1
|
Fielden LF, Busch JD, Lindau C, Qiu J, Wiedemann N. Analysis of mitochondrial protein translocation by disulfide bond formation and cysteine specific crosslinking. Methods Enzymol 2024; 707:257-298. [PMID: 39488378 DOI: 10.1016/bs.mie.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Protein translocation is a highly dynamic process and, in addition, mitochondrial protein import is especially complicated as the majority of nuclear encoded precursor proteins must engage with multiple translocases before they are assembled in the correct mitochondrial subcompartment. In this chapter, we describe assays for engineered disulfide bond formation and cysteine specific crosslinking to analyze the rearrangement of translocase subunits or to probe protein-protein interactions between precursor proteins and translocase subunits. Such assays were used to characterize the translocase of the outer membrane, the presequence translocase of the inner membrane and the sorting and assembly machinery for the biogenesis of β-Barrel proteins. Moreover, these approaches were also employed to determine the translocation path of precursor proteins (identification of import receptors and specific domains required for translocation) as well as the analysis, location and translocase subunit dependence for the formation of β-Barrel proteins. Here we describe how engineered disulfide bond formation and cysteine specific crosslinking assays are planned and performed and discuss important aspects for its application to study mitochondrial protein translocation.
Collapse
Affiliation(s)
- Laura F Fielden
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jakob D Busch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jian Qiu
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Wang Z, Chu Y, Li Q, Han X, Zhao L, Zhang H, Cai K, Zhang X, Wang X, Qin Y, Fan E. A minimum functional form of the Escherichia coli BAM complex constituted by BamADE assembles outer membrane proteins in vitro. J Biol Chem 2024; 300:107324. [PMID: 38677515 PMCID: PMC11130730 DOI: 10.1016/j.jbc.2024.107324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
The biogenesis of outer membrane proteins is mediated by the β-barrel assembly machinery (BAM), which is a heteropentomeric complex composed of five proteins named BamA-E in Escherichia coli. Despite great progress in the BAM structural analysis, the molecular details of BAM-mediated processes as well as the exact function of each BAM component during OMP assembly are still not fully understood. To enable a distinguishment of the function of each BAM component, it is the aim of the present work to examine and identify the effective minimum form of the E. coli BAM complex by use of a well-defined reconstitution strategy based on a previously developed versatile assay. Our data demonstrate that BamADE is the core BAM component and constitutes a minimum functional form for OMP assembly in E. coli, which can be stimulated by BamB and BamC. While BamB and BamC have a redundant function based on the minimum form, both together seem to cooperate with each other to substitute for the function of the missing BamD or BamE. Moreover, the BamAE470K mutant also requires the function of BamD and BamE to assemble OMPs in vitro, which vice verse suggests that BamADE are the effective minimum functional form of the E. coli BAM complex.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yindi Chu
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qingrong Li
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaochen Han
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Leyi Zhao
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hanqing Zhang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kun Cai
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xuyan Zhang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xingyuan Wang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Youcai Qin
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Enguo Fan
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; School of Medicine, Linyi University, Linyi, China.
| |
Collapse
|
3
|
Lionaki E, Gkikas I, Tavernarakis N. Mitochondrial protein import machinery conveys stress signals to the cytosol and beyond. Bioessays 2023; 45:e2200160. [PMID: 36709422 DOI: 10.1002/bies.202200160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 01/30/2023]
Abstract
Mitochondria hold diverse and pivotal roles in fundamental processes that govern cell survival, differentiation, and death, in addition to organismal growth, maintenance, and aging. The mitochondrial protein import system is a major contributor to mitochondrial biogenesis and lies at the crossroads between mitochondrial and cellular homeostasis. Recent findings highlight the mitochondrial protein import system as a signaling hub, receiving inputs from other cellular compartments and adjusting its function accordingly. Impairment of protein import, in a physiological, or disease context, elicits adaptive responses inside and outside mitochondria. In this review, we discuss recent developments, relevant to the mechanisms of mitochondrial protein import regulation, with a particular focus on quality control, proteostatic and metabolic cellular responses, triggered upon impairment of mitochondrial protein import.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
4
|
Schulte U, den Brave F, Haupt A, Gupta A, Song J, Müller CS, Engelke J, Mishra S, Mårtensson C, Ellenrieder L, Priesnitz C, Straub SP, Doan KN, Kulawiak B, Bildl W, Rampelt H, Wiedemann N, Pfanner N, Fakler B, Becker T. Mitochondrial complexome reveals quality-control pathways of protein import. Nature 2023; 614:153-159. [PMID: 36697829 PMCID: PMC9892010 DOI: 10.1038/s41586-022-05641-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/09/2022] [Indexed: 01/26/2023]
Abstract
Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control1-4. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases1,3-7. The composition of the mitochondrial proteome has been characterized1,3,5,6; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome1,4,7. Here we report quantitative mapping of mitochondrial protein assemblies using high-resolution complexome profiling of more than 90% of the yeast mitochondrial proteome, termed MitCOM. An analysis of the MitCOM dataset resolves >5,200 protein peaks with an average of six peaks per protein and demonstrates a notable complexity of mitochondrial protein assemblies with distinct appearance for respiration, metabolism, biogenesis, dynamics, regulation and redox processes. We detect interactors of the mitochondrial receptor for cytosolic ribosomes, of prohibitin scaffolds and of respiratory complexes. The identification of quality-control factors operating at the mitochondrial protein entry gate reveals pathways for preprotein ubiquitylation, deubiquitylation and degradation. Interactions between the peptidyl-tRNA hydrolase Pth2 and the entry gate led to the elucidation of a constitutive pathway for the removal of preproteins. The MitCOM dataset-which is accessible through an interactive profile viewer-is a comprehensive resource for the identification, organization and interaction of mitochondrial machineries and pathways.
Collapse
Affiliation(s)
- Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Alexander Haupt
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Arushi Gupta
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catrin S Müller
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeannine Engelke
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Swadha Mishra
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Christoph Mårtensson
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- MTIP, Basel, Switzerland
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Novartis, Basel, Switzerland
| | - Chantal Priesnitz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian P Straub
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Sanofi-Aventis (Suisse), Vernier, Switzerland
| | - Kim Nguyen Doan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bogusz Kulawiak
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heike Rampelt
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Nikolaus Pfanner
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Center for Basics in NeuroModulation, Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Takeda H, Busto JV, Lindau C, Tsutsumi A, Tomii K, Imai K, Yamamori Y, Hirokawa T, Motono C, Ganesan I, Wenz LS, Becker T, Kikkawa M, Pfanner N, Wiedemann N, Endo T. A multipoint guidance mechanism for β-barrel folding on the SAM complex. Nat Struct Mol Biol 2023; 30:176-187. [PMID: 36604501 DOI: 10.1038/s41594-022-00897-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/11/2022] [Indexed: 01/07/2023]
Abstract
Mitochondrial β-barrel proteins are essential for the transport of metabolites, ions and proteins. The sorting and assembly machinery (SAM) mediates their folding and membrane insertion. We report the cryo-electron microscopy structure of the yeast SAM complex carrying an early eukaryotic β-barrel folding intermediate. The lateral gate of Sam50 is wide open and pairs with the last β-strand (β-signal) of the substrate-the 19-β-stranded Tom40 precursor-to form a hybrid barrel in the membrane plane. The Tom40 barrel grows and curves, guided by an extended bridge with Sam50. Tom40's first β-segment (β1) penetrates into the nascent barrel, interacting with its inner wall. The Tom40 amino-terminal segment then displaces β1 to promote its pairing with Tom40's last β-strand to complete barrel formation with the assistance of Sam37's dynamic α-protrusion. Our study thus reveals a multipoint guidance mechanism for mitochondrial β-barrel folding.
