1
|
Rivas-Mercado E, Neri-Castro E, Zarzosa V, Hernández-Orihuela L, Olvera-Rodríguez F, Torres-Garza JD, Garza-Ocañas L. Mictlan-D3: A novel medium sized RGD-Disintegrin obtained from Crotalus mictlantecuhtli venom, in vitro tested against human breast Cancer and endothelial cells. Toxicol In Vitro 2025; 104:105987. [PMID: 39631634 DOI: 10.1016/j.tiv.2024.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/10/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Disintegrins are small non-enzymatic proteins present often at low concentration in the venom of viperid snakes. Isolated disintegrins are known for their lack of toxicity as well as their capacity to antagonize integrin receptors. Integrins are a major family of heterodimeric cell surface receptors that mediate cell-cell and cell-extracellular matrix (ECM) interactions. Integrins regulate key functions in cancer pathology and also tumor development. The aim of this study consisted in the isolation and characterization of disintegrins from rattlesnake new species Crotalus mictlantecuhtli venom. A disintegrin fraction obtained by RP-HPLC and named mictlan-D3, consist in two isoforms of 7439 and 7509 Da with 72 amino acid sequence containing the RGD binding motif. Mictlan-D3 inhibited MDA-MB-231 and HMEC-1 cell adhesion to laminin (LN), fibronectin (FN) and vitronectin (VN), highest inhibition was on MDA-MB-231 cell adhesion to LN by 81 % at 1 μM. The blockade of ⍺Vβ3 integrin was evaluated by wound healing migration assay. Mictlan-D3 inhibited MDA-MB-231 cell migration by 80 % and 38 % after 24 and 72 h of incubation respectively. HMEC-1 cell migration was inhibited by 67.6 % and 27.9 % after 24 and 72 h of incubation. Additionally, mictlan-D3. This work represent the first characterization of disintegrins from the Crotalus mictlantecuhtli venom.
Collapse
Affiliation(s)
- E Rivas-Mercado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - E Neri-Castro
- Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico
| | - V Zarzosa
- Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico
| | - L Hernández-Orihuela
- Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico
| | - F Olvera-Rodríguez
- Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico
| | - J D Torres-Garza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - L Garza-Ocañas
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
2
|
Nurden AT, Nurden P. Glanzmann Thrombasthenia 10 Years Later: Progress Made and Future Directions. Semin Thromb Hemost 2025; 51:196-208. [PMID: 38499192 DOI: 10.1055/s-0044-1782519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Glanzmann thrombasthenia (GT) is the most common inherited platelet disorder (IPD) with mucocutaneous bleeding and a failure of platelets to aggregate when stimulated. The molecular cause is insufficient or defective αIIbβ3, an integrin encoded by the ITGA2B and ITGB3 genes. On activation αIIbβ3 undergoes conformational changes and binds fibrinogen (Fg) and other proteins to join platelets in the aggregate. The application of next-generation sequencing (NGS) to patients with IPDs has accelerated genotyping for GT; progress accompanied by improved mutation curation. The evaluation by NGS of variants in other hemostasis and vascular genes is a major step toward understanding why bleeding varies so much between patients. The recently discovered role for glycoprotein VI in thrombus formation, through its binding to fibrin and surface-bound Fg, may offer a mechanosensitive back-up for αIIbβ3, especially at sites of inflammation. The setting up of national networks for IPDs and GT is improving patient care. Hematopoietic stem cell therapy provides a long-term cure for severe cases; however, prophylaxis by monoclonal antibodies designed to accelerate fibrin formation at injured sites in the vasculature is a promising development. Gene therapy using lentil-virus vectors remains a future option with CRISPR/Cas9 technologies offering a promising alternative route.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| |
Collapse
|
3
|
Ludwig BS, Krautkremer N, Tomassi S, Di Maro S, Di Leva FS, Benge A, Nieberler M, Kessler H, Marinelli L, Kossatz S, Reuning U. Switching Roles─Exploring Concentration-Dependent Agonistic versus Antagonistic Behavior of Integrin Ligands. J Med Chem 2025. [PMID: 39908297 DOI: 10.1021/acs.jmedchem.4c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Identification of integrins as cancer targets has stimulated the development of specific inhibitory ligands. However, following cilengitide's unexpected clinical failure by promoting angiogenesis at low concentrations, pure ligand antagonism was soon scrutinized. We evaluated αvβ3, αvβ6, or α5β1 ligands for concentration-dependent functional switches in respective integrin subtype-overexpressing cancer cells. Cilengitide (L2) or L1 provoked minor transient changes in (p)-FAK and (p)-p44/42(erk-1/2) predominantly at low concentrations and antagonized cell migration at high concentrations, while agonistically accelerating it at low concentrations. L5 (α5β1) showed bell-shaped FAK activation at both concentrations, blocking cell migration at high concentrations only in α5β1+ OV-MZ-6 cells, not acting agonistically. L3 (αvβ6) did not alter signaling upon long exposure but transiently and early activated FAK in αvβ6+ HN cells at both concentrations, with neither antagonistic nor agonistic consequences on cell motility. These data underscore the need for in-depth evaluation of ligand actions to ensure their most promising medical use.
Collapse
Affiliation(s)
- Beatrice Stefanie Ludwig
- Department of Nuclear Medicine, School of Medicine & Health, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine & Health, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Nils Krautkremer
- Department of Oral and Maxillofacial Surgery, School of Medicine & Health, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Stefano Tomassi
- UNINA - Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Salvatore Di Maro
- SUN - Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Viale Abramo Lincoln, 5, Caserta 81100, Italy
| | - Francesco Saverio Di Leva
- UNINA - Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Anke Benge
- Department of Obstetrics & Gynecology, School of Medicine & Health, Clinical Research Unit, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Markus Nieberler
- Department of Oral and Maxillofacial Surgery, School of Medicine & Health, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Horst Kessler
- Department of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Institute for Advanced Study, Technical University Munich, Lichtenbergstrasse 2a, Garching 85748, Germany
| | - Luciana Marinelli
- UNINA - Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Susanne Kossatz
- Department of Nuclear Medicine, School of Medicine & Health, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine & Health, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
- Department of Chemistry, School of Natural Sciences, Technical University Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Ute Reuning
- Department of Obstetrics & Gynecology, School of Medicine & Health, Clinical Research Unit, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| |
Collapse
|
4
|
Reuning U, D'Amore VM, Hodivala-Dilke K, Marinelli L, Kessler H. Importance of integrin transmembrane helical interactions for antagonistic versus agonistic ligand behavior: Consequences for medical applications. Bioorg Chem 2025; 156:108193. [PMID: 39842299 DOI: 10.1016/j.bioorg.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Integrins are well-characterized receptors involved in cell adhesion and signaling. With six approved drugs, they are recognized as valuable therapeutic targets. Here, we explore potential activation mechanisms that may clarify the agonist versus antagonist behavior of integrin ligands. The reorganization of the transmembrane domain (TMD) in the integrin receptor, forming homooligomers within focal adhesions, could be key to the understanding of the agonistic properties of integrin ligands at substoichiometric concentrations. This has significant implications for medical applications. While we focus on the RGD peptide-recognizing integrin subfamily, we propose that these mechanistic insights may also apply to other integrin subtypes. For application of integrin ligands in medicine it is essential to consider this mechanism and its consequences for affinity and bioavailability.
Collapse
Affiliation(s)
- Ute Reuning
- TUM University Hospital, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Department of Gynecology and Obstetrics, Clinical Research Unit, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Vincenzo Maria D'Amore
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | - Luciana Marinelli
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Horst Kessler
- Institute for Advanced Study, Department of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Technical University Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany.
| |
Collapse
|
5
|
Jaudon F, Cingolani LA. Unlocking mechanosensitivity: integrins in neural adaptation. Trends Cell Biol 2024; 34:1029-1043. [PMID: 38514304 DOI: 10.1016/j.tcb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Mechanosensitivity extends beyond sensory cells to encompass most neurons in the brain. Here, we explore recent research on the role of integrins, a diverse family of adhesion molecules, as crucial biomechanical sensors translating mechanical forces into biochemical and electrical signals in the brain. The varied biomechanical properties of neuronal integrins, including their force-dependent conformational states and ligand interactions, dictate their specific functions. We discuss new findings on how integrins regulate filopodia and dendritic spines, shedding light on their contributions to synaptic plasticity, and explore recent discoveries on how they engage with metabotropic receptors and ion channels, highlighting their direct participation in electromechanical transduction. Finally, to facilitate a deeper understanding of these developments, we present molecular and biophysical models of mechanotransduction.
Collapse
Affiliation(s)
- Fanny Jaudon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenzo A Cingolani
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; Center for Synaptic Neuroscience and Technology (NSYN), Fondazione Istituto Italiano di Tecnologia (IIT), 16132 Genoa, Italy.
