1
|
Shapiro JG, Changela N, Jang JK, Joshi JN, McKim KS. Distinct checkpoint and homolog biorientation pathways regulate meiosis I in Drosophila oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608908. [PMID: 39229242 PMCID: PMC11370425 DOI: 10.1101/2024.08.21.608908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Evidence of a SAC response by several of these proteins is found upon depolymerization of microtubules by colchicine. However, unattached kinetochores or errors in biorientation of homologous chromosomes does not induce a SAC response. Furthermore, the metaphase I arrest does not depend on SAC genes, suggesting the APC is inhibited even if the SAC is silenced. Two SAC proteins, ROD of the ROD-ZW10-Zwilch (RZZ) complex and MPS1, are also required for the biorientation of homologous chromosomes during meiosis I, suggesting an error correction function. Both proteins aid in preventing or correcting erroneous attachments and depend on SPC105R for localization to the kinetochore. We have defined a region of SPC105R, amino acids 123-473, that is required for ROD localization and biorientation of homologous chromosomes at meiosis I. Surprisingly, ROD removal, or "streaming", is independent of the dynein adaptor Spindly and is not linked to the stabilization of end-on attachments. Instead, meiotic RZZ streaming appears to depend on cell cycle stage and may be regulated independently of kinetochore attachment or biorientation status. We also show that dynein adaptor Spindly is also required for biorientation at meiosis I, and surprisingly, the direction of RZZ streaming.
Collapse
Affiliation(s)
- Joanatta G Shapiro
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Janet K Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Jay N Joshi
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
2
|
Tang F, Hummitzsch K, Rodgers RJ. RNAseq analysis of oocyte maturation from the germinal vesicle stage to metaphase II in pig and human. PLoS One 2024; 19:e0305893. [PMID: 39121087 PMCID: PMC11315340 DOI: 10.1371/journal.pone.0305893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/06/2024] [Indexed: 08/11/2024] Open
Abstract
During maturation oocytes at the germinal vesicle (GV) stage progress to metaphase II (MII). However, during in vitro maturation a proportion often fail to progress. To understand these processes, we employed RNA sequencing to examine the transcriptome profile of these three groups of oocytes from the pig. We compared our findings with similar public oocyte data from humans. The transcriptomes in oocytes that failed to progress was similar to those that did. We found in both species, the most upregulated genes in MII oocytes were associated with chromosome segregation and cell cycle processes, while the most down regulated genes were relevant to ribosomal and mitochondrial pathways. Moreover, those genes involved in chromosome segregation during GV to MII transition were conserved in pig and human. We also compared MII and GV oocyte transcriptomes at the isoform transcript level in both species. Several thousands of genes (including DTNBP1, MAPK1, RAB35, GOLGA7, ATP1A1 and ATP2B1) identified as not different in expression at a gene transcript level were found to have differences in isoform transcript levels. Many of these genes were involved in ATPase-dependent or GTPase-dependent intracellular transport in pig and human, respectively. In conclusion, our study suggests the failure to progress to MII in vitro may not be regulated at the level of the genome and that many genes are differentially regulated at the isoform level, particular those involved ATPase- or GTPase-dependent intracellular transport.
Collapse
Affiliation(s)
- Feng Tang
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Katja Hummitzsch
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Raymond J. Rodgers
- School of Biomedicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Chen S, Sun Q, Yao B, Ren Y. The Molecular Mechanism of Aurora-B Regulating Kinetochore-Microtubule Attachment in Mitosis and Oocyte Meiosis. Cytogenet Genome Res 2024; 164:69-77. [PMID: 39068909 DOI: 10.1159/000540588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Aurora kinase B (Aurora-B), a member of the chromosomal passenger complex, is involved in correcting kinetochore-microtubule (KT-MT) attachment errors and regulating sister chromatid condensation and cytoplasmic division during mitosis. SUMMARY However, few reviews have discussed its mechanism in oocyte meiosis and the differences between its role in mitosis and meiosis. Therefore, in this review, we summarize the localization, recruitment, activation, and functions of Aurora-B in mitosis and oocyte meiosis. The accurate regulation of Aurora-B is essential for ensuring accurate chromosomal segregation and correct KT-MT attachments. Aurora-B regulates the stability of KT-MT attachments by competing with cyclin-dependent kinase 1 to control the phosphorylation of the SILK and RVSF motifs on kinetochore scaffold 1 and by competing with protein phosphatase 1 to influence the phosphorylation of NDC80 which is the substrate of Aurora-B. In addition, Aurora-B regulates the spindle assembly checkpoint by promoting the recruitment and activation of mitotic arrest deficient 2. KEY MESSAGES This review provides a theoretical foundation for elucidating the mechanism of cell division and understanding oocyte chromosomal aneuploidy.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China,
