1
|
Wong SS, Monteiro JM, Chang CC, Peng M, Mohamad N, Steinacker TL, Xiao B, Saurya S, Wainman A, Raff JW. Centrioles generate two scaffolds with distinct biophysical properties to build mitotic centrosomes. SCIENCE ADVANCES 2025; 11:eadq9549. [PMID: 39919171 PMCID: PMC11804907 DOI: 10.1126/sciadv.adq9549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025]
Abstract
Mitotic centrosomes assemble when centrioles recruit large amounts of pericentriolar material (PCM) around themselves. The PCM comprises hundreds of proteins, and there is much debate about its physical nature. Here, we show that Drosophila Spd-2 (human CEP192) fluxes out from centrioles, recruiting Polo and Aurora A kinases to catalyze the assembly of two distinct mitotic-PCM scaffolds: a Polo-dependent Cnn scaffold, and an Aurora A-dependent TACC scaffold, which exhibit solid- and liquid-like behaviors, respectively. Both scaffolds can independently recruit PCM proteins, but both are required for proper centrosome assembly, with the Cnn scaffold providing mechanical strength, and the TACC scaffold concentrating centriole and centrosome proteins. Recruiting Spd-2 to synthetic beads injected into early embryos reconstitutes key aspects of mitotic centrosome assembly on the bead surface, and this depends on Spd-2's ability to recruit Polo and Aurora A. Thus, Spd-2 orchestrates the assembly of two scaffolds, with distinct biophysical properties, that cooperate to build mitotic centrosomes in flies.
Collapse
Affiliation(s)
- Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
- The Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Joao M. Monteiro
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Chia-Chun Chang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Min Peng
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
- Institute of Biotechnology, National Taiwan University, 106 Taipei, Taiwan
| | - Nada Mohamad
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Thomas L. Steinacker
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Bocheng Xiao
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Jordan W. Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
2
|
Rejnowicz E, Batchelor M, Leen E, Ahangar MS, Burgess SG, Richards MW, Kalverda AP, Bayliss R. Exploring the dynamics and interactions of the N-myc transactivation domain through solution nuclear magnetic resonance spectroscopy. Biochem J 2024; 481:1535-1556. [PMID: 39370942 PMCID: PMC11555651 DOI: 10.1042/bcj20240248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Myc proteins are transcription factors crucial for cell proliferation. They have a C-terminal domain that mediates Max and DNA binding, and an N-terminal disordered region culminating in the transactivation domain (TAD). The TAD participates in many protein-protein interactions, notably with kinases that promote stability (Aurora-A) or degradation (ERK1, GSK3) via the ubiquitin-proteasome system. We probed the structure, dynamics and interactions of N-myc TAD using nuclear magnetic resonance (NMR) spectroscopy following its complete backbone assignment. Chemical shift analysis revealed that N-myc has two regions with clear helical propensity: Trp77-Glu86 and Ala122-Glu132. These regions also have more restricted ps-ns motions than the rest of the TAD, and, along with the phosphodegron, have comparatively high transverse (R2) 15N relaxation rates, indicative of slower timescale dynamics and/or chemical exchange. Collectively these features suggest differential propensities for structure and interaction, either internal or with binding partners, across the TAD. Solution studies on the interaction between N-myc and Aurora-A revealed a previously uncharacterised binding site. The specificity and kinetics of sequential phosphorylation of N-myc by ERK1 and GSK3 were characterised using NMR and resulted in no significant structural changes outside the phosphodegron. When the phosphodegron was doubly phosphorylated, N-myc formed a robust interaction with the Fbxw7-Skp1 complex, but mapping the interaction by NMR suggests a more extensive interface. Our study provides foundational insights into N-myc TAD dynamics and a backbone assignment that will underpin future work on the structure, dynamics, interactions and regulatory post-translational modifications of this key oncoprotein.
Collapse
Affiliation(s)
- Ewa Rejnowicz
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Matthew Batchelor
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mohd Syed Ahangar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Selena G. Burgess
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mark W. Richards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Arnout P. Kalverda
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
3
|
McManus CT, Travis SM, Jeffrey PD, Zhang R, Petry S. Mechanism of how the universal module XMAP215 γ-TuRC nucleates microtubules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597159. [PMID: 38895418 PMCID: PMC11185565 DOI: 10.1101/2024.06.03.597159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
It has become increasingly evident in recent years that nucleation of microtubules from a diverse set of MTOCs requires both the γ-tubulin ring complex (γ-TuRC) and the microtubule polymerase XMAP215. Despite their essentiality, little is known about how these nucleation factors interact and work together to generate microtubules. Using biochemical domain analysis of XMAP215 and structural approaches, we find that a sixth TOG domain in XMAP215 binds γ-TuRC via γ-tubulin as part of a broader interaction involving the C-terminal region. Moreover, TOG6 is required for XMAP215 to promote nucleation from γ-TuRC to its full extent. Interestingly, we find that XMAP215 also depends strongly on TOG5 for microtubule lattice binding and nucleation. Accordingly, we report a cryo-EM structure of TOG5 bound to the microtubule lattice that reveals promotion of lateral interactions between tubulin dimers. Finally, we find that while XMAP215 constructs' effects on nucleation are generally proportional to their effects on polymerization, formation of a direct complex with γ-TuRC allows cooperative nucleation activity. Thus, we propose that XMAP215's C-terminal TOGs 5 and 6 play key roles in promoting nucleation by promoting formation of longitudinal and lateral bonds in γ-TuRC templated nascent microtubules at cellular MTOCs.
Collapse
Affiliation(s)
- Collin T. McManus
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sophie M. Travis
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Philip D. Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine (St. Louis, Missouri, United States)
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
4
|
Simerly C, Robertson E, Harrison C, Ward S, George C, Deleon J, Hartnett C, Schatten G. Male meiotic spindle poles are stabilized by TACC3 and cKAP5/chTOG differently from female meiotic or somatic mitotic spindles in mice. Sci Rep 2024; 14:4808. [PMID: 38413710 PMCID: PMC10899211 DOI: 10.1038/s41598-024-55376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Transforming acidic acid coiled-coil protein 3 (TACC3) and cytoskeleton associated protein 5 (cKAP5; or colonic hepatic tumor overexpressed gene, chTOG) are vital for spindle assembly and stabilization initiated through TACC3 Aurora-A kinase interaction. Here, TACC3 and cKAP5/chTOG localization with monospecific antibodies is investigated in eGFP-centrin-2- expressing mouse meiotic spermatocytes. Both proteins bind spermatocyte spindle poles but neither kinetochore nor interpolar microtubules, unlike in mitotic mouse fibroblasts or female meiotic oocyte spindles. Spermatocytes do not display a liquid-like spindle domain (LISD), although fusing them into maturing oocytes generates LISD-like TACC3 condensates around sperm chromatin but sparse microtubule assembly. Microtubule inhibitors do not reduce TACC3 and cKAP5/chTOG spindle pole binding. MLN 8237 Aurora-A kinase inhibitor removes TACC3, not cKAP5/chTOG, disrupting spindle organization, chromosome alignment, and impacting spindle pole γ-tubulin intensity. The LISD disruptor 1,6-hexanediol abolished TACC3 in spermatocytes, impacting spindle bipolarity and chromosome organization. Cold microtubule disassembly and rescue experiments in the presence of 1,6-hexanediol reinforce the concept that spermatocyte TACC3 spindle pole presence is not required for spindle pole microtubule assembly. Collectively, meiotic spermatocytes without a LISD localize TACC3 and cKAP5/chTOG exclusively at spindle poles to support meiotic spindle pole stabilization during male meiosis, different from either female meiosis or mitosis.
Collapse
Affiliation(s)
- Calvin Simerly
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Emily Robertson
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Caleb Harrison
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Sydney Ward
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Charlize George
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Jasmine Deleon
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Carrie Hartnett
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Gerald Schatten
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Liu X, Lin L, Cai Q, Sheng H, Zeng R, Zhao Y, Qiu X, Liu H, Huang L, Liang W, He J. Construction and Validation of a Prognostic Model Based on Novel Senescence-Related Genes in Non-Small Cell Lung Cancer Patients with Drug Sensitivity and Tumor Microenvironment. Adv Biol (Weinh) 2023; 7:e2300190. [PMID: 37518773 DOI: 10.1002/adbi.202300190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Cellular senescence contributes to cancer pathogenesis and immune regulation. Using the LASSO Cox regression, we developed a 12-gene prognostic signature for lung adenocarcinoma (LUAD) from The Cancer Genome Atlas (TCGA) and a Gene Expression Omnibus (GEO) dataset. We assessed gene expression, drug sensitivity, immune infiltration, and conducted cell line experiments. High-risk LUAD patients showed increased mortality risk and shorter survival (P < 0.001). Senescence-related gene analysis indicated differences in protein phosphorylation and DNA methylation between normal individuals and LUAD patients. The high-risk group showed a positive association with PD-L1 expression (P = 0.003). Single-cell sequencing data suggested PEBP1 might significantly impact T cell infiltration. We predicted potential sensitive compounds for 12 senescence genes and found GAPDH promoted cell line proliferation. We established a novel prognostic system based on a newly identified senescence gene. High-risk patients had elevated immunosuppressive markers, and PEBP1 might influence T cell infiltration significantly. GAPDH, expressed at higher levels in tumors, could affect cancer progression. Our drug prediction model may guide treatment selection.