| |
Collapse
|
6
|
Peters K, Staehlke S, Rebl H, Jonitz-Heincke A, Hahn O. Impact of Metal Ions on Cellular Functions: A Focus on Mesenchymal Stem/Stromal Cell Differentiation. Int J Mol Sci 2024; 25:10127. [PMID: 39337612 PMCID: PMC11432215 DOI: 10.3390/ijms251810127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Metals play a crucial role in the human body, especially as ions in metalloproteins. Essential metals, such as calcium, iron, and zinc are crucial for various physiological functions, but their interactions within biological networks are complex and not fully understood. Mesenchymal stem/stromal cells (MSCs) are essential for tissue regeneration due to their ability to differentiate into various cell types. This review article addresses the effects of physiological and unphysiological, but not directly toxic, metal ion concentrations, particularly concerning MSCs. Overloading or unbalancing of metal ion concentrations can significantly impair the function and differentiation capacity of MSCs. In addition, excessive or unbalanced metal ion concentrations can lead to oxidative stress, which can affect viability or inflammation. Data on the effects of metal ions on MSC differentiation are limited and often contradictory. Future research should, therefore, aim to clarify the mechanisms by which metal ions affect MSC differentiation, focusing on aspects such as metal ion interactions, ion concentrations, exposure duration, and other environmental conditions. Understanding these interactions could ultimately improve the design of biomaterials and implants to promote MSC-mediated tissue regeneration. It could also lead to the development of innovative therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Kirsten Peters
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Susanne Staehlke
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Strasse 142, 18057 Rostock, Germany;
| | - Olga Hahn
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| |
Collapse
|
7
|
Celik S, Yilmaz G, Akyuz S, Ozel AE. Shedding light into the biological activity of aminopterin, via molecular structural, docking, and molecular dynamics analyses. J Biomol Struct Dyn 2024; 42:7773-7794. [PMID: 37565332 DOI: 10.1080/07391102.2023.2245493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
In this study, the structural and anticancer properties of aminopterin, as well as its antiviral characteristics, were elucidated. The preferred conformations of the title molecule were investigated with semiempirical AM1 method, and the obtained the lowest energy conformer was then optimized by using density functional (DFT/B3LYP) method with 6-311++G(d,p) as basis set. The vibrational frequencies of the optimized structure were calculated by the same level of theory and were compared with the experimental values. The vibrational assignments were performed based on the computed potential energy distribution (PED) of the vibrational modes. The molecular electrostatic potential (MEP) and frontier molecular orbitals (HOMO, LUMO) analyses were carried out for the optimized structure and the chemical reactivity has been scrutinized. To enlighten the biological activity of aminopterin as anticancer and anti-COVID-19 agents, aminopterin was docked into DNA, αIIBβ3 and α5β1integrins, human dihydrofolate reductase, main protease (Mpro) of SARS-CoV-2 and SARS-CoV-2/ACE2 complex receptor. The binding mechanisms of aminopterin with the receptors were clarified. The molecular docking results revealed the strong interaction of the aminopterin with DNA (-8.2 kcal/mol), αIIBβ3 and α5β1 integrins (-9.0 and -10.8 kcal/mol, respectively), human dihydrofolate reductase (-9.7 kcal/mol), Mpro of SARS-CoV-2 (-6.7 kcal/mol), and SARS-CoV-2/ACE2 complex receptor (-8.1 kcal/mol). Moreover, after molecular docking calculations, top-scoring ligand-receptor complexes of the aminopterin with SARS-CoV-2 enzymes (6M03 and 6M0J) were subjected to 50 ns all-atom MD simulations to investigate the ligand-receptor interactions in more detail, and to determine the binding free energies accurately. The predicted results indicate that the aminopterin may significantly inhibit SARS-CoV-2 infection. Thus, in this study, as both anticancer and anti-COVID-19 agents, the versatility of the biological activity of aminopterin was shown.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sefa Celik
- Physics Department, Science Faculty, Istanbul University, Istanbul, Turkey
| | - Gozde Yilmaz
- Opticianry Program, Vocational School, Istanbul Kultur University, Istanbul, Turkey
| | - Sevim Akyuz
- Physics Department, Science and Letters Faculty, Istanbul Kultur University, Istanbul, Turkey
| | - Aysen E Ozel
- Physics Department, Science Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Huo T, Wu H, Moussa Z, Sen M, Dalton V, Wang Z. Full-length αIIbβ3 cryo-EM structure reveals intact integrin initiate-activation intrinsic architecture. Structure 2024; 32:899-906.e3. [PMID: 38579706 PMCID: PMC11246237 DOI: 10.1016/j.str.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Integrin αIIbβ3 is the key receptor regulating platelet retraction and accumulation and a proven drug-target for antithrombotic therapies. Here we resolve the cryo-EM structures of the full-length αIIbβ3, which covers three distinct states along the activation pathway. Firstly, we obtain the αIIbβ3 structure at 3 Å resolution in the inactive state, revealing the overall topology of the heterodimer with the transmembrane (TM) helices and the ligand-binding domain tucked in a specific angle proximity to the TM region. After the addition of a Mn2+ agonist, we resolve two coexisting structures representing two new states between inactive and active state. Our structures show conformational changes of the αIIbβ3 activating trajectory and a unique twisting of the integrin legs, which is required for platelets accumulation. Our structure provides direct structural evidence for how the lower legs are involved in full-length integrin activation mechanisms and offers a new strategy to target the αIIbβ3 lower leg.
Collapse
Affiliation(s)
- Tong Huo
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongjiang Wu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Graduate School of Baylor College of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeinab Moussa
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Valerie Dalton
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Cryo-EM/ET CPRIT Core, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Yurchenco PD, Kulczyk AW. Polymerizing laminins in development, health, and disease. J Biol Chem 2024; 300:107429. [PMID: 38825010 PMCID: PMC11260871 DOI: 10.1016/j.jbc.2024.107429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Polymerizing laminins are multi-domain basement membrane (BM) glycoproteins that self-assemble into cell-anchored planar lattices to establish the initial BM scaffold. Nidogens, collagen-IV and proteoglycans then bind to the scaffold at different domain loci to create a mature BM. The LN domains of adjacent laminins bind to each other to form a polymer node, while the LG domains attach to cytoskeletal-anchoring integrins and dystroglycan, as well as to sulfatides and heparan sulfates. The polymer node, the repeating unit of the polymer scaffold, is organized into a near-symmetrical triskelion. The structure, recently solved by cryo-electron microscopy in combination with AlphaFold2 modeling and biochemical studies, reveals how the LN surface residues interact with each other and how mutations cause failures of self-assembly in an emerging group of diseases, the LN-lamininopathies, that include LAMA2-related dystrophy and Pierson syndrome.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.
| | - Arkadiusz W Kulczyk
- Department of Biochemistry and Microbiology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
10
|
Coffman RE, Bidone TC. Application of Funnel Metadynamics to the Platelet Integrin αIIbβ3 in Complex with an RGD Peptide. Int J Mol Sci 2024; 25:6580. [PMID: 38928286 PMCID: PMC11203998 DOI: 10.3390/ijms25126580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Integrin αIIbβ3 mediates platelet aggregation by binding the Arginyl-Glycyl-Aspartic acid (RGD) sequence of fibrinogen. RGD binding occurs at a site topographically proximal to the αIIb and β3 subunits, promoting the conformational activation of the receptor from bent to extended states. While several experimental approaches have characterized RGD binding to αIIbβ3 integrin, applying computational methods has been significantly more challenging due to limited sampling and the need for a priori information regarding the interactions between the RGD peptide and integrin. In this study, we employed all-atom simulations using funnel metadynamics (FM) to evaluate the interactions of an RGD peptide with the αIIb and β3 subunits of integrin. FM incorporates an external history-dependent potential on selected degrees of freedom while applying a funnel-shaped restraint potential to limit RGD exploration of the unbound state. Furthermore, it does not require a priori information about the interactions, enhancing the sampling at a low computational cost. Our FM simulations reveal significant molecular changes in the β3 subunit of integrin upon RGD binding and provide a free-energy landscape with a low-energy binding mode surrounded by higher-energy prebinding states. The strong agreement between previous experimental and computational data and our results highlights the reliability of FM as a method for studying dynamic interactions of complex systems such as integrin.
Collapse
Affiliation(s)
- Robert E. Coffman
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Tamara C. Bidone
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Meredith E, Schwartz MA. Integrins as Drug Targets in Vascular and Related Diseases. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2024; 3:100010. [PMID: 39703402 PMCID: PMC11658063 DOI: 10.53941/ijddp.2024.100010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Integrins are transmembrane receptors that, as critical participants in a vast range of pathological processes, are potential therapeutic targets. However, in only a few cases has the promise been realized by drug approval. In this review, we briefly review basic integrin biology and participation in disease, challenges in the development of safe, effective integrin-targeted therapies, and recent advances that may lead to progress.
Collapse
Affiliation(s)
- Emily Meredith
- Yale Cardiovascular Research Center, Department of Internal Medicine (Cardiology), Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Department of Internal Medicine (Cardiology), Yale University School of Medicine, New Haven, Connecticut 06511, USA
- Department of Cell Biology, Yale School of Medicine
- Department of Biomedical Engineering, Yale University
| |
Collapse
|
12
|
Li Z. A molecular arm: the molecular bending-unbending mechanism of integrin. Biomech Model Mechanobiol 2024; 23:781-792. [PMID: 38308770 DOI: 10.1007/s10237-023-01805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/13/2023] [Indexed: 02/05/2024]
Abstract
The balance of integrin activation and deactivation regulates its function and mediates cell behaviors. Mechanical force triggers the unbending and activation of integrin. However, how an activated and extended integrin spontaneously bends back is unclear. I performed all-atom molecular dynamics simulations on an integrin or its subunits to reveal the bending-unbending mechanism of integrin. According to the simulations, the integrin structure works like a human arm. The integrin α subunit serves as the bones, while the β leg serves as the bicep. The integrin extension results in the stretching of the β leg, and the extended integrin spontaneously bends as a consequence of the contraction of the β leg. This study provides new insights into the mechanism of how the integrin secures in the bent inactivated state and sheds light on how the integrin could achieve a stable extended state.
