluripotent stem cells, the same genes are expressed in the epidermal dedifferentiation and differentiation trajectories, indicating that dedifferentiation does not involve adoption of a new cell state. We demonstrate that dedifferentiation is not only induced by wounding, but also by retinoic acid treatment or mechanical expansion of the epidermis. In all three cases, dedifferentiation is dependent on the master transcription factor c-Myc. Mechanotransduction and actin-cytoskeleton remodelling are key features of dedifferentiation. Our study elucidates the molecular basis of epidermal dedifferentiation, which may be generally applicable to adult tissues.
Collapse
Affiliation(s)
- Miguel Bernabé-Rubio
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Shahnawaz Ali
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Priyanka G Bhosale
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Georgina Goss
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | | | - Rafael Tapia-Rojo
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Tong Zhu
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Toru Hiratsuka
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
- Department of Oncogenesis and Growth Regulation, Research Center, Osaka International Cancer Institute, Chuoku, Japan
| | - Matteo Battilocchi
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Inês M Tomás
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Clarisse Ganier
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Fiona M Watt
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK.
- Directors' Unit, EMBL Heidelberg, Heidelberg, Germany.
| |
Collapse
|
21
|
Lee YL, Mathur J, Walter C, Zmuda H, Pathak A. Matrix obstructions cause multiscale disruption in collective epithelial migration by suppressing leader cell function. Mol Biol Cell 2023; 34:ar94. [PMID: 37379202 PMCID: PMC10398892 DOI: 10.1091/mbc.e22-06-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
During disease and development, physical changes in extracellular matrix cause jamming, unjamming, and scattering in epithelial migration. However, whether disruptions in matrix topology alter collective cell migration speed and cell-cell coordination remains unclear. We microfabricated substrates with stumps of defined geometry, density, and orientation, which create obstructions for migrating epithelial cells. Here, we show that cells lose their speed and directionality when moving through densely spaced obstructions. Although leader cells are stiffer than follower cells on flat substrates, dense obstructions cause overall cell softening. Through a lattice-based model, we identify cellular protrusions, cell-cell adhesions, and leader-follower communication as key mechanisms for obstruction-sensitive collective cell migration. Our modeling predictions and experimental validations show that cells' obstruction sensitivity requires an optimal balance of cell-cell adhesions and protrusions. Both MDCK (more cohesive) and α-catenin-depleted MCF10A cells were less obstruction sensitive than wild-type MCF10A cells. Together, microscale softening, mesoscale disorder, and macroscale multicellular communication enable epithelial cell populations to sense topological obstructions encountered in challenging environments. Thus, obstruction-sensitivity could define "mechanotype" of cells that collectively migrate yet maintain intercellular communication.
Collapse
Affiliation(s)
- Ye Lim Lee
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Jairaj Mathur
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Christopher Walter
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Hannah Zmuda
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Amit Pathak
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
22
|
Zmuda H, Pathak A. Epithelial multicellular clustering enabled by polarized macrophages on soft matrices. FASEB J 2023; 37:e23059. [PMID: 37389911 PMCID: PMC10540233 DOI: 10.1096/fj.202300120rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Formation of epithelial structures of variegated geometries and sizes is essential for organogenesis, tumor growth, and wound repair. Although epithelial cells are predisposed with potential for multicellular clustering, it remains unclear whether immune cells and mechanical cues from their microenvironment influence this process. To explore this possibility, we cocultured human mammary epithelial cells with prepolarized macrophages on soft or stiff hydrogels. In the presence of M1 (proinflammatory) macrophages on soft matrices, epithelial cells migrated faster and subsequently formed larger multicellular clusters compared to cocultures with M0 (unpolarized) or M2 (anti-inflammatory) macrophages. By contrast, stiff matrices disabled active clustering of epithelial cells due to their enhanced migration and cell-ECM adhesion, regardless of macrophage polarization. We found that the copresence of soft matrices and M1 macrophages reduced focal adhesions, but enhanced fibronectin deposition and nonmuscle myosin-IIA expression, which altogether optimize conditions for epithelial clustering. Upon ROCK inhibition, epithelial clustering was abrogated, indicating a requirement for optimized cellular forces. In these cocultures, TNF-α secretion was the highest with M1 macrophages and TGF-β secretion was exclusively detectable in case of M2 macrophages on soft gels, which indicated potential role of macrophage secreted factors in the observed epithelial clustering. Indeed, exogenous addition of TGF-β promoted epithelial clustering with M1 coculture on soft gels. According to our findings, optimization of both mechanical and immune factors can tune epithelial clustering responses, which could have implications in tumor growth, fibrosis, and would healing.
Collapse
Affiliation(s)
- Hannah Zmuda
- Department of Biomedical Engineering, Washington University, St. Louis, United States
| | - Amit Pathak
- Department of Biomedical Engineering, Washington University, St. Louis, United States
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, United States
| |
Collapse
|
23
|
Saha S, Müller D, Clark AG. Mechanosensory feedback loops during chronic inflammation. Front Cell Dev Biol 2023; 11:1225677. [PMID: 37492225 PMCID: PMC10365287 DOI: 10.3389/fcell.2023.1225677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
Epithelial tissues are crucial to maintaining healthy organization and compartmentalization in various organs and act as a first line of defense against infection in barrier organs such as the skin, lungs and intestine. Disruption or injury to these barriers can lead to infiltration of resident or foreign microbes, initiating local inflammation. One often overlooked aspect of this response is local changes in tissue mechanics during inflammation. In this mini-review, we summarize known molecular mechanisms linking disruption of epithelial barrier function to mechanical changes in epithelial tissues. We consider direct mechanisms, such as changes in the secretion of extracellular matrix (ECM)-modulating enzymes by immune cells as well as indirect mechanisms including local activation of fibroblasts. We discuss how these mechanical changes can modulate local immune cell activity and inflammation and perturb epithelial homeostasis, further dysregulating epithelial barrier function. We propose that this two-way relationship between loss of barrier function and altered tissue mechanics can lead to a positive feedback loop that further perpetuates inflammation. We discuss this cycle in the context of several chronic inflammatory diseases, including inflammatory bowel disease (IBD), liver disease and cancer, and we present the modulation of tissue mechanics as a new framework for combating chronic inflammation.