| | - Qiqi Sun
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Bo Yao
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Yanping Ren
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
El Yakoubi W, Akera T. Condensin dysfunction is a reproductive isolating barrier in mice. Nature 2023; 623:347-355. [PMID: 37914934 PMCID: PMC11379054 DOI: 10.1038/s41586-023-06700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Reproductive isolation occurs when the genomes of two populations accumulate genetic incompatibilities that prevent interbreeding1,2. Understanding of hybrid incompatibility at the cell biology level is limited, particularly in the case of hybrid female sterility3. Here we find that species divergence in condensin regulation and centromere organization between two mouse species, Mus musculus domesticus and Mus spretus, drives chromosome decondensation and mis-segregation in their F1 hybrid oocytes, reducing female fertility. The decondensation in hybrid oocytes was especially prominent at pericentromeric major satellites, which are highly abundant at M. m. domesticus centromeres4-6, leading to species-specific chromosome mis-segregation and egg aneuploidy. Consistent with the condensation defects, a chromosome structure protein complex, condensin II7,8, was reduced on hybrid oocyte chromosomes. We find that the condensin II subunit NCAPG2 was specifically reduced in the nucleus in prophase and that overexpressing NCAPG2 rescued both the decondensation and egg aneuploidy phenotypes. In addition to the overall reduction in condensin II on chromosomes, major satellites further reduced condensin II levels locally, explaining why this region is particularly prone to decondensation. Together, this study provides cell biological insights into hybrid incompatibility in female meiosis and demonstrates that condensin misregulation and pericentromeric satellite expansion can establish a reproductive isolating barrier in mammals.
Collapse
Affiliation(s)
- Warif El Yakoubi
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Ju J, Pan Z, Zhang K, Ji Y, Liu J, Sun S. Mcrs1 regulates G2/M transition and spindle assembly during mouse oocyte meiosis. EMBO Rep 2023; 24:e56273. [PMID: 36951681 PMCID: PMC10157313 DOI: 10.15252/embr.202256273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
Microspherule protein 1 (Mcrs1) is a component of the nonspecific lethal (NSL) complex and the chromatin remodeling INO80 complex, which participates in transcriptional regulation during mitosis. Here, we investigate the roles of Mcrs1 during female meiosis in mice. We demonstrate that Mcrs1 is a novel regulator of the meiotic G2/M transition and spindle assembly in mouse oocytes. Mcrs1 is present in the nucleus and associates with spindle poles and chromosomes of oocytes during meiosis I. Depletion of Mcrs1 alters HDAC2-mediated H4K16ac, H3K4me2, and H3K9me2 levels in nonsurrounded nucleolus (NSN)-type oocytes, and reduces CDK1 activity and cyclin B1 accumulation, leading to G2/M transition delay. Furthermore, Mcrs1 depletion results in abnormal spindle assembly due to reduced Aurora kinase (Aurka and Aurkc) and Kif2A activities, suggesting that Mcrs1 also plays a transcription-independent role in regulation of metaphase I oocytes. Taken together, our results demonstrate that the transcription factor Mcrs1 has important roles in cell cycle regulation and spindle assembly in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Jia‐Qian Ju
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Zhen‐Nan Pan
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Kun‐Huan Zhang
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Yi‐Ming Ji
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Jing‐Cai Liu
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Shao‐Chen Sun
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
7
|
Takahashi N, Franciosi F, Daldello EM, Luong XG, Althoff P, Wang X, Conti M. CPEB1-dependent disruption of the mRNA translation program in oocytes during maternal aging. Nat Commun 2023; 14:416. [PMID: 36697412 PMCID: PMC9877008 DOI: 10.1038/s41467-023-35994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
The molecular causes of deteriorating oocyte quality during aging are poorly defined. Since oocyte developmental competence relies on post-transcriptional regulations, we tested whether defective mRNA translation contributes to this decline in quality. Disruption in ribosome loading on maternal transcripts is present in old oocytes. Using a candidate approach, we detect altered translation of 3'-UTR-reporters and altered poly(A) length of the endogenous mRNAs. mRNA polyadenylation depends on the cytoplasmic polyadenylation binding protein 1 (CPEB1). Cpeb1 mRNA translation and protein levels are decreased in old oocytes. This decrease causes de-repression of Ccnb1 translation in quiescent oocytes, premature CDK1 activation, and accelerated reentry into meiosis. De-repression of Ccnb1 is corrected by Cpeb1 mRNA injection in old oocytes. Oocyte-specific Cpeb1 haploinsufficiency in young oocytes recapitulates all the translation phenotypes of old oocytes. These findings demonstrate that a dysfunction in the oocyte translation program is associated with the decline in oocyte quality during aging.