Collapse
Affiliation(s)
- Zhenhai Li
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Frontier Science Center of Mechanoinformatics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, China.
| |
Collapse
|
13
|
Yang L, Chen H, Yang C, Hu Z, Jiang Z, Meng S, Liu R, Huang L, Yang K. Research progress on the regulatory mechanism of integrin-mediated mechanical stress in cells involved in bone metabolism. J Cell Mol Med 2024; 28:e18183. [PMID: 38506078 PMCID: PMC10951882 DOI: 10.1111/jcmm.18183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
Mechanical stress is an internal force between various parts of an object that resists external factors and effects that cause an object to deform, and mechanical stress is essential for various tissues that are constantly subjected to mechanical loads to function normally. Integrins are a class of transmembrane heterodimeric glycoprotein receptors that are important target proteins for the action of mechanical stress stimuli on cells and can convert extracellular physical and mechanical signals into intracellular bioelectrical signals, thereby regulating osteogenesis and osteolysis. Integrins play a bidirectional regulatory role in bone metabolism. In this paper, relevant literature published in recent years is reviewed and summarized. The characteristics of integrins and mechanical stress are introduced, as well as the mechanisms underlying responses of integrin to mechanical stress stimulation. The paper focuses on integrin-mediated mechanical stress in different cells involved in bone metabolism and its associated signalling mechanisms. The purpose of this review is to provide a theoretical basis for the application of integrin-mediated mechanical stress to the field of bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Li Yang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Hong Chen
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Chanchan Yang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Zhengqi Hu
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Zhiliang Jiang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Shengzi Meng
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | | | - Lan Huang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | | |
Collapse
|
14
|
He T, Giacomini D, Tolomelli A, Baiula M, Gentilucci L. Conjecturing about Small-Molecule Agonists and Antagonists of α4β1 Integrin: From Mechanistic Insight to Potential Therapeutic Applications. Biomedicines 2024; 12:316. [PMID: 38397918 PMCID: PMC10887150 DOI: 10.3390/biomedicines12020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Integrins are heterodimeric cell-surface receptors that regulate cell-cell adhesion and cellular functions through bidirectional signaling. On the other hand, anomalous trafficking of integrins is also implicated in severe pathologies as cancer, thrombosis, inflammation, allergies, and multiple sclerosis. For this reason, they are attractive candidates as drug targets. However, despite promising preclinical data, several anti-integrin drugs failed in late-stage clinical trials for chronic indications, with paradoxical side effects. One possible reason is that, at low concentration, ligands proposed as antagonists may also act as partial agonists. Hence, the comprehension of the specific structural features for ligands' agonism or antagonism is currently of the utmost interest. For α4β1 integrin, the situation is particularly obscure because neither the crystallographic nor the cryo-EM structures are known. In addition, very few potent and selective agonists are available for investigating the mechanism at the basis of the receptor activation. In this account, we discuss the physiological role of α4β1 integrin and the related pathologies, and review the few agonists. Finally, we speculate on plausible models to explain agonism vs. antagonism by comparison with RGD-binding integrins and by analysis of computational simulations performed with homology or hybrid receptor structures.
Collapse
Affiliation(s)
- Tingting He
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
| | - Daria Giacomini
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
| | - Alessandra Tolomelli
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
| | - Monica Baiula
- Department of Pharmacology and Biotechnology (FABIT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy;
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| |
Collapse
|
15
|
Vasconcelos AA, Estrada JC, Caruso IP, Kurtenbach E, Zingali RB, Almeida FCL. Toward the mechanism of jarastatin (rJast) inhibition of the integrin αVβ3. Int J Biol Macromol 2024; 255:128078. [PMID: 37972836 DOI: 10.1016/j.ijbiomac.2023.128078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Disintegrins are a family of cysteine-rich small proteins that were first identified in snake venom. The high divergence of disintegrins gave rise to a plethora of functions, all related to the interaction with integrins. Disintegrins evolved to interact selectively with different integrins, eliciting many physiological outcomes and being promising candidates for the therapy of many pathologies. We used NMR to determine the structure and dynamics of the recombinant disintegrin jarastatin (rJast) and its interaction with the cancer-related integrin αVβ3. rJast displayed the canonical fold of a medium-sized disintegrin and showed complex dynamic in multiple timescales. We used NMR experiments to map the interaction of rJast with αVβ3, and molecular docking followed by molecular dynamics (MD) simulation to describe the first structural model of a disintegrin/integrin complex. We showed that not only the RGD loop participates in the interaction, but also the N-terminal domain. rJast plasticity was essential for the interaction with αVβ3 and correlated with the main modes of motion depicted in the MD trajectories. In summary, our study provides novel structural insights that enhance our comprehension of the mechanisms underlying disintegrin functionality.
Collapse
Affiliation(s)
- Ariana A Vasconcelos
- Laboratório de RMN de Biomoléculas, Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Centro Nacional de Ressonância Magnética Nuclear (CNRMN), Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge C Estrada
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Icaro P Caruso
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São Jose do Rio Preto, São Paulo, Brazil
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Russolina B Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fabio C L Almeida
- Laboratório de RMN de Biomoléculas, Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Centro Nacional de Ressonância Magnética Nuclear (CNRMN), Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Hashemzadeh M, Haseefa F, Peyton L, Shadmehr M, Niyas AM, Patel A, Krdi G, Movahed MR. A comprehensive review of the ten main platelet receptors involved in platelet activity and cardiovascular disease. AMERICAN JOURNAL OF BLOOD RESEARCH 2023; 13:168-188. [PMID: 38223314 PMCID: PMC10784121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/10/2023] [Indexed: 01/16/2024]
Abstract
Cardiovascular disease (CVD) is a major cause of death worldwide. Although there are many variables that contribute to the development of this disease, it is predominantly the activity of platelets that provides the mechanisms by which this disease prevails. While there are numerous platelet receptors expressed on the surface of platelets, it is largely the consensus that there are 10 main platelet receptors that contribute to a majority of platelet function. Understanding these key platelet receptors is vitally important for patients suffering from myocardial infarction, CVD, and many other diseases that arise due to overactivation or mutations of these receptors. The goal of this manuscript is to review the main platelet receptors that contribute most to platelet activity.
Collapse
Affiliation(s)
- Mehrnoosh Hashemzadeh
- University of Arizona College of MedicinePhoenix, AZ, USA
- Pima CollegeTucson, AZ, USA
| | | | - Lee Peyton
- Pima CollegeTucson, AZ, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and ScienceRochester, MN, USA
| | | | | | - Aamir Patel
- University of Arizona College of MedicinePhoenix, AZ, USA
| | - Ghena Krdi
- University of Arizona College of MedicinePhoenix, AZ, USA
| | - Mohammad Reza Movahed
- University of Arizona College of MedicinePhoenix, AZ, USA
- University of ArizonaTucson, AZ, USA
| |
Collapse
|
17
|
Zhang H, Wang Z, Nguyen HTT, Watson AJ, Lao Q, Li A, Zhu J. Integrin α 5β 1 contributes to cell fusion and inflammation mediated by SARS-CoV-2 spike via RGD-independent interaction. Proc Natl Acad Sci U S A 2023; 120:e2311913120. [PMID: 38060559 PMCID: PMC10723138 DOI: 10.1073/pnas.2311913120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/03/2023] [Indexed: 12/17/2023] Open
Abstract
The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infects host cells by engaging its spike (S) protein with human ACE2 receptor. Recent studies suggest the involvement of integrins in SARS-CoV-2 infection through interaction with the S protein, but the underlying mechanism is not well understood. This study investigated the role of integrin α5β1, which recognizes the Arg-Gly-Asp (RGD) motif in its physiological ligands, in S-mediated virus entry and cell-cell fusion. Our results showed that α5β1 does not directly contribute to S-mediated cell entry, but it enhances S-mediated cell-cell fusion in collaboration with ACE2. This effect cannot be inhibited by the putative α5β1 inhibitor ATN-161 or the high-affinity RGD-mimetic inhibitor MK-0429 but requires the participation of α5 cytoplasmic tail (CT). We detected a direct interaction between α5β1 and the S protein, but this interaction does not rely on the RGD-containing receptor binding domain of the S1 subunit of the S protein. Instead, it involves the S2 subunit of the S protein and α5β1 homo-oligomerization. Furthermore, we found that the S protein induces inflammatory responses in human endothelial cells, characterized by NF-κB activation, gasdermin D cleavage, and increased secretion of proinflammatory cytokines IL-6 and IL-1β. These effects can be attenuated by the loss of α5 expression or inhibition of the α5 CT binding protein phosphodiesterase-4D (PDE4D), suggesting the involvement of α5 CT and PDE4D pathway. These findings provide molecular insights into the pathogenesis of SARS-CoV-2 mediated by a nonclassical RGD-independent ligand-binding and signaling function of integrin α5β1 and suggest potential targets for antiviral treatment.
Collapse
Affiliation(s)
- Heng Zhang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Zhengli Wang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Huong T. T. Nguyen
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Abigail J. Watson
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Qifang Lao
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - An Li
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
| | - Jieqing Zhu
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI53226
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI53226
| |
Collapse
|
18
|
Nurden AT. Molecular basis of clot retraction and its role in wound healing. Thromb Res 2023; 231:159-169. [PMID: 36008192 DOI: 10.1016/j.thromres.2022.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Clot retraction is important for the prevention of bleeding, in the manifestations of thrombosis and for tissue repair. The molecular mechanisms behind clot formation are complex. Platelet involvement begins with adhesion at sites of vessel injury followed by platelet aggregation, thrombin generation and fibrin production. Other blood cells incorporate into a fibrin mesh that is consolidated by FXIIIa-mediated crosslinking and platelet contractile activity. The latter results in the asymmetric redistribution of erythrocytes into a tighter central mass providing the clot with stability and resistance to fibrinolysis. Integrin αIIbβ3 on platelets is the key player in these events, bridging fibrin and the platelet cytoskeleton. Glycoprotein VI participates in thrombus formation but not in the retraction. Rheological and environmental factors influence clot construction with retraction driven by the platelet cytoskeleton with actomyosin acting as the motor. Activated platelets provide procoagulant activity stimulating thrombin generation together with the release of a plethora of biologically active proteins and substances from storage pools; many form chemotactic gradients within the fibrin or the underlying matrix. Also released are newly synthesized metabolites and lipid-rich vesicles that circulate within the vasculature and mimic platelet functions. Platelets and their released elements play key roles in wound healing. This includes promoting stem cell and mesenchymal stromal cell recruitment, fibroblast and endothelial cell migration, angiogenesis and matrix formation. These properties have led to the use of autologous clots in therapies designed to accelerate tissue repair while offering the potential for genetic manipulation in both inherited and acquired diseases.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Pessac, France.
| |
Collapse
|
19
|
Zhang H, Zhu DS, Zhu J. Family-wide analysis of integrin structures predicted by AlphaFold2. Comput Struct Biotechnol J 2023; 21:4497-4507. [PMID: 37753178 PMCID: PMC10518446 DOI: 10.1016/j.csbj.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
Recent advances in protein structure prediction using AlphaFold2, known for its high efficiency and accuracy, have opened new avenues for comprehensive analysis of all structures within a single protein family. In this study, we evaluated the capabilities of AphaFold2 in analyzing integrin structures. Integrins are heterodimeric cell surface receptors composed of a combination of 18 α and 8 β subunits, resulting in a family of 24 different members. Both α and β subunits consist of a large extracellular domain, a short transmembrane domain, and typically, a short cytoplasmic tail. Integrins play a pivotal role in a wide range of cellular functions by recognizing diverse ligands. Despite significant advances in integrin structural studies in recent decades, high-resolution structures have only been determined for a limited subsets of integrin members, thus limiting our understanding of the entire integrin family. Here, we first analyzed the single-chain structures of 18 α and 8 β integrins in the AlphaFold2 protein structure database. We then employed the newly developed AlphaFold2-multimer program to predict the α/β heterodimer structures of all 24 human integrins. The predicted structures show a high level of accuracy for the subdomains of both α and β subunits, offering high-resolution structure insights for all integrin heterodimers. Our comprehensive structural analysis of the entire integrin family unveils a potentially diverse range of conformations among the 24 members, providing a valuable structure database for studies related to integrin structure and function. We further discussed the potential applications and limitations of the AlphaFold2-derived integrin structures.