Collapse
Affiliation(s)
- Xiwen Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Lixuan Lin
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- School of Clinical Medicine, Henan University, Kaifeng, 475000, China
| | - Qi Cai
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Hongxu Sheng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Ruiqi Zeng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Yi Zhao
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Xinyi Qiu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- First Clinical School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Huiting Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Linchong Huang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- The First People's Hospital of Zhaoqing, Zhaoqing, 526000, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- Southern Medical University, Guangzhou, 510120, China
| |
Collapse
|
6
|
Saatci O, Sahin O. TACC3: a multi-functional protein promoting cancer cell survival and aggressiveness. Cell Cycle 2023; 22:2637-2655. [PMID: 38197196 PMCID: PMC10936615 DOI: 10.1080/15384101.2024.2302243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
TACC3 is the most oncogenic member of the transforming acidic coiled-coil domain-containing protein (TACC) family. It is one of the major recruitment factors of distinct multi-protein complexes. TACC3 is localized to spindles, centrosomes, and nucleus, and regulates key oncogenic processes, including cell proliferation, migration, invasion, and stemness. Recently, TACC3 inhibition has been identified as a vulnerability in highly aggressive cancers, such as cancers with centrosome amplification (CA). TACC3 has spatiotemporal functions throughout the cell cycle; therefore, targeting TACC3 causes cell death in mitosis and interphase in cancer cells with CA. In the clinics, TACC3 is highly expressed and associated with worse survival in multiple cancers. Furthermore, TACC3 is a part of one of the most common fusions of FGFR, FGFR3-TACC3 and is important for the oncogenicity of the fusion. A detailed understanding of the regulation of TACC3 expression, its key partners, and molecular functions in cancer cells is vital for uncovering the most vulnerable tumors and maximizing the therapeutic potential of targeting this highly oncogenic protein. In this review, we summarize the established and emerging interactors and spatiotemporal functions of TACC3 in cancer cells, discuss the potential of TACC3 as a biomarker in cancer, and therapeutic potential of its inhibition.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
7
|
Rajeev R, Mukhopadhyay S, Bhagyanath S, Devu Priya MRS, Manna TK. TACC3-ch-TOG interaction regulates spindle microtubule assembly by controlling centrosomal recruitment of γ-TuRC. Biosci Rep 2023; 43:232568. [PMID: 36790370 PMCID: PMC10037420 DOI: 10.1042/bsr20221882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/16/2023] Open
Abstract
γ-Tubulin ring complex (γ-TuRC), composed of γ-tubulin and multiple γ-tubulin complex proteins (GCPs), serves as the major microtubule nucleating complex in animal cells. However, several γ-TuRC-associated proteins have been shown to control its function. Centrosomal adaptor protein, TACC3, is one such γ-TuRC-interacting factor that is essential for proper mitotic spindle assembly across organisms. ch-TOG is another microtubule assembly promoting protein, which interacts with TACC3 and cooperates in mitotic spindle assembly. However, the mechanism how TACC3-ch-TOG interaction regulates microtubule assembly and the γ-TuRC functions at the centrosomes remain unclear. Here, we show that deletion of the ch-TOG-binding region in TACC3 enhances recruitment of the γ-TuRC proteins to centrosomes and aggravates spindle microtubule assembly in human cells. Loss of TACC3-ch-TOG binding imparts stabilization on TACC3 interaction with the γ-TuRC proteins and it does so by stimulating TACC3 phosphorylation and thereby enhancing phospho-TACC3 recruitment to the centrosomes. We also show that localization of ch-TOG at the centrosomes is substantially reduced and the same on the spindle microtubules is increased in its TACC3-unbound condition. Additional results reveal that ch-TOG depletion stimulates γ-tubulin localization on the spindles without significantly affecting the centrosomal γ-tubulin level. The results indicate that ch-TOG binding to TACC3 controls TACC3 phosphorylation and TACC3-mediated stabilization of the γ-TuRCs at the centrosomes. They also implicate that the spatio-temporal control of TACC3 phosphorylation via ch-TOG-binding ensures mitotic spindle assembly to the optimal level.
Collapse
Affiliation(s)
- Resmi Rajeev
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Swarnendu Mukhopadhyay
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Suresh Bhagyanath
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Manu Rani S Devu Priya
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India
| |
Collapse
|
8
|
Saatci O, Akbulut O, Cetin M, Sikirzhytski V, Uner M, Lengerli D, O'Quinn EC, Romeo MJ, Caliskan B, Banoglu E, Aksoy S, Uner A, Sahin O. Targeting TACC3 represents a novel vulnerability in highly aggressive breast cancers with centrosome amplification. Cell Death Differ 2023; 30:1305-1319. [PMID: 36864125 PMCID: PMC10154422 DOI: 10.1038/s41418-023-01140-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Centrosome amplification (CA) is a hallmark of cancer that is strongly associated with highly aggressive disease and worse clinical outcome. Clustering extra centrosomes is a major coping mechanism required for faithful mitosis of cancer cells with CA that would otherwise undergo mitotic catastrophe and cell death. However, its underlying molecular mechanisms have not been fully described. Furthermore, little is known about the processes and players triggering aggressiveness of cells with CA beyond mitosis. Here, we identified Transforming Acidic Coiled-Coil Containing Protein 3 (TACC3) to be overexpressed in tumors with CA, and its high expression is associated with dramatically worse clinical outcome. We demonstrated, for the first time, that TACC3 forms distinct functional interactomes regulating different processes in mitosis and interphase to ensure proliferation and survival of cancer cells with CA. Mitotic TACC3 interacts with the Kinesin Family Member C1 (KIFC1) to cluster extra centrosomes for mitotic progression, and inhibition of this interaction leads to mitotic cell death via multipolar spindle formation. Interphase TACC3 interacts with the nucleosome remodeling and deacetylase (NuRD) complex (HDAC2 and MBD2) in nucleus to inhibit the expression of key tumor suppressors (e.g., p21, p16 and APAF1) driving G1/S progression, and its inhibition blocks these interactions and causes p53-independent G1 arrest and apoptosis. Notably, inducing CA by p53 loss/mutation increases the expression of TACC3 and KIFC1 via FOXM1 and renders cancer cells highly sensitive to TACC3 inhibition. Targeting TACC3 by guide RNAs or small molecule inhibitors strongly inhibits growth of organoids and breast cancer cell line- and patient-derived xenografts with CA by induction of multipolar spindles, mitotic and G1 arrest. Altogether, our results show that TACC3 is a multifunctional driver of highly aggressive breast tumors with CA and that targeting TACC3 is a promising approach to tackle this disease.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA.,Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ozge Akbulut
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Metin Cetin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA.,Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Vitali Sikirzhytski
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Meral Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Deniz Lengerli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06100, Ankara, Turkey
| | - Elizabeth C O'Quinn
- Translational Science Laboratory, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Martin J Romeo
- Translational Science Laboratory, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Burcu Caliskan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06100, Ankara, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06100, Ankara, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, 06100, Ankara, Turkey
| | - Aysegul Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA. .,Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
9
|
Vazquez-Pianzola P, Beuchle D, Saro G, Hernández G, Maldonado G, Brunßen D, Meister P, Suter B. Female meiosis II and pronuclear fusion require the microtubule transport factor Bicaudal D. Development 2022; 149:275749. [DOI: 10.1242/dev.199944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/25/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Bicaudal D (BicD) is a dynein adaptor that transports different cargoes along microtubules. Reducing the activity of BicD specifically in freshly laid Drosophila eggs by acute protein degradation revealed that BicD is needed to produce normal female meiosis II products, to prevent female meiotic products from re-entering the cell cycle, and for pronuclear fusion. Given that BicD is required to localize the spindle assembly checkpoint (SAC) components Mad2 and BubR1 to the female meiotic products, it appears that BicD functions to localize these components to control metaphase arrest of polar bodies. BicD interacts with Clathrin heavy chain (Chc), and both proteins localize to centrosomes, mitotic spindles and the tandem spindles during female meiosis II. Furthermore, BicD is required to localize clathrin and the microtubule-stabilizing factors transforming acidic coiled-coil protein (D-TACC/Tacc) and Mini spindles (Msps) correctly to the meiosis II spindles, suggesting that failure to localize these proteins may perturb SAC function. Furthermore, immediately after the establishment of the female pronucleus, D-TACC and Caenorhabditis elegans BicD, tacc and Chc are also needed for pronuclear fusion, suggesting that the underlying mechanism might be more widely used across species.
Collapse
Affiliation(s)
| | - Dirk Beuchle
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Gabriella Saro
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Greco Hernández
- Instituto Nacional de Cancerología (INCan) 2 Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer , , 14080-Tlalpan, Mexico City , Mexico
| | - Giovanna Maldonado
- Instituto Nacional de Cancerología (INCan) 2 Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer , , 14080-Tlalpan, Mexico City , Mexico
| | - Dominique Brunßen
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Peter Meister
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| | - Beat Suter
- Institute of Cell Biology, University of Bern 1 , 3012 Berne , Switzerland
| |
Collapse
|
10
|
Li T, Mehraein-Ghomi F, Forbes ME, Namjoshi SV, Ballard EA, Song Q, Chou PC, Wang X, Parker Kerrigan BC, Lang FF, Lesser G, Debinski W, Yang X, Zhang W. HSP90-CDC37 functions as a chaperone for the oncogenic FGFR3-TACC3 fusion. Mol Ther 2022; 30:1610-1627. [PMID: 35151844 PMCID: PMC9077375 DOI: 10.1016/j.ymthe.2022.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
The FGFR3-TACC3 (F3-T3) fusion gene was discovered as an oncogenic molecule in glioblastoma and bladder cancers, and has subsequently been found in many cancer types. Notably, F3-T3 was found to be highly expressed in both untreated and matched recurrence glioblastoma under the concurrent radiotherapy and temozolomide (TMZ) treatment, suggesting that targeting F3-T3 is a valid strategy for treatment. Here, we show that the F3-T3 protein is a client of heat shock protein 90 (HSP90), forming a ternary complex with the cell division cycle 37 (CDC37). Deprivation of HSP90 or CDC37 disrupts the formation of the ternary complex, which destabilizes glycosylated F3-T3, and thereby suppresses F3-T3 oncogenic activity. Gliomas harboring F3-T3 are resistant to TMZ chemotherapy. HSP90 inhibitors sensitized F3-T3 glioma cells to TMZ via the inhibition of F3-T3 activation and potentiated TMZ-induced DNA damage. These results demonstrate that F3-T3 oncogenic function is dependent on the HSP90 chaperone system and suggests a new clinical option for targeting this genetic aberration in cancer.
Collapse
Affiliation(s)
- Tao Li
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Farideh Mehraein-Ghomi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - M Elizabeth Forbes
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Sanjeev V Namjoshi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - E Ashley Ballard
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Ping-Chieh Chou
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Xuya Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | | | - Frederick F Lang
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Glenn Lesser
- Department of Internal Medicine-Section of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China; Department of Neurosurgery, Tsinghua University Beijing Tsinghua Changgung Hospital, Beijing 102218, China.
| | - Wei Zhang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| |
Collapse
|
11
|
Jaunky DB, Larocque K, Husser MC, Liu JT, Forgione P, Piekny A. Characterization of a recently synthesized microtubule-targeting compound that disrupts mitotic spindle poles in human cells. Sci Rep 2021; 11:23665. [PMID: 34880347 PMCID: PMC8655040 DOI: 10.1038/s41598-021-03076-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022] Open
Abstract
We reveal the effects of a new microtubule-destabilizing compound in human cells. C75 has a core thienoisoquinoline scaffold with several functional groups amenable to modification. Previously we found that sub micromolar concentrations of C75 caused cytotoxicity. We also found that C75 inhibited microtubule polymerization and competed with colchicine for tubulin-binding in vitro. However, here we found that the two compounds synergized suggesting differences in their mechanism of action. Indeed, live imaging revealed that C75 causes different spindle phenotypes compared to colchicine. Spindles remained bipolar and collapsed after colchicine treatment, while C75 caused bipolar spindles to become multipolar. Importantly, microtubules rapidly disappeared after C75-treatment, but then grew back unevenly and from multiple poles. The C75 spindle phenotype is reminiscent of phenotypes caused by depletion of ch-TOG, a microtubule polymerase, suggesting that C75 blocks microtubule polymerization in metaphase cells. C75 also caused an increase in the number of spindle poles in paclitaxel-treated cells, and combining low amounts of C75 and paclitaxel caused greater regression of multicellular tumour spheroids compared to each compound on their own. These findings warrant further exploration of C75’s anti-cancer potential.
