1
|
Simoes FA, Christoforidou E, Cassel R, Dupuis L, Hafezparast M. Severe dynein dysfunction in cholinergic neurons exacerbates ALS-like phenotypes in a new mouse model. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167540. [PMID: 39428001 DOI: 10.1016/j.bbadis.2024.167540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/12/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Cytoplasmic dynein 1, a motor protein essential for retrograde axonal transport, is increasingly implicated in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). In this study, we developed a novel mouse model that combines the Legs at odd angles (Loa, F580Y) point mutation in the dynein heavy chain with a cholinergic neuron-specific knockout of the dynein heavy chain. This model, for the first time, allows us to investigate the impact of Loa allele exclusivity in these neurons into adulthood. Our findings reveal that this selective increase in dynein dysfunction exacerbated the phenotypes observed in heterozygous Loa mice including pre-wean survival, reduced body weight and grip strength. Additionally, it induced ALS-like pathology in neuromuscular junctions (NMJs) not seen in heterozygous Loa mice. Notably, we also found a previously unobserved significant increase in neurons displaying TDP-43 puncta in both Loa mutants, suggesting early TDP-43 mislocalisation - a hallmark of ALS. The novel model also exhibited a concurrent rise in p62 puncta that did not co-localise with TDP-43, indicating broader impairments in autophagic clearance mechanisms. Overall, this new model underscores the fact that dynein impairment alone can induce ALS-like pathology and provides a valuable platform to further explore the role of dynein in ALS.
Collapse
Affiliation(s)
- Fabio A Simoes
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Eleni Christoforidou
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | | | - Luc Dupuis
- University of Strasbourg, INSERM, UMR-S1329, Strasbourg, France
| | - Majid Hafezparast
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.
| |
Collapse
|
2
|
La Torre M, Burla R, Saggio I. Preserving Genome Integrity: Unveiling the Roles of ESCRT Machinery. Cells 2024; 13:1307. [PMID: 39120335 PMCID: PMC11311930 DOI: 10.3390/cells13151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the action site, involve the repair and fusion of membrane edges. In this review, we report on the data related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a significant role for the protection of genome integrity by contributing to the control of the abscission checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver of pathologies, such as laminopathies and cancer.
Collapse
Affiliation(s)
- Mattia La Torre
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| |
Collapse
|
3
|
Zang JL, Gibson D, Zheng AM, Shi W, Gillies JP, Stein C, Drerup CM, DeSantis ME. CCSer2 gates dynein activity at the cell periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598865. [PMID: 38915497 PMCID: PMC11195223 DOI: 10.1101/2024.06.13.598865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cytoplasmic dynein-1 (dynein) is a microtubule-associated, minus end-directed motor that traffics hundreds of different cargos. Dynein must discriminate between cargos and traffic them at the appropriate time from the correct cellular region. How dynein's trafficking activity is regulated in time or cellular space remains poorly understood. Here, we identify CCSer2 as the first known protein to gate dynein activity in the spatial dimension. CCSer2 promotes the migration of developing zebrafish primordium cells and of cultured human cells by facilitating the trafficking of cargos that are acted on by cortically localized dynein. CCSer2 inhibits the interaction between dynein and its regulator Ndel1 exclusively at the cell periphery, resulting in localized dynein activation. Our findings suggest that the spatial specificity of dynein is achieved by the localization of proteins that disinhibit Ndel1. We propose that CCSer2 defines a broader class of proteins that activate dynein in distinct microenvironments via Ndel1 inhibition.
Collapse
Affiliation(s)
- Juliana L Zang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Daytan Gibson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann-Marie Zheng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Wanjing Shi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Chris Stein
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
4
|
Weber J, Legal T, Lezcano AP, Gluszek-Kustusz A, Paterson C, Eibes S, Barisic M, Davies OR, Welburn JPI. A conserved CENP-E region mediates BubR1-independent recruitment to the outer corona at mitotic onset. Curr Biol 2024; 34:1133-1141.e4. [PMID: 38354735 DOI: 10.1016/j.cub.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
The outer corona plays an essential role at the onset of mitosis by expanding to maximize microtubule attachment to kinetochores.1,2 The low-density structure of the corona forms through the expansion of unattached kinetochores. It comprises the RZZ complex, the dynein adaptor Spindly, the plus-end directed microtubule motor centromere protein E (CENP-E), and the Mad1/Mad2 spindle-assembly checkpoint proteins.3,4,5,6,7,8,9,10 CENP-E specifically associates with unattached kinetochores to facilitate chromosome congression,11,12,13,14,15,16 interacting with BubR1 at the kinetochore through its C-terminal region (2091-2358).17,18,19,20,21 We recently showed that CENP-E recruitment to BubR1 at the kinetochores is both rapid and essential for correct chromosome alignment. However, CENP-E is also recruited to the outer corona by a second, slower pathway that is currently undefined.19 Here, we show that BubR1-independent localization of CENP-E is mediated by a conserved loop that is essential for outer-corona targeting. We provide a structural model of the entire CENP-E kinetochore-targeting domain combining X-ray crystallography and Alphafold2. We reveal that maximal recruitment of CENP-E to unattached kinetochores critically depends on BubR1 and the outer corona, including dynein. Ectopic expression of the CENP-E C-terminal domain recruits the RZZ complex, Mad1, and Spindly, and prevents kinetochore biorientation in cells. We propose that BubR1-recruited CENP-E, in addition to its essential role in chromosome alignment to the metaphase plate, contributes to the recruitment of outer corona proteins through interactions with the CENP-E corona-targeting domain to facilitate the rapid capture of microtubules for efficient chromosome alignment and mitotic progression.
Collapse
Affiliation(s)
- Jeraldine Weber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK
| | - Thibault Legal
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK
| | - Alicia Perez Lezcano
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK
| | - Agata Gluszek-Kustusz
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK
| | - Calum Paterson
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK
| | - Susana Eibes
- Cell Division and Cytoskeleton, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 3C Blegdamsvej, 2200 Copenhagen N, Denmark
| | - Owen R Davies
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK
| | - Julie P I Welburn
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK.
| |
Collapse
|
5
|
Kumar C, Mylavarapu SVS. Nucleolin is required for multiple centrosome-associated functions in early vertebrate mitosis. Chromosoma 2023; 132:305-315. [PMID: 37615728 DOI: 10.1007/s00412-023-00808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/10/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Nucleolin is a multifunctional RNA-binding protein that resides predominantly not only in the nucleolus, but also in multiple other subcellular pools in the cytoplasm in mammalian cells, and is best known for its roles in ribosome biogenesis, RNA stability, and translation. During early mitosis, nucleolin is required for equatorial mitotic chromosome alignment prior to metaphase. Using high resolution fluorescence imaging, we reveal that nucleolin is required for multiple centrosome-associated functions at the G2-prophase boundary. Nucleolin depletion led to dissociation of the centrosomes from the G2 nuclear envelope, a delay in the onset of nuclear envelope breakdown, reduced inter-centrosome separation, and longer metaphase spindles. Our results reveal novel roles for nucleolin in early mammalian mitosis, establishing multiple important functions for nucleolin during mammalian cell division.
Collapse
Affiliation(s)
- Chandan Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, -121001, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, -121001, India.
| |
Collapse
|
6
|
Okada K, Iyer BR, Lammers LG, Gutierrez PA, Li W, Markus SM, McKenney RJ. Conserved roles for the dynein intermediate chain and Ndel1 in assembly and activation of dynein. Nat Commun 2023; 14:5833. [PMID: 37730751 PMCID: PMC10511499 DOI: 10.1038/s41467-023-41466-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
Processive transport by the microtubule motor cytoplasmic dynein requires the regulated assembly of a dynein-dynactin-adapter complex. Interactions between dynein and dynactin were initially ascribed to the dynein intermediate chain N-terminus and the dynactin subunit p150Glued. However, recent cryo-EM structures have not resolved this interaction, questioning its importance. The intermediate chain also interacts with Nde1/Ndel1, which compete with p150Glued for binding. We reveal that the intermediate chain N-terminus is a critical evolutionarily conserved hub that interacts with dynactin and Ndel1, the latter of which recruits LIS1 to drive complex assembly. In additon to revealing that the intermediate chain N-terminus is likely bound to p150Glued in active transport complexes, our data support a model whereby Ndel1-LIS1 must dissociate prior to LIS1 being handed off to dynein in temporally discrete steps. Our work reveals previously unknown steps in the dynein activation pathway, and provide insight into the integrated activities of LIS1/Ndel1 and dynactin/cargo-adapters.
Collapse
Affiliation(s)
- Kyoko Okada
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Bharat R Iyer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lindsay G Lammers
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Pedro A Gutierrez
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Wenzhe Li
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Ide AH, DeLuca KF, Wiggan O, Markus SM, DeLuca JG. The role of kinetochore dynein in checkpoint silencing is restricted to disassembly of the corona. Mol Biol Cell 2023; 34:ar76. [PMID: 37126397 PMCID: PMC10295480 DOI: 10.1091/mbc.e23-04-0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
During mitosis, kinetochore-microtubule attachments are monitored by a molecular surveillance system known as the spindle assembly checkpoint. The prevailing model posits that dynein evicts checkpoint proteins (e.g., Mad1, Mad2) from stably attached kinetochores by transporting them away from kinetochores, thus contributing to checkpoint silencing. However, the mechanism by which dynein performs this function, and its precise role in checkpoint silencing remain unresolved. Here, we find that dynein's role in checkpoint silencing is restricted to evicting checkpoint effectors from the fibrous corona, and not the outer kinetochore. Dynein evicts these molecules from the corona in a manner that does not require stable, end-on microtubule attachments. Thus, by disassembling the corona through indiscriminate microtubule encounters, dynein primes the checkpoint signaling apparatus so it can respond to stable end-on microtubule attachments and permit cells to progress through mitosis. Accordingly, we find that dynein function in checkpoint silencing becomes largely dispensable in cells in which checkpoint effectors are excluded from the corona.