Collapse
Affiliation(s)
- Sarbari Saha
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
- University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
- University of Tübingen, Center for Personalized Medicine, Tübingen, Germany
| | - Dafne Müller
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
| | - Andrew G. Clark
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
- University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
- University of Tübingen, Center for Personalized Medicine, Tübingen, Germany
| |
Collapse
|
24
|
Dow LP, Parmar T, Marchetti MC, Pruitt BL. Engineering tools for quantifying and manipulating forces in epithelia. BIOPHYSICS REVIEWS 2023; 4:021303. [PMID: 38510344 PMCID: PMC10903508 DOI: 10.1063/5.0142537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/20/2023] [Indexed: 03/22/2024]
Abstract
The integrity of epithelia is maintained within dynamic mechanical environments during tissue development and homeostasis. Understanding how epithelial cells mechanosignal and respond collectively or individually is critical to providing insight into developmental and (patho)physiological processes. Yet, inferring or mimicking mechanical forces and downstream mechanical signaling as they occur in epithelia presents unique challenges. A variety of in vitro approaches have been used to dissect the role of mechanics in regulating epithelia organization. Here, we review approaches and results from research into how epithelial cells communicate through mechanical cues to maintain tissue organization and integrity. We summarize the unique advantages and disadvantages of various reduced-order model systems to guide researchers in choosing appropriate experimental systems. These model systems include 3D, 2D, and 1D micromanipulation methods, single cell studies, and noninvasive force inference and measurement techniques. We also highlight a number of in silico biophysical models that are informed by in vitro and in vivo observations. Together, a combination of theoretical and experimental models will aid future experiment designs and provide predictive insight into mechanically driven behaviors of epithelial dynamics.
Collapse
Affiliation(s)
| | - Toshi Parmar
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
25
|
Almeida JA, Mathur J, Lee YL, Sarker B, Pathak A. Mechanically primed cells transfer memory to fibrous matrices for invasion across environments of distinct stiffness and dimensionality. Mol Biol Cell 2023; 34:ar54. [PMID: 36696158 PMCID: PMC10208097 DOI: 10.1091/mbc.e22-10-0469] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Cells sense and migrate across mechanically dissimilar environments throughout development and disease progression. However, it remains unclear whether mechanical memory of past environments empowers cells to navigate new, three-dimensional extracellular matrices. Here, we show that cells previously primed on stiff, compared with soft, matrices generate a higher level of forces to remodel collagen fibers and promote invasion. This priming advantage persists in dense or stiffened collagen. We explain this memory-dependent, cross-environment cell invasion through a lattice-based model wherein stiff-primed cellular forces remodel collagen and minimize energy required for future cell invasion. According to our model, cells transfer their mechanical memory to the matrix via collagen alignment and tension, and this remodeled matrix informs future cell invasion. Thus, memory-laden cells overcome mechanosensing of softer or challenging future environments via a cell-matrix transfer of memory. Consistent with model predictions, depletion of yes-associated protein destabilizes the cellular memory required for collagen remodeling before invasion. We release tension in collagen fibers via laser ablation and disable fiber remodeling by lysyl-oxidase inhibition, both of which disrupt cell-to-matrix transfer of memory and hamper cross-environment invasion. These results have implications for cancer, fibrosis, and aging, where a potential cell-to-matrix transfer of mechanical memory of cells may generate a prolonged cellular response.
Collapse
Affiliation(s)
- José A. Almeida
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| | - Jairaj Mathur
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO 63130
| | - Ye Lim Lee
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| | - Bapi Sarker
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO 63130
| | - Amit Pathak
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO 63130
| |
Collapse
|
26
|
Lin WJ, Pathak A. Transitions in density, pressure, and effective temperature drive collective cell migration into confining environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536258. [PMID: 37090663 PMCID: PMC10120636 DOI: 10.1101/2023.04.10.536258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Epithelial cell collectives migrate through tissue interfaces and crevices to orchestrate processes of development, tumor invasion, and wound healing. Naturally, traversal of cell collective through confining environments involves crowding due to the narrowing space, which seems tenuous given the conventional inverse relationship between cell density and migration. However, physical transitions required to overcome such epithelial densification for migration across confinements remain unclear. Here, in contiguous microchannels, we show that epithelial (MCF10A) monolayers accumulate higher cell density before entering narrower channels; however, overexpression of breast cancer oncogene +ErbB2 reduced this need for density accumulation across confinement. While wildtype MCF10A cells migrated faster in narrow channels, this confinement sensitivity reduced after +ErbB2 mutation or with constitutively-active RhoA. The migrating collective developed pressure differentials upon encountering microchannels, like fluid flow into narrowing spaces, and this pressure dropped with their continued migration. These transitions of pressure and density altered cell shapes and increased effective temperature, estimated by treating cells as granular thermodynamic system. While +RhoA cells and those in confined regions were effectively warmer, cancer-like +ErbB2 cells remained cooler. Epithelial reinforcement by metformin treatment increased density and temperature differentials across confinement, indicating that higher cell cohesion could reduce unjamming. Our results provide experimental evidence for previously proposed theories of inverse relationship between density and motility-related effective temperature. Indeed, we show across cell lines that confinement increases pressure and effective temperature, which enable migration by reducing density. This physical interpretation of collective cell migration as granular matter could advance our understanding of complex living systems.
Collapse
|
27
|
Zhang H, Xu H, Sun W, Fang X, Qin P, Huang J, Fang J, Lin F, Xiong C. Purse-string contraction guides mechanical gradient-dictated heterogeneous migration of epithelial monolayer. Acta Biomater 2023; 159:38-48. [PMID: 36708850 DOI: 10.1016/j.actbio.2023.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Mechanical heterogeneity has been recognized as an important role in mediating collective cell migration, yet the related mechanism has not been elucidated. Herein, we fabricate heterogeneous stiffness gradients by leveraging microelastically-patterned hydrogels with varying periodic distance. We observe that a decrease in the periodic distance of the mechanical heterogeneity is accompanied by an overall increase in the velocity and directionality of the migrating monolayer. Moreover, inhibition of ROCK- and myosin ⅡA- but not Rac1-mediated contraction reduces monolayer migration on the mechanically heterogeneous substrates. Furthermore, we find that F-actin and myosin ⅡA form purse-string at the leading edge on the mechanically heterogeneous substrates. Together, these findings not only show that the orientational cell-cell contraction promotes collective cell migration under the mechanical heterogeneity, but also demonstrate that the mechanosensation arising from large-scale cell-cell interactions through purse-string formation mediated cell-cell orientational contraction can feed back to regulate the reorganization of epithelial tissues. STATEMENT OF SIGNIFICANCE: By detecting the links between heterogenous rigidity and collective cell migration behavior at the molecular level, we reveal that collective cell migration in the mechanical heterogeneity is driven by ROCK- and myosin-ⅡA-dependent cytoskeletal tension. We confirm that cytoskeletal tension across the epithelial tissue is holistically linked through F-actin and myosin-ⅡA, which cooperate to form purse-string structures for modulating collective tissue behavior on the exogenous matrix with mechanical heterogeneity. Mechanical heterogeneity initiates tissue growth, remodelling, and morphogenesis by orientating cell contractility. Therefore, tensional homeostasis across large-scale cell interactions appears to be necessary and sufficient to trigger collective tissue behavior. Overall, these findings shed light on the role of mechanical heterogeneity in tissue microenvironment for reorganization and morphogenesis.