Collapse
Affiliation(s)
- Heng Zhang
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Daniel S. Zhu
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Jieqing Zhu
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
20
|
Zhang H, Zhu DS, Zhu J. Family-wide analysis of integrin structures predicted by AlphaFold2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539023. [PMID: 37205578 PMCID: PMC10187181 DOI: 10.1101/2023.05.02.539023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent advances in protein structure prediction using AlphaFold2, known for its high efficiency and accuracy, have opened new avenues for comprehensive analysis of all structures within a single protein family. In this study, we evaluated the capabilities of AphaFold2 in analyzing integrin structures. Integrins are heterodimeric cell surface receptors composed of a combination of 18 α and 8 β subunits, resulting in a family of 24 different members. Both α and β subunits consist of a large extracellular domain, a short transmembrane domain, and typically, a short cytoplasmic tail. Integrins play a pivotal role in a wide range of cellular functions by recognizing diverse ligands. Despite significant advances in integrin structural studies in recent decades, high-resolution structures have only been determined for a limited subsets of integrin members, thus limiting our understanding of the entire integrin family. Here, we first analyzed the single-chain structures of 18 α and 8 β integrins in the AlphaFold2 protein structure database. We then employed the newly developed AlphaFold2-multimer program to predict the α/β heterodimer structures of all 24 human integrins. The predicted structures show a high level of accuracy for the subdomains of both α and β subunits, offering high-resolution structure insights for all integrin heterodimers. Our comprehensive structural analysis of the entire integrin family unveils a potentially diverse range of conformations among the 24 members, providing a valuable structure database for studies related to integrin structure and function. We further discussed the potential applications and limitations of the AlphaFold2-derived integrin structures.
Collapse
Affiliation(s)
- Heng Zhang
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Daniel S. Zhu
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Jieqing Zhu
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
21
|
Urquiza M, Benavides-Rubio D, Jimenez-Camacho S. Structural analysis of peptide binding to integrins for cancer detection and treatment. Biophys Rev 2023; 15:699-708. [PMID: 37681100 PMCID: PMC10480133 DOI: 10.1007/s12551-023-01084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/20/2023] [Indexed: 09/09/2023] Open
Abstract
Integrins are cell receptors involved in several metabolic pathways often associated with cell proliferation. Some of these integrins are downregulated during human physical development, but when these integrins are overexpressed in adult humans, they can be associated with several diseases, such as cancer. Molecules that specifically bind to these integrins are useful for cancer detection, diagnosis, and treatment. This review focuses on the structures of integrin-peptidic ligand complexes to dissect how the binding occurs and the molecular basis of the specificity and affinity of these peptidic ligands. Understanding these interactions at the molecular level is fundamental to be able to design new peptides that are more specific and more sensitive to a particular integrin. The integrin complexes covered in this review are α5β1, αIIbβ3, αvβ3, αvβ6, and αvβ8, because the molecular structures of the complex have been experimentally determined and their presence on tumor cancer cells are associated with a poor prognosis, making them targets for cancer detection and treatment.
Collapse
Affiliation(s)
- Mauricio Urquiza
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30# 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Daniela Benavides-Rubio
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30# 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Silvia Jimenez-Camacho
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30# 45-03, Ciudad Universitaria, Bogotá, Colombia
| |
Collapse
|
22
|
Gaikwad HK, Jaswandkar SV, Katti KS, Haage A, Katti DR. Molecular basis of conformational changes and mechanics of integrins. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220243. [PMID: 37211038 DOI: 10.1098/rsta.2022.0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/13/2023] [Indexed: 05/23/2023]
Abstract
Integrin, as a mechanotransducer, establishes the mechanical reciprocity between the extracellular matrix (ECM) and cells at integrin-mediated adhesion sites. This study used steered molecular dynamics (SMD) simulations to investigate the mechanical responses of integrin αvβ3 with and without 10th type III fibronectin (FnIII10) binding for tensile, bending and torsional loading conditions. The ligand-binding integrin confirmed the integrin activation during equilibration and altered the integrin dynamics by changing the interface interaction between β-tail, hybrid and epidermal growth factor domains during initial tensile loading. The tensile deformation in integrin molecules indicated that fibronectin ligand binding modulates its mechanical responses in the folded and unfolded conformation states. The bending deformation responses of extended integrin models reveal the change in behaviour of integrin molecules in the presence of Mn2+ ion and ligand based on the application of force in the folding and unfolding directions of integrin. Furthermore, these SMD simulation results were used to predict the mechanical properties of integrin underlying the mechanism of integrin-based adhesion. The evaluation of integrin mechanics provides new insights into understanding the mechanotransmission (force transmission) between cells and ECM and contributes to developing an accurate model for integrin-mediated adhesion. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
Affiliation(s)
- Hanmant K Gaikwad
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Sharad V Jaswandkar
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Kalpana S Katti
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| | - Amanda Haage
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Dinesh R Katti
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
23
|
Anselmi M, Baiula M, Spampinato S, Artali R, He T, Gentilucci L. Design and Pharmacological Characterization of α 4β 1 Integrin Cyclopeptide Agonists: Computational Investigation of Ligand Determinants for Agonism versus Antagonism. J Med Chem 2023; 66:5021-5040. [PMID: 36976921 PMCID: PMC10108353 DOI: 10.1021/acs.jmedchem.2c02098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
α4β1 integrin is a cell adhesion receptor deeply involved in the migration and accumulation of leukocytes. Therefore, integrin antagonists that inhibit leukocytes recruitment are currently regarded as a therapeutic opportunity for the treatment of inflammatory disorder, including leukocyte-related autoimmune diseases. Recently, it has been suggested that integrin agonists capable to prevent the release of adherent leukocytes might serve as therapeutic agents as well. However, very few α4β1 integrin agonists have been discovered so far, thus precluding the investigation of their potential therapeutic efficacy. In this perspective, we synthesized cyclopeptides containing the LDV recognition motif found in the native ligand fibronectin. This approach led to the discovery of potent agonists capable to increase the adhesion of α4 integrin-expressing cells. Conformational and quantum mechanics computations predicted distinct ligand-receptor interactions for antagonists or agonists, plausibly referable to receptor inhibition or activation.
Collapse
Affiliation(s)
- Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | | | - Tingting He
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| |
Collapse
|
24
|
Liu L, Ding W, He L, Yang Y, Guan F, Sun X, Peng Y, Chen X, Zhao W, Xiao Y, Luo P. RGD and Scutellarin Conjugate (WK001) Targeting Platelet Glycoprotein IIb/IIIa Receptor Protects from Myocardial Ischemia/Reperfusion Injury: Synthesis, Characterization, and Bioactivity Evaluation. Bioconjug Chem 2023; 34:477-488. [PMID: 36740781 DOI: 10.1021/acs.bioconjchem.2c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury is an unresolved clinical challenge. The blockade of binding fibrinogen by glycoprotein IIb/IIIa (GPIIb-IIIa) inhibitors has become a new therapeutic approach against MI/R injury. In this study, we modified the RGD structure to combine with scutellarin and synthesized a novel peptide, scutellarin-HomoArg-Gly-Asp-Trp-NH2 (WK001). Herein, reported experimental and docking evidence indicates that WK001 provides immediate and potent platelet inhibition, with stronger inhibition of platelet aggregation than eptifibatide and scutellarin. In particular, it is administered intravenously to prevent thrombus formation and attenuate myocardial fibrosis progression in vivo. Therefore, WK001 could be developed as an antiplatelet drug to treat thrombosis-associated diseases, such as stroke and myocardial infarction.
Collapse
Affiliation(s)
- Lancong Liu
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau999078, China
| | - Wenfeng Ding
- Shenzhen Winkey Technology Co., Ltd., Shenzhen518000, China
| | - Lili He
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau999078, China
| | - Yi Yang
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau999078, China
| | - Fuyi Guan
- Shenzhen Winkey Technology Co., Ltd., Shenzhen518000, China
| | - Xinlin Sun
- Shenzhen Winkey Technology Co., Ltd., Shenzhen518000, China
| | - Yan Peng
- Shenzhen Winkey Technology Co., Ltd., Shenzhen518000, China
| | - Xue Chen
- Shenzhen Winkey Technology Co., Ltd., Shenzhen518000, China
| | - Wenhao Zhao
- Shenzhen Winkey Technology Co., Ltd., Shenzhen518000, China
| | - Yu Xiao
- Shenzhen Winkey Technology Co., Ltd., Shenzhen518000, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau999078, China
| |
Collapse
|
25
|
Gu Y, Dong B, He X, Qiu Z, Zhang J, Zhang M, Liu H, Pang X, Cui Y. The challenges and opportunities of αvβ3-based therapeutics in cancer: From bench to clinical trials. Pharmacol Res 2023; 189:106694. [PMID: 36775082 DOI: 10.1016/j.phrs.2023.106694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Integrins are main cell adhesion receptors serving as linker attaching cells to extracellular matrix (ECM) and bidirectional hubs transmitting biochemical and mechanical signals between cells and their environment. Integrin αvβ3 is a critical family member of integrins and interacts with ECM proteins containing RGD tripeptide sequence. Accumulating evidence indicated that the abnormal expression of integrin αvβ3 was associated with various tumor progressions, including tumor initiation, sustained tumor growth, distant metastasis, drug resistance development, maintenance of stemness in cancer cells. Therefore, αvβ3 has been explored as a therapeutic target in various types of cancers, but there is no αvβ3 antagonist approved for human therapy. Targeting-integrin αvβ3 therapeutics has been a challenge, but lessons from the past are valuable to the development of innovative targeting approaches. This review systematically summarized the structure, signal transduction, regulatory role in cancer, and drug development history of integrin αvβ3, and also provided new insights into αvβ3-based therapeutics in cancer from bench to clinical trials, which would contribute to developing effective targeting αvβ3 agents for cancer treatment.