Collapse
Affiliation(s)
- Amy H. Ide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Keith F. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - O’Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Steven M. Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Jennifer G. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
8
|
Garner KE, Salter A, Lau CK, Gurusaran M, Villemant CM, Granger EP, McNee G, Woodman PG, Davies OR, Burke BE, Allan VJ. The meiotic LINC complex component KASH5 is an activating adaptor for cytoplasmic dynein. J Cell Biol 2023; 222:e202204042. [PMID: 36946995 PMCID: PMC10071310 DOI: 10.1083/jcb.202204042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/15/2022] [Accepted: 02/10/2023] [Indexed: 03/23/2023] Open
Abstract
Cytoplasmic dynein-driven movement of chromosomes during prophase I of mammalian meiosis is essential for synapsis and genetic exchange. Dynein connects to chromosome telomeres via KASH5 and SUN1 or SUN2, which together span the nuclear envelope. Here, we show that KASH5 promotes dynein motility in vitro, and cytosolic KASH5 inhibits dynein's interphase functions. KASH5 interacts with a dynein light intermediate chain (DYNC1LI1 or DYNC1LI2) via a conserved helix in the LIC C-terminal, and this region is also needed for dynein's recruitment to other cellular membranes. KASH5's N-terminal EF-hands are essential as the interaction with dynein is disrupted by mutation of key calcium-binding residues, although it is not regulated by cellular calcium levels. Dynein can be recruited to KASH5 at the nuclear envelope independently of dynactin, while LIS1 is essential for dynactin incorporation into the KASH5-dynein complex. Altogether, we show that the transmembrane protein KASH5 is an activating adaptor for dynein and shed light on the hierarchy of assembly of KASH5-dynein-dynactin complexes.
Collapse
Affiliation(s)
- Kirsten E.L. Garner
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Anna Salter
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- A*STAR Institute of Medical Biology, Singapore, Singapore
| | - Clinton K. Lau
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Cécile M. Villemant
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elizabeth P. Granger
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gavin McNee
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Philip G. Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Owen R. Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Brian E. Burke
- A*STAR Institute of Medical Biology, Singapore, Singapore
| | - Victoria J. Allan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- A*STAR Institute of Medical Biology, Singapore, Singapore
| |
Collapse
|
9
|
Gallisà-Suñé N, Sànchez-Fernàndez-de-Landa P, Zimmermann F, Serna M, Regué L, Paz J, Llorca O, Lüders J, Roig J. BICD2 phosphorylation regulates dynein function and centrosome separation in G2 and M. Nat Commun 2023; 14:2434. [PMID: 37105961 PMCID: PMC10140047 DOI: 10.1038/s41467-023-38116-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The activity of dynein is regulated by a number of adaptors that mediate its interaction with dynactin, effectively activating the motor complex while also connecting it to different cargos. The regulation of adaptors is consequently central to dynein physiology but remains largely unexplored. We now describe that one of the best-known dynein adaptors, BICD2, is effectively activated through phosphorylation. In G2, phosphorylation of BICD2 by CDK1 promotes its interaction with PLK1. In turn, PLK1 phosphorylation of a single residue in the N-terminus of BICD2 results in a structural change that facilitates the interaction with dynein and dynactin, allowing the formation of active motor complexes. Moreover, modified BICD2 preferentially interacts with the nucleoporin RanBP2 once RanBP2 has been phosphorylated by CDK1. BICD2 phosphorylation is central for dynein recruitment to the nuclear envelope, centrosome tethering to the nucleus and centrosome separation in the G2 and M phases of the cell cycle. This work reveals adaptor activation through phosphorylation as crucial for the spatiotemporal regulation of dynein activity.
Collapse
Affiliation(s)
- Núria Gallisà-Suñé
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri i Reixac 10-12, 08028, Barcelona, Spain
| | - Paula Sànchez-Fernàndez-de-Landa
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri i Reixac 10-12, 08028, Barcelona, Spain
- Aging and Metabolism Programme, IRB Barcelona, Barcelona, Spain
| | - Fabian Zimmermann
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Marina Serna
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Laura Regué
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri i Reixac 10-12, 08028, Barcelona, Spain
| | - Joel Paz
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Joan Roig
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri i Reixac 10-12, 08028, Barcelona, Spain.
| |
Collapse
|
10
|
Abstract
The microtubule minus-end-directed motility of cytoplasmic dynein 1 (dynein), arguably the most complex and versatile cytoskeletal motor, is harnessed for diverse functions, such as long-range organelle transport in neuronal axons and spindle assembly in dividing cells. The versatility of dynein raises a number of intriguing questions, including how is dynein recruited to its diverse cargo, how is recruitment coupled to activation of the motor, how is motility regulated to meet different requirements for force production and how does dynein coordinate its activity with that of other microtubule-associated proteins (MAPs) present on the same cargo. Here, these questions will be discussed in the context of dynein at the kinetochore, the supramolecular protein structure that connects segregating chromosomes to spindle microtubules in dividing cells. As the first kinetochore-localized MAP described, dynein has intrigued cell biologists for more than three decades. The first part of this Review summarizes current knowledge about how kinetochore dynein contributes to efficient and accurate spindle assembly, and the second part describes the underlying molecular mechanisms and highlights emerging commonalities with dynein regulation at other subcellular sites.
Collapse
Affiliation(s)
- Reto Gassmann
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular - IBMC, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
11
|
Okada K, Iyer BR, Lammers LG, Gutierrez P, Li W, Markus SM, McKenney RJ. Conserved Roles for the Dynein Intermediate Chain and Ndel1 in Assembly and Activation of Dynein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523097. [PMID: 36711700 PMCID: PMC9882231 DOI: 10.1101/2023.01.13.523097] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cytoplasmic dynein, the primary retrograde microtubule transport motor within cells, must be activated for processive motility through the regulated assembly of a dynein-dynactin-adapter (DDA) complex. The interaction between dynein and dynactin was initially ascribed to the N-terminus of the dynein intermediate chain (IC) and a coiled-coil of the dynactin subunit p150 Glued . However, cryo-EM structures of DDA complexes have not resolve these regions of the IC and p150 Glued , raising questions about the importance of this interaction. The IC N-terminus (ICN) also interacts with the dynein regulators Nde1/Ndel1, which compete with p150 Glued for binding to ICN. Using a combination of approaches, we reveal that the ICN plays critical, evolutionarily conserved roles in DDA assembly by interacting with dynactin and Ndel1, the latter of which recruits the DDA assembly factor LIS1 to the dynein complex. In contrast to prior models, we find that LIS1 cannot simultaneously bind to Ndel1 and dynein, indicating that LIS1 must be handed off from Ndel1 to dynein in temporally discrete steps. Whereas exogenous Ndel1 or p150 Glued disrupts DDA complex assembly in vitro , neither perturbs preassembled DDA complexes, indicating that the IC is stably bound to p150 Glued within activated DDA complexes. Our study reveals previously unknown regulatory steps in the dynein activation pathway, and provides a more complete model for how the activities of LIS1/Ndel1 and dynactin/cargo-adapters are integrated to regulate dynein motor activity.
Collapse
Affiliation(s)
- Kyoko Okada
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Bharat R. Iyer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Lindsay G. Lammers
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Pedro Gutierrez
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Wenzhe Li
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Steven M. Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Richard J. McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
12
|
d'Amico EA, Ud Din Ahmad M, Cmentowski V, Girbig M, Müller F, Wohlgemuth S, Brockmeyer A, Maffini S, Janning P, Vetter IR, Carter AP, Perrakis A, Musacchio A. Conformational transitions of the Spindly adaptor underlie its interaction with Dynein and Dynactin. J Cell Biol 2022; 221:213466. [PMID: 36107127 PMCID: PMC9481740 DOI: 10.1083/jcb.202206131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
Cytoplasmic Dynein 1, or Dynein, is a microtubule minus end-directed motor. Dynein motility requires Dynactin and a family of activating adaptors that stabilize the Dynein-Dynactin complex and promote regulated interactions with cargo in space and time. How activating adaptors limit Dynein activation to specialized subcellular locales is unclear. Here, we reveal that Spindly, a mitotic Dynein adaptor at the kinetochore corona, exists natively in a closed conformation that occludes binding of Dynein-Dynactin to its CC1 box and Spindly motif. A structure-based analysis identified various mutations promoting an open conformation of Spindly that binds Dynein-Dynactin. A region of Spindly downstream from the Spindly motif and not required for cargo binding faces the CC1 box and stabilizes the intramolecular closed conformation. This region is also required for robust kinetochore localization of Spindly, suggesting that kinetochores promote Spindly activation to recruit Dynein. Thus, our work illustrates how specific Dynein activation at a defined cellular locale may require multiple factors.
Collapse
Affiliation(s)
- Ennio A d'Amico
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Misbha Ud Din Ahmad
- Oncode Institute and Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Verena Cmentowski
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | | | - Franziska Müller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andreas Brockmeyer
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Petra Janning
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Anastassis Perrakis
- Oncode Institute and Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Torisawa T, Kimura A. Sequential accumulation of dynein and its regulatory proteins at the spindle region in the Caenorhabditis elegans embryo. Sci Rep 2022; 12:11740. [PMID: 35817834 PMCID: PMC9273622 DOI: 10.1038/s41598-022-15042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Cytoplasmic dynein is responsible for various cellular processes during the cell cycle. The mechanism by which its activity is regulated spatially and temporarily inside the cell remains elusive. There are various regulatory proteins of dynein, including dynactin, NDEL1/NUD-2, and LIS1. Characterizing the spatiotemporal localization of regulatory proteins in vivo will aid understanding of the cellular regulation of dynein. Here, we focused on spindle formation in the Caenorhabditis elegans early embryo, wherein dynein and its regulatory proteins translocated from the cytoplasm to the spindle region upon nuclear envelope breakdown (NEBD). We found that (i) a limited set of dynein regulatory proteins accumulated in the spindle region, (ii) the spatial localization patterns were distinct among the regulators, and (iii) the regulatory proteins did not accumulate in the spindle region simultaneously but sequentially. Furthermore, the accumulation of NUD-2 was unique among the regulators. NUD-2 started to accumulate before NEBD (pre-NEBD accumulation), and exhibited the highest enrichment compared to the cytoplasmic concentration. Using a protein injection approach, we revealed that the C-terminal helix of NUD-2 was responsible for pre-NEBD accumulation. These findings suggest a fine temporal control of the subcellular localization of regulatory proteins.
Collapse
Affiliation(s)
- Takayuki Torisawa
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Sokendai, Mishima, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan. .,Department of Genetics, The Graduate University for Advanced Studies, Sokendai, Mishima, Japan.
| |
Collapse
|
14
|
Raisch T, Ciossani G, d’Amico E, Cmentowski V, Carmignani S, Maffini S, Merino F, Wohlgemuth S, Vetter IR, Raunser S, Musacchio A. Structure of the RZZ complex and molecular basis of Spindly-driven corona assembly at human kinetochores. EMBO J 2022; 41:e110411. [PMID: 35373361 PMCID: PMC9058546 DOI: 10.15252/embj.2021110411] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
In metazoans, a ≈1 megadalton (MDa) multiprotein complex comprising the dynein-dynactin adaptor Spindly and the ROD-Zwilch-ZW10 (RZZ) complex is the building block of a fibrous biopolymer, the kinetochore fibrous corona. The corona assembles on mitotic kinetochores to promote microtubule capture and spindle assembly checkpoint (SAC) signaling. We report here a high-resolution cryo-EM structure that captures the essential features of the RZZ complex, including a farnesyl-binding site required for Spindly binding. Using a highly predictive in vitro assay, we demonstrate that the SAC kinase MPS1 is necessary and sufficient for corona assembly at supercritical concentrations of the RZZ-Spindly (RZZS) complex, and describe the molecular mechanism of phosphorylation-dependent filament nucleation. We identify several structural requirements for RZZS polymerization in rings and sheets. Finally, we identify determinants of kinetochore localization and corona assembly of Spindly. Our results describe a framework for the long-sought-for molecular basis of corona assembly on metazoan kinetochores.