Collapse
Affiliation(s)
- Hironori Takeda
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Nara Institute of Science and Technology, Ikoma, Japan
| | - Jon V Busto
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Akihisa Tsutsumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, AIST, Tokyo, Japan
| | - Yu Yamamori
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Takatsugu Hirokawa
- Cellular and Molecular Biotechnology Research Institute, AIST, Tokyo, Japan.,Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Chie Motono
- Cellular and Molecular Biotechnology Research Institute, AIST, Tokyo, Japan.,Computational Bio Big-Data Open Innovation Laboratory, AIST, Waseda University, Tokyo, Japan
| | - Iniyan Ganesan
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena-Sophie Wenz
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan. .,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan.
| |
Collapse
|
6
|
Diederichs KA, Pitt AS, Varughese JT, Hackel TN, Buchanan SK, Shaw PL. Mechanistic insights into fungal mitochondrial outer membrane protein biogenesis. Curr Opin Struct Biol 2022; 74:102383. [DOI: 10.1016/j.sbi.2022.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/11/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
|
7
|
Hoffmann JJ, Becker T. Crosstalk between Mitochondrial Protein Import and Lipids. Int J Mol Sci 2022; 23:ijms23095274. [PMID: 35563660 PMCID: PMC9101885 DOI: 10.3390/ijms23095274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/10/2022] Open
Abstract
Mitochondria import about 1000 precursor proteins from the cytosol. The translocase of the outer membrane (TOM complex) forms the major entry site for precursor proteins. Subsequently, membrane-bound protein translocases sort the precursor proteins into the outer and inner membrane, the intermembrane space, and the matrix. The phospholipid composition of mitochondrial membranes is critical for protein import. Structural and biochemical data revealed that phospholipids affect the stability and activity of mitochondrial protein translocases. Integration of proteins into the target membrane involves rearrangement of phospholipids and distortion of the lipid bilayer. Phospholipids are present in the interface between subunits of protein translocases and affect the dynamic coupling of partner proteins. Phospholipids are required for full activity of the respiratory chain to generate membrane potential, which in turn drives protein import across and into the inner membrane. Finally, outer membrane protein translocases are closely linked to organellar contact sites that mediate lipid trafficking. Altogether, intensive crosstalk between mitochondrial protein import and lipid biogenesis controls mitochondrial biogenesis.
Collapse
|
8
|
Network Biology and Artificial Intelligence Drive the Understanding of the Multidrug Resistance Phenotype in Cancer. Drug Resist Updat 2022; 60:100811. [DOI: 10.1016/j.drup.2022.100811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
|
9
|
Zhao F, Zou MH. Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease. Front Cardiovasc Med 2021; 8:749756. [PMID: 34651031 PMCID: PMC8505727 DOI: 10.3389/fcvm.2021.749756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles for cellular energy production, metabolic homeostasis, calcium homeostasis, cell proliferation, and apoptosis. About 99% of mammalian mitochondrial proteins are encoded by the nuclear genome, synthesized as precursors in the cytosol, and imported into mitochondria by mitochondrial protein import machinery. Mitochondrial protein import systems function not only as independent units for protein translocation, but also are deeply integrated into a functional network of mitochondrial bioenergetics, protein quality control, mitochondrial dynamics and morphology, and interaction with other organelles. Mitochondrial protein import deficiency is linked to various diseases, including cardiovascular disease. In this review, we describe an emerging class of protein or genetic variations of components of the mitochondrial import machinery involved in heart disease. The major protein import pathways, including the presequence pathway (TIM23 pathway), the carrier pathway (TIM22 pathway), and the mitochondrial intermembrane space import and assembly machinery, related translocases, proteinases, and chaperones, are discussed here. This review highlights the importance of mitochondrial import machinery in heart disease, which deserves considerable attention, and further studies are urgently needed. Ultimately, this knowledge may be critical for the development of therapeutic strategies in heart disease.
Collapse
Affiliation(s)
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
10
|
Geldon S, Fernández-Vizarra E, Tokatlidis K. Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells. Front Cell Dev Biol 2021; 9:720656. [PMID: 34557489 PMCID: PMC8452992 DOI: 10.3389/fcell.2021.720656] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are double-membrane organelles that contain their own genome, the mitochondrial DNA (mtDNA), and reminiscent of its endosymbiotic origin. Mitochondria are responsible for cellular respiration via the function of the electron oxidative phosphorylation system (OXPHOS), located in the mitochondrial inner membrane and composed of the four electron transport chain (ETC) enzymes (complexes I-IV), and the ATP synthase (complex V). Even though the mtDNA encodes essential OXPHOS components, the large majority of the structural subunits and additional biogenetical factors (more than seventy proteins) are encoded in the nucleus and translated in the cytoplasm. To incorporate these proteins and the rest of the mitochondrial proteome, mitochondria have evolved varied, and sophisticated import machineries that specifically target proteins to the different compartments defined by the two membranes. The intermembrane space (IMS) contains a high number of cysteine-rich proteins, which are mostly imported via the MIA40 oxidative folding system, dependent on the reduction, and oxidation of key Cys residues. Several of these proteins are structural components or assembly factors necessary for the correct maturation and function of the ETC complexes. Interestingly, many of these proteins are involved in the metalation of the active redox centers of complex IV, the terminal oxidase of the mitochondrial ETC. Due to their function in oxygen reduction, mitochondria are the main generators of reactive oxygen species (ROS), on both sides of the inner membrane, i.e., in the matrix and the IMS. ROS generation is important due to their role as signaling molecules, but an excessive production is detrimental due to unwanted oxidation reactions that impact on the function of different types of biomolecules contained in mitochondria. Therefore, the maintenance of the redox balance in the IMS is essential for mitochondrial function. In this review, we will discuss the role that redox regulation plays in the maintenance of IMS homeostasis as well as how mitochondrial ROS generation may be a key regulatory factor for ETC biogenesis, especially for complex IV.