Collapse
Affiliation(s)
- Haihui Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518005, China
| | - Hongwei Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Weihao Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xu Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peiwu Qin
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518005, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Jing Fang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Feng Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Chunyang Xiong
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
28
|
Jiang H, Wang S. Immune cells use active tugging forces to distinguish affinity and accelerate evolution. Proc Natl Acad Sci U S A 2023; 120:e2213067120. [PMID: 36897986 PMCID: PMC10089171 DOI: 10.1073/pnas.2213067120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/11/2023] [Indexed: 03/12/2023] Open
Abstract
Cells are known to exert forces to sense their physical surroundings for guidance of motion and fate decisions. Here, we propose that cells might do mechanical work to drive their own evolution, taking inspiration from the adaptive immune system. Growing evidence indicates that immune B cells-capable of rapid Darwinian evolution-use cytoskeletal forces to actively extract antigens from other cells' surfaces. To elucidate the evolutionary significance of force usage, we develop a theory of tug-of-war antigen extraction that maps receptor binding characteristics to clonal reproductive fitness, revealing physical determinants of selection strength. This framework unifies mechanosensing and affinity-discrimination capabilities of evolving cells: Pulling against stiff antigen tethers enhances discrimination stringency at the expense of absolute extraction. As a consequence, active force usage can accelerate adaptation but may also cause extinction of cell populations, resulting in an optimal range of pulling strength that matches molecular rupture forces observed in cells. Our work suggests that nonequilibrium, physical extraction of environmental signals can make biological systems more evolvable at a moderate energy cost.
Collapse
Affiliation(s)
- Hongda Jiang
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA90095
| | - Shenshen Wang
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
29
|
Giordano S. Temperature dependent model for the quasi-static stick-slip process on a soft substrate. SOFT MATTER 2023; 19:1813-1833. [PMID: 36789855 DOI: 10.1039/d2sm01262f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The classical Prandtl-Tomlinson model is the most famous and efficient method to describe the stick-slip phenomenon and the resulting friction between a slider and a corrugated substrate. It is widely used in all studies of frictional physics and notably in nanotribology. However, it considers a rigid or undeformable substrate and therefore is hardly applicable for investigating the physics of soft matter and in particular biophysics. For this reason, we introduce here a modified model that is capable of taking into consideration a soft or deformable substrate. It is realized by a sequence of elastically bound quadratic energy wells, which represent the corrugated substrate. We study the quasi-static behavior of the system through the equilibrium statistical mechanics. We thus determine the static friction and the deformation of the substrate as a function of temperature and substrate stiffness. The results are of interest for the study of cell motion in biophysics and for haptic and tactile systems in microtechnology.
Collapse
Affiliation(s)
- Stefano Giordano
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d*Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France.
| |
Collapse
|
30
|
Zmuda H, Pathak A. Epithelial multicellular clustering enabled by polarized macrophages on soft matrices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529258. [PMID: 36865200 PMCID: PMC9979985 DOI: 10.1101/2023.02.20.529258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Formation of epithelial structures of variegated geometries and sizes is essential for organogenesis, tumor growth, and wound repair. Although epithelial cells are predisposed with potential for multicellular clustering, it remains unclear whether immune cells and mechanical cues from their microenvironment influence this process. To explore this possibility, we co-cultured human mammary epithelial cells with pre-polarized macrophages on soft or stiff hydrogels. In the presence of M1 (proinflammatory) macrophages on soft matrices, epithelial cells migrated faster and subsequently formed larger multicellular clusters, compared to co-cultures with M0 (unpolarized) or M2 (anti-inflammatory) macrophages. By contrast, stiff extracellular matrix (ECM) disabled active clustering of epithelial cells due to their enhanced migration and cell-ECM adhesion, regardless of macrophage polarization. We found that the co-presence of soft matrices and M1 macrophages reduced focal adhesions, but enhanced fibronectin deposition and non-muscle myosin-IIA expression, which altogether optimize conditions for epithelial clustering. Upon Rho-associated kinase (ROCK) inhibition, epithelial clustering was abrogated, indicating a requirement for optimized cellular forces. In these co-cultures, Tumor Necrosis Factor (TNF)-α secretion was the highest with M1 macrophages and Transforming growth factor (TGF)-β secretion was exclusively detectable in case of M2 macrophages on soft gels, which indicated potential role of macrophage secreted factors in the observed epithelial clustering. Indeed, exogenous addition of TGB-β promoted epithelial clustering with M1 co-culture on soft gels. According to our findings, optimization of both mechanical and immune factors can tune epithelial clustering responses, which could have implications in tumor growth, fibrosis, and would healing. Summary Authors show proinflammatory macrophages on soft matrices enable epithelial cells to form multicellular clusters. This phenomenon is disabled on stiff matrices due to increased stability of focal adhesions. Inflammatory cytokine secretion is macrophage-dependent, and external addition of cytokines accentuates epithelial clustering on soft matrices. Impact Statement Formation of multicellular epithelial structures is critical to tissue homeostasis. However, it has not been shown how the immune system and mechanical environment affect these structures. The present work illustrates how macrophage type affects epithelial clustering in soft and stiff matrix environments.
Collapse
|
31
|
Collective cell migration during optic cup formation features changing cell-matrix interactions linked to matrix topology. Curr Biol 2022; 32:4817-4831.e9. [PMID: 36208624 DOI: 10.1016/j.cub.2022.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/28/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
Cell migration is crucial for organismal development and shapes organisms in health and disease. Although a lot of research has revealed the role of intracellular components and extracellular signaling in driving single and collective cell migration, the influence of physical properties of the tissue and the environment on migration phenomena in vivo remains less explored. In particular, the role of the extracellular matrix (ECM), which many cells move upon, is currently unclear. To overcome this gap, we use zebrafish optic cup formation, and by combining novel transgenic lines and image analysis pipelines, we study how ECM properties influence cell migration in vivo. We show that collectively migrating rim cells actively move over an immobile extracellular matrix. These cell movements require cryptic lamellipodia that are extended in the direction of migration. Quantitative analysis of matrix properties revealed that the topology of the matrix changes along the migration path. These changes in matrix topologies are accompanied by changes in the dynamics of cell-matrix interactions. Experiments and theoretical modeling suggest that matrix porosity could be linked to efficient migration. Indeed, interfering with matrix topology by increasing its porosity results in a loss of cryptic lamellipodia, less-directed cell-matrix interactions, and overall inefficient migration. Thus, matrix topology is linked to the dynamics of cell-matrix interactions and the efficiency of directed collective rim cell migration during vertebrate optic cup morphogenesis.