Collapse
Affiliation(s)
- Tobias Raisch
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Giuseppe Ciossani
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
- Present address:
European Institute of OncologyMilanItaly
| | - Ennio d’Amico
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Verena Cmentowski
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Sara Carmignani
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Stefano Maffini
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Felipe Merino
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
- Present address:
Department of Protein EvolutionMax Planck Institute for Developmental BiologyTübingenGermany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Ingrid R Vetter
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Stefan Raunser
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Andrea Musacchio
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
- Centre for Medical BiotechnologyFaculty of BiologyUniversity Duisburg‐EssenEssenGermany
| |
Collapse
|
15
|
Barbosa J, Sunkel CE, Conde C. The Role of Mitotic Kinases and the RZZ Complex in Kinetochore-Microtubule Attachments: Doing the Right Link. Front Cell Dev Biol 2022; 10:787294. [PMID: 35155423 PMCID: PMC8832123 DOI: 10.3389/fcell.2022.787294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
During mitosis, the interaction of kinetochores (KTs) with microtubules (MTs) drives chromosome congression to the spindle equator and supports the segregation of sister chromatids. Faithful genome partition critically relies on the ability of chromosomes to establish and maintain proper amphitelic end-on attachments, a configuration in which sister KTs are connected to robust MT fibers emanating from opposite spindle poles. Because the capture of spindle MTs by KTs is error prone, cells use mechanisms that sense and correct inaccurate KT-MT interactions before committing to segregate sister chromatids in anaphase. If left unresolved, these errors can result in the unequal distribution of chromosomes and lead to aneuploidy, a hallmark of cancer. In this review, we provide an overview of the molecular strategies that monitor the formation and fine-tuning of KT-MT attachments. We describe the complex network of proteins that operates at the KT-MT interface and discuss how AURORA B and PLK1 coordinate several concurrent events so that the stability of KT-MT attachments is precisely modulated throughout mitotic progression. We also outline updated knowledge on how the RZZ complex is regulated to ensure the formation of end-on attachments and the fidelity of mitosis.
Collapse
Affiliation(s)
- João Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Claudio E. Sunkel
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
16
|
Kumari A, Kumar C, Pergu R, Kumar M, Mahale SP, Wasnik N, Mylavarapu SVS. Phosphorylation and Pin1 binding to the LIC1 subunit selectively regulate mitotic dynein functions. J Cell Biol 2021; 220:212736. [PMID: 34709360 PMCID: PMC8562849 DOI: 10.1083/jcb.202005184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 05/13/2021] [Accepted: 09/22/2021] [Indexed: 01/31/2023] Open
Abstract
The dynein motor performs multiple functions in mitosis by engaging with a wide cargo spectrum. One way to regulate dynein's cargo-binding selectivity is through the C-terminal domain (CTD) of its light intermediate chain 1 subunit (LIC1), which binds directly with cargo adaptors. Here we show that mitotic phosphorylation of LIC1-CTD at its three cdk1 sites is required for proper mitotic progression, for dynein loading onto prometaphase kinetochores, and for spindle assembly checkpoint inactivation in human cells. Mitotic LIC1-CTD phosphorylation also engages the prolyl isomerase Pin1 predominantly to Hook2-dynein-Nde1-Lis1 complexes, but not to dynein-spindly-dynactin complexes. LIC1-CTD dephosphorylation abrogates dynein-Pin1 binding, promotes prophase centrosome-nuclear envelope detachment, and impairs metaphase chromosome congression and mitotic Golgi fragmentation, without affecting interphase membrane transport. Phosphomutation of a conserved LIC1-CTD SP site in zebrafish leads to early developmental defects. Our work reveals that LIC1-CTD phosphorylation differentially regulates distinct mitotic dynein pools and suggests the evolutionary conservation of this phosphoregulation.
Collapse
Affiliation(s)
- Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Chandan Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India
| | - Rajaiah Pergu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Megha Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Habsiguda, Hyderabad, Telangana, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sagar P Mahale
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Neeraj Wasnik
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| |
Collapse
|
17
|
Habu T, Kim J. Dynein intermediate chain 2c (DNCI2c) complex is essential for exiting Mad2-dependent spindle assembly checkpoint. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119120. [PMID: 34400173 DOI: 10.1016/j.bbamcr.2021.119120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
The Mad2 protein plays a key role in the spindle assembly checkpoint (SAC) function. The SAC pathway delays mitotic progression into anaphase until all kinetochores attach to the spindle during mitosis. The formation of the Mad2-p31comet complex correlates with the completion of spindle attachment and the entry into anaphase during mitosis. Herein, we showed that dynein intermediate chain 2c (DNCI2c)-a subunit of dynein motor protein-forms an immunocomplex with p31comet during mitosis. DNCI2c-knockdown resulted in prolonged mitotic arrest in a Mad2-dependent manner. Furthermore, DNCI2c-knockdown-induced mitotic arrest was not rescued by p31comet overexpression. However, the combination of p31comet overexpression with the mitotic drug treatment reversed the mitotic arrest in DNCI2c-knockdown. Together, these results indicate that the DNCI2c-p31comet complex plays an important role in exiting Mad2-dependent SAC.
Collapse
Affiliation(s)
- Toshiyuki Habu
- Department of Food Sciences and Nutrition, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo 663-8558, Japan.
| | - Jiyeong Kim
- Department of Food Sciences and Nutrition, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo 663-8558, Japan
| |
Collapse
|
18
|
Barisic M, Rajendraprasad G, Steblyanko Y. The metaphase spindle at steady state - Mechanism and functions of microtubule poleward flux. Semin Cell Dev Biol 2021; 117:99-117. [PMID: 34053864 DOI: 10.1016/j.semcdb.2021.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
The mitotic spindle is a bipolar cellular structure, built from tubulin polymers, called microtubules, and interacting proteins. This macromolecular machine orchestrates chromosome segregation, thereby ensuring accurate distribution of genetic material into the two daughter cells during cell division. Powered by GTP hydrolysis upon tubulin polymerization, the microtubule ends exhibit a metastable behavior known as the dynamic instability, during which they stochastically switch between the growth and shrinkage phases. In the context of the mitotic spindle, dynamic instability is furthermore regulated by microtubule-associated proteins and motor proteins, which enables the spindle to undergo profound changes during mitosis. This highly dynamic behavior is essential for chromosome capture and congression in prometaphase, as well as for chromosome alignment to the spindle equator in metaphase and their segregation in anaphase. In this review we focus on the mechanisms underlying microtubule dynamics and sliding and their importance for the maintenance of shape, structure and dynamics of the metaphase spindle. We discuss how these spindle properties are related to the phenomenon of microtubule poleward flux, highlighting its highly cooperative molecular basis and role in keeping the metaphase spindle at a steady state.
Collapse
Affiliation(s)
- Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Yulia Steblyanko
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark
| |
Collapse
|
19
|
Kumari A, Kumar C, Wasnik N, Mylavarapu SVS. Dynein light intermediate chains as pivotal determinants of dynein multifunctionality. J Cell Sci 2021; 134:268315. [PMID: 34014309 DOI: 10.1242/jcs.254870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In animal cells, a single cytoplasmic dynein motor mediates microtubule minus-end-directed transport, counterbalancing dozens of plus-end-directed kinesins. The remarkable ability of dynein to interact with a diverse cargo spectrum stems from its tightly regulated recruitment of cargo-specific adaptor proteins, which engage the dynactin complex to make a tripartite processive motor. Adaptor binding is governed by the homologous dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which exist in mutually exclusive dynein complexes that can perform both unique and overlapping functions. The intrinsically disordered and variable C-terminal domains of the LICs are indispensable for engaging a variety of structurally divergent adaptors. Here, we hypothesize that numerous spatiotemporally regulated permutations of posttranslational modifications of the LICs, as well as of the adaptors and cargoes, exponentially expand the spectrum of dynein-adaptor-cargo complexes. We thematically illustrate the possibilities that could generate a vast set of biochemical variations required to support the wide range of dynein functions.
Collapse
Affiliation(s)
- Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Chandan Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Neeraj Wasnik
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
20
|
Olthof AM, White AK, Mieruszynski S, Doggett K, Lee MF, Chakroun A, Abdel Aleem AK, Rousseau J, Magnani C, Roifman CM, Campeau PM, Heath JK, Kanadia RN. Disruption of exon-bridging interactions between the minor and major spliceosomes results in alternative splicing around minor introns. Nucleic Acids Res 2021; 49:3524-3545. [PMID: 33660780 PMCID: PMC8034651 DOI: 10.1093/nar/gkab118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Vertebrate genomes contain major (>99.5%) and minor (<0.5%) introns that are spliced by the major and minor spliceosomes, respectively. Major intron splicing follows the exon-definition model, whereby major spliceosome components first assemble across exons. However, since most genes with minor introns predominately consist of major introns, formation of exon-definition complexes in these genes would require interaction between the major and minor spliceosomes. Here, we report that minor spliceosome protein U11-59K binds to the major spliceosome U2AF complex, thereby supporting a model in which the minor spliceosome interacts with the major spliceosome across an exon to regulate the splicing of minor introns. Inhibition of minor spliceosome snRNAs and U11-59K disrupted exon-bridging interactions, leading to exon skipping by the major spliceosome. The resulting aberrant isoforms contained a premature stop codon, yet were not subjected to nonsense-mediated decay, but rather bound to polysomes. Importantly, we detected elevated levels of these alternatively spliced transcripts in individuals with minor spliceosome-related diseases such as Roifman syndrome, Lowry–Wood syndrome and early-onset cerebellar ataxia. In all, we report that the minor spliceosome informs splicing by the major spliceosome through exon-definition interactions and show that minor spliceosome inhibition results in aberrant alternative splicing in disease.