Collapse
Affiliation(s)
| | - Kevin Larocque
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Mathieu C Husser
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Jiang Tian Liu
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada
| | - Pat Forgione
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Smith SM, Larocque G, Wood KM, Morris KL, Roseman AM, Sessions RB, Royle SJ, Smith CJ. Multi-modal adaptor-clathrin contacts drive coated vesicle assembly. EMBO J 2021; 40:e108795. [PMID: 34487371 PMCID: PMC8488560 DOI: 10.15252/embj.2021108795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Clathrin‐coated pits are formed by the recognition of membrane and cargo by the AP2 complex and the subsequent recruitment of clathrin triskelia. A role for AP2 in coated‐pit assembly beyond initial clathrin recruitment has not been explored. Clathrin binds the β2 subunit of AP2, and several binding sites have been identified, but our structural knowledge of these interactions is incomplete and their functional importance during endocytosis is unclear. Here, we analysed the cryo‐EM structure of clathrin cages assembled in the presence of β2 hinge‐appendage (β2HA). We find that the β2‐appendage binds in at least two positions in the cage, demonstrating that multi‐modal binding is a fundamental property of clathrin‐AP2 interactions. In one position, β2‐appendage cross‐links two adjacent terminal domains from different triskelia. Functional analysis of β2HA‐clathrin interactions reveals that endocytosis requires two clathrin interaction sites: a clathrin‐box motif on the hinge and the “sandwich site” on the appendage. We propose that β2‐appendage binding to more than one triskelion is a key feature of the system and likely explains why assembly is driven by AP2.
Collapse
Affiliation(s)
- Sarah M Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Gabrielle Larocque
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Kyle L Morris
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Alan M Roseman
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Corinne J Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
13
|
Clathrin: the molecular shape shifter. Biochem J 2021; 478:3099-3123. [PMID: 34436540 DOI: 10.1042/bcj20200740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Clathrin is best known for its contribution to clathrin-mediated endocytosis yet it also participates to a diverse range of cellular functions. Key to this is clathrin's ability to assemble into polyhedral lattices that include curved football or basket shapes, flat lattices or even tubular structures. In this review, we discuss clathrin structure and coated vesicle formation, how clathrin is utilised within different cellular processes including synaptic vesicle recycling, hormone desensitisation, spermiogenesis, cell migration and mitosis, and how clathrin's remarkable 'shapeshifting' ability to form diverse lattice structures might contribute to its multiple cellular functions.
Collapse
|
14
|
Nita A, Abraham SP, Krejci P, Bosakova M. Oncogenic FGFR Fusions Produce Centrosome and Cilia Defects by Ectopic Signaling. Cells 2021; 10:1445. [PMID: 34207779 PMCID: PMC8227969 DOI: 10.3390/cells10061445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.
Collapse
Affiliation(s)
- Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Sara P. Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
15
|
Ryan EL, Shelford J, Massam-Wu T, Bayliss R, Royle SJ. Defining endogenous TACC3-chTOG-clathrin-GTSE1 interactions at the mitotic spindle using induced relocalization. J Cell Sci 2021; 134:jcs255794. [PMID: 33380489 PMCID: PMC7875487 DOI: 10.1242/jcs.255794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
A multiprotein complex containing TACC3, clathrin and other proteins has been implicated in mitotic spindle stability. To disrupt this complex in an anti-cancer context, we need to understand its composition and how it interacts with microtubules. Induced relocalization of proteins in cells is a powerful way to analyze protein-protein interactions and, additionally, monitor where and when these interactions occur. We used CRISPR/Cas9 gene editing to add tandem FKBP-GFP tags to each complex member. The relocalization of endogenous tagged protein from the mitotic spindle to mitochondria and assessment of the effect on other proteins allowed us to establish that TACC3 and clathrin are core complex members and that chTOG (also known as CKAP5) and GTSE1 are ancillary to the complex, binding respectively to TACC3 and clathrin, but not each other. We also show that PIK3C2A, a clathrin-binding protein that was proposed to stabilize the TACC3-chTOG-clathrin-GTSE1 complex during mitosis, is not a member of the complex. This work establishes that targeting the TACC3-clathrin interface or their microtubule-binding sites are the two strategies most likely to disrupt spindle stability mediated by this multiprotein complex.
Collapse
Affiliation(s)
- Ellis L Ryan
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - James Shelford
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Teresa Massam-Wu
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Richard Bayliss
- School of Molecular and Cellular Biology, Astbury Centre for Structural Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
16
|
So C, Cheng S, Schuh M. Phase Separation during Germline Development. Trends Cell Biol 2021; 31:254-268. [PMID: 33455855 DOI: 10.1016/j.tcb.2020.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Phase separation has emerged as a new key principle of intracellular organization. Phase-separated structures play diverse roles in various biological processes and pathogenesis of protein aggregation diseases. Recent work has revealed crucial functions for phase separation during germline development. Phase separation controls the assembly and segregation of germ granules that determine which embryonic cells become germ cells. Phase separation promotes the formation of the Balbiani body, a structure that stores organelles and RNAs during the prolonged prophase arrest of oocytes. Phase separation also facilitates meiotic recombination that prepares homologous chromosomes for segregation, and drives the formation of a liquid-like spindle domain that promotes spindle assembly in mammalian oocytes. We review how phase separation drives these essential steps during germline development.
Collapse
Affiliation(s)
- Chun So
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
17
|
Herman JA, Miller MP, Biggins S. chTOG is a conserved mitotic error correction factor. eLife 2020; 9:e61773. [PMID: 33377866 PMCID: PMC7773332 DOI: 10.7554/elife.61773] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
Accurate chromosome segregation requires kinetochores on duplicated chromatids to biorient by attaching to dynamic microtubules from opposite spindle poles, which exerts forces to bring kinetochores under tension. However, kinetochores initially bind to microtubules indiscriminately, resulting in errors that must be corrected. While the Aurora B protein kinase destabilizes low-tension attachments by phosphorylating kinetochores, low-tension attachments are intrinsically less stable than those under higher tension in vitro independent of Aurora activity. Intrinsic tension-sensitive behavior requires the microtubule regulator Stu2 (budding yeast Dis1/XMAP215 ortholog), which we demonstrate here is likely a conserved function for the TOG protein family. The human TOG protein, chTOG, localizes to kinetochores independent of microtubules by interacting with Hec1. We identify a chTOG mutant that regulates microtubule dynamics but accumulates erroneous kinetochore-microtubule attachments that are not destabilized by Aurora B. Thus, TOG proteins confer a unique, intrinsic error correction activity to kinetochores that ensures accurate chromosome segregation.
Collapse
Affiliation(s)
- Jacob A Herman
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Matthew P Miller
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
18
|
Ong JY, Bradley MC, Torres JZ. Phospho-regulation of mitotic spindle assembly. Cytoskeleton (Hoboken) 2020; 77:558-578. [PMID: 33280275 PMCID: PMC7898546 DOI: 10.1002/cm.21649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
The assembly of the bipolar mitotic spindle requires the careful orchestration of a myriad of enzyme activities like protein posttranslational modifications. Among these, phosphorylation has arisen as the principle mode for spatially and temporally activating the proteins involved in early mitotic spindle assembly processes. Here, we review key kinases, phosphatases, and phosphorylation events that regulate critical aspects of these processes. We highlight key phosphorylation substrates that are important for ensuring the fidelity of centriole duplication, centrosome maturation, and the establishment of the bipolar spindle. We also highlight techniques used to understand kinase-substrate relationships and to study phosphorylation events. We conclude with perspectives on the field of posttranslational modifications in early mitotic spindle assembly.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
19
|
Rondelet A, Lin YC, Singh D, Porfetye AT, Thakur HC, Hecker A, Brinkert P, Schmidt N, Bendre S, Müller F, Mazul L, Widlund PO, Bange T, Hiller M, Vetter IR, Bird AW. Clathrin's adaptor interaction sites are repurposed to stabilize microtubules during mitosis. J Cell Biol 2020; 219:133599. [PMID: 31932847 PMCID: PMC7041688 DOI: 10.1083/jcb.201907083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/31/2019] [Accepted: 11/24/2019] [Indexed: 11/22/2022] Open
Abstract
Clathrin ensures mitotic spindle stability and efficient chromosome alignment, independently of its vesicle trafficking function. Although clathrin localizes to the mitotic spindle and kinetochore fiber microtubule bundles, the mechanisms by which clathrin stabilizes microtubules are unclear. We show that clathrin adaptor interaction sites on clathrin heavy chain (CHC) are repurposed during mitosis to directly recruit the microtubule-stabilizing protein GTSE1 to the spindle. Structural analyses reveal that these sites interact directly with clathrin-box motifs on GTSE1. Disruption of this interaction releases GTSE1 from spindles, causing defects in chromosome alignment. Surprisingly, this disruption destabilizes astral microtubules, but not kinetochore-microtubule attachments, and chromosome alignment defects are due to a failure of chromosome congression independent of kinetochore-microtubule attachment stability. GTSE1 recruited to the spindle by clathrin stabilizes microtubules by inhibiting the microtubule depolymerase MCAK. This work uncovers a novel role of clathrin adaptor-type interactions to stabilize nonkinetochore fiber microtubules to support chromosome congression, defining for the first time a repurposing of this endocytic interaction mechanism during mitosis.
Collapse
Affiliation(s)
- Arnaud Rondelet
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Yu-Chih Lin
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Divya Singh
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Harish C Thakur
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andreas Hecker
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Pia Brinkert
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Nadine Schmidt
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Shweta Bendre
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Lisa Mazul
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Per O Widlund
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tanja Bange
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Ingrid R Vetter
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | |
Collapse
|
20
|
So C, Seres KB, Steyer AM, Mönnich E, Clift D, Pejkovska A, Möbius W, Schuh M. A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes. Science 2020; 364:364/6447/eaat9557. [PMID: 31249032 DOI: 10.1126/science.aat9557] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Abstract
Mammalian oocytes segregate chromosomes with a microtubule spindle that lacks centrosomes, but the mechanisms by which acentrosomal spindles are organized and function are largely unclear. In this study, we identify a conserved subcellular structure in mammalian oocytes that forms by phase separation. This structure, which we term the liquid-like meiotic spindle domain (LISD), permeates the spindle poles and forms dynamic protrusions that extend well beyond the spindle. The LISD selectively concentrates multiple microtubule regulatory factors and allows them to diffuse rapidly within the spindle volume. Disruption of the LISD via different means disperses these factors and leads to severe spindle assembly defects. Our data suggest a model whereby the LISD promotes meiotic spindle assembly by serving as a reservoir that sequesters and mobilizes microtubule regulatory factors in proximity to spindle microtubules.