Collapse
|
32
|
Staddon MF, Murrell MP, Banerjee S. Interplay between substrate rigidity and tissue fluidity regulates cell monolayer spreading. SOFT MATTER 2022; 18:7877-7886. [PMID: 36205535 PMCID: PMC9700261 DOI: 10.1039/d2sm00757f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Coordinated and cooperative motion of cells is essential for embryonic development, tissue morphogenesis, wound healing and cancer invasion. A predictive understanding of the emergent mechanical behaviors in collective cell motion is challenging due to the complex interplay between cell-cell interactions, cell-matrix adhesions and active cell behaviors. To overcome this challenge, we develop a predictive cellular vertex model that can delineate the relative roles of substrate rigidity, tissue mechanics and active cell properties on the movement of cell collectives. We apply the model to the specific case of collective motion in cell aggregates as they spread into a two-dimensional cell monolayer adherent to a soft elastic matrix. Consistent with recent experiments, we find that substrate stiffness regulates the driving forces for the spreading of cellular monolayer, which can be pressure-driven or crawling-based depending on substrate rigidity. On soft substrates, cell monolayer spreading is driven by an active pressure due to the influx of cells coming from the aggregate, whereas on stiff substrates, cell spreading is driven primarily by active crawling forces. Our model predicts that cooperation of cell crawling and tissue pressure drives faster spreading, while the spreading rate is sensitive to the mechanical properties of the tissue. We find that solid tissues spread faster on stiff substrates, with spreading rate increasing with tissue tension. By contrast, the spreading of fluid tissues is independent of substrate stiffness and is slower than solid tissues. We compare our theoretical results with experimental results on traction force generation and spreading kinetics of cell monolayers, and provide new predictions on the role of tissue fluidity and substrate rigidity on collective cell motion.
Collapse
Affiliation(s)
- Michael F Staddon
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Michael P Murrell
- Department of Biomedical Engineering and Department of Physics, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | | |
Collapse
|
33
|
Gross SM, Dane MA, Smith RL, Devlin KL, McLean IC, Derrick DS, Mills CE, Subramanian K, London AB, Torre D, Evangelista JE, Clarke DJB, Xie Z, Erdem C, Lyons N, Natoli T, Pessa S, Lu X, Mullahoo J, Li J, Adam M, Wassie B, Liu M, Kilburn DF, Liby TA, Bucher E, Sanchez-Aguila C, Daily K, Omberg L, Wang Y, Jacobson C, Yapp C, Chung M, Vidovic D, Lu Y, Schurer S, Lee A, Pillai A, Subramanian A, Papanastasiou M, Fraenkel E, Feiler HS, Mills GB, Jaffe JD, Ma’ayan A, Birtwistle MR, Sorger PK, Korkola JE, Gray JW, Heiser LM. A multi-omic analysis of MCF10A cells provides a resource for integrative assessment of ligand-mediated molecular and phenotypic responses. Commun Biol 2022; 5:1066. [PMID: 36207580 PMCID: PMC9546880 DOI: 10.1038/s42003-022-03975-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/12/2022] [Indexed: 02/01/2023] Open
Abstract
The phenotype of a cell and its underlying molecular state is strongly influenced by extracellular signals, including growth factors, hormones, and extracellular matrix proteins. While these signals are normally tightly controlled, their dysregulation leads to phenotypic and molecular states associated with diverse diseases. To develop a detailed understanding of the linkage between molecular and phenotypic changes, we generated a comprehensive dataset that catalogs the transcriptional, proteomic, epigenomic and phenotypic responses of MCF10A mammary epithelial cells after exposure to the ligands EGF, HGF, OSM, IFNG, TGFB and BMP2. Systematic assessment of the molecular and cellular phenotypes induced by these ligands comprise the LINCS Microenvironment (ME) perturbation dataset, which has been curated and made publicly available for community-wide analysis and development of novel computational methods ( synapse.org/LINCS_MCF10A ). In illustrative analyses, we demonstrate how this dataset can be used to discover functionally related molecular features linked to specific cellular phenotypes. Beyond these analyses, this dataset will serve as a resource for the broader scientific community to mine for biological insights, to compare signals carried across distinct molecular modalities, and to develop new computational methods for integrative data analysis.
Collapse
Affiliation(s)
- Sean M. Gross
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Mark A. Dane
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Rebecca L. Smith
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Kaylyn L. Devlin
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Ian C. McLean
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Daniel S. Derrick
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Caitlin E. Mills
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Kartik Subramanian
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Alexandra B. London
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Denis Torre
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - John Erol Evangelista
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Daniel J. B. Clarke
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Zhuorui Xie
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Cemal Erdem
- grid.26090.3d0000 0001 0665 0280Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC USA
| | - Nicholas Lyons
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Ted Natoli
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Sarah Pessa
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Xiaodong Lu
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - James Mullahoo
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Jonathan Li
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Miriam Adam
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Brook Wassie
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Moqing Liu
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - David F. Kilburn
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Tiera A. Liby
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Elmar Bucher
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Crystal Sanchez-Aguila
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA
| | - Kenneth Daily
- grid.430406.50000 0004 6023 5303Sage Bionetworks, Seattle, WA USA
| | - Larsson Omberg
- grid.430406.50000 0004 6023 5303Sage Bionetworks, Seattle, WA USA
| | - Yunguan Wang
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Connor Jacobson
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Clarence Yapp
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Mirra Chung
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - Dusica Vidovic
- grid.26790.3a0000 0004 1936 8606Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Institute for Data Science & Computing, University of Miami, Miami, FL 33136 USA
| | - Yiling Lu
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Stephan Schurer
- grid.26790.3a0000 0004 1936 8606Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136 USA ,grid.26790.3a0000 0004 1936 8606Institute for Data Science & Computing, University of Miami, Miami, FL 33136 USA
| | - Albert Lee
- grid.94365.3d0000 0001 2297 5165Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Ajay Pillai
- grid.94365.3d0000 0001 2297 5165Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Aravind Subramanian
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Malvina Papanastasiou
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Ernest Fraenkel
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Heidi S. Feiler
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA
| | - Gordon B. Mills
- grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Division of Oncological Sciences, OHSU, Portland, OR USA
| | - Jake D. Jaffe
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Avi Ma’ayan
- grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Marc R. Birtwistle
- grid.26090.3d0000 0001 0665 0280Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC USA
| | - Peter K. Sorger
- grid.38142.3c000000041936754XLaboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA USA
| | - James E. Korkola
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA
| | - Joe W. Gray
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA
| | - Laura M. Heiser
- grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, OHSU, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, OHSU, Portland, OR USA
| |
Collapse
|
34
|
Nakanishi J, Yamamoto S. Static and photoresponsive dynamic materials to dissect physical regulation of cellular functions. Biomater Sci 2022; 10:6116-6134. [PMID: 36111810 DOI: 10.1039/d2bm00789d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress in mechanobiology has highlighted the importance of physical cues, such as mechanics, geometry (size), topography, and porosity, in the determination of cellular activities and fates, in addition to biochemical factors derived from their surroundings. In this review, we will first provide an overview of how such fundamental insights are identified by synchronizing the hierarchical nature of biological systems and static materials with tunable physical cues. Thereafter, we will explain the photoresponsive dynamic biomaterials to dissect the spatiotemporal aspects of the dependence of biological functions on physical cues.