Collapse
Affiliation(s)
- Anouk M Olthof
- Physiology and Neurobiology Department, University of Connecticut, 75 N. Eagleville Road, Storrs, CT 06269, USA
| | - Alisa K White
- Physiology and Neurobiology Department, University of Connecticut, 75 N. Eagleville Road, Storrs, CT 06269, USA
| | - Stephen Mieruszynski
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Karen Doggett
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Madisen F Lee
- Physiology and Neurobiology Department, University of Connecticut, 75 N. Eagleville Road, Storrs, CT 06269, USA
| | | | | | - Justine Rousseau
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Cinzia Magnani
- Neonatology and Neonatal Intensive Care Unit, Maternal and Child Department, University of Parma, Parma, 43121, Italy
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON M5G 1X8, Canada.,The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal, Montreal, QC H4A 3J1, Canada
| | - Joan K Heath
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, 75 N. Eagleville Road, Storrs, CT 06269, USA.,Institute for System Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
21
|
The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat Commun 2020; 11:5701. [PMID: 33177522 PMCID: PMC7659001 DOI: 10.1038/s41467-020-19532-z] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 01/06/2023] Open
Abstract
Protein knockdown using the auxin-inducible degron (AID) technology is useful to study protein function in living cells because it induces rapid depletion, which makes it possible to observe an immediate phenotype. However, the current AID system has two major drawbacks: leaky degradation and the requirement for a high dose of auxin. These negative features make it difficult to control precisely the expression level of a protein of interest in living cells and to apply this method to mice. Here, we overcome these problems by taking advantage of a bump-and-hole approach to establish the AID version 2 (AID2) system. AID2, which employs an OsTIR1(F74G) mutant and a ligand, 5-Ph-IAA, shows no detectable leaky degradation, requires a 670-times lower ligand concentration, and achieves even quicker degradation than the conventional AID. We demonstrate successful generation of human cell mutants for genes that were previously difficult to deal with, and show that AID2 achieves rapid target depletion not only in yeast and mammalian cells, but also in mice.
Collapse
|
22
|
Markus SM, Marzo MG, McKenney RJ. New insights into the mechanism of dynein motor regulation by lissencephaly-1. eLife 2020; 9:59737. [PMID: 32692650 PMCID: PMC7373426 DOI: 10.7554/elife.59737] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Lissencephaly (‘smooth brain’) is a severe brain disease associated with numerous symptoms, including cognitive impairment, and shortened lifespan. The main causative gene of this disease – lissencephaly-1 (LIS1) – has been a focus of intense scrutiny since its first identification almost 30 years ago. LIS1 is a critical regulator of the microtubule motor cytoplasmic dynein, which transports numerous cargoes throughout the cell, and is a key effector of nuclear and neuronal transport during brain development. Here, we review the role of LIS1 in cellular dynein function and discuss recent key findings that have revealed a new mechanism by which this molecule influences dynein-mediated transport. In addition to reconciling prior observations with this new model for LIS1 function, we also discuss phylogenetic data that suggest that LIS1 may have coevolved with an autoinhibitory mode of cytoplasmic dynein regulation.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
23
|
Sharma A, Dagar S, Mylavarapu SVS. Transgelin-2 and phosphoregulation of the LIC2 subunit of dynein govern mitotic spindle orientation. J Cell Sci 2020; 133:jcs239673. [PMID: 32467330 DOI: 10.1242/jcs.239673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/29/2020] [Indexed: 08/31/2023] Open
Abstract
The molecular motor dynein is essential for mitotic spindle orientation, which defines the axis of cell division. The light intermediate chain subunits, LIC1 and LIC2, define biochemically and functionally distinct vertebrate dynein complexes, with LIC2-dynein playing a crucial role in ensuring spindle orientation. We reveal a novel, mitosis-specific interaction of LIC2-dynein with the cortical actin-bundling protein transgelin-2. Transgelin-2 is required for maintaining proper spindle length, equatorial metaphase chromosome alignment, spindle orientation and timely anaphase onset. We show that transgelin-2 stabilizes the cortical recruitment of LGN-NuMA, which together with dynein is required for spindle orientation. The opposing actions of transgelin-2 and LIC2-dynein maintain optimal cortical levels of LGN-NuMA. In addition, we show that the highly conserved serine 194 phosphorylation of LIC2 is required for proper spindle orientation, by maintaining mitotic centrosome integrity to ensure optimal astral microtubule nucleation. The work reveals two specific mechanisms through which LIC2-dynein regulates mitotic spindle orientation; namely, through a new interactor transgelin-2, which is required for engagement of LGN-NuMA with the actin cortex, and through mitotic phosphoregulation of LIC2 to control microtubule nucleation from the poles.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Amit Sharma
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Affiliated to the Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sunayana Dagar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Affiliated to the Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
24
|
Marzo MG, Griswold JM, Markus SM. Pac1/LIS1 stabilizes an uninhibited conformation of dynein to coordinate its localization and activity. Nat Cell Biol 2020; 22:559-569. [PMID: 32341548 DOI: 10.1038/s41556-020-0492-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Dynein is a microtubule motor that transports many different cargos in various cell types and contexts. How dynein is regulated to perform these activities with spatial and temporal precision remains unclear. Human dynein is regulated by autoinhibition, whereby intermolecular contacts limit motor activity. Whether this mechanism is conserved throughout evolution, whether it can be affected by extrinsic factors, and its role in regulating dynein function remain unclear. Here, we use a combination of negative stain electron microscopy, single-molecule assays, genetic, and cell biological techniques to show that autoinhibition is conserved in budding yeast, and plays a key role in coordinating in vivo dynein function. Moreover, we find that the Lissencephaly-related protein, LIS1 (Pac1 in yeast), plays an important role in regulating dynein autoinhibition. Our studies demonstrate that, rather than inhibiting dynein motility, Pac1/LIS1 promotes dynein activity by stabilizing the uninhibited conformation, which ensures appropriate dynein localization and activity in cells.
Collapse
Affiliation(s)
- Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Jacqueline M Griswold
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
25
|
The dynactin subunit DCTN1 controls osteoclastogenesis via the Cdc42/PAK2 pathway. Exp Mol Med 2020; 52:514-528. [PMID: 32210358 PMCID: PMC7156411 DOI: 10.1038/s12276-020-0406-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 01/11/2023] Open
Abstract
Osteoclasts (OCs), cells specialized for bone resorption, are generated from monocyte/macrophage precursors by a differentiation process governed by RANKL. Here, we show that DCTN1, a key component of the dynactin complex, plays important roles in OC differentiation. The expression of DCTN1 was upregulated by RANKL. The inhibition of DCTN1 expression by gene knockdown suppressed OC formation, bone resorption, and the induction of NFATc1 and c-Fos, critical transcription factors for osteoclastogenesis. More importantly, the activation of Cdc42 by RANKL was inhibited upon DCTN1 silencing. The forced expression of constitutively active Cdc42 restored the OC differentiation of precursors with DCTN1 deletion. In addition, PAK2 was found to be activated by RANKL and to function downstream of Cdc42. The DCTN1-Cdc42 axis also inhibited apoptosis and caspase-3 activation. Furthermore, the anti-osteoclastogenic effect of DCTN1 knockdown was verified in an animal model of bone erosion. Intriguingly, DCTN1 overexpression was also detrimental to OC differentiation, suggesting that DCTN1 should be regulated at the appropriate level for effective osteoclastogenesis. Collectively, our results reveal that DCTN1 participates in the activation of Cdc42/PAK2 signaling and the inhibition of apoptosis during osteoclastogenesis. A critical mechanism for maintaining bone health uncovered by scientists in South Korea could provide insights into bone disease development. Bone remodeling is a lifetime process of bone generation that ensures bones remain healthy. Osteoclasts (OC), cells that break down bone, differentiate from white blood cell populations. Disruption to OC formation and function plays a critical role in bone diseases, yet the regulatory mechanisms in OC generation are unclear. Hong-Hee Kim at Seoul National University and co-workers investigated the role of a protein called DCTN1, which is involved in skeletal assembly processes. The team found that inhibiting DCTN1 suppressed the expression of key proteins needed for OC formation in cell cultures and mouse models. Overexpressing DCTN1 was equally damaging, suggesting the protein plays a key regulatory role.
Collapse
|
26
|
Torisawa T, Kimura A. The Generation of Dynein Networks by Multi-Layered Regulation and Their Implication in Cell Division. Front Cell Dev Biol 2020; 8:22. [PMID: 32083077 PMCID: PMC7004958 DOI: 10.3389/fcell.2020.00022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic dynein-1 (hereafter referred to as dynein) is a major microtubule-based motor critical for cell division. Dynein is essential for the formation and positioning of the mitotic spindle as well as the transport of various cargos in the cell. A striking feature of dynein is that, despite having a wide variety of functions, the catalytic subunit is coded in a single gene. To perform various cellular activities, there seem to be different types of dynein that share a common catalytic subunit. In this review, we will refer to the different kinds of dynein as “dyneins.” This review attempts to classify the mechanisms underlying the emergence of multiple dyneins into four layers. Inside a cell, multiple dyneins generated through the multi-layered regulations interact with each other to form a network of dyneins. These dynein networks may be responsible for the accurate regulation of cellular activities, including cell division. How these networks function inside a cell, with a focus on the early embryogenesis of Caenorhabditis elegans embryos, is discussed, as well as future directions for the integration of our understanding of molecular layering to understand the totality of dynein’s function in living cells.