Collapse
Affiliation(s)
- Chun So
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - K Bianka Seres
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.,Bourn Hall Clinic, Cambridge CB23 2TN, UK
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Eike Mönnich
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dean Clift
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Anastasija Pejkovska
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. .,Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
21
|
TACC3 promotes prostate cancer cell proliferation and restrains primary cilium formation. Exp Cell Res 2020; 390:111952. [PMID: 32156598 DOI: 10.1016/j.yexcr.2020.111952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/27/2022]
Abstract
Although primary cilia abnormalities have been frequently observed in multiple cancers, including prostate cancer (PCa), the molecular mechanisms underlying primary ciliogenesis repression in PCa cells remain unclear. Transforming acidic coiled-coil protein-3 (TACC3), whose deregulation has been implicated in the pathogenesis of several types of cancer, is a key centrosomal protein that plays a crucial role in centrosome/microtubule dynamics, potentially impacting primary cilium generation. Here, we showed that TACC3 was markedly upregulated in PCa and that knockdown of TACC3 restrained tumorigenesis and tumor growth in vitro and in vivo. Additionally, we found that TACC3 interacts with filamin A, and elevated levels of TACC3 disrupted the interaction between filamin A and meckelin, thereby restraining primary cilium formation in PCa cells.
Collapse
|
22
|
Rizzelli F, Malabarba MG, Sigismund S, Mapelli M. The crosstalk between microtubules, actin and membranes shapes cell division. Open Biol 2020; 10:190314. [PMID: 32183618 PMCID: PMC7125961 DOI: 10.1098/rsob.190314] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Mitotic progression is orchestrated by morphological and mechanical changes promoted by the coordinated activities of the microtubule (MT) cytoskeleton, the actin cytoskeleton and the plasma membrane (PM). MTs assemble the mitotic spindle, which assists sister chromatid separation, and contact the rigid and tensile actomyosin cortex rounded-up underneath the PM. Here, we highlight the dynamic crosstalk between MTs, actin and cell membranes during mitosis, and discuss the molecular connections between them. We also summarize recent views on how MT traction forces, the actomyosin cortex and membrane trafficking contribute to spindle positioning in isolated cells in culture and in epithelial sheets. Finally, we describe the emerging role of membrane trafficking in synchronizing actomyosin tension and cell shape changes with cell-substrate adhesion, cell-cell contacts and extracellular signalling events regulating proliferation.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
23
|
Rajeev R, Singh P, Asmita A, Anand U, Manna TK. Aurora A site specific TACC3 phosphorylation regulates astral microtubule assembly by stabilizing γ-tubulin ring complex. BMC Mol Cell Biol 2019; 20:58. [PMID: 31823729 PMCID: PMC6902513 DOI: 10.1186/s12860-019-0242-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 11/15/2022] Open
Abstract
Background Astral microtubules emanating from the mitotic centrosomes play pivotal roles in defining cell division axis and tissue morphogenesis. Previous studies have demonstrated that human transforming acidic coiled-coil 3 (TACC3), the most conserved TACC family protein, regulates formation of astral microtubules at centrosomes in vertebrate cells by affecting γ-tubulin ring complex (γ-TuRC) assembly. However, the molecular mechanisms underlying such function were not completely understood. Results Here, we show that Aurora A site-specific phosphorylation in TACC3 regulates formation of astral microtubules by stabilizing γ-TuRC assembly in human cells. Mutation of the most conserved Aurora A targeting site, Ser 558 to alanine (S558A) in TACC3 results in robust loss of astral microtubules and disrupts localization of the γ-tubulin ring complex (γ-TuRC) proteins at the spindle poles. Under similar condition, phospho-mimicking S558D mutation retains astral microtubules and the γ-TuRC proteins in a manner similar to control cells expressed with wild type TACC3. Time-lapse imaging reveals that S558A mutation leads to defects in positioning of the spindle-poles and thereby causes delay in metaphase to anaphase transition. Biochemical results determine that the Ser 558- phosphorylated TACC3 interacts with the γ-TuRC proteins and further, S558A mutation impairs the interaction. We further reveal that the mutation affects the assembly of γ-TuRC from the small complex components. Conclusions The results demonstrate that TACC3 phosphorylation stabilizes γ- tubulin ring complex assembly and thereby regulates formation of centrosomal asters. They also implicate a potential role of TACC3 phosphorylation in the functional integrity of centrosomes/spindle poles.
Collapse
Affiliation(s)
- Resmi Rajeev
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Puja Singh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.,Present Address: Centre for Cellular and Molecular Biology, Uppal Rd, Hyderabad, 500007, India
| | - Ananya Asmita
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Ushma Anand
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| |
Collapse
|
24
|
Cryo-EM of multiple cage architectures reveals a universal mode of clathrin self-assembly. Nat Struct Mol Biol 2019; 26:890-898. [PMID: 31582853 PMCID: PMC7100586 DOI: 10.1038/s41594-019-0292-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/02/2019] [Indexed: 01/10/2023]
Abstract
Clathrin forms diverse lattice and cage structures that change size and shape rapidly in response to the needs of eukaryotic cells during clathrin-mediated endocytosis and intracellular trafficking. We present the cryo-EM structure and molecular model of assembled porcine clathrin, providing insights into interactions that stabilize key elements of the clathrin lattice, namely, between adjacent heavy chains, at the light chain-heavy chain interface and within the trimerization domain. Furthermore, we report cryo-EM maps for five different clathrin cage architectures. Fitting structural models to three of these maps shows that their assembly requires only a limited range of triskelion leg conformations, yet inherent flexibility is required to maintain contacts. Analysis of the protein-protein interfaces shows remarkable conservation of contact sites despite architectural variation. These data reveal a universal mode of clathrin assembly that allows variable cage architecture and adaptation of coated vesicle size and shape during clathrin-mediated vesicular trafficking or endocytosis.
Collapse
|
25
|
Affiliation(s)
- Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
26
|
Parker SS, Krantz J, Kwak EA, Barker NK, Deer CG, Lee NY, Mouneimne G, Langlais PR. Insulin Induces Microtubule Stabilization and Regulates the Microtubule Plus-end Tracking Protein Network in Adipocytes. Mol Cell Proteomics 2019; 18:1363-1381. [PMID: 31018989 PMCID: PMC6601206 DOI: 10.1074/mcp.ra119.001450] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Insulin-stimulated glucose uptake is known to involve microtubules, although the function of microtubules and the microtubule-regulating proteins involved in insulin action are poorly understood. CLASP2, a plus-end tracking microtubule-associated protein (+TIP) that controls microtubule dynamics, was recently implicated as the first +TIP associated with insulin-regulated glucose uptake. Here, using protein-specific targeted quantitative phosphoproteomics within 3T3-L1 adipocytes, we discovered that insulin regulates phosphorylation of the CLASP2 network members G2L1, MARK2, CLIP2, AGAP3, and CKAP5 as well as EB1, revealing the existence of a previously unknown microtubule-associated protein system that responds to insulin. To further investigate, G2L1 interactome studies within 3T3-L1 adipocytes revealed that G2L1 coimmunoprecipitates CLASP2 and CLIP2 as well as the master integrators of +TIP assembly, the end binding (EB) proteins. Live-cell total internal reflection fluorescence microscopy in adipocytes revealed G2L1 and CLASP2 colocalize on microtubule plus-ends. We found that although insulin increases the number of CLASP2-containing plus-ends, insulin treatment simultaneously decreases CLASP2-containing plus-end velocity. In addition, we discovered that insulin stimulates redistribution of CLASP2 and G2L1 from exclusive plus-end tracking to "trailing" behind the growing tip of the microtubule. Insulin treatment increases α-tubulin Lysine 40 acetylation, a mechanism that was observed to be regulated by a counterbalance between GSK3 and mTOR, and led to microtubule stabilization. Our studies introduce insulin-stimulated microtubule stabilization and plus-end trailing of +TIPs as new modes of insulin action and reveal the likelihood that a network of microtubule-associated proteins synergize to coordinate insulin-regulated microtubule dynamics.
Collapse
Affiliation(s)
- Sara S Parker
- From the ‡Department of Cellular & Molecular Medicine
| | - James Krantz
- §Department of Medicine, Division of Endocrinology
| | | | | | - Chris G Deer
- University of Arizona Research Computing, University of Arizona, Tucson, Arizona 85721
| | - Nam Y Lee
- ¶Department of Pharmacology,; ‖Department of Chemistry & Biochemistry, University of Arizona College of Medicine, Tucson, Arizona 85721
| | | | | |
Collapse
|
27
|
Zhang Y, Tan L, Yang Q, Li C, Liou YC. The microtubule-associated protein HURP recruits the centrosomal protein TACC3 to regulate K-fiber formation and support chromosome congression. J Biol Chem 2018; 293:15733-15747. [PMID: 30054275 DOI: 10.1074/jbc.ra118.003676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/19/2018] [Indexed: 11/06/2022] Open
Abstract
Kinetochore fibers (K-fibers) are microtubule bundles attached to chromosomes. Efficient K-fiber formation is required for chromosome congression, crucial for faithful chromosome segregation in cells. However, the mechanisms underlying K-fiber formation before chromosome biorientation remain unclear. Depletion of hepatoma up-regulated protein (HURP), a RanGTP-dependent microtubule-associated protein localized on K-fibers, has been shown to result in low-efficiency K-fiber formation. Therefore, here we sought to identify critical interaction partners of HURP that may modulate this function. Using co-immunoprecipitation and bimolecular fluorescence complementation assays, we determined that HURP interacts directly with the centrosomal protein transforming acidic coiled coil-containing protein 3 (TACC3), a centrosomal protein, both in vivo and in vitro through the HURP1-625 region. We found that HURP is important for TACC3 function during kinetochore microtubule assembly at the chromosome region in prometaphase. Moreover, HURP regulates stable lateral kinetochore attachment and chromosome congression in early mitosis by modulation of TACC3. These findings provide new insight into the coordinated regulation of K-fiber formation and chromosome congression in prometaphase by microtubule-associated proteins.