Collapse
Affiliation(s)
- Yanlun Gu
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Bingqi Dong
- Department of General Surgery, Peking University First Hospital, Xishiku street, Xicheng District, 100034 Beijing, China
| | - Xu He
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Juqi Zhang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Mo Zhang
- Department of traditional Chinese and Western medicine,Peking University Of First Hospital, Xishiku street 8th,Xicheng District,10034 Beijing, China
| | - Haitao Liu
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, 100191 Beijing, China.
| |
Collapse
|
26
|
Wang Z, Huo T, Wu H, Moussa Z, Sen M, Dalton V. Full-length αIIbβ3 CryoEM structure reveals intact integrin initiate-activation intrinsic architecture. RESEARCH SQUARE 2023:rs.3.rs-2394542. [PMID: 36865117 PMCID: PMC9980189 DOI: 10.21203/rs.3.rs-2394542/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Integrin αIIbβ3 is the key receptor regulating platelet retraction and accumulation, thus pivotal for hemostasis, and arterial thrombosis as well as a proven drug-target for antithrombotic therapies. Here we resolve the cryoEM structures of the intact full-length αIIbβ3, which covers three distinct states along the activation pathway. Here, we resolve intact αIIbβ3 structure at 3Å resolution, revealing the overall topology of the heterodimer with the transmembrane (TM) helices and the head region ligand-binding domain tucked in a specific angle proximity to the TM region. In response to the addition of an Mn2+ agonist, we resolved two coexisting states, "intermediate" and "pre-active". Our structures show conformational changes of the intact αIIbβ3 activating trajectory, as well as a unique twisting of the lower integrin legs representing intermediate state (TM region at a twisting conformation) integrin and a coexisting pre-active state (bent and opening in leg), which is required for inducing the transitioning platelets to accumulate. Our structure provides for the first time direct structural evidence for the lower legs' involvement in full-length integrin activation mechanisms. Additionally, our structure offers a new strategy to target the αIIbβ3 lower leg allosterically instead of modulating the affinity of the αIIbβ3 head region.
Collapse
|
27
|
Tong D, Soley N, Kolasangiani R, Schwartz MA, Bidone TC. Integrin α IIbβ 3 intermediates: From molecular dynamics to adhesion assembly. Biophys J 2023; 122:533-543. [PMID: 36566352 PMCID: PMC9941721 DOI: 10.1016/j.bpj.2022.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/14/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
The platelet integrin αIIbβ3 undergoes long-range conformational transitions associated with its functional conversion from inactive (low-affinity) to active (high-affinity) during hemostasis. Although new conformations that are intermediate between the well-characterized bent and extended states have been identified, their molecular dynamic properties and functions in the assembly of adhesions remain largely unexplored. In this study, we evaluated the properties of intermediate conformations of integrin αIIbβ3 and characterized their effects on the assembly of adhesions by combining all-atom simulations, principal component analysis, and mesoscale modeling. Our results show that in the low-affinity, bent conformation, the integrin ectodomain tends to pivot around the legs; in intermediate conformations, the headpiece becomes partially extended, away from the lower legs. In the fully open, active state, αIIbβ3 is flexible, and the motions between headpiece and lower legs are accompanied by fluctuations of the transmembrane helices. At the mesoscale, bent integrins form only unstable adhesions, but intermediate or open conformations stabilize the adhesions. These studies reveal a mechanism by which small variations in ligand binding affinity and enhancement of the ligand-bound lifetime in the presence of actin retrograde flow stabilize αIIbβ3 integrin adhesions.
Collapse
Affiliation(s)
- Dudu Tong
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Nidhi Soley
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Reza Kolasangiani
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Department of Internal Medicine (Cardiology), Yale University, New Haven, Connecticut; Department of Cell Biology, Yale University, New Haven, Connecticut; Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, Connecticut
| | - Tamara C Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Biochemistry, University of Utah, Salt Lake City, Utah; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
28
|
Tvaroška I, Kozmon S, Kóňa J. Molecular Modeling Insights into the Structure and Behavior of Integrins: A Review. Cells 2023; 12:cells12020324. [PMID: 36672259 PMCID: PMC9856412 DOI: 10.3390/cells12020324] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Integrins are heterodimeric glycoproteins crucial to the physiology and pathology of many biological functions. As adhesion molecules, they mediate immune cell trafficking, migration, and immunological synapse formation during inflammation and cancer. The recognition of the vital roles of integrins in various diseases revealed their therapeutic potential. Despite the great effort in the last thirty years, up to now, only seven integrin-based drugs have entered the market. Recent progress in deciphering integrin functions, signaling, and interactions with ligands, along with advancement in rational drug design strategies, provide an opportunity to exploit their therapeutic potential and discover novel agents. This review will discuss the molecular modeling methods used in determining integrins' dynamic properties and in providing information toward understanding their properties and function at the atomic level. Then, we will survey the relevant contributions and the current understanding of integrin structure, activation, the binding of essential ligands, and the role of molecular modeling methods in the rational design of antagonists. We will emphasize the role played by molecular modeling methods in progress in these areas and the designing of integrin antagonists.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Correspondence:
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| |
Collapse
|
29
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 281] [Impact Index Per Article: 140.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
30
|
Huet-Calderwood C, Rivera-Molina F, Toomre D, Calderwood DA. Use of Ecto-Tagged Integrins to Monitor Integrin Exocytosis and Endocytosis. Methods Mol Biol 2023; 2608:17-38. [PMID: 36653699 PMCID: PMC9999384 DOI: 10.1007/978-1-0716-2887-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Controlled exocytosis and endocytosis of integrin adhesion receptors is required for normal cell adhesion, migration, and signaling. In this chapter, we describe the design of functional β1 integrins carrying extracellular fluorescent or chemically traceable tags (ecto-tag) and methods for their use to image β1 integrin trafficking in cells. We provide approaches to generate cells in which endogenous β1 integrins are replaced by ecto-tagged integrins containing a pH-sensitive fluorophore pHluorin or a HaloTag and describe strategies using photobleaching, selective extracellular/intracellular labeling, and chase, quenching, and blocking to reveal β1 integrin exocytosis, endocytosis, and recycling by live total internal reflection fluorescence (TIRF) microscopy.
Collapse
Affiliation(s)
- Clotilde Huet-Calderwood
- Departments of Pharmacology, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Felix Rivera-Molina
- Departments of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Derek Toomre
- Departments of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - David A Calderwood
- Departments of Pharmacology, Yale University School of Medicine, Yale University, New Haven, CT, USA.
- Departments of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
31
|
Arzani H, Rafii-Tabar H, Ramezani F. The investigation into the effect of the length of RGD peptides and temperature on the interaction with the αIIbβ3 integrin: a molecular dynamic study. J Biomol Struct Dyn 2022; 40:9701-9712. [PMID: 34060983 DOI: 10.1080/07391102.2021.1932602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The tripeptide Arg-Gly-Asp acid (RGD) is a protein sequence in the binding of proteins to cell surfaces, and is involved in various biological processes such as cell adhesion to the extracellular matrix, platelet activation, hemostasis, etc. The C2 domain of the Von Willebrand Factor (VWF), containing the RGD motif, plays an important role in the initial homeostasis process. It binds to the αIIbβ3 integrin and stimulates platelet aggregation. We have investigated, using the molecular Dynamic (MD) simulation method, the effect of the RGD-peptide length, and temperature variation, on the binding to the αIIbβ3 integrin receptor. We examined 10 different structural modes of the αIIbβ3 at three different temperatures; 237 K, 310 K and 318 K. Our findings show that the amino acids that form a binding pocket include Asp224, Tyr234, Ser226, Tyr190, Tyr189, Trp260, Trp262, Asp259, Lys253, Arg214, Asp217, Ser161 and Ala218 and that the ligand-receptor interaction was increased at higher temperatures. It was also found that the increase in the number of ligands' amino acids and their types (% glycine) plays an important role in the stability, conformation, and ligand-receptor interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hossein Arzani
- Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,The Physics Branch of Iran Academy of Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Sen S, Spasic A, Sinha A, Wang J, Bush M, Li J, Nešić D, Zhou Y, Angiulli G, Morgan P, Salas-Estrada L, Takagi J, Walz T, Coller BS, Filizola M. Structure-Based Discovery of a Novel Class of Small-Molecule Pure Antagonists of Integrin αVβ3. J Chem Inf Model 2022; 62:5607-5621. [PMID: 36279366 PMCID: PMC9767310 DOI: 10.1021/acs.jcim.2c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inhibitors of integrin αVβ3 have therapeutic promise for a variety of diseases. Most αVβ3-targeting small molecules patterned after the RGD motif are partial agonists because they induce a high-affinity, ligand-binding conformation and prime the receptor to bind the ligand without an activating stimulus, in part via a charge-charge interaction between their aspartic acid carboxyl group and the metal ion in the metal-ion-dependent adhesion site (MIDAS). Building upon our previous studies on the related integrin αIIbβ3, we searched for pure αVβ3 antagonists that lack this typical aspartic acid carboxyl group and instead engage through direct binding to one of the coordinating residues of the MIDAS metal ion, specifically β3 E220. By in silico screening of two large chemical libraries for compounds interacting with β3 E220, we indeed discovered a novel molecule that does not contain an acidic carboxyl group and does not induce the high-affinity, ligand-binding state of the receptor. Functional and structural characterization of a chemically optimized version of this compound led to the discovery of a novel small-molecule pure αVβ3 antagonist that (i) does not prime the receptor to bind the ligand and does not induce hybrid domain swing-out or receptor extension as judged by antibody binding and negative-stain electron microscopy, (ii) binds at the RGD-binding site as predicted by metadynamics rescoring of induced-fit docking poses and confirmed by a cryo-electron microscopy structure of the compound-bound integrin, and (iii) coordinates the MIDAS metal ion via a quinoline moiety instead of an acidic carboxyl group.