Collapse
Affiliation(s)
- Nozomi Takahashi
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Federica Franciosi
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,Reproductive and Developmental Biology Lab, Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 20133, Milan, Italy
| | - Enrico Maria Daldello
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,Sorbonne Université, CNRS, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Paris, France
| | - Xuan G Luong
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Peter Althoff
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Xiaotian Wang
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA. .,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA. .,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
8
|
Courtois A, Yoshida S, Takenouchi O, Asai K, Kitajima TS. Stable kinetochore-microtubule attachments restrict MTOC position and spindle elongation in oocytes. EMBO Rep 2021; 22:e51400. [PMID: 33655692 PMCID: PMC8024892 DOI: 10.15252/embr.202051400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 01/13/2023] Open
Abstract
In mouse oocytes, acentriolar MTOCs functionally replace centrosomes and act as microtubule nucleation sites. Microtubules nucleated from MTOCs initially assemble into an unorganized ball‐like structure, which then transforms into a bipolar spindle carrying MTOCs at its poles, a process called spindle bipolarization. In mouse oocytes, spindle bipolarization is promoted by kinetochores but the mechanism by which kinetochore–microtubule attachments contribute to spindle bipolarity remains unclear. This study demonstrates that the stability of kinetochore–microtubule attachment is essential for confining MTOC positions at the spindle poles and for limiting spindle elongation. MTOC sorting is gradual and continues even in the metaphase spindle. When stable kinetochore–microtubule attachments are disrupted, the spindle is unable to restrict MTOCs at its poles and fails to terminate its elongation. Stable kinetochore fibers are directly connected to MTOCs and to the spindle poles. These findings suggest a role for stable kinetochore–microtubule attachments in fine‐tuning acentrosomal spindle bipolarity.
Collapse
Affiliation(s)
- Aurélien Courtois
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shuhei Yoshida
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Osamu Takenouchi
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Kohei Asai
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Takei N, Takada Y, Kawamura S, Sato K, Saitoh A, Bormann J, Yuen WS, Carroll J, Kotani T. Changes in subcellular structures and states of pumilio 1 regulate the translation of target Mad2 and cyclin B1 mRNAs. J Cell Sci 2020; 133:jcs249128. [PMID: 33148609 DOI: 10.1242/jcs.249128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Temporal and spatial control of mRNA translation has emerged as a major mechanism for promoting diverse biological processes. However, the molecular nature of temporal and spatial control of translation remains unclear. In oocytes, many mRNAs are deposited as a translationally repressed form and are translated at appropriate times to promote the progression of meiosis and development. Here, we show that changes in subcellular structures and states of the RNA-binding protein pumilio 1 (Pum1) regulate the translation of target mRNAs and progression of oocyte maturation. Pum1 was shown to bind to Mad2 (also known as Mad2l1) and cyclin B1 mRNAs, assemble highly clustered aggregates, and surround Mad2 and cyclin B1 RNA granules in mouse oocytes. These Pum1 aggregates were dissolved prior to the translational activation of target mRNAs, possibly through phosphorylation. Stabilization of Pum1 aggregates prevented the translational activation of target mRNAs and progression of oocyte maturation. Together, our results provide an aggregation-dissolution model for the temporal and spatial control of translation.
Collapse
Affiliation(s)
- Natsumi Takei
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Takada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shohei Kawamura
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keisuke Sato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Atsushi Saitoh
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Jenny Bormann
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Wai Shan Yuen
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - John Carroll
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
10
|
Meiotic Instability Generates a Pathological Condition in Mammalian Ovum. Stem Cell Rev Rep 2020; 17:777-784. [PMID: 33140233 DOI: 10.1007/s12015-020-10072-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 02/02/2023]
Abstract
Maintenance of metaphase-II (M-II) arrest in ovum is required to present itself as a right gamete for successful fertilization in mammals. Surprisingly, instability of meiotic cell cycle results in spontaneous exit from M-II arrest, chromosomal scattering and incomplete extrusion of second polar body (PB-II) without forming pronuclei so called abortive spontaneous ovum activation (SOA). It remains unclear what causes meiotic instability in freshly ovulated ovum that results in abortive SOA. We propose the involvement of various signal molecules such as reactive oxygen species (ROS), cyclic 3',5' adenosine monophosphate (cAMP) and calcium (Ca2+) in the induction of meiotic instability and thereby abortive SOA. These signal molecules through their downstream pathways modulate phosphorylation status and activity of cyclin dependent kinase (cdk1) as well as cyclin B1 level. Changes in phosphorylation status of cdk1 and its activity, dissociation and degradation of cyclin B1 destabilize maturation promoting factor (MPF). The premature MPF destabilization and defects in other cell cycle regulators possibly cause meiotic instability in ovum soon after ovulation. The meiotic instability results in a pathological condition of abortive SOA and deteriorates ovum quality. These ova are unfit for fertilization and limit reproductive outcome in several mammalian species including human. Therefore, global attention is required to identify the underlying causes in greater details in order to address the problem of meiotic instability in ova of several mammalian species icluding human. Moreover, these activated ova may be used to create parthenogenetic embryonic stem cell lines in vitro for the use in regenerative medicine.Graphical abstract.