Collapse
Affiliation(s)
- Yajun Zhang
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and
| | - Lora Tan
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and
| | - Qiaoyun Yang
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and
| | - Chenyu Li
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and
| | - Yih-Cherng Liou
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and .,the NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117573, Singapore
| |
Collapse
|
28
|
Rostkova E, Burgess SG, Bayliss R, Pfuhl M. Solution NMR assignment of the C-terminal domain of human chTOG. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:221-224. [PMID: 29582386 PMCID: PMC6132821 DOI: 10.1007/s12104-018-9812-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
The microtubule regulatory protein colonic and hepatic tumor overexpressed gene (chTOG), also known as cytoskeleleton associated protein 5 (CKAP5) plays an important role in organizing the cytoskeleton and in particular in the assembly of k-fibres in mitosis. Recently, we dissected the hitherto poorly understood C-terminus of this protein by discovering two new domains-a cryptic TOG domain (TOG6) and a smaller, helical domain at the very C-terminus. It was shown that the C-terminal domain is important for the interaction with the TACC domain in TACC3 during the assembly of k-fibres in a ternary complex that also includes clathrin. Here we now present the solution NMR assignment of the chTOG C-terminal domain which confirms our earlier prediction that it is mainly made of α-helices. However, the appearance of the 1H-15N HSQC spectrum is indicative of the presence of a considerable amount of unstructured and possibly flexible portions of protein in the domain.
Collapse
Affiliation(s)
- Elena Rostkova
- Cardiovascular and Randall Division, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Selena G Burgess
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard Bayliss
- Faculty of Biological Sciences, School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark Pfuhl
- Cardiovascular and Randall Division, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
29
|
Nelson KN, Meyer AN, Wang CG, Donoghue DJ. Oncogenic driver FGFR3-TACC3 is dependent on membrane trafficking and ERK signaling. Oncotarget 2018; 9:34306-34319. [PMID: 30344944 PMCID: PMC6188140 DOI: 10.18632/oncotarget.26142] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/08/2018] [Indexed: 12/30/2022] Open
Abstract
Fusion proteins resulting from chromosomal translocations have been identified as oncogenic drivers in many cancers, allowing them to serve as potential drug targets in clinical practice. The genes encoding FGFRs, Fibroblast Growth Factor Receptors, are commonly involved in such translocations, with the FGFR3-TACC3 fusion protein frequently identified in many cancers, including glioblastoma, cervical cancer, bladder cancer, nasopharyngeal carcinoma, and lung adenocarcinoma among others. FGFR3-TACC3 retains the entire extracellular domain and most of the kinase domain of FGFR3, with its C-terminal domain fused to TACC3. We examine here the effects of targeting FGFR3-TACC3 to different subcellular localizations by appending either a nuclear localization signal (NLS) or a myristylation signal, or by deletion of the normal signal sequence. We demonstrate that the oncogenic effects of FGFR3-TACC3 require either entrance to the secretory pathway or plasma membrane localization, leading to overactivation of canonical MAPK/ERK pathways. We also examined the effects of different translocation breakpoints in FGFR3-TACC3, comparing fusion at TACC3 exon 11 with fusion at exon 8. Transformation resulting from FGFR3-TACC3 was not affected by association with the canonical TACC3-interacting proteins Aurora-A, clathrin, and ch-TOG. We have shown that kinase inhibitors for MEK (Trametinib) and FGFR (BGJ398) are effective in blocking cell transformation and MAPK pathway upregulation. The development of personalized medicines will be essential in treating patients who harbor oncogenic drivers such as FGFR3-TACC3.
Collapse
Affiliation(s)
- Katelyn N Nelson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Clark G Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA.,UCSD Moores Cancer Center and University of California San Diego, La Jolla, California, USA
| |
Collapse
|
30
|
Mukherjee M, Sabir S, O'Regan L, Sampson J, Richards MW, Huguenin-Dezot N, Ault JR, Chin JW, Zhuravleva A, Fry AM, Bayliss R. Mitotic phosphorylation regulates Hsp72 spindle localization by uncoupling ATP binding from substrate release. Sci Signal 2018; 11:11/543/eaao2464. [PMID: 30108182 DOI: 10.1126/scisignal.aao2464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hsp72 is a member of the 70-kDa heat shock family of molecular chaperones (Hsp70s) that comprise a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD) connected by a linker that couples the exchange of adenosine diphosphate (ADP) for adenosine triphosphate (ATP) with the release of the protein substrate. Mitotic phosphorylation of Hsp72 by the kinase NEK6 at Thr66 located in the NBD promotes the localization of Hsp72 to the mitotic spindle and is required for efficient spindle assembly and chromosome congression and segregation. We determined the crystal structure of the Hsp72 NBD containing a genetically encoded phosphoserine at position 66. This revealed structural changes that stabilized interactions between subdomains within the NBD. ATP binding to the NBD of unmodified Hsp72 resulted in the release of substrate from the SBD, but phosphorylated Hsp72 retained substrate in the presence of ATP. Mutations that prevented phosphorylation-dependent subdomain interactions restored the connection between ATP binding and substrate release. Thus, phosphorylation of Thr66 is a reversible mechanism that decouples the allosteric connection between nucleotide binding and substrate release, providing further insight into the regulation of the Hsp70 family. We propose that phosphorylation of Hsp72 on Thr66 by NEK6 during mitosis promotes its localization to the spindle by stabilizing its interactions with components of the mitotic spindle.
Collapse
Affiliation(s)
- Manjeet Mukherjee
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sarah Sabir
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Laura O'Regan
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Josephina Sampson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Mark W Richards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nicolas Huguenin-Dezot
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Anastasia Zhuravleva
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
31
|
Bond MJ, Bleiler M, Harrison LE, Scocchera EW, Nakanishi M, G-Dayanan N, Keshipeddy S, Rosenberg DW, Wright DL, Giardina C. Spindle Assembly Disruption and Cancer Cell Apoptosis with a CLTC-Binding Compound. Mol Cancer Res 2018; 16:1361-1372. [PMID: 29769406 DOI: 10.1158/1541-7786.mcr-18-0178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/05/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022]
Abstract
AK3 compounds are mitotic arrest agents that induce high levels of γH2AX during mitosis and apoptosis following release from arrest. We synthesized a potent AK3 derivative, AK306, that induced arrest and apoptosis of the HCT116 colon cancer cell line with an EC50 of approximately 50 nmol/L. AK306 was active on a broad spectrum of cancer cell lines with total growth inhibition values ranging from approximately 25 nmol/L to 25 μmol/L. Using biotin and BODIPY-linked derivatives of AK306, binding to clathrin heavy chain (CLTC/CHC) was observed, a protein with roles in endocytosis and mitosis. AK306 inhibited mitosis and endocytosis, while disrupting CHC cellular localization. Cells arrested in mitosis by AK306 showed the formation of multiple microtubule-organizing centers consisting of pericentrin, γ-tubulin, and Aurora A foci, without apparent centrosome amplification. Cells released from AK306 arrest were unable to form bipolar spindles, unlike nocodazole-released cells that reformed spindles and completed division. Like AK306, CHC siRNA knockdown disrupted spindle formation and activated p53. A short-term (3-day) treatment of tumor-bearing APC-mutant mice with AK306 increased apoptosis in tumors, but not normal mucosa. These findings indicate that targeting the mitotic CHC complex can selectively induce apoptosis and may have therapeutic value.Implication: Disruption of clathrin with a small-molecule inhibitor, AK306, selectively induces apoptosis in cancer cells by disrupting bipolar spindle formation. Mol Cancer Res; 16(9); 1361-72. ©2018 AACR.
Collapse
Affiliation(s)
- Michael J Bond
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.,Department of Pharmacology, Yale University, New Haven, Connecticut
| | - Marina Bleiler
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Lauren E Harrison
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Eric W Scocchera
- Department of Medicinal Chemistry, University of Connecticut, Storrs, Connecticut
| | - Masako Nakanishi
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut
| | - Narendran G-Dayanan
- Department of Medicinal Chemistry, University of Connecticut, Storrs, Connecticut
| | - Santosh Keshipeddy
- Department of Medicinal Chemistry, University of Connecticut, Storrs, Connecticut
| | | | - Dennis L Wright
- Department of Medicinal Chemistry, University of Connecticut, Storrs, Connecticut
| | - Charles Giardina
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
32
|
Thawani A, Kadzik RS, Petry S. XMAP215 is a microtubule nucleation factor that functions synergistically with the γ-tubulin ring complex. Nat Cell Biol 2018; 20:575-585. [PMID: 29695792 PMCID: PMC5926803 DOI: 10.1038/s41556-018-0091-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
How microtubules (MTs) are generated in the cell is a major question in understanding how the cytoskeleton is assembled. For several decades, γ-tubulin has been accepted as the universal MT nucleator of the cell. Although there is evidence that γ-tubulin complexes are not the sole MT nucleators, identification of other nucleation factors has proven difficult. Here, we report that the well-characterized MT polymerase XMAP215 (chTOG/Msps/Stu2p/Alp14/Dis1 homologue) is essential for MT nucleation in Xenopus egg extracts. The concentration of XMAP215 determines the extent of MT nucleation. Even though XMAP215 and the γ-tubulin ring complex (γ-TuRC) possess minimal nucleation activity individually, together, these factors synergistically stimulate MT nucleation in vitro. The amino-terminal TOG domains 1-5 of XMAP215 bind to αβ-tubulin and promote MT polymerization, whereas the conserved carboxy terminus is required for efficient MT nucleation and directly binds to γ-tubulin. In summary, XMAP215 and γ-TuRC together function as the principal nucleation module that generates MTs in cells.
Collapse
Affiliation(s)
- Akanksha Thawani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Rachel S Kadzik
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
33
|
Burgess SG, Mukherjee M, Sabir S, Joseph N, Gutiérrez-Caballero C, Richards MW, Huguenin-Dezot N, Chin JW, Kennedy EJ, Pfuhl M, Royle SJ, Gergely F, Bayliss R. Mitotic spindle association of TACC3 requires Aurora-A-dependent stabilization of a cryptic α-helix. EMBO J 2018; 37:e97902. [PMID: 29510984 PMCID: PMC5897774 DOI: 10.15252/embj.201797902] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/26/2022] Open
Abstract
Aurora-A regulates the recruitment of TACC3 to the mitotic spindle through a phospho-dependent interaction with clathrin heavy chain (CHC). Here, we describe the structural basis of these interactions, mediated by three motifs in a disordered region of TACC3. A hydrophobic docking motif binds to a previously uncharacterized pocket on Aurora-A that is blocked in most kinases. Abrogation of the docking motif causes a delay in late mitosis, consistent with the cellular distribution of Aurora-A complexes. Phosphorylation of Ser558 engages a conformational switch in a second motif from a disordered state, needed to bind the kinase active site, into a helical conformation. The helix extends into a third, adjacent motif that is recognized by a helical-repeat region of CHC, not a recognized phospho-reader domain. This potentially widespread mechanism of phospho-recognition provides greater flexibility to tune the molecular details of the interaction than canonical recognition motifs that are dominated by phosphate binding.