Collapse
Affiliation(s)
- Soumyo Sen
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Aleksandar Spasic
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Anjana Sinha
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States
| | - Jialing Wang
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, P.O. Box 219, New York, New York10065, United States
| | - Martin Bush
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, P.O. Box 219, New York, New York10065, United States
| | - Jihong Li
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States
| | - Dragana Nešić
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States
| | - Yuchen Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Gabriella Angiulli
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, P.O. Box 219, New York, New York10065, United States
| | - Paul Morgan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, P.O. Box 219, New York, New York10065, United States
| | - Barry S Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, 1230 York Avenue, P.O. Box 309, New York, New York10065, United States
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York10029, United States
| |
Collapse
|
33
|
Integrin Conformational Dynamics and Mechanotransduction. Cells 2022; 11:cells11223584. [PMID: 36429013 PMCID: PMC9688440 DOI: 10.3390/cells11223584] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The function of the integrin family of receptors as central mediators of cell-extracellular matrix (ECM) and cell-cell adhesion requires a remarkable convergence of interactions and influences. Integrins must be anchored to the cytoskeleton and bound to extracellular ligands in order to provide firm adhesion, with force transmission across this linkage conferring tissue integrity. Integrin affinity to ligands is highly regulated by cell signaling pathways, altering affinity constants by 1000-fold or more, via a series of long-range conformational transitions. In this review, we first summarize basic, well-known features of integrin conformational states and then focus on new information concerning the impact of mechanical forces on these states and interstate transitions. We also discuss how these effects may impact mechansensitive cell functions and identify unanswered questions for future studies.
Collapse
|
34
|
Lin FY, Li J, Xie Y, Zhu J, Huong Nguyen TT, Zhang Y, Zhu J, Springer TA. A general chemical principle for creating closure-stabilizing integrin inhibitors. Cell 2022; 185:3533-3550.e27. [PMID: 36113427 PMCID: PMC9494814 DOI: 10.1016/j.cell.2022.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 01/26/2023]
Abstract
Integrins are validated drug targets with six approved therapeutics. However, small-molecule inhibitors to three integrins failed in late-stage clinical trials for chronic indications. Such unfavorable outcomes may in part be caused by partial agonism, i.e., the stabilization of the high-affinity, extended-open integrin conformation. Here, we show that the failed, small-molecule inhibitors of integrins αIIbβ3 and α4β1 stabilize the high-affinity conformation. Furthermore, we discovered a simple chemical feature present in multiple αIIbβ3 antagonists that stabilizes integrins in their bent-closed conformation. Closing inhibitors contain a polar nitrogen atom that stabilizes, via hydrogen bonds, a water molecule that intervenes between a serine residue and the metal in the metal-ion-dependent adhesion site (MIDAS). Expulsion of this water is a requisite for transition to the open conformation. This change in metal coordination is general to integrins, suggesting broad applicability of the drug-design principle to the integrin family, as validated with a distantly related integrin, α4β1.
Collapse
Affiliation(s)
- Fu-Yang Lin
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Li
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yonghua Xie
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PRC
| | - Jianghai Zhu
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thi Thu Huong Nguyen
- Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yonghui Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PRC.
| | - Jieqing Zhu
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular Pharmacology, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
36
|
Importance of Fibrosis in the Pathogenesis of Uterine Leiomyoma and the Promising Anti-fibrotic Effects of Dipeptidyl Peptidase-4 and Fibroblast Activation Protein Inhibitors in the Treatment of Uterine Leiomyoma. Reprod Sci 2022; 30:1383-1398. [PMID: 35969363 DOI: 10.1007/s43032-022-01064-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Uterine fibroid or leiomyoma is the most common benign uterus tumor. The tumor is primarily composed of smooth muscle (fibroid) cells, myofibroblast, and a significant amount of extracellular matrix components. It mainly affects women of reproductive age. They are uncommon before menarche and usually disappear after menopause. The fibroids have excessive extracellular matrix components secreted by activated fibroblast cells (myofibroblast). Myofibroblast has the characteristics of fibroblast and smooth muscle cells. These cells possess contractile capability due to the expression of contractile proteins which are normally found only in muscle tissues. The rigid nature of the tumor is responsible for many side effects associated with uterine fibroids. The current drug treatment strategies are primarily hormone-driven and not anti-fibrotic. This paper emphasizes the fibrotic background of uterine fibroids and the mechanisms behind the deposition of excessive extracellular matrix components. The transforming growth factor-β, hippo, and focal adhesion kinase-mediated signaling pathways activate the fibroblast cells and deposit excessive extracellular matrix materials. We also exemplify how dipeptidyl peptidase-4 and fibroblast activation protein inhibitors could be beneficial in reducing the fibrotic process in leiomyoma. Dipeptidyl peptidase-4 and fibroblast activation protein inhibitors prevent the fibrotic process in organs such as the kidneys, lungs, liver, and heart. These inhibitors are proven to inhibit the signaling pathways mentioned above at various stages of their activation. Based on literature evidence, we constructed a narrative review on the mechanisms that support the beneficial effects of dipeptidyl peptidase-4 and fibroblast activation protein inhibitors for treating uterine fibroids.
Collapse
|
37
|
Su Y, Iacob RE, Li J, Engen JR, Springer TA. Dynamics of integrin α5β1, fibronectin, and their complex reveal sites of interaction and conformational change. J Biol Chem 2022; 298:102323. [PMID: 35931112 PMCID: PMC9483561 DOI: 10.1016/j.jbc.2022.102323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Integrin α5β1 mediates cell adhesion to the extracellular matrix by binding fibronectin (Fn). Selectivity for Fn by α5β1 is achieved through recognition of an RGD motif in the 10th type III Fn domain (Fn10) and the synergy site in the ninth type III Fn domain (Fn9). However, details of the interaction dynamics are unknown. Here, we compared synergy-site and Fn-truncation mutations for their α5β1-binding affinities and stabilities. We also interrogated binding of the α5β1 ectodomain headpiece fragment to Fn using hydrogen-deuterium exchange (HDX) mass spectrometry to probe binding sites and sites of integrin conformational change. Our results suggest the synergistic effect of Fn9 requires both specific residues and a folded domain. We found some residues considered important for synergy are required for stability. Additionally, we show decreases in fibronectin HDX are localized to a synergy peptide containing contacting residues in two β-strands, an intervening loop in Fn9, and the RGD-containing loop in Fn10, indicative of binding sites. We also identified binding sites in the α5-subunit β-propeller domain for the Fn9 synergy site and in the β1-subunit βI domain for Fn10 based on decreases in α5β1 HDX. Interestingly, the dominant effect of Fn binding was an increase in α5β1 deuterium exchange distributed over multiple sites that undergo changes in conformation or solvent accessibility and appear to be sites where energy is stored in the higher-energy, open-integrin conformation. Together, our results highlight regions important for α5β1 binding to Fn and dynamics associated with this interaction.
Collapse
Affiliation(s)
- Yang Su
- Program in Cellular and Molecular Medicine, Boston Children's Hospital; Departments of Biological Chemistry and Molecular Pharmacology and of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Roxana E Iacob
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | - Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital; Departments of Biological Chemistry and Molecular Pharmacology and of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital; Departments of Biological Chemistry and Molecular Pharmacology and of Pediatrics, Harvard Medical School, Boston, MA 02115.
| |
Collapse
|
38
|
Nagasaki K, Gavrilova O, Hajishengallis G, Somerman MJ. Does the RGD region of certain proteins affect metabolic activity? FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.974862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A better understanding of the role of mineralized tissues and their associated factors in governing whole-body metabolism should be of value toward informing clinical strategies to treat mineralized tissue and metabolic disorders, such as diabetes and obesity. This perspective provides evidence suggesting a role for the arginine-glycine-aspartic acid (RGD) region, a sequence identified in several proteins secreted by bone cells, as well as other cells, in modulating systemic metabolic activity. We focus on (a) two of the SIBLING (small integrin-binding ligand, N-linked glycoprotein) family genes/proteins, bone sialoprotein (BSP) and osteopontin (OPN), (b) insulin-like growth factor-binding protein-1 & 2 (IGFBP-1, IGFBP-2) and (c) developmental endothelial locus 1 (DEL1) and milk fat globule–EGF factor-8 (MFG-E8). In addition, for our readers to appreciate the mounting evidence that a multitude of bone secreted factors affect the activity of other tissues, we provide a brief overview of other proteins, to include fibroblast growth factor 23 (FGF23), phosphatase orphan 1 (PHOSPHO1), osteocalcin (OCN/BGLAP), tissue non-specific alkaline phosphatase (TNAP) and acidic serine aspartic-rich MEPE-associated motif (ASARM), along with known/suggested functions of these factors in influencing energy metabolism.
Collapse
|
39
|
Caliandro MF, Schmalbein F, Todesca LM, Mörgelin M, Rezaei M, Meißner J, Siepe I, Grosche J, Schwab A, Eble JA. A redox-dependent thiol-switch and a Ca 2+ binding site within the hinge region hierarchically depend on each other in α7β1 integrin regulation. Free Radic Biol Med 2022; 187:38-49. [PMID: 35605898 DOI: 10.1016/j.freeradbiomed.2022.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
Integrin-mediated cell contacts with the extracellular matrix (ECM) are essential for cellular adhesion, force transmission, and migration. Several effectors, such as divalent cations and redox-active compounds, regulate ligand binding activities of integrins and influence their cellular functions. To study the role of the Ca2+ binding site within the hinge region of the integrin α7 subunit, we genetically abrogated it in the α7hiΔCa mutant. This mutant folded correctly, associated with the β1 subunit and was exposed on the cell surface, but showed reduced ligand binding and weaker cell adhesion to laminin-111. Thus, it resembles the α7hiΔSS mutant, in which the redox-regulated pair of cysteines, closeby to the Ca2+ binding site within the hinge, was abrogated. Comparing both mutants in adhesion strength and cell migration revealed that both Ca2+ complexation and redox-regulation within the hinge interdepend on each other. Moreover, protein-chemical analyses of soluble integrin ectodomains containing the same α7 hinge mutations suggest that integrin activation via the subunit α hinge is primed by the formation of the cysteine pair-based crosslinkage. Then, this allows Ca2+ complexation within the hinge, which is another essential step for integrin activation and ligand binding. Thus, the α hinge is an allosteric integrin regulation site, in which both effectors, Ca2+ and redox-active compounds, synergistically and hierarchically induce far-ranging conformational changes, such as the extension of the integrin ectodomain, resulting in integrin activation of ECM ligand binding and altered integrin-mediated cell functions.