Collapse
Affiliation(s)
- Jun Nakanishi
- Research Center for Functional Materials, National Institute for Materials Science, Japan. .,Graduate School of Advanced Science and Engineering, Waseda University, Japan.,Graduate School of Advanced Engineering, Tokyo University of Science, Japan
| | - Shota Yamamoto
- Research Center for Functional Materials, National Institute for Materials Science, Japan. .,Graduate School of Arts and Sciences, The University of Tokyo, Japan
| |
Collapse
|
35
|
Flick Jaecker F, Almeida JA, Krull CM, Pathak A. Nucleoli in epithelial cell collectives respond to tumorigenic, spatial, and mechanical cues. Mol Biol Cell 2022; 33:br19. [PMID: 35830599 PMCID: PMC9582805 DOI: 10.1091/mbc.e22-02-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cancer cells are known to have larger nucleoli, consistent with their higher transcriptional and translational demands. Meanwhile, on stiff extracellular matrix, normal epithelial cells can exhibit genomic and proteomic mechanoactivation toward tumorigenic transformations, such as epithelial-mesenchymal transition and enhanced migration. However, while nucleolar bodies regulate the protein synthesis required for mechanosensation, it remains unknown whether mechanical and spatial extracellular cues can in turn alter nucleoli. Here, we culture mammary epithelial cell sheets on matrices of varying stiffness and show that cancer cells have more nucleoli, with nucleoli occupying larger areas compared with normal cells. By contrast, within normal epithelial sheets, stiffer matrices and leader positioning of cells induce larger nucleolar areas and more nucleolar bodies over time. The observed leader-follower nucleolar differences stem from distinct rates of cell cycle progression. In the nucleoplasm, leader cells on stiffer matrices exhibit higher heterochromatin marker expression and DNA compaction around nucleolar bodies. Overall, our findings advance the emerging framework of cellular mechanobiology in which mechanical cues from the extracellular matrix transmit into the nucleoplasm to alter nucleolar composition, potentially resulting in mechanosensitive ribosomal biogenesis. Ultimately, this proposed mechanosensitivity of nucleoli and associated protein synthesis could have wide implications in disease, development, and regeneration.
Collapse
Affiliation(s)
| | - José A Almeida
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| | - Carly M Krull
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science and.,Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| |
Collapse
|
36
|
Anisotropy profoundly alters stress fields within contractile cells and cell aggregates. Biomech Model Mechanobiol 2022; 21:1357-1370. [PMID: 35829977 PMCID: PMC10187583 DOI: 10.1007/s10237-022-01595-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 05/12/2022] [Indexed: 12/26/2022]
Abstract
Many biological phenomena such as cell proliferation and death are correlated with stress fields within cells. Stress fields are quantified using computational methods which rely on fundamental assumptions about local mechanical properties. Most existing methods such as Monolayer Stress Microscopy assume isotropic properties, yet experimental observations strongly suggest anisotropy. We first model anisotropy in circular cells analytically using Eshelby's inclusion method. Our solution reveals that uniform anisotropy cannot exist in cells due to the occurrence of substantial stress concentration in the central region. A more realistic non-uniform anisotropy model is then introduced based on experimental observations and implemented numerically which interestingly clears out stress concentration. Stresses within the entire aggregate also drastically change compared to the isotropic case, resulting in better agreement with observed biomarkers. We provide a physics-based mechanism to explain the low alignment of stress fibers in the center of cells, which might explain certain biological phenomena e.g., existence of disrupted rounded cells, and higher apoptosis rate at the center of circular aggregates.
Collapse
|
37
|
Tang X, Zhang Y, Mao J, Wang Y, Zhang Z, Wang Z, Yang H. Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:560-569. [PMID: 35860456 PMCID: PMC9263554 DOI: 10.3762/bjnano.13.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/03/2022] [Indexed: 06/07/2023]
Abstract
The stiffness of the extracellular matrix of tumour cells plays a key role in tumour cell metastasis. However, it is unclear how mechanical properties regulate the cellular response to the environmental matrix. In this study, atomic force microscopy (AFM) and laser confocal imaging were used to qualitatively evaluate the relationship between substrate stiffness and migration of prostate cancer (PCa) cells. Cells cultured on stiff substrates (35 kPa) undergone several interesting phenomena compared to those on soft substrates (3 kPa). Here, the stimulation generated by the stiff substrates triggered the F-actin skeleton to bundle its filaments, increasing the polarity index of the external contour of PCa cells. Analysis of AFM force-distance curves indicated that the elasticity of the cells cultured on 35 kPa substrates increased while the viscosity decreased. Wound-healing experiments showed that PCa cells cultured on 35 kPa substrates have higher migration potential. These phenomena suggested that the mechanical properties may be correlated with the migration of PCa cells. After actin depolymerisation, the elasticity of the PCa cells decreased while the viscosity increased, and the migration ability was correspondingly decreased. In conclusion, this study clearly demonstrated the relationship between substrate stiffness and the mechanical properties of cells in prostate tumour metastasis, providing a basis for understanding the changes in the biomechanical properties at a single-cell level.
Collapse
Affiliation(s)
- Xiaoqiong Tang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Yan Zhang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Jiangbing Mao
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Yuhua Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Zhenghong Zhang
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zhengchao Wang
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hongqin Yang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
38
|
P-Cadherin Regulates Intestinal Epithelial Cell Migration and Mucosal Repair, but Is Dispensable for Colitis Associated Colon Cancer. Cells 2022; 11:cells11091467. [PMID: 35563773 PMCID: PMC9100778 DOI: 10.3390/cells11091467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 12/16/2022] Open
Abstract
Recurrent chronic mucosal inflammation, a characteristic of inflammatory bowel diseases (IBD), perturbs the intestinal epithelial homeostasis resulting in formation of mucosal wounds and, in most severe cases, leads to colitis-associated colon cancer (CAC). The altered structure of epithelial cell-cell adhesions is a hallmark of intestinal inflammation contributing to epithelial injury, repair, and tumorigenesis. P-cadherin is an important adhesion protein, poorly expressed in normal intestinal epithelial cells (IEC) but upregulated in inflamed and injured mucosa. The goal of this study was to investigate the roles of P-cadherin in regulating intestinal inflammation and CAC. P-cadherin expression was markedly induced in the colonic epithelium of human IBD patients and CAC tissues. The roles of P-cadherin were investigated in P-cadherin null mice using dextran sulfate sodium (DSS)-induced colitis and an azoxymethane (AOM)/DSS induced CAC. Although P-cadherin knockout did not affect the severity of acute DSS colitis, P-cadherin null mice exhibited faster recovery after colitis. No significant differences in the number of colonic tumors were observed in P-cadherin null and control mice. Consistently, the CRISPR/Cas9-mediated knockout of P-cadherin in human IEC accelerated epithelial wound healing without affecting cell proliferation. The accelerated migration of P-cadherin depleted IEC was driven by activation of Src kinases, Rac1 GTPase and myosin II motors and was accompanied by transcriptional reprogramming of the cells. Our findings highlight P-cadherin as a negative regulator of IEC motility in vitro and mucosal repair in vivo. In contrast, this protein is dispensable for IEC proliferation and CAC development.