Collapse
Affiliation(s)
- Selena G Burgess
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Manjeet Mukherjee
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sarah Sabir
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nimesh Joseph
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | - Mark W Richards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Mark Pfuhl
- Cardiovascular & Randall Division, Kings College London, London, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
34
|
Wood LA, Larocque G, Clarke NI, Sarkar S, Royle SJ. New tools for "hot-wiring" clathrin-mediated endocytosis with temporal and spatial precision. J Cell Biol 2017; 216:4351-4365. [PMID: 28954824 PMCID: PMC5716275 DOI: 10.1083/jcb.201702188] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/26/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) is the major route of receptor internalization at the plasma membrane. Analysis of constitutive CME is difficult because the initiation of endocytic events is unpredictable. When and where a clathrin-coated pit will form and what cargo it will contain are difficult to foresee. Here we describe a series of genetically encoded reporters that allow the initiation of CME on demand. A clathrin-binding protein fragment ("hook") is inducibly attached to an "anchor" protein at the plasma membrane, which triggers the formation of new clathrin-coated vesicles. Our design incorporates temporal and spatial control by the use of chemical and optogenetic methods for inducing hook-anchor attachment. Moreover, the cargo is defined. Because several steps in vesicle creation are bypassed, we term it "hot-wiring." We use hot-wired endocytosis to describe the functional interactions between clathrin and AP2. Two distinct sites on the β2 subunit, one on the hinge and the other on the appendage, are necessary and sufficient for functional clathrin engagement.
Collapse
Affiliation(s)
- Laura A Wood
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, England, UK
| | - Gabrielle Larocque
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, England, UK
| | - Nicholas I Clarke
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, England, UK
| | - Sourav Sarkar
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, England, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, England, UK
| |
Collapse
|
35
|
Fry AM, Bayliss R, Roig J. Mitotic Regulation by NEK Kinase Networks. Front Cell Dev Biol 2017; 5:102. [PMID: 29250521 PMCID: PMC5716973 DOI: 10.3389/fcell.2017.00102] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022] Open
Abstract
Genetic studies in yeast and Drosophila led to identification of cyclin-dependent kinases (CDKs), Polo-like kinases (PLKs) and Aurora kinases as essential regulators of mitosis. These enzymes have since been found in the majority of eukaryotes and their cell cycle-related functions characterized in great detail. However, genetic studies in another fungal species, Aspergillus nidulans, identified a distinct family of protein kinases, the NEKs, that are also widely conserved and have key roles in the cell cycle, but which remain less well studied. Nevertheless, it is now clear that multiple NEK family members act in networks to regulate specific events of mitosis, including centrosome separation, spindle assembly and cytokinesis. Here, we describe our current understanding of how the NEK kinases contribute to these processes, particularly through targeted phosphorylation of proteins associated with the microtubule cytoskeleton. We also present the latest findings on molecular events that control the activation state of the NEKs and how these are revealing novel modes of enzymatic regulation relevant not only to other kinases but also to pathological mechanisms of disease.
Collapse
Affiliation(s)
- Andrew M. Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Richard Bayliss
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Joan Roig
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
36
|
Gulluni F, Martini M, De Santis MC, Campa CC, Ghigo A, Margaria JP, Ciraolo E, Franco I, Ala U, Annaratone L, Disalvatore D, Bertalot G, Viale G, Noatynska A, Compagno M, Sigismund S, Montemurro F, Thelen M, Fan F, Meraldi P, Marchiò C, Pece S, Sapino A, Chiarle R, Di Fiore PP, Hirsch E. Mitotic Spindle Assembly and Genomic Stability in Breast Cancer Require PI3K-C2α Scaffolding Function. Cancer Cell 2017; 32:444-459.e7. [PMID: 29017056 DOI: 10.1016/j.ccell.2017.09.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/25/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
Abstract
Proper organization of the mitotic spindle is key to genetic stability, but molecular components of inter-microtubule bridges that crosslink kinetochore fibers (K-fibers) are still largely unknown. Here we identify a kinase-independent function of class II phosphoinositide 3-OH kinase α (PI3K-C2α) acting as limiting scaffold protein organizing clathrin and TACC3 complex crosslinking K-fibers. Downregulation of PI3K-C2α causes spindle alterations, delayed anaphase onset, and aneuploidy, indicating that PI3K-C2α expression is required for genomic stability. Reduced abundance of PI3K-C2α in breast cancer models initially impairs tumor growth but later leads to the convergent evolution of fast-growing clones with mitotic checkpoint defects. As a consequence of altered spindle, loss of PI3K-C2α increases sensitivity to taxane-based therapy in pre-clinical models and in neoadjuvant settings.
Collapse
Affiliation(s)
- Federico Gulluni
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin 10126, Italy
| | - Miriam Martini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin 10126, Italy.
| | - Maria Chiara De Santis
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin 10126, Italy
| | - Carlo Cosimo Campa
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin 10126, Italy
| | - Alessandra Ghigo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin 10126, Italy
| | - Jean Piero Margaria
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin 10126, Italy
| | - Elisa Ciraolo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin 10126, Italy
| | - Irene Franco
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin 10126, Italy
| | - Ugo Ala
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin 10126, Italy
| | - Laura Annaratone
- Department of Medical Sciences, University of Torino, Turin, Italy; Pathology Unit, Department of Laboratory Medicine, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Davide Disalvatore
- IFOM, The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Giovanni Bertalot
- Program of Molecular Medicine, IEO, European Institute of Oncology, Milan, Italy
| | - Giuseppe Viale
- Division of Pathology, European Institute of Oncology, Milan, Italy; Department of Oncology and Hemato-oncology (DIPO), University of Milan, Milan, Italy
| | - Anna Noatynska
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Mara Compagno
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin 10126, Italy; Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sara Sigismund
- IFOM, The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Filippo Montemurro
- Unit of Investigative Oncology, Candiolo Cancer Institute - FPO, IRCCS, Candiolo (TO), Italy
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Fan Fan
- Department of Biological Science and Bioengineering, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Caterina Marchiò
- Department of Medical Sciences, University of Torino, Turin, Italy; Pathology Unit, Department of Laboratory Medicine, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Salvatore Pece
- Program of Molecular Medicine, IEO, European Institute of Oncology, Milan, Italy; Department of Oncology and Hemato-oncology (DIPO), University of Milan, Milan, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Torino, Turin, Italy; Unit of Pathology, Candiolo Cancer Institute - FPO, IRCCS, Candiolo (TO), Italy
| | - Roberto Chiarle
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin 10126, Italy; Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pier Paolo Di Fiore
- IFOM, The FIRC Institute for Molecular Oncology Foundation, Milan, Italy; Program of Molecular Medicine, IEO, European Institute of Oncology, Milan, Italy; Department of Oncology and Hemato-oncology (DIPO), University of Milan, Milan, Italy
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin 10126, Italy.
| |
Collapse
|
37
|
Lu A, Zhou CJ, Wang DH, Han Z, Kong XW, Ma YZ, Yun ZZ, Liang CG. Cytoskeleton-associated protein 5 and clathrin heavy chain binding regulates spindle assembly in mouse oocytes. Oncotarget 2017; 8:17491-17503. [PMID: 28177917 PMCID: PMC5392264 DOI: 10.18632/oncotarget.15097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Mammalian oocyte meiotic maturation is the precondition of early embryo development. Lots of microtubules (MT)-associated proteins participate in oocyte maturation process. Cytoskeleton-associated protein 5 (CKAP5) is a member of the XMAP215 family that regulates microtubule dynamics during mitosis. However, its role in meiosis has not been fully studied. Here, we investigated the function of CKAP5 in mouse oocyte meiotic maturation and early embryo development. Western blot showed that CKAP5 expression increased from GVBD, maintaining at high level at metaphase, and decreased after late 1-cell stage. Confocal microscopy showed there is no specific accumulation of CKAP5 at interphase (GV, PN or 2-cell stage). However, once cells enter into meiotic or mitotic division, CKAP5 was localized at the whole spindle apparatus. Treatment of oocytes with the tubulin-disturbing reagents nocodazole (induces MTs depolymerization) or taxol (prevents MTs depolymerization) did not affect CKAP5 expression but led to a rearrangement of CKAP5. Further, knock-down of CKAP5 resulted in a failure of first polar body extrusion, serious defects in spindle assembly, and failure of chromosome alignment. Loss of CKAP5 also decreased early embryo development potential. Furthermore, co-immunoprecipitation showed that CKAP5 bound to clathrin heavy chain 1 (CLTC). Taken together, our results demonstrate that CKAP5 is important in oocyte maturation and early embryo development, and CKAP5 might work together with CLTC in mouse oocyte maturation.
Collapse
Affiliation(s)
- Angeleem Lu
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Cheng-Jie Zhou
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Dong-Hui Wang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Zhe Han
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Xiang-Wei Kong
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Yu-Zhen Ma
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Zhi-Zhong Yun
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Cheng-Guang Liang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| |
Collapse
|
38
|
Sampson J, O'Regan L, Dyer MJS, Bayliss R, Fry AM. Hsp72 and Nek6 Cooperate to Cluster Amplified Centrosomes in Cancer Cells. Cancer Res 2017; 77:4785-4796. [PMID: 28720575 DOI: 10.1158/0008-5472.can-16-3233] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/28/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022]
Abstract
Cancer cells frequently possess extra amplified centrosomes clustered into two poles whose pseudo-bipolar spindles exhibit reduced fidelity of chromosome segregation and promote genetic instability. Inhibition of centrosome clustering triggers multipolar spindle formation and mitotic catastrophe, offering an attractive therapeutic approach to selectively kill cells with amplified centrosomes. However, mechanisms of centrosome clustering remain poorly understood. Here, we identify a new pathway that acts through NIMA-related kinase 6 (Nek6) and Hsp72 to promote centrosome clustering. Nek6, as well as its upstream activators polo-like kinase 1 and Aurora-A, targeted Hsp72 to the poles of cells with amplified centrosomes. Unlike some centrosome declustering agents, blocking Hsp72 or Nek6 function did not induce formation of acentrosomal poles, meaning that multipolar spindles were observable only in cells with amplified centrosomes. Inhibition of Hsp72 in acute lymphoblastic leukemia cells resulted in increased multipolar spindle frequency that correlated with centrosome amplification, while loss of Hsp72 or Nek6 function in noncancer-derived cells disturbs neither spindle formation nor mitotic progression. Hence, the Nek6-Hsp72 module represents a novel actionable pathway for selective targeting of cancer cells with amplified centrosomes. Cancer Res; 77(18); 4785-96. ©2017 AACR.