Collapse
Affiliation(s)
- Michele F Caliandro
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstr. 15, 48149, Münster, Germany
| | - Felix Schmalbein
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstr. 15, 48149, Münster, Germany
| | - Luca Matteo Todesca
- University of Münster, Institute of Physiology II, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | | | - Maryam Rezaei
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstr. 15, 48149, Münster, Germany
| | - Juliane Meißner
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstr. 15, 48149, Münster, Germany
| | - Isabel Siepe
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstr. 15, 48149, Münster, Germany
| | - Julius Grosche
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstr. 15, 48149, Münster, Germany
| | - Albrecht Schwab
- University of Münster, Institute of Physiology II, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Johannes A Eble
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstr. 15, 48149, Münster, Germany.
| |
Collapse
|
40
|
Jensen RK, Pedersen H, Lorentzen J, Laursen NS, Vorup-Jensen T, Andersen GR. Structural insights into the function-modulating effects of nanobody binding to the integrin receptor α Mβ 2. J Biol Chem 2022; 298:102168. [PMID: 35738398 PMCID: PMC9287160 DOI: 10.1016/j.jbc.2022.102168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/12/2023] Open
Abstract
The integrin receptor αMβ2 mediates phagocytosis of complement-opsonized objects, adhesion to the extracellular matrix, and transendothelial migration of leukocytes. However, the mechanistic aspects of αMβ2 signaling upon ligand binding are unclear. Here, we present the first atomic structure of the human αMβ2 headpiece fragment in complex with the nanobody (Nb) hCD11bNb1 at a resolution of 3.2 Å. We show that the receptor headpiece adopts the closed conformation expected to exhibit low ligand affinity. The crystal structure indicates that in the R77H αM variant, associated with systemic lupus erythematosus, the modified allosteric relationship between ligand binding and integrin outside–inside signaling is due to subtle conformational effects transmitted over a distance of 40 Å. Furthermore, we found the Nb binds to the αI domain of the αM subunit in an Mg2+-independent manner with low nanomolar affinity. Biochemical and biophysical experiments with purified proteins demonstrated that the Nb acts as a competitive inhibitor through steric hindrance exerted on the thioester domain of complement component iC3b attempting to bind the αM subunit. Surprisingly, we show that the Nb stimulates the interaction of cell-bound αMβ2 with iC3b, suggesting that it may represent a novel high-affinity proteinaceous αMβ2-specific agonist. Taken together, our data suggest that the iC3b–αMβ2 complex may be more dynamic than predicted from the crystal structure of the core complex. We propose a model based on the conformational spectrum of the receptor to reconcile these observations regarding the functional consequences of hCD11bNb1 binding to αMβ2.
Collapse
Affiliation(s)
- Rasmus K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Josefine Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | | | | | |
Collapse
|
41
|
Humanized β2 Integrin-Expressing Hoxb8 Cells Serve as Model to Study Integrin Activation. Cells 2022; 11:cells11091532. [PMID: 35563841 PMCID: PMC9102476 DOI: 10.3390/cells11091532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 12/10/2022] Open
Abstract
The use of cell-based reporter systems has provided valuable insights into the molecular mechanisms of integrin activation. However, current models have significant drawbacks because their artificially expressed integrins cannot be regulated by either physiological stimuli or endogenous signaling pathways. Here, we report the generation of a Hoxb8 cell line expressing human β2 integrin that functionally replaced the deleted mouse ortholog. Hoxb8 cells are murine hematopoietic progenitor cells that can be efficiently differentiated into neutrophils and macrophages resembling their primary counterparts. Importantly, these cells can be stimulated by physiological stimuli triggering classical integrin inside-out signaling pathways, ultimately leading to β2 integrin conformational changes that can be recorded by the conformation-specific antibodies KIM127 and mAb24. Moreover, these cells can be efficiently manipulated via the CRISPR/Cas9 technique or retroviral vector systems. Deletion of the key integrin regulators talin1 and kindlin3 or expression of β2 integrins with mutations in their binding sites abolished both integrin extension and full activation regardless of whether only one or both activators no longer bind to the integrin. Moreover, humanized β2 integrin Hoxb8 cells represent a valuable new model for rapidly testing the role of putative integrin regulators in controlling β2 integrin activity in a physiological context.
Collapse
|
42
|
Anderson JM, Li J, Springer TA. Regulation by metal ions and the ADMIDAS of integrin α5β1 conformational states and intrinsic affinities. Mol Biol Cell 2022; 33:ar56. [PMID: 35108026 PMCID: PMC9265148 DOI: 10.1091/mbc.e21-11-0536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of integrins by Mn2+ is a benchmark in the integrin field, but how Mn2+ works and whether it reproduces physiological activation is unknown. We show that Mn2+ and high Mg2+ concentrations compete with Ca2+ at the ADMIDAS and shift the conformational equilibrium toward the open state, but the shift is far from complete. Additionally, replacement of Mg2+ by Mn2+ at the MIDAS increases the intrinsic affinities of both the high-affinity open and low-affinity closed states of integrins, in agreement with stronger binding of Mn2+ than Mg2+ to oxygen atoms. Mutation of the ADMIDAS increases the affinity of closed states and decreases the affinity of the open state and thus reduces the difference in affinity between the open and closed states. An important biological function of the ADMIDAS may be to stabilize integrins in highly discrete states, so that when integrins support cell adhesion and migration, their high and low affinity correspond to discrete on and off states, respectively.
Collapse
Affiliation(s)
- Jordan M Anderson
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston MA 02115.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02115
| | - Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston MA 02115.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02115
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston MA 02115.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02115
| |
Collapse
|
43
|
Li J, Yan J, Springer TA. Low affinity integrin states have faster ligand binding kinetics than the high affinity state. eLife 2021; 10:73359. [PMID: 34854380 PMCID: PMC8730728 DOI: 10.7554/elife.73359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022] Open
Abstract
Integrin conformational ensembles contain two low-affinity states, bent-closed and extended-closed, and an active, high-affinity, extended-open state. It is widely thought that integrins must be activated before they bind ligand; however, one model holds that activation follows ligand binding. As ligand-binding kinetics are not only rate limiting for cell adhesion but also have important implications for the mechanism of activation, we measure them here for integrins α4β1 and α5β1 and show that the low-affinity states bind substantially faster than the high-affinity state. On- and off-rates are similar for integrins on cell surfaces and as ectodomain fragments. Although the extended-open conformation’s on-rate is ~20-fold slower, its off-rate is ~25,000-fold slower, resulting in a large affinity increase. The tighter ligand-binding pocket in the open state may slow its on-rate. Low-affinity integrin states not only bind ligand more rapidly, but are also more populous on the cell surface than high-affinity states. Thus, our results suggest that integrin binding to ligand may precede, rather than follow, activation by ‘inside-out signaling.’
Collapse
Affiliation(s)
- Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Jiabin Yan
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| |
Collapse
|
44
|
Li S, Jiang S, Zhang Q, Jin B, Lv D, Li W, Zhao M, Jiang C, Dai C, Liu Z. Integrin β3 Induction Promotes Tubular Cell Senescence and Kidney Fibrosis. Front Cell Dev Biol 2021; 9:733831. [PMID: 34805144 PMCID: PMC8602096 DOI: 10.3389/fcell.2021.733831] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 01/15/2023] Open
Abstract
Tubular cell senescence is a common biologic process and contributes to the progression of chronic kidney disease (CKD); however, the molecular mechanisms regulating tubular cell senescence are poorly understood. Here, we report that integrin β3 (ITGB3) expression was increased in tubular cells and positively correlated with fibrosis degree in CKD patients. ITGB3 overexpression could induce p53 pathway activation and the secretion of TGF-β, which, in turn, resulted in senescent and profibrotic phenotype change in cultured tubular cells. Moreover, according to the CMAP database, we identified isoliquiritigenin (ISL) as an agent to inhibit ITGB3. ISL treatment could suppress Itgb3 expression, attenuate cellular senescence, and prevent renal fibrosis in mice. These results reveal a crucial role for integrin signaling in cellular senescence, potentially identifying a new therapeutic direction for kidney fibrosis.
Collapse
Affiliation(s)
- Shen Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University Medical School, Nanjing, China.,Department of Nephrology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| | - Qingyan Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Bo Jin
- Department of Nephrology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Daoyuan Lv
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| | - Wenju Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| | - Min Zhao
- Department of Nephrology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Chunming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Chunsun Dai
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Clinical Genetics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
45
|
Gasymov OK, Celik S, Agaeva G, Akyuz S, Kecel-Gunduz S, Qocayev NM, Ozel AE, Agaeva U, Bakhishova M, Aliyev JA. Evaluation of anti-cancer and anti-covid-19 properties of cationic pentapeptide Glu-Gln-Arg-Pro-Arg, from rice bran protein and its d-isomer analogs through molecular docking simulations. J Mol Graph Model 2021; 108:107999. [PMID: 34352727 PMCID: PMC8325105 DOI: 10.1016/j.jmgm.2021.107999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023]
Abstract
Bioactive peptides derived from food proteins are becoming increasingly popular due to the growing awareness of their health-promoting properties. The structure and mechanism of anti-cancer action of pentapeptide Glu-Gln-Arg-Pro-Arg (EQRPR) derived from a rice bran protein are not known. Theoretical and experimental methods were employed to fill this gap. The conformation analysis of the EQRPR pentapeptide was performed first and the obtained lowest energy conformer was optimized. The experimental structural data obtained by FTIR and CD spectroscopies agree well with the theoretical results. d-isomer introduced one-by-one to each position and all D-isomers of the peptide were also examined for its possible anti-proteolytic and activity enhancement properties. The molecular docking revealed avid binding of the pentapeptide to the integrins α5β1 and αIIbβ3, with Kd values of 90 nM and 180 nM, respectively. Moreover, the EQRPR and its D-isomers showed strong binding affinities to apo- and holo-forms of Mpro, spike glycoprotein, ACE2, and dACE2. The predicted results indicate that the pentapeptide may significantly inhibit SARS-CoV-2 infection. Thus, the peptide has the potential to be the leading molecule in the drug discovery process as having multifunctional with diverse biological activities.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Laboratory of Structure, Dynamics and Functions of Biomolecules, Institute of Biophysics of ANAS, 117 Z. Khalilov, Baku, AZ1171, Azerbaijan.