Collapse
|
39
|
Li R, Liu K, Huang X, Li D, Ding J, Liu B, Chen X. Bioactive Materials Promote Wound Healing through Modulation of Cell Behaviors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105152. [PMID: 35138042 PMCID: PMC8981489 DOI: 10.1002/advs.202105152] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Indexed: 05/13/2023]
Abstract
Skin wound repair is a multistage process involving multiple cellular and molecular interactions, which modulate the cell behaviors and dynamic remodeling of extracellular matrices to maximize regeneration and repair. Consequently, abnormalities in cell functions or pathways inevitably give rise to side effects, such as dysregulated inflammation, hyperplasia of nonmigratory epithelial cells, and lack of response to growth factors, which impedes angiogenesis and fibrosis. These issues may cause delayed wound healing or even non-healing states. Current clinical therapeutic approaches are predominantly dedicated to preventing infections and alleviating topical symptoms rather than addressing the modulation of wound microenvironments to achieve targeted outcomes. Bioactive materials, relying on their chemical, physical, and biological properties or as carriers of bioactive substances, can affect wound microenvironments and promote wound healing at the molecular level. By addressing the mechanisms of wound healing from the perspective of cell behaviors, this review discusses how bioactive materials modulate the microenvironments and cell behaviors within the wounds during the stages of hemostasis, anti-inflammation, tissue regeneration and deposition, and matrix remodeling. A deeper understanding of cell behaviors during wound healing is bound to promote the development of more targeted and efficient bioactive materials for clinical applications.
Collapse
Affiliation(s)
- Ruotao Li
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Kai Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Xu Huang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Di Li
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Bin Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
40
|
Mechanical transmission enables EMT cancer cells to drive epithelial cancer cell migration to guide tumor spheroid disaggregation. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2031-2049. [PMID: 35366152 DOI: 10.1007/s11427-021-2054-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
Cell phenotype heterogeneity within tumor tissue, especially which due to the emergence of epithelial-mesenchymal transition (EMT) in cancer cells, is associated with cancer invasion and metastasis. However, our understanding of the cellular mechanism(s) underlying the cooperation between EMT cell and epithelial cancer cell migration remains incomplete. Herein, heterotypic tumor spheroids containing both epithelial and EMT cancer cells were generated in vitro. We observed that EMT cells dominated the peripheral region of the self-organized heterotypic tumor spheroid. Furthermore, our results demonstrated that EMT cells could serve as leader cells to improve the collective migration efficiency of epithelial cancer cells and promote dispersion and invasion of the tumor spheroids, which was regulated by the force transition between EMT cells and epithelial cancer cells. Mechanistically, our data further suggest that force transmission is mediated by heterophilic N-cadherin/E-cadherin adhesion complexes between EMT and epithelial cancer cells. Impairment of N-cadherin/E-cadherin adhesion complex formation abrogated the ability of EMT cells to guide epithelial cancer cell migration and blocked the dispersion of tumor spheroids. Together, our data provide new insight into the mechanical interaction between epithelial and EMT cancer cells through heterophilic cadherin adhesion, which enables cooperative tumor cell migration, highlighting the role of EMT cells in tumor invasion.
Collapse
|
41
|
Vazquez K, Saraswathibhatla A, Notbohm J. Effect of substrate stiffness on friction in collective cell migration. Sci Rep 2022; 12:2474. [PMID: 35169196 PMCID: PMC8847350 DOI: 10.1038/s41598-022-06504-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/25/2022] [Indexed: 11/09/2022] Open
Abstract
In collective cell migration, the motion results from forces produced by each cell and transmitted to the neighboring cells and to the substrate. Because inertia is negligible and the migration occurs over long time scales, the cell layer exhibits viscous behavior, where force and motion are connected by an apparent friction that results from the breaking and forming of adhesive bonds at the cell–cell and cell–substrate interfaces. Most theoretical models for collective migration include an apparent friction to connect force and motion, with many models making predictions that depend on the ratio of cell–cell and cell–substrate friction. However, little is known about factors that affect friction, leaving predictions of many theoretical models untested. Here, we considered how substrate stiffness and the number of adhesions affected friction at the cell–substrate interface. The experimental data were interpreted through prior theoretical models, which led to the same conclusion, that increased substrate stiffness increased the number of cell–substrate adhesions and caused increased cell–substrate friction. In turn, the friction affected the collective migration by altering the curvature at the edge of the cell layer. By revealing underlying factors affecting friction and demonstrating how friction perturbs the collective migration, this work provides experimental evidence supporting prior theoretical models and motivates the study of other ways to alter the collective migration by changing friction.
Collapse
Affiliation(s)
- Kelly Vazquez
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA.,Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Jacob Notbohm
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
42
|
Sutlive J, Xiu H, Chen Y, Gou K, Xiong F, Guo M, Chen Z. Generation, Transmission, and Regulation of Mechanical Forces in Embryonic Morphogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103466. [PMID: 34837328 PMCID: PMC8831476 DOI: 10.1002/smll.202103466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/19/2021] [Indexed: 05/02/2023]
Abstract
Embryonic morphogenesis is a biological process which depicts shape forming of tissues and organs during development. Unveiling the roles of mechanical forces generated, transmitted, and regulated in cells and tissues through these processes is key to understanding the biophysical mechanisms governing morphogenesis. To this end, it is imperative to measure, simulate, and predict the regulation and control of these mechanical forces during morphogenesis. This article aims to provide a comprehensive review of the recent advances on mechanical properties of cells and tissues, generation of mechanical forces in cells and tissues, the transmission processes of these generated forces during cells and tissues, the tools and methods used to measure and predict these mechanical forces in vivo, in vitro, or in silico, and to better understand the corresponding regulation and control of generated forces. Understanding the biomechanics and mechanobiology of morphogenesis will not only shed light on the fundamental physical mechanisms underlying these concerted biological processes during normal development, but also uncover new information that will benefit biomedical research in preventing and treating congenital defects or tissue engineering and regeneration.