Collapse
Affiliation(s)
- Josephina Sampson
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Laura O'Regan
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Martin J S Dyer
- Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, United Kingdom
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
39
|
A systems medicine approach for finding target proteins affecting treatment outcomes in patients with non-Hodgkin lymphoma. PLoS One 2017; 12:e0183969. [PMID: 28892521 PMCID: PMC5593188 DOI: 10.1371/journal.pone.0183969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023] Open
Abstract
Autoantibody profiling with a systems medicine approach can help identify critical dysregulated signaling pathways (SPs) in cancers. In this way, immunoglobulins G (IgG) purified from the serum samples of 92 healthy controls, 10 pre-treated (PR) non-Hodgkin lymphoma (NHL) patients, and 20 NHL patients who underwent chemotherapy (PS) were screened with a phage-displayed random peptide library. Protein-protein interaction networks of the PR and PS groups were analyzed and visualized by Gephi. The results indicated AXIN2, SENP2, TOP2A, FZD6, NLK, HDAC2, HDAC1, and EHMT2, in addition to CAMK2A, PLCG1, PLCG2, GRM5, GRIN2B, GRIN2D, CACNA2D3, and SPTAN1 as hubs in 11 and 7 modules of PR and PS networks, respectively. PR- and PS-specific hubs were evaluated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases. The PR-specific hubs were involved in Wnt SP, signaling by Notch1 in cancer, telomere maintenance, and transcriptional misregulation. In contrast, glutamate receptor SP, Fc receptor-related pathways, growth factors-related SPs, and Wnt SP were statistically significant enriched pathways, based on the pathway analysis of PS hubs. The results revealed that the most PR-specific proteins were associated with events involved in tumor development, while chemotherapy in the PS group was associated with side effects of drugs and/or cancer recurrence. As the findings demonstrated, PR- and PS-specific proteins in this study can be promising therapeutic targets in future studies.
Collapse
|
40
|
Ding ZM, Huang CJ, Jiao XF, Wu D, Huo LJ. The role of TACC3 in mitotic spindle organization. Cytoskeleton (Hoboken) 2017; 74:369-378. [PMID: 28745816 DOI: 10.1002/cm.21388] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 07/04/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
TACC3 regulates spindle organization during mitosis and also regulates centrosome-mediated microtubule nucleation by affecting γ-Tubulin ring complexes. In addition, it interacts with different proteins (such as ch-TOG, clathrin and Aurora-A) to function in mitotic spindle assembly and stability. By forming the TACC3/ch-TOG complex, TACC3 acts as a plus end-tracking protein to promote microtubule elongation. The TACC3/ch-TOG/clathrin complex is formed to stabilize kinetochore fibers by crosslinking adjacent microtubules. Furthermore, the phosphorylation of TACC3 by Aurora-A is important for the formation of TACC3/ch-TOG/clathrin and its recruitment to kinetochore fibers. Recently, the aberrant expression of TACC3 in a variety of human cancers has been linked with mitotic defects. Thus, in this review, we will discuss our current understanding of the biological roles of TACC3 in mitotic spindle organization.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| |
Collapse
|
41
|
Sarkar S, Ryan EL, Royle SJ. FGFR3-TACC3 cancer gene fusions cause mitotic defects by removal of endogenous TACC3 from the mitotic spindle. Open Biol 2017; 7:170080. [PMID: 28855393 PMCID: PMC5577446 DOI: 10.1098/rsob.170080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/22/2017] [Indexed: 12/31/2022] Open
Abstract
Fibroblast growth factor receptor 3-transforming acidic coiled-coil containing protein 3 (FGFR3-TACC3; FT3) is a gene fusion resulting from rearrangement of chromosome 4 that has been identified in many cancers including those of the urinary bladder. Altered FGFR3 signalling in FT3-positive cells is thought to contribute to cancer progression. However, potential changes in TACC3 function in these cells have not been explored. TACC3 is a mitotic spindle protein required for accurate chromosome segregation. Errors in segregation lead to aneuploidy, which can contribute to cancer progression. Here we show that FT3-positive bladder cancer cells have lower levels of endogenous TACC3 on the mitotic spindle, and that this is sufficient to cause mitotic defects. FT3 is not localized to the mitotic spindle, and by virtue of its TACC domain, recruits endogenous TACC3 away from the spindle. Knockdown of the fusion gene or low-level overexpression of TACC3 partially rescues the chromosome segregation defects in FT3-positive bladder cancer cells. This function of FT3 is specific to TACC3 as inhibition of FGFR3 signalling does not rescue the TACC3 level on the spindle in these cancer cells. Models of FT3-mediated carcinogenesis should, therefore, include altered mitotic functions of TACC3 as well as altered FGFR3 signalling.
Collapse
Affiliation(s)
- Sourav Sarkar
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Ellis L Ryan
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
42
|
Bayliss R, Burgess SG, Leen E, Richards MW. A moving target: structure and disorder in pursuit of Myc inhibitors. Biochem Soc Trans 2017; 45:709-717. [PMID: 28620032 DOI: 10.1042/bst20160328] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 02/11/2024]
Abstract
The Myc proteins comprise a family of ubiquitous regulators of gene expression implicated in over half of all human cancers. They interact with a large number of other proteins, such as transcription factors, chromatin-modifying enzymes and kinases. Remarkably, few of these interactions have been characterized structurally. This is at least in part due to the intrinsically disordered nature of Myc proteins, which adopt a defined conformation only in the presence of binding partners. Owing to this behaviour, crystallographic studies on Myc proteins have been limited to short fragments in complex with other proteins. Most recently, we determined the crystal structure of Aurora-A kinase domain bound to a 28-amino acid fragment of the N-Myc transactivation domain. The structure reveals an α-helical segment within N-Myc capped by two tryptophan residues that recognize the surface of Aurora-A. The kinase domain acts as a molecular scaffold, independently of its catalytic activity, upon which this region of N-Myc becomes ordered. The binding site for N-Myc on Aurora-A is disrupted by certain ATP-competitive inhibitors, such as MLN8237 (alisertib) and CD532, and explains how these kinase inhibitors are able to disrupt the protein-protein interaction to affect Myc destabilization. Structural studies on this and other Myc complexes will lead to the design of protein-protein interaction inhibitors as chemical tools to dissect the complex pathways of Myc regulation and function, which may be developed into Myc inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Selena G Burgess
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mark W Richards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
43
|
Cirillo L, Gotta M, Meraldi P. The Elephant in the Room: The Role of Microtubules in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:93-124. [DOI: 10.1007/978-3-319-57127-0_5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Nixon FM, Honnor TR, Clarke NI, Starling GP, Beckett AJ, Johansen AM, Brettschneider JA, Prior IA, Royle SJ. Microtubule organization within mitotic spindles revealed by serial block face scanning electron microscopy and image analysis. J Cell Sci 2017; 130:1845-1855. [PMID: 28389579 PMCID: PMC6173286 DOI: 10.1242/jcs.203877] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/13/2022] Open
Abstract
Serial block face scanning electron microscopy (SBF-SEM) is a powerful method to analyze cells in 3D. Here, working at the resolution limit of the method, we describe a correlative light-SBF-SEM workflow to resolve microtubules of the mitotic spindle in human cells. We present four examples of uses for this workflow that are not practical by light microscopy and/or transmission electron microscopy. First, distinguishing closely associated microtubules within K-fibers; second, resolving bridging fibers in the mitotic spindle; third, visualizing membranes in mitotic cells, relative to the spindle apparatus; and fourth, volumetric analysis of kinetochores. Our workflow also includes new computational tools for exploring the spatial arrangement of microtubules within the mitotic spindle. We use these tools to show that microtubule order in mitotic spindles is sensitive to the level of TACC3 on the spindle.
Collapse
Affiliation(s)
- Faye M Nixon
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry CV4 7AL, UK
- Institute for Translational Medicine, University of Liverpool L69 3BX, UK
| | - Thomas R Honnor
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Nicholas I Clarke
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry CV4 7AL, UK
| | - Georgina P Starling
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry CV4 7AL, UK
| | - Alison J Beckett
- Institute for Translational Medicine, University of Liverpool L69 3BX, UK
| | - Adam M Johansen
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | | | - Ian A Prior
- Institute for Translational Medicine, University of Liverpool L69 3BX, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry CV4 7AL, UK
| |
Collapse
|
45
|
Petschnigg J, Kotlyar M, Blair L, Jurisica I, Stagljar I, Ketteler R. Systematic Identification of Oncogenic EGFR Interaction Partners. J Mol Biol 2016; 429:280-294. [PMID: 27956147 PMCID: PMC5240790 DOI: 10.1016/j.jmb.2016.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (TK) that—once activated upon ligand binding—leads to receptor dimerization, recruitment of protein complexes, and activation of multiple signaling cascades. The EGFR is frequently overexpressed or mutated in various cancers leading to aberrant signaling and tumor growth. Hence, identification of interaction partners that bind to mutated EGFR can help identify novel targets for drug discovery. Here, we used a systematic approach to identify novel proteins that are involved in cancerous EGFR signaling. Using a combination of high-content imaging and a mammalian membrane two-hybrid protein–protein interaction method, we identified eight novel interaction partners of EGFR, of which half strongly interacted with oncogenic, hyperactive EGFR variants. One of these, transforming acidic coiled-coil proteins (TACC) 3, stabilizes EGFR on the cell surface, which results in an increase in downstream signaling via the mitogen-activated protein kinase and AKT pathway. Depletion of TACC3 from cells using small hairpin RNA (shRNA) knockdown or small-molecule targeting reduced mitogenic signaling in non-small cell lung cancer cell lines, suggesting that targeting TACC3 has potential as a new therapeutic approach for non-small cell lung cancer. A combined screening approach involving an image-based green fluorescent protein-Grb2 translocation assay and a mammalian membrane two-hybrid protein–protein interaction assay identified 11 novel interactors of EGFR. Eight of those were further confirmed by co-immunoprecipitation. TACC3 was identified as a novel EGFR interactor, which specifically binds to oncogenic EGFR variants. TACC3 directly modulates EGFR stability at the cell surface and hence promotes mitogen-activated protein kinase signaling. Targeting TACC3 in non-small cell lung cancer cells partially resensitizes TK-resistant cells to TK inhibitors.