Collapse
Affiliation(s)
- Takayuki Torisawa
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| |
Collapse
|
27
|
Barbosa J, Martins T, Bange T, Tao L, Conde C, Sunkel C. Polo regulates Spindly to prevent premature stabilization of kinetochore-microtubule attachments. EMBO J 2020; 39:e100789. [PMID: 31849090 PMCID: PMC6960449 DOI: 10.15252/embj.2018100789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Accurate chromosome segregation in mitosis requires sister kinetochores to bind to microtubules from opposite spindle poles. The stability of kinetochore-microtubule attachments is fine-tuned to prevent or correct erroneous attachments while preserving amphitelic interactions. Polo kinase has been implicated in both stabilizing and destabilizing kinetochore-microtubule attachments. However, the mechanism underlying Polo-destabilizing activity remains elusive. Here, resorting to an RNAi screen in Drosophila for suppressors of a constitutively active Polo mutant, we identified a strong genetic interaction between Polo and the Rod-ZW10-Zwilch (RZZ) complex, whose kinetochore accumulation has been shown to antagonize microtubule stability. We find that Polo phosphorylates Spindly and impairs its ability to bind to Zwilch. This precludes dynein-mediated removal of the RZZ from kinetochores and consequently delays the formation of stable end-on attachments. We propose that high Polo-kinase activity following mitotic entry directs the RZZ complex to minimize premature stabilization of erroneous attachments, whereas a decrease in active Polo in later mitotic stages allows the formation of stable amphitelic spindle attachments. Our findings demonstrate that Polo tightly regulates the RZZ-Spindly-dynein module during mitosis to ensure the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- João Barbosa
- IBMC—Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do PortoPortoPortugal
| | | | - Tanja Bange
- MPI für molekulare PhysiologieDortmundGermany
| | - Li Tao
- Department of BiologyUniversity of HawaiiHiloHIUSA
| | - Carlos Conde
- IBMC—Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do PortoPortoPortugal
| | - Claudio Sunkel
- IBMC—Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do PortoPortoPortugal
- ICBAS—Instituto de Ciência Biomédica de Abel SalazarUniversidade do PortoPortoPortugal
| |
Collapse
|
28
|
Dutta M, Jana B. Role of AAA3 Domain in Allosteric Communication of Dynein Motor Proteins. ACS OMEGA 2019; 4:21921-21930. [PMID: 31891071 PMCID: PMC6933798 DOI: 10.1021/acsomega.9b02946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Cytoplasmic dynein, an AAA+ motif containing motor, generates force and movement along the microtubule to execute important biological functions including intracellular material transport and cell division by hydrolyzing ATP. Among the six AAA+ domains, AAA1 is the primary ATPase site where a single ATP hydrolysis generates a single step. Nucleotide states in AAA3 gate dynein's activity, suggesting that AAA3 acts as a regulatory switch. However, the comprehensive structural perspective of AAA3 in dynein's mechanochemical cycle remains unclear. Here, we explored the allosteric transition path of dynein involving AAA3 using a coarse-grained structure-based model. ATP binding to the AAA1 domain creates a cascade of conformational changes through the other domains of the ring, which leads to the pre-power stroke formation. The linker domain, which is the mechanical element of dynein, shifts from a straight to a bent conformation during this process. In our present study, we observe that AAA3 gates the allosteric communication from AAA1 to the microtubule binding domain (MTBD) through AAA4 and AAA5. The MTBD is linked to the AAA+ ring via a coiled-coil stalk and a buttress domain, which are extended from AAA4 and AAA5, respectively. Further analysis also uncovers the role of AAA3 in the linker movement. The free energy calculation shows that the linker prefers the straight conformation when AAA3 remains in the ATP-bound condition. As AAA3 restricts the motion of AAA4 and AAA5, the linker/AAA5 interactions get stabilized, and the linker cannot move to the pre-power stroke state that halts the complete structural transition required for the mechanochemical cycle. Therefore, we suggest that AAA3 governs dynein's mechanochemical cycle and motility by controlling the AAA4 and AAA5 domains that further regulate the linker movement and the power stroke formation.
Collapse
|
29
|
Qiu R, Zhang J, Xiang X. LIS1 regulates cargo-adapter-mediated activation of dynein by overcoming its autoinhibition in vivo. J Cell Biol 2019; 218:3630-3646. [PMID: 31562232 PMCID: PMC6829669 DOI: 10.1083/jcb.201905178] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
Abstract
Deficiency of the LIS1 protein causes lissencephaly, a brain developmental disorder. Although LIS1 binds the microtubule motor cytoplasmic dynein and has been linked to dynein function in many experimental systems, its mechanism of action remains unclear. Here, we revealed its function in cargo-adapter-mediated dynein activation in the model organism Aspergillus nidulans Specifically, we found that overexpressed cargo adapter HookA (Hook in A. nidulans) missing its cargo-binding domain (ΔC-HookA) causes dynein and its regulator dynactin to relocate from the microtubule plus ends to the minus ends, and this relocation requires LIS1 and its binding protein, NudE. Astonishingly, the requirement for LIS1 or NudE can be bypassed to a significant extent by mutations that prohibit dynein from forming an autoinhibited conformation in which the motor domains of the dynein dimer are held close together. Our results suggest a novel mechanism of LIS1 action that promotes the switch of dynein from the autoinhibited state to an open state to facilitate dynein activation.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| |
Collapse
|
30
|
Marzo MG, Griswold JM, Ruff KM, Buchmeier RE, Fees CP, Markus SM. Molecular basis for dyneinopathies reveals insight into dynein regulation and dysfunction. eLife 2019; 8:47246. [PMID: 31364990 PMCID: PMC6733598 DOI: 10.7554/elife.47246] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Cytoplasmic dynein plays critical roles within the developing and mature nervous systems, including effecting nuclear migration, and retrograde transport of various cargos. Unsurprisingly, mutations in dynein are causative of various developmental neuropathies and motor neuron diseases. These ‘dyneinopathies’ define a broad spectrum of diseases with no known correlation between mutation identity and disease state. To circumvent complications associated with dynein studies in human cells, we employed budding yeast as a screening platform to characterize the motility properties of seventeen disease-correlated dynein mutants. Using this system, we determined the molecular basis for several classes of etiologically related diseases. Moreover, by engineering compensatory mutations, we alleviated the mutant phenotypes in two of these cases, one of which we confirmed with recombinant human dynein. In addition to revealing molecular insight into dynein regulation, our data provide additional evidence that the type of disease may in fact be dictated by the degree of dynein dysfunction. Motor proteins maintain order by transporting biomolecules and various structures within living cells. Dynein is one such motor that moves many types of cargoes along tracks called microtubules, which are spread across the cell’s interior. This motor is particularly important in nerve cells, which can be very long and thus depend heavily on motor proteins to ensure cargoes end up where they are needed. This becomes especially apparent in human diseases that arise as a consequence of mutations in the genes that produce components of the dynein motor. It is assumed that these genetic changes simply prevent dynein from working properly, which ultimately affects the health and survival of cells. However, it is currently unknown what specific effect these mutations have on dynein’s role within the cell, and how these changes lead to particular diseases. Marzo et al. have now used dynein from a budding yeast to closely examine 17 mutations in the dynein gene that are associated with developmental and/or motor neuron diseases in humans. For each mutation, various aspects of how dynein moves (e.g. average speed, distance travelled) were measured and quantitatively compared. The results show that the severity of the effect of each mutation can be directly correlated with the type of disease caused by the mutation. In particular, mutations that lead to less severe defects are found in patients that suffer from various motor neuron diseases, while more severe dynein mutations are found in patients with developmental brain disorders. Marzo et al. confirmed the likely structural changes that caused the defects in dynein’s activity in two of the 17 cases, by engineering additional, restorative mutations that lessened the effects of the primary mutation. These findings reveal links between the molecular impact of defects in the dynein gene and human health. They also confirm that budding yeast is a powerful tool for investigating newly discovered dynein mutations that correlate with disease. This study provides a potential system that could be used to screen drugs that might lessen the effects of specific dynein mutations. However, further work is needed to determine how effective this system will be for drug discovery.
Collapse
Affiliation(s)
- Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Jacqueline M Griswold
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Kristina M Ruff
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Rachel E Buchmeier
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Colby P Fees
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, United States
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| |
Collapse
|
31
|
Rosas-Salvans M, Scrofani J, Modol A, Vernos I. DnaJB6 is a RanGTP-regulated protein required for microtubule organization during mitosis. J Cell Sci 2019; 132:jcs.227033. [PMID: 31064815 PMCID: PMC6589090 DOI: 10.1242/jcs.227033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
Bipolar spindle organization is essential for the faithful segregation of chromosomes during cell division. This organization relies on the collective activities of motor proteins. The minus-end-directed dynein motor complex generates spindle inward forces and plays a major role in spindle pole focusing. The dynactin complex regulates many dynein functions, increasing its processivity and force production. Here, we show that DnaJB6 is a novel RanGTP-regulated protein. It interacts with the dynactin subunit p150Glued (also known as DCTN1) in a RanGTP-dependent manner specifically in M-phase, and promotes spindle pole focusing and dynein force generation. Our data suggest a novel mechanism by which RanGTP regulates dynein activity during M-phase. Summary: DnaJB6 is a novel RanGTP-regulated protein that appears to play an important role in dynein-dependent spindle organization and spindle assembly.
Collapse
Affiliation(s)
- Miquel Rosas-Salvans
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Jacopo Scrofani
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Aitor Modol
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Isabelle Vernos
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain .,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,ICREA, Passeig de Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
32
|
Yesbolatova A, Natsume T, Hayashi KI, Kanemaki MT. Generation of conditional auxin-inducible degron (AID) cells and tight control of degron-fused proteins using the degradation inhibitor auxinole. Methods 2019; 164-165:73-80. [PMID: 31026591 DOI: 10.1016/j.ymeth.2019.04.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/08/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Controlling protein expression using a degron is advantageous because the protein of interest can be rapidly depleted in a reversible manner. We pioneered the development of the auxin-inducible degron (AID) technology by transplanting a plant-specific degradation pathway to non-plant cells. In human cells expressing an E3 ligase component, OsTIR1, it is possible to degrade a degron-fused protein with a half-life of 15-45 min in the presence of the phytohormone auxin. We reported previously the generation of human HCT116 mutants in which the C terminus of endogenous proteins was fused with the degron by CRISPR-Cas9-based knock-in. Here, we show new plasmids for N-terminal tagging and describe a detailed protocol for the generation of AID mutants of human HCT116 and DLD1 cells. Moreover, we report the use of an OsTIR1 inhibitor, auxinole, to suppress leaky degradation of degron-fused proteins. The addition of auxinole is also useful for rapid re-expression after depletion of degron-fused proteins. These improvements enhance the utility of AID technology for studying protein function in living human cells.
Collapse
Affiliation(s)
- Aisha Yesbolatova
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
33
|
Gonçalves JC, Dantas TJ, Vallee RB. Distinct roles for dynein light intermediate chains in neurogenesis, migration, and terminal somal translocation. J Cell Biol 2019; 218:808-819. [PMID: 30674581 PMCID: PMC6400572 DOI: 10.1083/jcb.201806112] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/21/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022] Open
Abstract
Cytoplasmic dynein participates in multiple aspects of neocortical development. These include neural progenitor proliferation, morphogenesis, and neuronal migration. The cytoplasmic dynein light intermediate chains (LICs) 1 and 2 are cargo-binding subunits, though their relative roles are not well understood. Here, we used in utero electroporation of shRNAs or LIC functional domains to determine the relative contributions of the two LICs in the developing rat brain. We find that LIC1, through BicD2, is required for apical nuclear migration in neural progenitors. In newborn neurons, we observe specific roles for LIC1 in the multipolar to bipolar transition and glial-guided neuronal migration. In contrast, LIC2 contributes to a novel dynein role in the little-studied mode of migration, terminal somal translocation. Together, our results provide novel insight into the LICs' unique functions during brain development and dynein regulation overall.