Collapse
Affiliation(s)
| | - Erika Fernández-Vizarra
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
The Diversity of the Mitochondrial Outer Membrane Protein Import Channels: Emerging Targets for Modulation. Molecules 2021; 26:molecules26134087. [PMID: 34279427 PMCID: PMC8272145 DOI: 10.3390/molecules26134087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022] Open
Abstract
The functioning of mitochondria and their biogenesis are largely based on the proper function of the mitochondrial outer membrane channels, which selectively recognise and import proteins but also transport a wide range of other molecules, including metabolites, inorganic ions and nucleic acids. To date, nine channels have been identified in the mitochondrial outer membrane of which at least half represent the mitochondrial protein import apparatus. When compared to the mitochondrial inner membrane, the presented channels are mostly constitutively open and consequently may participate in transport of different molecules and contribute to relevant changes in the outer membrane permeability based on the channel conductance. In this review, we focus on the channel structure, properties and transported molecules as well as aspects important to their modulation. This information could be used for future studies of the cellular processes mediated by these channels, mitochondrial functioning and therapies for mitochondria-linked diseases.
Collapse
|
12
|
Maity S, Chakrabarti O. Mitochondrial protein import as a quality control sensor. Biol Cell 2021; 113:375-400. [PMID: 33870508 DOI: 10.1111/boc.202100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/04/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Mitochondria are organelles involved in various functions related to cellular metabolism and homoeostasis. Though mitochondria contain own genome, their nuclear counterparts encode most of the different mitochondrial proteins. These are synthesised as precursors in the cytosol and have to be delivered into the mitochondria. These organelles hence have elaborate machineries for the import of precursor proteins from cytosol. The protein import machineries present in both mitochondrial membrane and aqueous compartments show great variability in pre-protein recognition, translocation and sorting across or into it. Mitochondrial protein import machineries also interact transiently with other protein complexes of the respiratory chain or those involved in the maintenance of membrane architecture. Hence mitochondrial protein translocation is an indispensable part of the regulatory network that maintains protein biogenesis, bioenergetics, membrane dynamics and quality control of the organelle. Various stress conditions and diseases that are associated with mitochondrial import defects lead to changes in cellular transcriptomic and proteomic profiles. Dysfunction in mitochondrial protein import also causes over-accumulation of precursor proteins and their aggregation in the cytosol. Multiple pathways may be activated for buffering these harmful consequences. Here, we present a comprehensive picture of import machinery and its role in cellular quality control in response to defective mitochondrial import. We also discuss the pathological consequences of dysfunctional mitochondrial protein import in neurodegeneration and cancer.
Collapse
Affiliation(s)
- Sebabrata Maity
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India.,Homi Bhabha National Institute, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India.,Homi Bhabha National Institute, India
| |
Collapse
|
13
|
Diederichs KA, Buchanan SK, Botos I. Building Better Barrels - β-barrel Biogenesis and Insertion in Bacteria and Mitochondria. J Mol Biol 2021; 433:166894. [PMID: 33639212 PMCID: PMC8292188 DOI: 10.1016/j.jmb.2021.166894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/20/2023]
Abstract
β-barrel proteins are folded and inserted into outer membranes by multi-subunit protein complexes that are conserved across different types of outer membranes. In Gram-negative bacteria this complex is the barrel-assembly machinery (BAM), in mitochondria it is the sorting and assembly machinery (SAM) complex, and in chloroplasts it is the outer envelope protein Oep80. Mitochondrial β-barrel precursor proteins are translocated from the cytoplasm to the intermembrane space by the translocase of the outer membrane (TOM) complex, and stabilized by molecular chaperones before interaction with the assembly machinery. Outer membrane bacterial BamA interacts with four periplasmic accessory proteins, whereas mitochondrial Sam50 interacts with two cytoplasmic accessory proteins. Despite these major architectural differences between BAM and SAM complexes, their core proteins, BamA and Sam50, seem to function the same way. Based on the new SAM complex structures, we propose that the mitochondrial β-barrel folding mechanism follows the budding model with barrel-switching aiding in the release of new barrels. We also built a new molecular model for Tom22 interacting with Sam37 to identify regions that could mediate TOM-SAM supercomplex formation.
Collapse
Affiliation(s)
- Kathryn A Diederichs
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Takeda H, Tsutsumi A, Nishizawa T, Lindau C, Busto JV, Wenz LS, Ellenrieder L, Imai K, Straub SP, Mossmann W, Qiu J, Yamamori Y, Tomii K, Suzuki J, Murata T, Ogasawara S, Nureki O, Becker T, Pfanner N, Wiedemann N, Kikkawa M, Endo T. Mitochondrial sorting and assembly machinery operates by β-barrel switching. Nature 2021; 590:163-169. [PMID: 33408415 DOI: 10.1038/s41586-020-03113-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023]
Abstract
The mitochondrial outer membrane contains so-called β-barrel proteins, which allow communication between the cytosol and the mitochondrial interior1-3. Insertion of β-barrel proteins into the outer membrane is mediated by the multisubunit mitochondrial sorting and assembly machinery (SAM, also known as TOB)4-6. Here we use cryo-electron microscopy to determine the structures of two different forms of the yeast SAM complex at a resolution of 2.8-3.2 Å. The dimeric complex contains two copies of the β-barrel channel protein Sam50-Sam50a and Sam50b-with partially open lateral gates. The peripheral membrane proteins Sam35 and Sam37 cap the Sam50 channels from the cytosolic side, and are crucial for the structural and functional integrity of the dimeric complex. In the second complex, Sam50b is replaced by the β-barrel protein Mdm10. In cooperation with Sam50a, Sam37 recruits and traps Mdm10 by penetrating the interior of its laterally closed β-barrel from the cytosolic side. The substrate-loaded SAM complex contains one each of Sam50, Sam35 and Sam37, but neither Mdm10 nor a second Sam50, suggesting that Mdm10 and Sam50b function as placeholders for a β-barrel substrate released from Sam50a. Our proposed mechanism for dynamic switching of β-barrel subunits and substrate explains how entire precursor proteins can fold in association with the mitochondrial machinery for β-barrel assembly.