Collapse
Affiliation(s)
- Joseph Sutlive
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Haning Xiu
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Yunfeng Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Kun Gou
- Department of Mathematical, Physical, and Engineering Sciences, Texas A&M University-San Antonio, San Antonio, TX 78224
| | - Fengzhu Xiong
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zi Chen
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| |
Collapse
|
43
|
Pi-Jaumà I, Alert R, Casademunt J. Collective durotaxis of cohesive cell clusters on a stiffness gradient. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:7. [PMID: 35072824 PMCID: PMC8786814 DOI: 10.1140/epje/s10189-021-00150-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/15/2021] [Indexed: 05/03/2023]
Abstract
Many types of motile cells perform durotaxis, namely directed migration following gradients of substrate stiffness. Recent experiments have revealed that cell monolayers can migrate toward stiffer regions even when individual cells do not-a phenomenon known as collective durotaxis. Here, we address the spontaneous motion of finite cohesive cell monolayers on a stiffness gradient. We theoretically analyze a continuum active polar fluid model that has been tested in recent wetting assays of epithelial tissues and includes two types of active forces (cell-substrate traction and cell-cell contractility). The competition between the two active forces determines whether a cell monolayer spreads or contracts. Here, we show that this model generically predicts collective durotaxis, and that it features a variety of dynamical regimes as a result of the interplay between the spreading state and the global propagation, including sequential contraction and spreading of the monolayer as it moves toward higher stiffness. We solve the model exactly in some relevant cases, which provides both physical insights into the mechanisms of tissue durotaxis and spreading as well as a variety of predictions that could guide the design of future experiments.
Collapse
Affiliation(s)
- Irina Pi-Jaumà
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Av. Diagonal 647, 08028, Barcelona, Spain
- Universitat de Barcelona Institut of Complex Systems (UBICS), 08028, Barcelona, Spain
| | - Ricard Alert
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerst. 38, 01187, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerst. 108, 01307, Dresden, Germany
| | - Jaume Casademunt
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Av. Diagonal 647, 08028, Barcelona, Spain.
- Universitat de Barcelona Institut of Complex Systems (UBICS), 08028, Barcelona, Spain.
| |
Collapse
|
44
|
Peng Y, Chen Z, He Y, Li P, Chen Y, Chen X, Jiang Y, Qin X, Li S, Li T, Wu C, Yang H, You F, Liu Y. Non-muscle myosin II isoforms orchestrate substrate stiffness sensing to promote cancer cell contractility and migration. Cancer Lett 2022; 524:245-258. [PMID: 34715250 DOI: 10.1016/j.canlet.2021.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022]
Abstract
The stiffening of the extracellular matrix (ECM) during tumor progression results in an increase in cancer cell motility. In cell migration, two major isoforms of non-muscle myosin II (NMII), NMIIA and NMIIB, are expressed and assembled into the cytoskeleton. However, the isoform-specific regulatory roles of NMIIA and NMIIB as well as the underlying mechanisms in response to mechanical cues of the ECM are still elusive. Here, based on polyacrylamide (PAA) gels with tunable elastic modulus, we mimicked the mechanical properties of tumor tissue at different stages of breast cancer in vitro and investigated the distinct roles of NMII isoforms in the regulation of substrate stiffness. We demonstrate that NMIIA is engaged in establishing cell polarity by facilitating lamellipodia formation, focal adhesion turnover, and actin polymerization at the cell leading edge, while NMIIB is recruited to the cell perinuclear region and contributes to traction force generation and polarized distribution, both in a substrate stiffness-dependent manner. We further validated that substrate stiffness modulates the distribution and activation of NMII isoforms via the Rac1/p-PAK1/pS1916-NMIIA and PKCζ/pS1935-NMIIB signaling pathways in a site- and kinase-specific phosphoregulation manner. Our study is helpful for understanding the mechanotransduction of cancer cells and provides inspiration for molecular targets in antimetastatic therapy.
Collapse
Affiliation(s)
- Yueting Peng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Zhongyuan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yuchen He
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ping Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yu Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiangyan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
45
|
Substrate stiffening promotes VEGF-A functions via the PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun 2022; 586:27-33. [PMID: 34823219 PMCID: PMC8785232 DOI: 10.1016/j.bbrc.2021.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023]
Abstract
While it is now well-established that substrate stiffness regulates vascular endothelial growth factor-A (VEGF-A) mediated signaling and functions, causal mechanisms remain poorly understood. Here, we report an underlying role for the PI3K/Akt/mTOR signaling pathway. This pathway is activated on stiffer substrates, is amplified by VEGF-A stimulation, and correlates with enhanced endothelial cell (EC) proliferation, contraction, pro-angiogenic secretion, and capillary-like tube formation. In the settings of advanced age-related macular degeneration, characterized by EC and retinal pigment epithelial (RPE)-mediated angiogenesis, these data implicate substrate stiffness as a novel causative mechanism and Akt/mTOR inhibition as a novel therapeutic pathway.
Collapse
|
46
|
Kim LM, Kim PY, Leung CT. A Unified Protocol to Streamline Molecular and Cellular Analysis for Three-Dimensional Cell Cultures. Methods Mol Biol 2022; 2429:405-416. [PMID: 35507177 DOI: 10.1007/978-1-0716-1979-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three-dimensional (3D) cell cultures based on reconstituted basement membrane materials recapitulate features of extracellular matrix (ECM) and tissue stiffness in vivo and provide a physiologically relevant platform to study complex cellular processes, such as stem cell differentiation and tissue morphogenesis, that are otherwise difficult in animal models. The form and composition of 3D matrices in culture can interfere with and pose challenges for different experimental setups and assays, which necessitate alterations to facilitate analysis. Here, we provide a unified protocol for 3D cell cultures with modular workflows that streamline procedures for compatibility with common molecular and cellular assays such as live-cell imaging, immunofluorescence , qPCR, RNAseq, western blotting, and quantitative mass spectrometry.