Collapse
Affiliation(s)
- Julia Petschnigg
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Max Kotlyar
- Princess Margaret Cancer Center, University Health Network, Toronto, M5G 2M9, Canada
| | - Louise Blair
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Igor Jurisica
- Princess Margaret Cancer Center, University Health Network, Toronto, M5G 2M9, Canada; Department of Medical Biophysics, University of Toronto, Toronto, M5G 1L7, Canada; Department of Computer Science, University of Toronto, Toronto, M5S 2E4, Canada; TECHNA Institute for the Advancement of Technology for Health, Toronto, M5G 1L5, Canada
| | - Igor Stagljar
- Donnelly Centre, Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, M5S 1A8, Canada; Department of Biochemistry, University of Toronto, M5S 1A8, Canada
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
46
|
Bendre S, Rondelet A, Hall C, Schmidt N, Lin YC, Brouhard GJ, Bird AW. GTSE1 tunes microtubule stability for chromosome alignment and segregation by inhibiting the microtubule depolymerase MCAK. J Cell Biol 2016; 215:631-647. [PMID: 27881713 PMCID: PMC5147003 DOI: 10.1083/jcb.201606081] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/04/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022] Open
Abstract
The microtubule depolymerase MCAK influences chromosomal instability (CIN), but what controls its activity remains unclear. Bendre et al. show that GTSE1, a protein found overexpressed in tumors, regulates microtubule stability and chromosome alignment during mitosis by inhibiting MCAK. High levels of GTSE1 are linked to chromosome missegregation and CIN. The dynamic regulation of microtubules (MTs) during mitosis is critical for accurate chromosome segregation and genome stability. Cancer cell lines with hyperstabilized kinetochore MTs have increased segregation errors and elevated chromosomal instability (CIN), but the genetic defects responsible remain largely unknown. The MT depolymerase MCAK (mitotic centromere-associated kinesin) can influence CIN through its impact on MT stability, but how its potent activity is controlled in cells remains unclear. In this study, we show that GTSE1, a protein found overexpressed in aneuploid cancer cell lines and tumors, regulates MT stability during mitosis by inhibiting MCAK MT depolymerase activity. Cells lacking GTSE1 have defects in chromosome alignment and spindle positioning as a result of MT instability caused by excess MCAK activity. Reducing GTSE1 levels in CIN cancer cell lines reduces chromosome missegregation defects, whereas artificially inducing GTSE1 levels in chromosomally stable cells elevates chromosome missegregation and CIN. Thus, GTSE1 inhibition of MCAK activity regulates the balance of MT stability that determines the fidelity of chromosome alignment, segregation, and chromosomal stability.
Collapse
Affiliation(s)
- Shweta Bendre
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Arnaud Rondelet
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Conrad Hall
- Department of Biology, McGill University, Montreal H3A 1B1, Quebec, Canada
| | - Nadine Schmidt
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Yu-Chih Lin
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Gary J Brouhard
- Department of Biology, McGill University, Montreal H3A 1B1, Quebec, Canada
| | - Alexander W Bird
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
47
|
Rao SR, Flores-Rodriguez N, Page SL, Wong C, Robinson PJ, Chircop M. The Clathrin-dependent Spindle Proteome. Mol Cell Proteomics 2016; 15:2537-53. [PMID: 27174698 DOI: 10.1074/mcp.m115.054809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 01/07/2023] Open
Abstract
The mitotic spindle is required for chromosome congression and subsequent equal segregation of sister chromatids. These processes involve a complex network of signaling molecules located at the spindle. The endocytic protein, clathrin, has a "moonlighting" role during mitosis, whereby it stabilizes the mitotic spindle. The signaling pathways that clathrin participates in to achieve mitotic spindle stability are unknown. Here, we assessed the mitotic spindle proteome and phosphoproteome in clathrin-depleted cells using quantitative MS/MS (data are available via ProteomeXchange with identifier PXD001603). We report a spindle proteome that consists of 3046 proteins and a spindle phosphoproteome consisting of 5157 phosphosites in 1641 phosphoproteins. Of these, 2908 (95.4%) proteins and 1636 (99.7%) phosphoproteins are known or predicted spindle-associated proteins. Clathrin-depletion from spindles resulted in dysregulation of 121 proteins and perturbed signaling to 47 phosphosites. The majority of these proteins increased in mitotic spindle abundance and six of these were validated by immunofluorescence microscopy. Functional pathway analysis confirmed the reported role of clathrin in mitotic spindle stabilization for chromosome alignment and highlighted possible new mechanisms of clathrin action. The data also revealed a novel second mitotic role for clathrin in bipolar spindle formation.
Collapse
Affiliation(s)
- Sushma R Rao
- From the ‡Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, Australia
| | - Neftali Flores-Rodriguez
- From the ‡Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, Australia
| | - Scott L Page
- From the ‡Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, Australia
| | - Chin Wong
- From the ‡Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, Australia
| | - Phillip J Robinson
- From the ‡Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, Australia
| | - Megan Chircop
- From the ‡Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, Australia
| |
Collapse
|
48
|
Yu JX, Chen Q, Yu YQ, Li SQ, Song JF. Upregulation of colonic and hepatic tumor overexpressed gene is significantly associated with the unfavorable prognosis marker of human hepatocellular carcinoma. Am J Cancer Res 2016; 6:690-700. [PMID: 27152245 PMCID: PMC4851847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023] Open
Abstract
Colonic hepatic tumor overexpressed gene (ch-TOG), a member of the highly conserved XMAP215 family of microtubule-associated proteins (MAPs), plays a crucial role in bipolar mitotic spindle assembly. Here, we performed proof-of-principle studies targeting ch-TOG for the development of HCC and further compared its prognostic significance with the clinicopathologic features of HCC. Quantitative real-time PCR was used to measure the expression level of ch-TOG mRNA in 207 cases of paired HCC and adjacent noncancerous liver tissues (ANLT). Additionally, immunohistochemistry was employed to identify ch-TOG protein in 71 HCC tissues. All HCC patients were divided into two groups according to the expression level of ch-TOG. Cumulative progression-free survival (PFS) and overall survival (OS) curves were estimated using the Kaplan-Meier method, and the prognostic value of ch-TOG was further evaluated using the Cox proportional hazards regression model. Our studies suggested that ch-TOG is overexpressed in HCC tissues compared with ANLT. The ch-TOG level was correlated with other prognostic factors, including the hepatitis B surface antigen (HBsAg) (p = 0.030), median size (p = 0.008), clinical tumor-node-metastasis (TNM) stage (p = 0.002), and alpha-fetoprotein (AFP) level (p = 0.030). Kaplan-Meier survival analysis showed that increased ch-TOG was associated with reduced PFS (p = 0.002) and OS (p = 0.004). Multivariate Cox proportional hazards analysis identified ch-TOG as an independent prognostic factor for the PFS (hazard ratio [HR] = 1.479, 95% confidence interval [CI] = 1.028-2.127, p = 0.035) and OS (HR = 1.609, 95% CI = 1.114-2.325, p = 0.011) of the HCC patients. Increased ch-TOG represents a powerful marker for predicting poorer prognosis in the clinical management of HCC, and may serve as a potential molecular target for HCC therapies in the future.
Collapse
Affiliation(s)
- Jun-Xiong Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Guilin Medical UniversityGuilin 541199, Guangxi, People’s Republic of China
| | - Qian Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical UniversityGuilin, 541001, Guangxi, People’s Republic of China
| | - Ya-Qun Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical UniversityGuilin, 541001, Guangxi, People’s Republic of China
| | - Shu-Qun Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical UniversityGuilin, 541001, Guangxi, People’s Republic of China
| | - Jian-Fei Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guilin Medical UniversityGuilin 541199, Guangxi, People’s Republic of China
| |
Collapse
|
49
|
Burgess SG, Bayliss R, Pfuhl M. Solution NMR assignment of the cryptic sixth TOG domain of mini spindles. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:411-413. [PMID: 25971232 DOI: 10.1007/s12104-015-9620-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/07/2015] [Indexed: 06/04/2023]
Abstract
TOG domains contribute to the organisation of microtubules through their ability to bind tubulin. They are found in members of the XMAP215 family of proteins, which act as microtubule polymerases and fulfill important roles in the formation of the mitotic spindle and in the assembly of kinetochore fibres. We recently identified a cryptic TOG domain in the XMAP215 family proteins, chTOG and its Drosophila homologue, mini spindles. This domain is not part of the well-established array of TOG domains involved in tubulin polymerisation. Instead it forms part of a binding site for TACC3 family proteins. This interaction is required for the assembly of kinetochore bridges in a trimeric complex with clathrin. Here we present the first NMR assignment of a sixth TOG domain from mini spindles as a first step to elucidate its structure and function.
Collapse
Affiliation(s)
- Selena G Burgess
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK
- Cancer Research UK Leicester Centre, Lancaster Road, Leicester, LE1 9HN, UK
| | - Richard Bayliss
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK
- Cancer Research UK Leicester Centre, Lancaster Road, Leicester, LE1 9HN, UK
| | - Mark Pfuhl
- Cardiovascular and Randall Division, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
50
|
Burgess SG, Peset I, Joseph N, Cavazza T, Vernos I, Pfuhl M, Gergely F, Bayliss R. Aurora-A-Dependent Control of TACC3 Influences the Rate of Mitotic Spindle Assembly. PLoS Genet 2015; 11:e1005345. [PMID: 26134678 PMCID: PMC4489650 DOI: 10.1371/journal.pgen.1005345] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/09/2015] [Indexed: 11/21/2022] Open
Abstract
The essential mammalian gene TACC3 is frequently mutated and amplified in cancers and its fusion products exhibit oncogenic activity in glioblastomas. TACC3 functions in mitotic spindle assembly and chromosome segregation. In particular, phosphorylation on S558 by the mitotic kinase, Aurora-A, promotes spindle recruitment of TACC3 and triggers the formation of a complex with ch-TOG-clathrin that crosslinks and stabilises kinetochore microtubules. Here we map the Aurora-A-binding interface in TACC3 and show that TACC3 potently activates Aurora-A through a domain centered on F525. Vertebrate cells carrying homozygous F525A mutation in the endogenous TACC3 loci exhibit defects in TACC3 function, namely perturbed localization, reduced phosphorylation and weakened interaction with clathrin. The most striking feature of the F525A cells however is a marked shortening of mitosis, at least in part due to rapid spindle assembly. F525A cells do not exhibit chromosome missegregation, indicating that they undergo fast yet apparently faithful mitosis. By contrast, mutating the phosphorylation site S558 to alanine in TACC3 causes aneuploidy without a significant change in mitotic duration. Our work has therefore defined a regulatory role for the Aurora-A-TACC3 interaction beyond the act of phosphorylation at S558. We propose that the regulatory relationship between Aurora-A and TACC3 enables the transition from the microtubule-polymerase activity of TACC3-ch-TOG to the microtubule-crosslinking activity of TACC3-ch-TOG-clathrin complexes as mitosis progresses. Aurora-A-dependent control of TACC3 could determine the balance between these activities, thereby influencing not only spindle length and stability but also the speed of spindle formation with vital consequences for chromosome alignment and segregation.
Collapse
Affiliation(s)
- Selena G. Burgess
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- Cancer Research UK Leicester Centre, University of Leicester, Leicester, United Kingdom
| | - Isabel Peset
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Nimesh Joseph
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Tommaso Cavazza
- Cell and Developmental Biology program, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology program, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mark Pfuhl
- Cardiovascular and Randall Division, King’s College London, London, United Kingdom
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Richard Bayliss
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- Cancer Research UK Leicester Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|