Collapse
Affiliation(s)
- Hironori Takeda
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto, Japan
| | - Akihisa Tsutsumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jon V Busto
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena-Sophie Wenz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Sanofi Deutschland GmbH, Frankfurt am Main, Germany
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Novartis Pharma AG, Basel, Switzerland
| | - Kenichiro Imai
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Sebastian P Straub
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Sanofi-Aventis (Suisse) ag, Vernier, Switzerland
| | - Waltraut Mossmann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jian Qiu
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Yamamori
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Junko Suzuki
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto, Japan. .,Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto, Japan.
| |
Collapse
|
15
|
Gupta A, Becker T. Mechanisms and pathways of mitochondrial outer membrane protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148323. [PMID: 33035511 DOI: 10.1016/j.bbabio.2020.148323] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/29/2022]
Abstract
Outer membrane proteins integrate mitochondria into the cellular environment. They warrant exchange of small molecules like metabolites and ions, transport proteins into mitochondria, form contact sites to other cellular organelles for lipid exchange, constitute a signaling platform for apoptosis and inflammation and mediate organelle fusion and fission. The outer membrane contains two types of integral membrane proteins. Proteins with a transmembrane β-barrel structure and proteins with a single or multiple α-helical membrane spans. All outer membrane proteins are produced on cytosolic ribosomes and imported into the target organelle. Precursors of β-barrel and α-helical proteins are transported into the outer membrane via distinct import routes. The translocase of the outer membrane (TOM complex) transports β-barrel precursors across the outer membrane and the sorting and assembly machinery (SAM complex) inserts them into the target membrane. The mitochondrial import (MIM) complex constitutes the major integration site for α-helical embedded proteins. The import of some MIM-substrates involves TOM receptors, while others are imported in a TOM-independent manner. Remarkably, TOM, SAM and MIM complexes dynamically interact to import a large set of different proteins and to coordinate their assembly into protein complexes. Thus, protein import into the mitochondrial outer membrane involves a dynamic platform of protein translocases.
Collapse
Affiliation(s)
- Arushi Gupta
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Universität Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
16
|
SAM50, a side door to the mitochondria: The case of cytotoxic proteases. Pharmacol Res 2020; 160:105196. [PMID: 32919042 DOI: 10.1016/j.phrs.2020.105196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
SAM50, a 7-8 nm diameter β-barrel channel of the mitochondrial outer membrane, is the central channel of the sorting and assembly machinery (SAM) complex involved in the biogenesis of β-barrel proteins. Interestingly, SAM50 is not known to have channel translocase activity; however, we have recently found that this channel is necessary and sufficient for mitochondrial entry of cytotoxic proteases. Cytotoxic lymphocytes eliminate cells that pose potential hazards, such as virus- and bacteria-infected cells as well as cancer cells. They induce cell death following the delivery of granzyme cytotoxic proteases into the cytosol of the target cell. Although granzyme A and granzyme B (GA and GB), the best characterized of the five human granzymes, trigger very distinct apoptotic cascades, they share the ability to directly target the mitochondria. GA and GB do not have a mitochondrial targeting signal, yet they enter the target cell mitochondria to disrupt respiratory chain complex I and induce mitochondrial reactive oxygen species (ROS)-dependent cell death. We found that granzyme mitochondrial entry requires SAM50 and the translocase of the inner membrane 22 (TIM22). Preventing granzymes' mitochondrial entry compromises their cytotoxicity, indicating that this event is unexpectedly an important step for cell death. Although mitochondria are best known for their roles in cell metabolism and energy conversion, these double-membrane organelles are also involved in Ca2+ homeostasis, metabolite transport, cell cycle regulation, cell signaling, differentiation, stress response, redox homeostasis, aging, and cell death. This multiplicity of functions is matched with the complexity and plasticity of the mitochondrial proteome as well as the organelle's morphological and structural versatility. Indeed, mitochondria are extremely dynamic and undergo fusion and fission events in response to diverse cellular cues. In humans, there are 1500 different mitochondrial proteins, the vast majority of which are encoded in the nuclear genome and translated by cytosolic ribosomes, after which they must be imported and properly addressed to the right mitochondrial compartment. To this end, mitochondria are equipped with a very sophisticated and highly specific protein import machinery. The latter is centered on translocase complexes embedded in the outer and inner mitochondrial membranes working along five different import pathways. We will briefly describe these import pathways to put into perspective our finding regarding the ability of granzymes to enter the mitochondria.
Collapse
|
17
|
Grevel A, Pfanner N, Becker T. Coupling of import and assembly pathways in mitochondrial protein biogenesis. Biol Chem 2020; 401:117-129. [PMID: 31513529 DOI: 10.1515/hsz-2019-0310] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Biogenesis and function of mitochondria depend on the import of about 1000 precursor proteins that are produced on cytosolic ribosomes. The translocase of the outer membrane (TOM) forms the entry gate for most proteins. After passage through the TOM channel, dedicated preprotein translocases sort the precursor proteins into the mitochondrial subcompartments. Many proteins have to be assembled into oligomeric membrane-integrated complexes in order to perform their functions. In this review, we discuss a dual role of mitochondrial preprotein translocases in protein translocation and oligomeric assembly, focusing on the biogenesis of the TOM complex and the respiratory chain. The sorting and assembly machinery (SAM) of the outer mitochondrial membrane forms a dynamic platform for coupling transport and assembly of TOM subunits. The biogenesis of the cytochrome c oxidase of the inner membrane involves a molecular circuit to adjust translation of mitochondrial-encoded core subunits to the availability of nuclear-encoded partner proteins. Thus, mitochondrial protein translocases not only import precursor proteins but can also support their assembly into functional complexes.
Collapse
Affiliation(s)
- Alexander Grevel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
18
|
Diederichs KA, Ni X, Rollauer SE, Botos I, Tan X, King MS, Kunji ERS, Jiang J, Buchanan SK. Structural insight into mitochondrial β-barrel outer membrane protein biogenesis. Nat Commun 2020; 11:3290. [PMID: 32620929 PMCID: PMC7335169 DOI: 10.1038/s41467-020-17144-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/13/2020] [Indexed: 11/09/2022] Open
Abstract
In mitochondria, β-barrel outer membrane proteins mediate protein import, metabolite transport, lipid transport, and biogenesis. The Sorting and Assembly Machinery (SAM) complex consists of three proteins that assemble as a 1:1:1 complex to fold β-barrel proteins and insert them into the mitochondrial outer membrane. We report cryoEM structures of the SAM complex from Myceliophthora thermophila, which show that Sam50 forms a 16-stranded transmembrane β-barrel with a single polypeptide-transport-associated (POTRA) domain extending into the intermembrane space. Sam35 and Sam37 are located on the cytosolic side of the outer membrane, with Sam35 capping Sam50, and Sam37 interacting extensively with Sam35. Sam35 and Sam37 each adopt a GST-like fold, with no functional, structural, or sequence similarity to their bacterial counterparts. Structural analysis shows how the Sam50 β-barrel opens a lateral gate to accommodate its substrates.