Collapse
Affiliation(s)
- João Carlos Gonçalves
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago J Dantas
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| |
Collapse
|
34
|
Even I, Reidenbach S, Schlechter T, Berns N, Herold R, Roth W, Krunic D, Riechmann V, Hofmann I. DLIC
1
, but not
DLIC
2
, is upregulated in colon cancer and this contributes to proliferative overgrowth and migratory characteristics of cancer cells. FEBS J 2019; 286:803-820. [DOI: 10.1111/febs.14755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/25/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Ipek Even
- Division of Vascular Oncology and Metastasis German Cancer Research Center DKFZ‐ZMBH Alliance Heidelberg Germany
- Department of Vascular Biology and Tumor Angiogenesis (CBTM) Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Sonja Reidenbach
- Division of Vascular Oncology and Metastasis German Cancer Research Center DKFZ‐ZMBH Alliance Heidelberg Germany
| | - Tanja Schlechter
- Division of Vascular Oncology and Metastasis German Cancer Research Center DKFZ‐ZMBH Alliance Heidelberg Germany
| | - Nicola Berns
- Department for Cell and Molecular Biology Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Rosanna Herold
- Division of Vascular Oncology and Metastasis German Cancer Research Center DKFZ‐ZMBH Alliance Heidelberg Germany
| | - Wilfried Roth
- Clinical Cooperation Unit Molecular Tumor Pathology German Cancer Research Center Heidelberg Germany
| | - Damir Krunic
- Light Microscopy Facility German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Veit Riechmann
- Department for Cell and Molecular Biology Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Ilse Hofmann
- Division of Vascular Oncology and Metastasis German Cancer Research Center DKFZ‐ZMBH Alliance Heidelberg Germany
- Department of Vascular Biology and Tumor Angiogenesis (CBTM) Medical Faculty Mannheim Heidelberg University Mannheim Germany
| |
Collapse
|
35
|
Dwivedi D, Kumari A, Rathi S, Mylavarapu SVS, Sharma M. The dynein adaptor Hook2 plays essential roles in mitotic progression and cytokinesis. J Cell Biol 2019; 218:871-894. [PMID: 30674580 PMCID: PMC6400558 DOI: 10.1083/jcb.201804183] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/29/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
Hook proteins are evolutionarily conserved dynein adaptors that promote assembly of highly processive dynein-dynactin motor complexes. Mammals express three Hook paralogs, namely Hook1, Hook2, and Hook3, that have distinct subcellular localizations and expectedly, distinct cellular functions. Here we demonstrate that Hook2 binds to and promotes dynein-dynactin assembly specifically during mitosis. During the late G2 phase, Hook2 mediates dynein-dynactin localization at the nuclear envelope (NE), which is required for centrosome anchoring to the NE. Independent of its binding to dynein, Hook2 regulates microtubule nucleation at the centrosome; accordingly, Hook2-depleted cells have reduced astral microtubules and spindle positioning defects. Besides the centrosome, Hook2 localizes to and recruits dynactin and dynein to the central spindle. Dynactin-dependent targeting of centralspindlin complex to the midzone is abrogated upon Hook2 depletion; accordingly, Hook2 depletion results in cytokinesis failure. We find that the zebrafish Hook2 homologue promotes dynein-dynactin association and was essential for zebrafish early development. Together, these results suggest that Hook2 mediates assembly of the dynein-dynactin complex and regulates mitotic progression and cytokinesis.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, Faridabad, India.,Affiliated to Manipal Academy of Higher Education, Manipal, India
| | - Siddhi Rathi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, Faridabad, India.,Affiliated to Manipal Academy of Higher Education, Manipal, India
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| |
Collapse
|
36
|
Celestino R, Henen MA, Gama JB, Carvalho C, McCabe M, Barbosa DJ, Born A, Nichols PJ, Carvalho AX, Gassmann R, Vögeli B. A transient helix in the disordered region of dynein light intermediate chain links the motor to structurally diverse adaptors for cargo transport. PLoS Biol 2019; 17:e3000100. [PMID: 30615611 PMCID: PMC6336354 DOI: 10.1371/journal.pbio.3000100] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/17/2019] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
All animal cells use the motor cytoplasmic dynein 1 (dynein) to transport diverse cargo toward microtubule minus ends and to organize and position microtubule arrays such as the mitotic spindle. Cargo-specific adaptors engage with dynein to recruit and activate the motor, but the molecular mechanisms remain incompletely understood. Here, we use structural and dynamic nuclear magnetic resonance (NMR) analysis to demonstrate that the C-terminal region of human dynein light intermediate chain 1 (LIC1) is intrinsically disordered and contains two short conserved segments with helical propensity. NMR titration experiments reveal that the first helical segment (helix 1) constitutes the main interaction site for the adaptors Spindly (SPDL1), bicaudal D homolog 2 (BICD2), and Hook homolog 3 (HOOK3). In vitro binding assays show that helix 1, but not helix 2, is essential in both LIC1 and LIC2 for binding to SPDL1, BICD2, HOOK3, RAB-interacting lysosomal protein (RILP), RAB11 family-interacting protein 3 (RAB11FIP3), ninein (NIN), and trafficking kinesin-binding protein 1 (TRAK1). Helix 1 is sufficient to bind RILP, whereas other adaptors require additional segments preceding helix 1 for efficient binding. Point mutations in the C-terminal helix 1 of Caenorhabditis elegans LIC, introduced by genome editing, severely affect development, locomotion, and life span of the animal and disrupt the distribution and transport kinetics of membrane cargo in axons of mechanosensory neurons, identical to what is observed when the entire LIC C-terminal region is deleted. Deletion of the C-terminal helix 2 delays dynein-dependent spindle positioning in the one-cell embryo but overall does not significantly perturb dynein function. We conclude that helix 1 in the intrinsically disordered region of LIC provides a conserved link between dynein and structurally diverse cargo adaptor families that is critical for dynein function in vivo. A highly conserved mechanism links the microtubule minus end–directed motor dynein to structurally diverse cargo adaptors through its light intermediate chain; this interaction is crucial for dynein function in vivo. The large size and complex organization of animal cells make the correct and efficient distribution of intracellular content a challenge. The solution is to use motor proteins, which harness energy from ATP hydrolysis to walk along actin filaments or microtubules, for directional transport of cargo. The multi-subunit motor cytoplasmic dynein 1 (dynein) is responsible for transport directed toward the minus ends of microtubules. An important question is how dynein is recruited to its diverse cargo, which includes organelles such as endosomes and mitochondria, proteins, and mRNA. In this study, we use nuclear magnetic resonance spectroscopy to show that the light intermediate chain (LIC) subunit of human dynein uses a short helix in its disordered C-terminal region to bind structurally distinct adaptor proteins that connect the motor to specific cargo. We then use genome editing in the animal model C. elegans to demonstrate the functional relevance of the C-terminal LIC helix for dynein-dependent cargo transport in neurons. Thus, dynein recruitment to cargo involves a highly conserved interaction between LIC and adaptor proteins.
Collapse
Affiliation(s)
- Ricardo Celestino
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - José B. Gama
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Cátia Carvalho
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Maxwell McCabe
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Daniel J. Barbosa
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Alexandra Born
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Parker J. Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ana X. Carvalho
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- * E-mail: (RG); (BV)
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail: (RG); (BV)
| |
Collapse
|
37
|
Robbins CJ, Bou-Dargham MJ, Sanchez K, Rosen MC, Sang QXA. Decoding Somatic Driver Gene Mutations and Affected Signaling Pathways in Human Medulloblastoma Subgroups. J Cancer 2018; 9:4596-4610. [PMID: 30588243 PMCID: PMC6299398 DOI: 10.7150/jca.27993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/08/2018] [Indexed: 01/02/2023] Open
Abstract
Medulloblastoma is the most common malignant pediatric brain tumor. Prior studies have concentrated their efforts studying the four molecular subgroups: SHH, Wnt, group 3, and group 4. SHH and Wnt are driven by their canonical pathways. Groups 3 and 4 are highly metastatic and associated with aberrations in epigenetic regulators. Recent developments in the field have revealed that these subgroups are not as homogenous as previously believed. The objective of this study is to investigate the involvement of somatic driver gene mutations in these medulloblastoma subgroups. We obtained medulloblastoma data from the Catalogue of Somatic Mutations in Cancer (COSMIC), which contains distinct samples that were not previously studied in a large cohort. We identified somatic driver gene mutations and the signaling pathways affected by these driver genes for medulloblastoma subgroups using bioinformatics tools. We have revealed novel infrequent drivers in these subgroups that contribute to our understanding of tumor heterogeneity in medulloblastoma. Normally SHH signaling is activated in the SHH subgroup, however, we determined gain-of-function mutations in ubiquitin ligase (CUL1) that inhibit Gli-mediated transcription. This suggests a potential hindrance in SHH signaling for some patients. For group 3, gain-of-function in the inhibitor of proinflammatory cytokines (HIVEP3) suggests an immunosuppressive phenotype and thus a more hostile tumor microenvironment. Surprisingly, group 4 tumors possess mutations that may prompt the activation of Wnt signaling through gain-of-function mutations in MUC16 and PCDH9. These infrequent mutations detected in this study could be due to subclonal or spatially restricted alterations. The investigation of aberrant driver gene mutations can lead to the identification of new drug targets and a greater understanding of human medulloblastoma heterogeneity.
Collapse
Affiliation(s)
- Charles J Robbins
- Department of Chemistry & Biochemistry, Institute of Molecular Biophysics, Florida State University
| | - Mayassa J Bou-Dargham
- Department of Chemistry & Biochemistry, Institute of Molecular Biophysics, Florida State University
| | - Kevin Sanchez
- Department of Chemistry & Biochemistry, Institute of Molecular Biophysics, Florida State University
| | - Matthew C Rosen
- Department of Chemistry & Biochemistry, Institute of Molecular Biophysics, Florida State University
| | - Qing-Xiang Amy Sang
- Department of Chemistry & Biochemistry, Institute of Molecular Biophysics, Florida State University
| |
Collapse
|
38
|
Wynne CL, Vallee RB. Cdk1 phosphorylation of the dynein adapter Nde1 controls cargo binding from G2 to anaphase. J Cell Biol 2018; 217:3019-3029. [PMID: 29930206 PMCID: PMC6122996 DOI: 10.1083/jcb.201707081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/06/2018] [Accepted: 05/23/2018] [Indexed: 12/28/2022] Open
Abstract
Cytoplasmic dynein is involved in diverse cell cycle-dependent functions regulated by several accessory factors, including Nde1 and Ndel1. Little is known about the role of these proteins in dynein cargo binding, and less is known about their cell cycle--dependent dynein regulation. Using Nde1 RNAi, mutant cDNAs, and a phosphorylation site-specific antibody, we found a specific association of phospho-Nde1 with the late G2-M nuclear envelope and prophase to anaphase kinetochores, comparable to the pattern for the Nde1 interactor CENP-F. Phosphomutant-Nde1 associated only with prometaphase kinetochores and showed weaker CENP-F binding in in vitro assays. Nde1 RNAi caused severe delays in mitotic progression, which were substantially rescued by both phosphomimetic and phosphomutant Nde1. Expression of a dynein-binding-deficient Nde1 mutant reduced kinetochore dynein by half, indicating a major role for Nde1 in kinetochore dynein recruitment. These results establish CENP-F as the first well-characterized Nde1 cargo protein, and reveal phosphorylation control of Nde1 cargo binding throughout a substantial fraction of the cell cycle.