Collapse
Affiliation(s)
- Lisa M Kim
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Paul Y Kim
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Cheuk T Leung
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
47
|
Spontaneous formation and spatial self-organization of mechanically induced mesenchymal-like cells within geometrically confined cancer cell monolayers. Biomaterials 2021; 281:121337. [PMID: 34979418 DOI: 10.1016/j.biomaterials.2021.121337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/12/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023]
Abstract
There is spatiotemporal heterogeneity in cell phenotypes and mechanical properties in tumor tissues, which is associated with cancer invasion and metastasis. It is well-known that exogenous growth factors like transforming growth factor (TGF)-β, can induce epithelial-mesenchymal transition (EMT)-based phenotypic transformation and the formation of EMT patterning on geometrically confined monolayers with mechanics heterogeneity. In the absence of exogenous TGF-β stimulation, however, whether geometric confinement-caused mechanics heterogeneity of cancer cell monolayers alone can trigger the EMT-based phenotypic heterogeneity still remains mysterious. Here, we develop a micropattern-based cell monolayer model to investigate the regulation of mechanics heterogeneity on the cell phenotypic switch. We reveal that mechanics heterogeneity itself is enough to spontaneously induce the emergence of mesenchymal-like phenotype and asymmetrical activation of TGF-β-SMAD signaling. Spatiotemporal dynamics of patterned cell monolayers with mesenchymal-like phenotypes is essentially regulated by tissue-scale cell behaviors like proliferation, migration as well as heterogeneous cytoskeletal contraction. The inhibition of cell contraction abrogates the asymmetrical TGF-β-SMAD signaling activation level and the emergence of mesenchymal-like phenotype. Our work not only sheds light on the key regulation of mechanics heterogeneity caused by spatially geometric confinement on regional mesenchymal-like phenotype of cancer cell monolayers, but highlights the key role of biophysical/mechanical cues in triggering phenotypic switch.
Collapse
|
48
|
Jerrell R, Leih M, Parekh A. Data on the effects of ECM rigidity on actomyosin contractility and invadopodia activity in individual versus pairs of head and neck squamous cell carcinoma cells. Data Brief 2021; 40:107684. [PMID: 34950756 PMCID: PMC8671857 DOI: 10.1016/j.dib.2021.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
Migration through the extracellular matrix (ECM) is essential for cancer cells to escape the primary tumor and invade neighboring tissues with the potential for metastasis [1]. To penetrate tissue barriers, migrating cancer cells degrade the ECM with actin-rich membrane protrusions called invadopodia [2]. We have previously found that invadopodial ECM degradation is regulated by ECM rigidity in a process mediated by contractile forces in individual head and neck squamous cell carcinoma (HNSCC) cells [3], [4]. However, cancer cells often migrate together and interact with each other to alter their actomyosin contractility in response to the biomechanical properties of the ECM [5]. Therefore, we tested whether ECM rigidity promotes biomechanical interactions between cancer cells to enhance proteolytic activity. Using a minimal model of two HNSCC cells in physical contact, we provide data here that actomyosin contractility, invadopodia formation, and ECM degradation increase in response to ECM rigidity when cells are in pairs versus individual cells using traction force and invadopodia assays.
Collapse
Affiliation(s)
- Rachel Jerrell
- Department of Otolaryngology, Vanderbilt University Medical Center, 522 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Mitchell Leih
- Department of Otolaryngology, Vanderbilt University Medical Center, 522 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Aron Parekh
- Department of Otolaryngology, Vanderbilt University Medical Center, 522 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, USA.,Department of Biomedical Engineering, Vanderbilt University, USA
| |
Collapse
|
49
|
Yeo T, She DT, Nai MH, Marcelo Valerio VL, Pan Y, Middha E, Lim CT, Liu B. Differential Collective Cell Migratory Behaviors Modulated by Phospholipid Nanocarriers. ACS NANO 2021; 15:17412-17425. [PMID: 34767716 DOI: 10.1021/acsnano.1c03060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phospholipid nanocarriers have been widely explored for theranostic and nanomedicine applications. These amphiphilic nanocarriers possess outstanding cargo encapsulation efficiency, high water dispersibility, and excellent biocompatibility, which render them promising for drug delivery and bioimaging applications. While the biological applications of phospholipid nanocarriers have been well documented, the fundamental aspects of the phospholipid-cell interactions beyond cytotoxicity have been less investigated. In particular, the effect of phospholipid nanocarriers on collective cell behaviors has not been elucidated. Herein, we evaluate the interactions of phospholipid nanocarriers possessing different functional groups and sizes with normal and cancerous immortalized breast epithelial cell sheets with varying metastatic potential. Specifically, we examine the impact of nanocarrier treatments on the collective migratory dynamics of these cell sheets. We observe that phospholipid nanocarriers induce differential collective cell migratory behaviors, where the migration speed of normal and cancerous breast epithelial cell sheets is retarded and accelerated, respectively. To a certain extent, the nanocarriers are able to alter the migration trajectory of the cancerous breast epithelial cells. Furthermore, phospholipid nanocarriers could modulate the stiffness of the nuclei, cytoplasm, and cell-cell junctions of the breast epithelial cell sheets, remodel their actin filament arrangement, and regulate the expressions of the actin-related proteins. We anticipate that this work will further shed light on nanomaterial-cell interactions and provide guidelines for rational and safer designs and applications of phospholipid nanocarriers for cancer theranostics and nanomedicine.
Collapse
Affiliation(s)
- Trifanny Yeo
- Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, Singapore 117599, Singapore
| | - David T She
- Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, Singapore 117599, Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Von Luigi Marcelo Valerio
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Yutong Pan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Eshu Middha
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, Singapore 117599, Singapore
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
50
|
Puech PH, Bongrand P. Mechanotransduction as a major driver of cell behaviour: mechanisms, and relevance to cell organization and future research. Open Biol 2021; 11:210256. [PMID: 34753321 PMCID: PMC8586914 DOI: 10.1098/rsob.210256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
How do cells process environmental cues to make decisions? This simple question is still generating much experimental and theoretical work, at the border of physics, chemistry and biology, with strong implications in medicine. The purpose of mechanobiology is to understand how biochemical and physical cues are turned into signals through mechanotransduction. Here, we review recent evidence showing that (i) mechanotransduction plays a major role in triggering signalling cascades following cell-neighbourhood interaction; (ii) the cell capacity to continually generate forces, and biomolecule properties to undergo conformational changes in response to piconewton forces, provide a molecular basis for understanding mechanotransduction; and (iii) mechanotransduction shapes the guidance cues retrieved by living cells and the information flow they generate. This includes the temporal and spatial properties of intracellular signalling cascades. In conclusion, it is suggested that the described concepts may provide guidelines to define experimentally accessible parameters to describe cell structure and dynamics, as a prerequisite to take advantage of recent progress in high-throughput data gathering, computer simulation and artificial intelligence, in order to build a workable, hopefully predictive, account of cell signalling networks.
Collapse
Affiliation(s)
- Pierre-Henri Puech
- Lab Adhesion and Inflammation (LAI), Inserm UMR 1067, CNRS UMR 7333, Aix-Marseille Université UM61, Marseille, France
| | - Pierre Bongrand
- Lab Adhesion and Inflammation (LAI), Inserm UMR 1067, CNRS UMR 7333, Aix-Marseille Université UM61, Marseille, France
| |
Collapse
|