Collapse
Affiliation(s)
- Kathryn A Diederichs
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Xiaodan Ni
- Laboratory of Membrane Proteins and Structural Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah E Rollauer
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Xiaofeng Tan
- Laboratory of Membrane Proteins and Structural Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Martin S King
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Edmund R S Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 2020; 20:267-284. [PMID: 30626975 DOI: 10.1038/s41580-018-0092-0] [Citation(s) in RCA: 602] [Impact Index Per Article: 120.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria are essential for the viability of eukaryotic cells as they perform crucial functions in bioenergetics, metabolism and signalling and have been associated with numerous diseases. Recent functional and proteomic studies have revealed the remarkable complexity of mitochondrial protein organization. Protein machineries with diverse functions such as protein translocation, respiration, metabolite transport, protein quality control and the control of membrane architecture interact with each other in dynamic networks. In this Review, we discuss the emerging role of the mitochondrial protein import machinery as a key organizer of these mitochondrial protein networks. The preprotein translocases that reside on the mitochondrial membranes not only function during organelle biogenesis to deliver newly synthesized proteins to their final mitochondrial destination but also cooperate with numerous other mitochondrial protein complexes that perform a wide range of functions. Moreover, these protein networks form membrane contact sites, for example, with the endoplasmic reticulum, that are key for integration of mitochondria with cellular function, and defects in protein import can lead to diseases.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
20
|
Roumia AF, Theodoropoulou MC, Tsirigos KD, Nielsen H, Bagos PG. Landscape of Eukaryotic Transmembrane Beta Barrel Proteins. J Proteome Res 2020; 19:1209-1221. [PMID: 32008325 DOI: 10.1021/acs.jproteome.9b00740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Even though in the last few years several families of eukaryotic β-barrel outer membrane proteins have been discovered, their computational characterization and their annotation in public databases are far from complete. The PFAM database includes only very few characteristic profiles for these families, and in most cases, the profile hidden Markov models (pHMMs) have been trained using prokaryotic and eukaryotic proteins together. Here, we present for the first time a comprehensive computational analysis of eukaryotic transmembrane β-barrels. Twelve characteristic pHMMs were built, based on an extensive literature search, which can discriminate eukaryotic β-barrels from other classes of proteins (globular and bacterial β-barrel ones), as well as between mitochondrial and chloroplastic ones. We built eight novel profiles for the chloroplastic β-barrel families that are not present in the PFAM database and also updated the profile for the MDM10 family (PF12519) in the PFAM database and divide the porin family (PF01459) into two separate families, namely, VDAC and TOM40.
Collapse
Affiliation(s)
- Ahmed F Roumia
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35100 Lamia, Greece
| | | | - Konstantinos D Tsirigos
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Henrik Nielsen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Pantelis G Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35100 Lamia, Greece
| |
Collapse
|
21
|
Becker T, Song J, Pfanner N. Versatility of Preprotein Transfer from the Cytosol to Mitochondria. Trends Cell Biol 2019; 29:534-548. [PMID: 31030976 DOI: 10.1016/j.tcb.2019.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022]
Abstract
Mitochondrial biogenesis requires the import of a large number of precursor proteins from the cytosol. Although specific membrane-bound preprotein translocases have been characterized in detail, it was assumed that protein transfer from the cytosol to mitochondria mainly involved unselective binding to molecular chaperones. Recent findings suggest an unexpected versatility of protein transfer to mitochondria. Cytosolic factors have been identified that bind to selected subsets of preproteins and guide them to mitochondrial receptors in a post-translational manner. Cotranslational import processes are emerging. Mechanisms for crosstalk between protein targeting to mitochondria and other cell organelles, in particular the endoplasmic reticulum (ER) and peroxisomes, have been uncovered. We discuss how a network of cytosolic machineries and targeting pathways promote and regulate preprotein transfer into mitochondria.
Collapse
Affiliation(s)
- Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
22
|
Makki A, Rada P, Žárský V, Kereïche S, Kováčik L, Novotný M, Jores T, Rapaport D, Tachezy J. Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biol 2019; 17:e3000098. [PMID: 30608924 PMCID: PMC6334971 DOI: 10.1371/journal.pbio.3000098] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/16/2019] [Accepted: 12/11/2018] [Indexed: 11/30/2022] Open
Abstract
Mitochondria originated from proteobacterial endosymbionts, and their transition to organelles was tightly linked to establishment of the protein import pathways. The initial import of most proteins is mediated by the translocase of the outer membrane (TOM). Although TOM is common to all forms of mitochondria, an unexpected diversity of subunits between eukaryotic lineages has been predicted. However, experimental knowledge is limited to a few organisms, and so far, it remains unsettled whether the triplet-pore or the twin-pore structure is the generic form of TOM complex. Here, we analysed the TOM complex in hydrogenosomes, a metabolically specialised anaerobic form of mitochondria found in the excavate Trichomonas vaginalis. We demonstrate that the highly divergent β-barrel T. vaginalis TOM (TvTom)40-2 forms a translocation channel to conduct hydrogenosomal protein import. TvTom40-2 is present in high molecular weight complexes, and their analysis revealed the presence of four tail-anchored (TA) proteins. Two of them, Tom36 and Tom46, with heat shock protein (Hsp)20 and tetratricopeptide repeat (TPR) domains, can bind hydrogenosomal preproteins and most likely function as receptors. A third subunit, Tom22-like protein, has a short cis domain and a conserved Tom22 transmembrane segment but lacks a trans domain. The fourth protein, hydrogenosomal outer membrane protein 19 (Homp19) has no known homology. Furthermore, our data indicate that TvTOM is associated with sorting and assembly machinery (Sam)50 that is involved in β-barrel assembly. Visualisation of TvTOM by electron microscopy revealed that it forms three pores and has an unconventional skull-like shape. Although TvTOM seems to lack Tom7, our phylogenetic profiling predicted Tom7 in free-living excavates. Collectively, our results suggest that the triplet-pore TOM complex, composed of three conserved subunits, was present in the last common eukaryotic ancestor (LECA), while receptors responsible for substrate binding evolved independently in different eukaryotic lineages. The highly divergent outer membrane translocase (TOM) from the Trichomonas hydrogenosome (an organelle related to mitochondria) is composed of conserved core and lineage-specific subunits, and has an unconventional skull-like triplet-pore structure. Mitochondria carry out many vital functions in the eukaryotic cells, from energy metabolism to programmed cell death. These organelles descended from bacterial endosymbionts, and during their evolution, the cell established a mechanism to transport nuclear-encoded proteins into mitochondria. Embedded in the mitochondrial outer membrane is a molecular machine, known as the translocase of the outer membrane (TOM) complex, that plays a key role in protein import and biogenesis of the organelle. Here, we provide evidence that the TOM complex of hydrogenosomes, a metabolically specialised anaerobic form of mitochondria in Trichomonas vaginalis, is composed of highly divergent core subunits and lineage-specific peripheral subunits. Despite the evolutionary distance, the T. vaginalis TOM (TvTOM) complex has a conserved triplet-pore structure but with a unique skull-like shape suggesting that the TOM in the early mitochondrion could have formed three pores. Our results contribute to a better understanding of the evolution and adaptation of protein import machinery in anaerobic forms of mitochondria.