Collapse
Affiliation(s)
- Caitlin L Wynne
- Pathology and Cell Biology, Columbia University, New York, NY
| | | |
Collapse
|
39
|
Qiu R, Zhang J, Xiang X. p25 of the dynactin complex plays a dual role in cargo binding and dynactin regulation. J Biol Chem 2018; 293:15606-15619. [PMID: 30143531 DOI: 10.1074/jbc.ra118.004000] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/23/2018] [Indexed: 01/13/2023] Open
Abstract
Cytoplasmic dynein binds its cargoes via the dynactin complex and cargo adapters, and the dynactin pointed-end protein p25 is required for dynein-dynactin binding to the early endosomal dynein adapter HookA (Hook in the fungus Aspergillus nidulans). However, it is unclear whether the HookA-dynein-dynactin interaction requires p27, another pointed-end protein forming heterodimers with p25 within vertebrate dynactin. Here, live-cell imaging and biochemical pulldown experiments revealed that although p27 is a component of the dynactin complex in A. nidulans, it is dispensable for dynein-dynactin to interact with ΔC-HookA (cytosolic HookA lacking its early endosome-binding C terminus) and is not critical for dynein-mediated early endosome transport. Using mutagenesis, imaging, and biochemical approaches, we found that several p25 regions are required for the ΔC-HookA-dynein-dynactin interaction, with the N terminus and loop1 being the most critical regions. Interestingly, p25 was also important for the microtubule (MT) plus-end accumulation of dynactin. This p25 function in dynactin localization also involved p25's N terminus and the loop1 critical for the ΔC-HookA-dynein-dynactin interaction. Given that dynactin's MT plus-end localization does not require HookA and that the kinesin-1-dependent plus-end accumulation of dynactin is unnecessary for the ΔC-HookA-dynein-dynactin interaction, our results indicate that p25 plays a dual role in cargo binding and dynactin regulation. As cargo adapters are implicated in dynein activation via binding to dynactin's pointed end to switch the conformation of p150, a major dynactin component, our results suggest p25 as a critical pointed-end protein involved in this process.
Collapse
Affiliation(s)
- Rongde Qiu
- From the Department of Biochemistry and Molecular Biology, the Uniformed Services University-F. Edward Hébert School of Medicine, Bethesda, Maryland 20814
| | - Jun Zhang
- From the Department of Biochemistry and Molecular Biology, the Uniformed Services University-F. Edward Hébert School of Medicine, Bethesda, Maryland 20814
| | - Xin Xiang
- From the Department of Biochemistry and Molecular Biology, the Uniformed Services University-F. Edward Hébert School of Medicine, Bethesda, Maryland 20814
| |
Collapse
|
40
|
Monda JK, Cheeseman IM. Nde1 promotes diverse dynein functions through differential interactions and exhibits an isoform-specific proteasome association. Mol Biol Cell 2018; 29:2336-2345. [PMID: 30024347 PMCID: PMC6249811 DOI: 10.1091/mbc.e18-07-0418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Nde1 is a key regulator of cytoplasmic dynein, binding directly to both dynein itself and the dynein adaptor, Lis1. Nde1 and Lis1 are thought to function together to promote dynein function, yet mutations in each result in distinct neurodevelopment phenotypes. To reconcile these phenotypic differences, we sought to dissect the contribution of Nde1 to dynein regulation and explore the cellular functions of Nde1. Here we show that an Nde1–Lis1 interaction is required for spindle pole focusing and Golgi organization but is largely dispensable for centrosome placement, despite Lis1 itself being required. Thus, diverse functions of dynein rely on distinct Nde1- and Lis1-mediated regulatory mechanisms. Additionally, we discovered a robust, isoform-specific interaction between human Nde1 and the 26S proteasome and identify precise mutations in Nde1 that disrupt the proteasome interaction. Together, our work suggests that Nde1 makes unique contributions to human neurodevelopment through its regulation of both dynein and proteasome function.
Collapse
Affiliation(s)
- Julie K Monda
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
41
|
Ou S, Tan MH, Weng T, Li H, Koh CG. LIM kinase1 regulates mitotic centrosome integrity via its activity on dynein light intermediate chains. Open Biol 2018; 8:rsob.170202. [PMID: 29925632 PMCID: PMC6030115 DOI: 10.1098/rsob.170202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 05/29/2018] [Indexed: 01/10/2023] Open
Abstract
Abnormal centrosome number and function have been implicated in tumour development. LIM kinase1 (LIMK1), a regulator of actin cytoskeleton dynamics, is found to localize at the mitotic centrosome. However, its role at the centrosome is not fully explored. Here, we report that LIMK1 depletion resulted in multi-polar spindles and defocusing of centrosomes, implicating its involvement in the regulation of mitotic centrosome integrity. LIMK1 could influence centrosome integrity by modulating centrosomal protein localization at the spindle pole. Interestingly, dynein light intermediate chains (LICs) are able to rescue the defects observed in LIMK1-depleted cells. We found that LICs are potential novel interacting partners and substrates of LIMK1 and that LIMK1 phosphorylation regulates cytoplasmic dynein function in centrosomal protein transport, which in turn impacts mitotic spindle pole integrity.
Collapse
Affiliation(s)
- Sirong Ou
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Mei-Hua Tan
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Ting Weng
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - HoiYeung Li
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Cheng-Gee Koh
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore .,Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, 117411, Singapore
| |
Collapse
|
42
|
Tan R, Foster PJ, Needleman DJ, McKenney RJ. Cooperative Accumulation of Dynein-Dynactin at Microtubule Minus-Ends Drives Microtubule Network Reorganization. Dev Cell 2018; 44:233-247.e4. [PMID: 29401420 DOI: 10.1016/j.devcel.2017.12.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/10/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023]
Abstract
Cytoplasmic dynein-1 is a minus-end-directed motor protein that transports cargo over long distances and organizes the intracellular microtubule (MT) network. How dynein motor activity is harnessed for these diverse functions remains unknown. Here, we have uncovered a mechanism for how processive dynein-dynactin complexes drive MT-MT sliding, reorganization, and focusing, activities required for mitotic spindle assembly. We find that motors cooperatively accumulate, in limited numbers, at MT minus-ends. Minus-end accumulations drive MT-MT sliding, independent of MT orientation, resulting in the clustering of MT minus-ends. At a mesoscale level, activated dynein-dynactin drives the formation and coalescence of MT asters. Macroscopically, dynein-dynactin activity leads to bulk contraction of millimeter-scale MT networks, suggesting that minus-end accumulations of motors produce network-scale contractile stresses. Our data provide a model for how localized dynein activity is harnessed by cells to produce contractile stresses within the cytoskeleton, for example, during mitotic spindle assembly.
Collapse
Affiliation(s)
- Ruensern Tan
- Department of Molecular and Cellular Biology, University of California - Davis, Davis, CA 95616, USA
| | - Peter J Foster
- John A. Paulson School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel J Needleman
- John A. Paulson School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|
43
|
Dalmau-Mena I, Del Pino P, Pelaz B, Cuesta-Geijo MÁ, Galindo I, Moros M, de la Fuente JM, Alonso C. Nanoparticles engineered to bind cellular motors for efficient delivery. J Nanobiotechnology 2018; 16:33. [PMID: 29602307 PMCID: PMC5877387 DOI: 10.1186/s12951-018-0354-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/19/2018] [Indexed: 11/17/2022] Open
Abstract
Background Dynein is a cytoskeletal molecular motor protein that transports cellular cargoes along microtubules. Biomimetic synthetic peptides designed to bind dynein have been shown to acquire dynamic properties such as cell accumulation and active intra- and inter-cellular motion through cell-to-cell contacts and projections to distant cells. On the basis of these properties dynein-binding peptides could be used to functionalize nanoparticles for drug delivery applications. Results Here, we show that gold nanoparticles modified with dynein-binding delivery sequences become mobile, powered by molecular motor proteins. Modified nanoparticles showed dynamic properties, such as travelling the cytosol, crossing intracellular barriers and shuttling the nuclear membrane. Furthermore, nanoparticles were transported from one cell to another through cell-to-cell contacts and quickly spread to distant cells through cell projections. Conclusions The capacity of these motor-bound nanoparticles to spread to many cells and increasing cellular retention, thus avoiding losses and allowing lower dosage, could make them candidate carriers for drug delivery. Electronic supplementary material The online version of this article (10.1186/s12951-018-0354-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Inmaculada Dalmau-Mena
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | - Pablo Del Pino
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Mariano Esquillor, s/n, 50018, Zaragoza, Spain.,Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Beatriz Pelaz
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Mariano Esquillor, s/n, 50018, Zaragoza, Spain.,Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Miguel Ángel Cuesta-Geijo
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | - Inmaculada Galindo
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | - María Moros
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Mariano Esquillor, s/n, 50018, Zaragoza, Spain
| | - Jesús M de la Fuente
- Aragon Materials Science Institute (ICMA), CSIC-University of Zaragoza and CIBER-BBN, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Covadonga Alonso
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña km 7.5, 28040, Madrid, Spain.
| |
Collapse
|
44
|
Amin MA, McKenney RJ, Varma D. Antagonism between the dynein and Ndc80 complexes at kinetochores controls the stability of kinetochore-microtubule attachments during mitosis. J Biol Chem 2018; 293:5755-5765. [PMID: 29475948 DOI: 10.1074/jbc.ra117.001699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/06/2018] [Indexed: 01/22/2023] Open
Abstract
Chromosome alignment and segregation during mitosis require kinetochore-microtubule (kMT) attachments that are mediated by the molecular motor dynein and the kMT-binding complex Ndc80. The Rod-ZW10-Zwilch (RZZ) complex is central to this coordination as it has an important role in dynein recruitment and has recently been reported to have a key function in the regulation of stable kMT attachments in Caenorhabditis elegans besides its role in activating the spindle assembly checkpoint (SAC). However, the mechanism by which these protein complexes control kMT attachments to drive chromosome motility during early mitosis is still unclear. Here, using in vitro total internal reflection fluorescence microscopy, we observed that higher concentrations of Ndc80 inhibited dynein binding to MTs, providing evidence that Ndc80 and dynein antagonize each other's function. High-resolution microscopy and siRNA-mediated functional disruption revealed that severe defects in chromosome alignment induced by depletion of dynein or the dynein adapter Spindly are rescued by codepletion of the RZZ component Rod in human cells. Interestingly, rescue of the chromosome alignment defects was independent of Rod function in SAC activation and was accompanied by a remarkable restoration of stable kMT attachments. Furthermore, the chromosome alignment rescue depended on the plus-end-directed motility of centromere protein E (CENP-E) because cells codepleted of CENP-E, Rod, and dynein could not establish stable kMT attachments or align their chromosomes properly. Our findings support the idea that dynein may control the function of the Ndc80 complex in stabilizing kMT attachments directly by interfering with Ndc80-MT binding or indirectly by controlling the Rod-mediated inhibition of Ndc80.