| | - Sefa Celik
- Physics Department, Science Faculty, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| | - Gulshen Agaeva
- Department of Biophysics, Institute for Physical Problems, Baku State University, Z.Khalilov, 23, Baku, AZ1148, Azerbaijan
| | - Sevim Akyuz
- Physics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, Bakirkoy 34156, Istanbul, Turkey
| | - Serda Kecel-Gunduz
- Physics Department, Science Faculty, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| | - Niftali M Qocayev
- Department of Physics, Baku State University, Z.Khalilov, 23, Baku, AZ1148, Azerbaijan
| | - Ayşen E Ozel
- Physics Department, Science Faculty, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| | - Ulker Agaeva
- Department of Biophysics, Institute for Physical Problems, Baku State University, Z.Khalilov, 23, Baku, AZ1148, Azerbaijan
| | - Matanat Bakhishova
- Laboratory of Structure, Dynamics and Functions of Biomolecules, Institute of Biophysics of ANAS, 117 Z. Khalilov, Baku, AZ1171, Azerbaijan
| | - Jamil A Aliyev
- National Center of Oncology, Azerbaijan Republic Ministry of Health, H.Zardabi, 79B, Baku, AZ1012, Azerbaijan
| |
Collapse
|
46
|
Simons P, Rinaldi DA, Bondu V, Kell AM, Bradfute S, Lidke DS, Buranda T. Integrin activation is an essential component of SARS-CoV-2 infection. Sci Rep 2021; 11:20398. [PMID: 34650161 PMCID: PMC8516859 DOI: 10.1038/s41598-021-99893-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 infection depends on binding its spike (S) protein to angiotensin-converting enzyme 2 (ACE2). The S protein expresses an RGD motif, suggesting that integrins may be co-receptors. Here, we UV-inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating cell entry and productive infection. We used flow cytometry and confocal microscopy to show that SARS-CoV-2R18 particles engage basal-state integrins. Furthermore, we demonstrate that Mn2+, which induces integrin extension, enhances cell entry of SARS-CoV-2R18. We also show that one class of integrin antagonist, which binds to the αI MIDAS site and stabilizes the inactive, closed conformation, selectively inhibits the engagement of SARS-CoV-2R18 with basal state integrins, but is ineffective against Mn2+-activated integrins. RGD-integrin antagonists inhibited SARS-CoV-2R18 binding regardless of integrin activation status. Integrins transmit signals bidirectionally: 'inside-out' signaling primes the ligand-binding function of integrins via a talin-dependent mechanism, and 'outside-in' signaling occurs downstream of integrin binding to macromolecular ligands. Outside-in signaling is mediated by Gα13. Using cell-permeable peptide inhibitors of talin and Gα13 binding to the cytoplasmic tail of an integrin's β subunit, we demonstrate that talin-mediated signaling is essential for productive infection.
Collapse
Affiliation(s)
- Peter Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Derek A Rinaldi
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Virginie Bondu
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Alison M Kell
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Steven Bradfute
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Diane S Lidke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
47
|
Bonus M, Häussinger D, Gohlke H. Liver cell hydration and integrin signaling. Biol Chem 2021; 402:1033-1045. [PMID: 33915604 DOI: 10.1515/hsz-2021-0193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Liver cell hydration (cell volume) is dynamic and can change within minutes under the influence of hormones, nutrients, and oxidative stress. Such volume changes were identified as a novel and important modulator of cell function. It provides an early example for the interaction between a physical parameter (cell volume) on the one hand and metabolism, transport, and gene expression on the other. Such events involve mechanotransduction (osmosensing) which triggers signaling cascades towards liver function (osmosignaling). This article reviews our own work on this topic with emphasis on the role of β1 integrins as (osmo-)mechanosensors in the liver, but also on their role in bile acid signaling.
Collapse
Affiliation(s)
- Michele Bonus
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Wilhelm-Johnen-Str., D-52428 Jülich, Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., D-52428 Jülich, Germany
| |
Collapse
|
48
|
An alternate covalent form of platelet αIIbβ3 integrin that resides in focal adhesions and has altered function. Blood 2021; 138:1359-1372. [PMID: 34375384 PMCID: PMC8532129 DOI: 10.1182/blood.2021012441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
The αIIbβ3 integrin receptor coordinates platelet adhesion, activation and mechanosensing in thrombosis and haemostasis. Using differential cysteine alkylation and mass spectrometry, we have identified a disulfide bond in the αIIb subunit linking cysteines 490 and 545 that is missing in about one in three integrin molecules on the resting and activated human platelet surface. This alternate covalent form of αIIbβ3 is pre-determined as it is also produced by human megakaryoblasts and baby hamster kidney fibroblasts (BHK) transfected with recombinant integrin. From co-immunoprecipitation experiments, the alternate form selectively partitions into focal adhesions on the activated platelet surface. Its function was evaluated in BHK cells expressing a mutant integrin with an ablated C490-C545 disulfide bond. The disulfide mutant integrin has functional outside-in signalling but extended residency time in focal adhesions due to reduced rate of clathrin-mediated integrin internalisation and recycling, which is associated with enhanced affinity of the αIIb subunit for clathrin adaptor protein-2. Molecular dynamics simulations indicate that the alternate covalent form of αIIb requires higher forces to transition from bent to open conformational states that is in accordance with reduced affinity for fibrinogen and activation by manganese ions. These findings indicate that the αIIbβ3 integrin receptor is produced in different covalent forms that have different cell surface distribution and function. The C490, C545 cysteine pair is conserved across all 18 integrin α subunits and the disulfide bond in the αV and α2 subunits in cultured cells is similarly missing, suggesting that this alternate integrin form and function is also conserved.
Collapse
|
49
|
Simons P, Rinaldi DA, Bondu V, Kell AM, Bradfute S, Lidke D, Buranda T. Integrin activation is an essential component of SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34312625 DOI: 10.1101/2021.07.20.453118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular entry of coronaviruses depends on binding of the viral spike (S) protein to a specific cellular receptor, the angiotensin-converting enzyme 2 (ACE2). Furthermore, the viral spike protein expresses an RGD motif, suggesting that cell surface integrins may be attachment co-receptors. However, using infectious SARS-CoV-2 requires a biosafety level 3 laboratory (BSL-3), which limits the techniques that can be used to study the mechanism of cell entry. Here, we UV-inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating both cell entry and productive infection. We used flow cytometry and confocal fluorescence microscopy to show that fluorescently labeled SARS-CoV-2 R18 particles engage basal-state integrins. Furthermore, we demonstrate that Mn 2+ , which activates integrins and induces integrin extension, enhances cell binding and entry of SARS-CoV-2 R18 in proportion to the fraction of integrins activated. We also show that one class of integrin antagonist, which binds to the αI MIDAS site and stabilizes the inactive, closed conformation, selectively inhibits the engagement of SARS-CoV-2 R18 with basal state integrins, but is ineffective against Mn 2+ -activated integrins. At the same time, RGD-integrin antagonists inhibited SARS-CoV-2 R18 binding regardless of integrin activity state. Integrins transmit signals bidirectionally: 'inside-out' signaling primes the ligand binding function of integrins via a talin dependent mechanism and 'outside-in' signaling occurs downstream of integrin binding to macromolecular ligands. Outside-in signaling is mediated by Gα 13 and induces cell spreading, retraction, migration, and proliferation. Using cell-permeable peptide inhibitors of talin, and Gα 13 binding to the cytoplasmic tail of an integrin's β subunit, we further demonstrate that talin-mediated signaling is essential for productive infection by SARS-CoV-2.
Collapse
|
50
|
Arimori T, Miyazaki N, Mihara E, Takizawa M, Taniguchi Y, Cabañas C, Sekiguchi K, Takagi J. Structural mechanism of laminin recognition by integrin. Nat Commun 2021; 12:4012. [PMID: 34188035 PMCID: PMC8241838 DOI: 10.1038/s41467-021-24184-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Recognition of laminin by integrin receptors is central to the epithelial cell adhesion to basement membrane, but the structural background of this molecular interaction remained elusive. Here, we report the structures of the prototypic laminin receptor α6β1 integrin alone and in complex with three-chain laminin-511 fragment determined via crystallography and cryo-electron microscopy, respectively. The laminin-integrin interface is made up of several binding sites located on all five subunits, with the laminin γ1 chain C-terminal portion providing focal interaction using two carboxylate anchor points to bridge metal-ion dependent adhesion site of integrin β1 subunit and Asn189 of integrin α6 subunit. Laminin α5 chain also contributes to the affinity and specificity by making electrostatic interactions with large surface on the β-propeller domain of α6, part of which comprises an alternatively spliced X1 region. The propeller sheet corresponding to this region shows unusually high mobility, suggesting its unique role in ligand capture.
Collapse
Affiliation(s)
- Takao Arimori
- grid.136593.b0000 0004 0373 3971Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka Japan
| | - Naoyuki Miyazaki
- grid.136593.b0000 0004 0373 3971Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka Japan ,grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Emiko Mihara
- grid.136593.b0000 0004 0373 3971Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka Japan
| | - Mamoru Takizawa
- grid.136593.b0000 0004 0373 3971Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka Japan
| | - Yukimasa Taniguchi
- grid.136593.b0000 0004 0373 3971Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka Japan
| | - Carlos Cabañas
- grid.465524.4Cell-cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain ,grid.4795.f0000 0001 2157 7667Department of Immunology, Ophthalmology and Otorhinolaryngology (IOO), Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain ,grid.144756.50000 0001 1945 5329Instituto de Investigación Sanitaria Hospital 12 Octubre (i+12), Madrid, Spain
| | - Kiyotoshi Sekiguchi
- grid.136593.b0000 0004 0373 3971Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka Japan
| | - Junichi Takagi
- grid.136593.b0000 0004 0373 3971Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka Japan
| |
Collapse
|