Collapse
Affiliation(s)
- Abhijith Makki
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Petr Rada
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lubomír Kováčik
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tobias Jores
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
23
|
Höhr AIC, Lindau C, Wirth C, Qiu J, Stroud DA, Kutik S, Guiard B, Hunte C, Becker T, Pfanner N, Wiedemann N. Membrane protein insertion through a mitochondrial β-barrel gate. Science 2018; 359:359/6373/eaah6834. [PMID: 29348211 DOI: 10.1126/science.aah6834] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/12/2017] [Accepted: 12/14/2017] [Indexed: 11/02/2022]
Abstract
The biogenesis of mitochondria, chloroplasts, and Gram-negative bacteria requires the insertion of β-barrel proteins into the outer membranes. Homologous Omp85 proteins are essential for membrane insertion of β-barrel precursors. It is unknown if precursors are threaded through the Omp85-channel interior and exit laterally or if they are translocated into the membrane at the Omp85-lipid interface. We have mapped the interaction of a precursor in transit with the mitochondrial Omp85-channel Sam50 in the native membrane environment. The precursor is translocated into the channel interior, interacts with an internal loop, and inserts into the lateral gate by β-signal exchange. Transport through the Omp85-channel interior followed by release through the lateral gate into the lipid phase may represent a basic mechanism for membrane insertion of β-barrel proteins.
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christophe Wirth
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Jian Qiu
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - David A Stroud
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Stephan Kutik
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
24
|
Becker T, Wagner R. Mitochondrial Outer Membrane Channels: Emerging Diversity in Transport Processes. Bioessays 2018; 40:e1800013. [DOI: 10.1002/bies.201800013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/29/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Thomas Becker
- Faculty of MedicineInstitute of Biochemistry and Molecular Biology, ZBMZUniversity of FreiburgFreiburgD‐79104Germany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgD‐79104Germany
| | - Richard Wagner
- Biophysics, Life Sciences & ChemistryJacobs University BremenBremenD‐28759Germany
| |
Collapse
|
25
|
Chaturvedi D, Mahalakshmi R. Transmembrane β-barrels: Evolution, folding and energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2467-2482. [PMID: 28943271 DOI: 10.1016/j.bbamem.2017.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022]
Abstract
The biogenesis of transmembrane β-barrels (outer membrane proteins, or OMPs) is an elaborate multistep orchestration of the nascent polypeptide with translocases, barrel assembly machinery, and helper chaperone proteins. Several theories exist that describe the mechanism of chaperone-assisted OMP assembly in vivo and unassisted (spontaneous) folding in vitro. Structurally, OMPs of bacterial origin possess even-numbered strands, while mitochondrial β-barrels are even- and odd-stranded. Several underlying similarities between prokaryotic and eukaryotic β-barrels and their folding machinery are known; yet, the link in their evolutionary origin is unclear. While OMPs exhibit diversity in sequence and function, they share similar biophysical attributes and structure. Similarly, it is important to understand the intricate OMP assembly mechanism, particularly in eukaryotic β-barrels that have evolved to perform more complex functions. Here, we deliberate known facets of β-barrel evolution, folding, and stability, and attempt to highlight outstanding questions in β-barrel biogenesis and proteostasis.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| |
Collapse
|
26
|
Krüger V, Becker T, Becker L, Montilla-Martinez M, Ellenrieder L, Vögtle FN, Meyer HE, Ryan MT, Wiedemann N, Warscheid B, Pfanner N, Wagner R, Meisinger C. Identification of new channels by systematic analysis of the mitochondrial outer membrane. J Cell Biol 2017; 216:3485-3495. [PMID: 28916712 PMCID: PMC5674900 DOI: 10.1083/jcb.201706043] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/03/2017] [Accepted: 08/22/2017] [Indexed: 02/08/2023] Open
Abstract
Channels in the mitochondrial outer membrane exchange metabolites, ions, and proteins with the rest of the cell. Kruger et al. identify several new types of channel and suggest that the outer mitochondrial membrane is a more selective molecular sieve with a greater variety of channel-forming proteins than previously appreciated. The mitochondrial outer membrane is essential for communication between mitochondria and the rest of the cell and facilitates the transport of metabolites, ions, and proteins. All mitochondrial outer membrane channels known to date are β-barrel membrane proteins, including the abundant voltage-dependent anion channel and the cation-preferring protein-conducting channels Tom40, Sam50, and Mdm10. We analyzed outer membrane fractions of yeast mitochondria and identified four new channel activities: two anion-preferring channels and two cation-preferring channels. We characterized the cation-preferring channels at the molecular level. The mitochondrial import component Mim1 forms a channel that is predicted to have an α-helical structure for protein import. The short-chain dehydrogenase-related protein Ayr1 forms an NADPH-regulated channel. We conclude that the mitochondrial outer membrane contains a considerably larger variety of channel-forming proteins than assumed thus far. These findings challenge the traditional view of the outer membrane as an unspecific molecular sieve and indicate a higher degree of selectivity and regulation of metabolite fluxes at the mitochondrial boundary.
Collapse
Affiliation(s)
- Vivien Krüger
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.,Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Lars Becker
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | | | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Helmut E Meyer
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Richard Wagner
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany .,Biophysics, Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Ellenrieder L, Rampelt H, Becker T. Connection of Protein Transport and Organelle Contact Sites in Mitochondria. J Mol Biol 2017; 429:2148-2160. [DOI: 10.1016/j.jmb.2017.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022]
|
28
|
Granzyme B enters the mitochondria in a Sam50-, Tim22- and mtHsp70-dependent manner to induce apoptosis. Cell Death Differ 2017; 24:747-758. [PMID: 28338658 DOI: 10.1038/cdd.2017.3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022] Open
Abstract
We have found that granzyme B (GB)-induced apoptosis also requires reactive oxygen species resulting from the alteration of mitochondrial complex I. How GB, which does not possess a mitochondrial targeting sequence, enter this organelle is unknown. We show that GB enters the mitochondria independently of the translocase of the outer mitochondrial membrane complex, but requires instead Sam50, the central subunit of the sorting and assembly machinery that integrates outer membrane β-barrel proteins. Moreover, GB breaches the inner membrane through Tim22, the metabolite carrier translocase pore, in a mitochondrial heat-shock protein 70 (mtHsp70)-dependent manner. Granzyme A (GA) and caspase-3 use a similar route to the mitochondria. Finally, preventing GB from entering the mitochondria either by mutating lysine 243 and arginine 244 or depleting Sam50 renders cells more resistant to GB-mediated reactive oxygen species and cell death. Similarly, Sam50 depletion protects cells from GA-, GM- and caspase-3-mediated cell death. Therefore, cytotoxic molecules enter the mitochondria to induce efficiently cell death through a noncanonical Sam50-, Tim22- and mtHsp70-dependent import pathway.