Collapse
Affiliation(s)
- Mohammed A Amin
- From the Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Dileep Varma
- From the Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| |
Collapse
|
45
|
Baudoin NC, Cimini D. A guide to classifying mitotic stages and mitotic defects in fixed cells. Chromosoma 2018; 127:215-227. [PMID: 29411093 DOI: 10.1007/s00412-018-0660-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Cell division is fundamental to life and its perturbation can disrupt organismal development, alter tissue homeostasis, and cause disease. Analysis of mitotic abnormalities provides insight into how certain perturbations affect the fidelity of cell division and how specific cellular structures, molecules, and enzymatic activities contribute to the accuracy of this process. However, accurate classification of mitotic defects is instrumental for correct interpretation of data and formulation of new hypotheses. In this article, we provide guidelines for identifying specific mitotic stages and for classifying normal and deviant mitotic phenotypes. We hope this will clarify confusion about how certain defects are classified and help investigators avoid misnomers, misclassification, and/or misinterpretation, thus leading to a unified and standardized system to classify mitotic defects.
Collapse
Affiliation(s)
- Nicolaas C Baudoin
- Department of Biological Sciences and Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA
| | - Daniela Cimini
- Department of Biological Sciences and Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA.
| |
Collapse
|
46
|
Simões PA, Celestino R, Carvalho AX, Gassmann R. NudE regulates dynein at kinetochores but is dispensable for other dynein functions in the C. elegans early embryo. J Cell Sci 2018; 131:jcs.212159. [PMID: 29192061 PMCID: PMC5818066 DOI: 10.1242/jcs.212159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
In mitosis, the molecular motor dynein is recruited to kinetochores by the Rod-Zw10-Zwilch complex (RZZ) and Spindly to control spindle assembly checkpoint (SAC) signaling and microtubule attachment. How the ubiquitous dynein co-factors Lis1 and NudE contribute to these functions remains poorly understood. Here, we show that the C. elegans NudE homolog NUD-2 is dispensable for dynein- and LIS-1-dependent mitotic spindle assembly in the zygote. This facilitates functional characterization of kinetochore-localized NUD-2, which is recruited by the CENP-F-like proteins HCP-1 and HCP-2 independently of RZZ-Spindly and dynein-LIS-1. Kinetochore dynein levels are reduced in Δnud-2 embryos, and, as occurs upon RZZ inhibition, loss of NUD-2 delays the formation of load-bearing kinetochore-microtubule attachments and causes chromatin bridges in anaphase. Survival of Δnud-2 embryos requires a functional SAC, and kinetochores without NUD-2 recruit an excess of SAC proteins. Consistent with this, SAC signaling in early Δnud-2 embryos extends mitotic duration and prevents high rates of chromosome mis-segregation. Our results reveal that both NUD-2 and RZZ-Spindly are essential for dynein function at kinetochores, and that the gain in SAC strength during early embryonic development is relevant under conditions that mildly perturb mitosis.
Collapse
Affiliation(s)
- Patrícia A Simões
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Ricardo Celestino
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana X Carvalho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal .,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
47
|
Martini S, Soliman T, Gobbi G, Mirandola P, Carubbi C, Masselli E, Pozzi G, Parker PJ, Vitale M. PKCε Controls Mitotic Progression by Regulating Centrosome Migration and Mitotic Spindle Assembly. Mol Cancer Res 2018; 16:3-15. [PMID: 29021232 PMCID: PMC5755688 DOI: 10.1158/1541-7786.mcr-17-0244] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/04/2017] [Accepted: 10/04/2017] [Indexed: 02/05/2023]
Abstract
To form a proper mitotic spindle, centrosomes must be duplicated and driven poleward in a timely and controlled fashion. Improper timing of centrosome separation and errors in mitotic spindle assembly may lead to chromosome instability, a hallmark of cancer. Protein kinase C epsilon (PKCε) has recently emerged as a regulator of several cell-cycle processes associated with the resolution of mitotic catenation during the metaphase-anaphase transition and in regulating the abscission checkpoint. However, an engagement of PKCε in earlier (pre)mitotic events has not been addressed. Here, we now establish that PKCε controls prophase-to-metaphase progression by coordinating centrosome migration and mitotic spindle assembly in transformed cells. This control is exerted through cytoplasmic dynein function. Importantly, it is also demonstrated that the PKCε dependency of mitotic spindle organization is correlated with the nonfunctionality of the TOPO2A-dependent G2 checkpoint, a characteristic of many transformed cells. Thus, PKCε appears to become specifically engaged in a programme of controls that are required to support cell-cycle progression in transformed cells, advocating for PKCε as a potential cancer therapeutic target.Implications: The close relationship between PKCε dependency for mitotic spindle organization and the nonfunctionality of the TOPO2A-dependent G2 checkpoint, a hallmark of transformed cells, strongly suggests PKCε as a therapeutic target in cancer. Mol Cancer Res; 16(1); 3-15. ©2017 AACR.
Collapse
Affiliation(s)
- Silvia Martini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, United Kingdom
| | - Tanya Soliman
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, United Kingdom
| | - Giuliana Gobbi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Prisco Mirandola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Cecilia Carubbi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elena Masselli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giulia Pozzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Peter J Parker
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, United Kingdom
- King's College London, New Hunts House, Guy's Campus, London, United Kingdom
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
48
|
Dwivedi D, Sharma M. Multiple Roles, Multiple Adaptors: Dynein During Cell Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:13-30. [PMID: 30637687 DOI: 10.1007/978-981-13-3065-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dynein is an essential protein complex present in most eukaryotes that regulate biological processes ranging from ciliary beating, intracellular transport, to cell division. Elucidating the detailed mechanism of dynein function has been a challenging task owing to its large molecular weight and high complexity of the motor. With the advent of technologies in the last two decades, studies have uncovered a wealth of information about the structural, biochemical, and cell biological roles of this motor protein. Cytoplasmic dynein associates with dynactin through adaptor proteins to mediate retrograde transport of vesicles, mRNA, proteins, and organelles on the microtubule tracts. In a mitotic cell, dynein has multiple localizations, such as at the nuclear envelope, kinetochores, mitotic spindle and spindle poles, and cell cortex. In line with this, dynein regulates multiple events during the cell cycle, such as centrosome separation, nuclear envelope breakdown, spindle assembly checkpoint inactivation, chromosome segregation, and spindle positioning. Here, we provide an overview of dynein structure and function with focus on the roles played by this motor during different stages of the cell cycle. Further, we review in detail the role of dynactin and dynein adaptors that regulate both recruitment and activity of dynein during the cell cycle.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| |
Collapse
|
49
|
DISC1 Regulates Neurogenesis via Modulating Kinetochore Attachment of Ndel1/Nde1 during Mitosis. Neuron 2017; 96:1041-1054.e5. [PMID: 29103808 DOI: 10.1016/j.neuron.2017.10.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/18/2017] [Accepted: 10/05/2017] [Indexed: 02/08/2023]
Abstract
Mutations of DISC1 (disrupted-in-schizophrenia 1) have been associated with major psychiatric disorders. Despite the hundreds of DISC1-binding proteins reported, almost nothing is known about how DISC1 interacts with other proteins structurally to impact human brain development. Here we solved the high-resolution structure of DISC1 C-terminal tail in complex with its binding domain of Ndel1. Mechanistically, DISC1 regulates Ndel1's kinetochore attachment, but not its centrosome localization, during mitosis. Functionally, disrupting DISC1/Ndel1 complex formation prolongs mitotic length and interferes with cell-cycle progression in human cells, and it causes cell-cycle deficits of radial glial cells in the embryonic mouse cortex and human forebrain organoids. We also observed similar deficits in organoids derived from schizophrenia patient induced pluripotent stem cells (iPSCs) with a DISC1 mutation that disrupts its interaction with Ndel1. Our study uncovers a new mechanism of action for DISC1 based on its structure, and it has implications for how genetic insults may contribute to psychiatric disorders.
Collapse
|
50
|
Ali A, Veeranki SN, Chinchole A, Tyagi S. MLL/WDR5 Complex Regulates Kif2A Localization to Ensure Chromosome Congression and Proper Spindle Assembly during Mitosis. Dev Cell 2017. [PMID: 28633016 DOI: 10.1016/j.devcel.2017.05.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mixed-lineage leukemia (MLL), along with multisubunit (WDR5, RbBP5, ASH2L, and DPY30) complex catalyzes the trimethylation of H3K4, leading to gene activation. Here, we characterize a chromatin-independent role for MLL during mitosis. MLL and WDR5 localize to the mitotic spindle apparatus, and loss of function of MLL complex by RNAi results in defects in chromosome congression and compromised spindle formation. We report interaction of MLL complex with several kinesin and dynein motors. We further show that the MLL complex associates with Kif2A, a member of the Kinesin-13 family of microtubule depolymerase, and regulates the spindle localization of Kif2A during mitosis. We have identified a conserved WDR5 interaction (Win) motif, so far unique to the MLL family, in Kif2A. The Win motif of Kif2A engages in direct interactions with WDR5 for its spindle localization. Our findings highlight a non-canonical mitotic function of MLL complex, which may have a direct impact on chromosomal stability, frequently compromised in cancer.
Collapse
Affiliation(s)
- Aamir Ali
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India; Graduate Studies, Manipal University, Manipal, India
| | - Sailaja Naga Veeranki
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India
| | - Akash Chinchole
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India; Graduate Studies, Manipal University, Manipal, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India.
| |
Collapse
|