Collapse
|
29
|
Abstract
Mitochondria are essential organelles with numerous functions in cellular metabolism and homeostasis. Most of the >1,000 different mitochondrial proteins are synthesized as precursors in the cytosol and are imported into mitochondria by five transport pathways. The protein import machineries of the mitochondrial membranes and aqueous compartments reveal a remarkable variability of mechanisms for protein recognition, translocation, and sorting. The protein translocases do not operate as separate entities but are connected to each other and to machineries with functions in energetics, membrane organization, and quality control. Here, we discuss the versatility and dynamic organization of the mitochondrial protein import machineries. Elucidating the molecular mechanisms of mitochondrial protein translocation is crucial for understanding the integration of protein translocases into a large network that controls organelle biogenesis, function, and dynamics.
Collapse
Affiliation(s)
- Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; ,
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; ,
| |
Collapse
|
30
|
Abstract
Mitochondria have to import the vast majority of their proteins, which are synthesized as precursors on cytosolic ribosomes. The translocase of the outer membrane (TOM complex) forms the general entry gate for the precursor proteins, which are subsequently sorted by protein machineries into the mitochondrial subcompartments: the outer and inner membrane, the intermembrane space and the mitochondrial matrix. The transport across and into the inner membrane is driven by the membrane potential, which is generated by the respiratory chain. Recent studies revealed that the lipid composition of mitochondrial membranes is important for the biogenesis of mitochondrial proteins. Cardiolipin and phosphatidylethanolamine exhibit unexpectedly specific functions for the activity of distinct protein translocases. Both phospholipids are required for full activity of respiratory chain complexes and thus to maintain the membrane potential for protein import. In addition, cardiolipin is required to maintain structural integrity of mitochondrial protein translocases. Finally, the low sterol content in the mitochondrial outer membrane may contribute to the targeting of some outer membrane proteins with a single α-helical membrane anchor. Altogether, mitochondrial lipids modulate protein import on various levels involving precursor targeting, membrane potential generation, stability and activity of protein translocases.
Collapse
|
31
|
Coscia F, Estrozi LF, Hans F, Malet H, Noirclerc-Savoye M, Schoehn G, Petosa C. Fusion to a homo-oligomeric scaffold allows cryo-EM analysis of a small protein. Sci Rep 2016; 6:30909. [PMID: 27485862 PMCID: PMC4971460 DOI: 10.1038/srep30909] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/10/2016] [Indexed: 12/30/2022] Open
Abstract
Recent technical advances have revolutionized the field of cryo-electron microscopy (cryo-EM). However, most monomeric proteins remain too small (<100 kDa) for cryo-EM analysis. To overcome this limitation, we explored a strategy whereby a monomeric target protein is genetically fused to a homo-oligomeric scaffold protein and the junction optimized to allow the target to adopt the scaffold symmetry, thereby generating a chimeric particle suitable for cryo-EM. To demonstrate the concept, we fused maltose-binding protein (MBP), a 40 kDa monomer, to glutamine synthetase, a dodecamer formed by two hexameric rings. Chimeric constructs with different junction lengths were screened by biophysical analysis and negative-stain EM. The optimal construct yielded a cryo-EM reconstruction that revealed the MBP structure at sub-nanometre resolution. These findings illustrate the feasibility of using homo-oligomeric scaffolds to enable cryo-EM analysis of monomeric proteins, paving the way for applying this strategy to challenging structures resistant to crystallographic and NMR analysis.
Collapse
Affiliation(s)
- Francesca Coscia
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Leandro F Estrozi
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Fabienne Hans
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Hélène Malet
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | | | - Guy Schoehn
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Carlo Petosa
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| |
Collapse
|
32
|
Wenz LS, Ellenrieder L, Qiu J, Bohnert M, Zufall N, van der Laan M, Pfanner N, Wiedemann N, Becker T. Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis. J Cell Biol 2015; 210:1047-54. [PMID: 26416958 PMCID: PMC4586741 DOI: 10.1083/jcb.201504119] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sam37 promotes biogenesis of mitochondrial proteins by linking outer membrane translocases into a supercomplex Biogenesis of mitochondrial β-barrel proteins requires two preprotein translocases, the general translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). TOM and SAM form a supercomplex that promotes transfer of β-barrel precursors. The SAM core complex contains the channel protein Sam50, which cooperates with Sam35 in precursor recognition, and the peripheral membrane protein Sam37. The molecular function of Sam37 has been unknown. We report that Sam37 is crucial for formation of the TOM–SAM supercomplex. Sam37 interacts with the receptor domain of Tom22 on the cytosolic side of the mitochondrial outer membrane and links TOM and SAM complexes. Sam37 thus promotes efficient transfer of β-barrel precursors to the SAM complex. We conclude that Sam37 functions as a coupling factor of the translocase supercomplex of the mitochondrial outer membrane.
Collapse
Affiliation(s)
- Lena-Sophie Wenz
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jian Qiu
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Maria Bohnert
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nicole Zufall
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Martin van der Laan
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
33
|
The Design and Structure of Outer Membrane Receptors from Peroxisomes, Mitochondria, and Chloroplasts. Structure 2015; 23:1783-1800. [DOI: 10.1016/j.str.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 08/10/2015] [Indexed: 01/03/2023]
|
34
|
Schuler MH, Di Bartolomeo F, Böttinger L, Horvath SE, Wenz LS, Daum G, Becker T. Phosphatidylcholine affects the role of the sorting and assembly machinery in the biogenesis of mitochondrial β-barrel proteins. J Biol Chem 2015; 290:26523-32. [PMID: 26385920 DOI: 10.1074/jbc.m115.687921] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 11/06/2022] Open
Abstract
Two protein translocases drive the import of β-barrel precursor proteins into the mitochondrial outer membrane: The translocase of the outer membrane (TOM complex) promotes transport of the precursor to the intermembrane space, whereas the sorting and assembly machinery (SAM complex) mediates subsequent folding of the β-barrel and its integration into the target membrane. The non-bilayer-forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) are required for the biogenesis of β-barrel proteins. Whether bilayer-forming phospholipids such as phosphatidylcholine (PC), the most abundant phospholipid of the mitochondrial outer membrane, play a role in the import of β-barrel precursors is unclear. In this study, we show that PC is required for stability and function of the SAM complex during the biogenesis of β-barrel proteins. PC further promotes the SAM-dependent assembly of the TOM complex, indicating a general role of PC for the function of the SAM complex. In contrast to PE-deficient mitochondria precursor accumulation at the TOM complex is not affected by depletion of PC. We conclude that PC and PE affect the function of distinct protein translocases in mitochondrial β-barrel biogenesis.
Collapse
Affiliation(s)
- Max-Hinderk Schuler
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | | | - Lena Böttinger
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Susanne E Horvath
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lena-Sophie Wenz
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Günther Daum
- Institute for Biochemistry, Graz University of Technology, NaWi Graz, A-8010 Graz, Austria,
| | - Thomas Becker
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
35
|
Bohnert M, Pfanner N, van der Laan M. Mitochondrial machineries for insertion of membrane proteins. Curr Opin Struct Biol 2015; 33:92-102. [DOI: 10.1016/j.sbi.2015.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/13/2015] [Accepted: 07/27/2015] [Indexed: 01/08/2023]
|
36
|
Cooperation of protein machineries in mitochondrial protein sorting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1119-29. [DOI: 10.1016/j.bbamcr.2015.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
|
37
|
A Perspective on Transport of Proteins into Mitochondria: A Myriad of Open Questions. J Mol Biol 2015; 427:1135-58. [DOI: 10.1016/j.jmb.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 11/22/2022]
|
38
|
Höhr AIC, Straub SP, Warscheid B, Becker T, Wiedemann N. Assembly of β-barrel proteins in the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:74-88. [PMID: 25305573 DOI: 10.1016/j.bbamcr.2014.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/15/2022]
Abstract
Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Sebastian P Straub
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany; Abteilung Biochemie und Funktionelle Proteomik, Institut für Biologie II, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
39
|
Abstract
Most biochemical reactions in a cell are regulated by highly specialized proteins, which are the prime mediators of the cellular phenotype. Therefore the identification, quantitation and characterization of all proteins in a cell are of utmost importance to understand the molecular processes that mediate cellular physiology. With the advent of robust and reliable mass spectrometers that are able to analyze complex protein mixtures within a reasonable timeframe, the systematic analysis of all proteins in a cell becomes feasible. Besides the ongoing improvements of analytical hardware, standardized methods to analyze and study all proteins have to be developed that allow the generation of testable new hypothesis based on the enormous pre-existing amount of biological information. Here we discuss current strategies on how to gather, filter and analyze proteomic data sates using available software packages.
Collapse
|
40
|
Analysis of the Sam50 translocase of excavate organisms supports evolution of divergent organelles from a common endosymbiotic event. Biosci Rep 2013; 33:BSR20130049. [PMID: 24147756 PMCID: PMC3848468 DOI: 10.1042/bsr20130049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As free-living organisms the ancestors of mitochondria and plastids encoded complete genomes, proteomes and metabolomes. As these symbionts became organelles all these aspects were reduced – genomes have degenerated with the host nucleus now encoding the most of the remaining endosymbiont proteome, while the metabolic processes of the symbiont have been streamlined to the functions of the emerging organelle. By contrast, the topology of the endosymbiont membrane has been preserved, necessitating the development of complex pathways for membrane insertion and translocation. In this study, we examine the characteristics of the endosymbiont-derived β-barrel insertase Sam501 in the excavate super-group. A candidate is further characterized in Trichomonas vaginalis, an unusual eukaryote possessing degenerate hydrogen-producing mitochondria called hydrogenosomes. This information supports a mitochondriate eukaryotic common ancestor with a similarly evolved β-barrel insertase, which has continued to be conserved in degenerate mitochondria.
Collapse
|
41
|
Qiu J, Wenz LS, Zerbes RM, Oeljeklaus S, Bohnert M, Stroud DA, Wirth C, Ellenrieder L, Thornton N, Kutik S, Wiese S, Schulze-Specking A, Zufall N, Chacinska A, Guiard B, Hunte C, Warscheid B, van der Laan M, Pfanner N, Wiedemann N, Becker T. Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell 2013; 154:596-608. [PMID: 23911324 DOI: 10.1016/j.cell.2013.06.033] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/13/2013] [Accepted: 06/19/2013] [Indexed: 11/17/2022]
Abstract
The mitochondrial outer membrane harbors two protein translocases that are essential for cell viability: the translocase of the outer mitochondrial membrane (TOM) and the sorting and assembly machinery (SAM). The precursors of β-barrel proteins use both translocases-TOM for import to the intermembrane space and SAM for export into the outer membrane. It is unknown if the translocases cooperate and where the β-barrel of newly imported proteins is formed. We established a position-specific assay for monitoring β-barrel formation in vivo and in organello and demonstrated that the β-barrel was formed and membrane inserted while the precursor was bound to SAM. β-barrel formation was inhibited by SAM mutants and, unexpectedly, by mutants of the central import receptor, Tom22. We show that the cytosolic domain of Tom22 links TOM and SAM into a supercomplex, facilitating precursor transfer on the intermembrane space side. Our study reveals receptor-mediated coupling of import and export translocases as a means of precursor channeling.
Collapse
Affiliation(s)
- Jian Qiu
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wideman JG, Lackey SWK, Srayko MA, Norton KA, Nargang FE. Analysis of mutations in Neurospora crassa ERMES components reveals specific functions related to β-barrel protein assembly and maintenance of mitochondrial morphology. PLoS One 2013; 8:e71837. [PMID: 23940790 PMCID: PMC3733929 DOI: 10.1371/journal.pone.0071837] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/03/2013] [Indexed: 11/22/2022] Open
Abstract
The endoplasmic reticulum mitochondria encounter structure (ERMES) tethers the er to mitochondria and contains four structural components: Mmm1, Mdm12, Mdm10, and Mmm2 (Mdm34). The Gem1 protein may play a role in regulating ERMES function. Saccharomyces cerevisiae and Neurospora crassa strains lacking any of Mmm1, Mdm12, or Mdm10 are known to show a variety of phenotypic defects including altered mitochondrial morphology and defects in the assembly of β-barrel proteins into the mitochondrial outer membrane. Here we examine ERMES complex components in N. crassa and show that Mmm1 is an ER membrane protein containing a Cys residue near its N-terminus that is conserved in the class Sordariomycetes. The residue occurs in the ER-lumen domain of the protein and is involved in the formation of disulphide bonds that give rise to Mmm1 dimers. Dimer formation is required for efficient assembly of Tom40 into the TOM complex. However, no effects are seen on porin assembly or mitochondrial morphology. This demonstrates a specificity of function and suggests a direct role for Mmm1 in Tom40 assembly. Mutation of a highly conserved region in the cytosolic domain of Mmm1 results in moderate defects in Tom40 and porin assembly, as well as a slight morphological phenotype. Previous reports have not examined the role of Mmm2 with respect to mitochondrial protein import and assembly. Here we show that absence of Mmm2 affects assembly of β-barrel proteins and that lack of any ERMES structural component results in defects in Tom22 assembly. Loss of N. crassa Gem1 has no effect on the assembly of these proteins but does affect mitochondrial morphology.
Collapse
Affiliation(s)
- Jeremy G. Wideman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Martin A. Srayko
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Kacie A. Norton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Frank E. Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|