Collapse
|
11
|
Nishiyama S, Yoshida S, Kitajima TS. Cdk1 negatively regulates the spindle localization of Prc1 in mouse oocytes. Genes Cells 2020; 25:685-694. [PMID: 32865279 DOI: 10.1111/gtc.12803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 11/26/2022]
Abstract
Chromosome segregation requires the formation of a bipolar spindle. The timely bipolarization of the acentrosomal spindle during meiosis I in mouse oocytes depends on the antiparallel microtubule crosslinker Prc1. How Prc1 is regulated in oocytes remains poorly understood. In this study, we show that the kinase Cdk1 negatively regulates the spindle localization of Prc1 in mouse oocytes. The acute inhibition of Cdk1 activity led to excessive localization of Prc1 at the spindle and kinetochores, whereas the overactivation of Cdk1 had opposite effects. The overexpression of Prc1 carrying mutations at Cdk1-mediated phosphorylation sites increased its localization to the spindle, accelerated spindle bipolarization and caused spindle-checkpoint-dependent arrest at metaphase I. Overactivation of Cdk1 delayed spindle bipolarization, which was reversed by the overexpression of a phospho-mutant form but not the wild-type form of Prc1. These results suggest that Cdk1-mediated phosphorylation negatively regulates Prc1 localization to ensure the timely bipolarization of the acentrosomal spindle during meiosis I in mammalian oocytes.
Collapse
Affiliation(s)
- Sui Nishiyama
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shuhei Yoshida
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Prc1-rich kinetochores are required for error-free acentrosomal spindle bipolarization during meiosis I in mouse oocytes. Nat Commun 2020; 11:2652. [PMID: 32461611 PMCID: PMC7253481 DOI: 10.1038/s41467-020-16488-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 05/01/2020] [Indexed: 12/18/2022] Open
Abstract
Acentrosomal meiosis in oocytes represents a gametogenic challenge, requiring spindle bipolarization without predefined bipolar cues. While much is known about the structures that promote acentrosomal microtubule nucleation, less is known about the structures that mediate spindle bipolarization in mammalian oocytes. Here, we show that in mouse oocytes, kinetochores are required for spindle bipolarization in meiosis I. This process is promoted by oocyte-specific, microtubule-independent enrichment of the antiparallel microtubule crosslinker Prc1 at kinetochores via the Ndc80 complex. In contrast, in meiosis II, cytoplasm that contains upregulated factors including Prc1 supports kinetochore-independent pathways for spindle bipolarization. The kinetochore-dependent mode of spindle bipolarization is required for meiosis I to prevent chromosome segregation errors. Human oocytes, where spindle bipolarization is reportedly error prone, exhibit no detectable kinetochore enrichment of Prc1. This study reveals an oocyte-specific function of kinetochores in acentrosomal spindle bipolarization in mice, and provides insights into the error-prone nature of human oocytes. Oocyte meiosis must achieve spindle bipolarization without predefined spatial cues. Yoshida et al. demonstrate that spindle bipolarization during meiosis I in mouse oocytes requires kinetochores to prevent chromosome segregation errors, a phenomenon that does not occur in error-prone human oocytes.
Collapse
|
13
|
Macaulay AD, Allais A, FitzHarris G. Chromosome dynamics and spindle microtubule establishment in mouse embryos. FASEB J 2020; 34:8057-8067. [PMID: 32329130 DOI: 10.1096/fj.201902947r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 11/11/2022]
Abstract
Chromosome segregation errors in mammalian embryos are common and jeopardize embryo health. Here, we perform for the first time 4-Dimensional imaging and tracking of chromosomes and centromeres through each preimplantation mitotic cell division in mouse embryos to define the normal dynamics of chromosome segregation. We show that a microtubule (MT)-dependent inward movement of chromosomes occurs at the time of nuclear envelope breakdown (NEBD), particularly in the earliest cell divisions, to position chromosomes prior to spindle assembly. Establishment of a rudimentary metaphase plate occurs immediately after NEBD, and is followed by a progressive alignment and biorientation of mitotic chromosomes. Stable end-on kinetochore-MT attachments form rapidly and attachment errors are uncommon. Altogether our data describe a rapid and efficient spindle assembly pathway that apparently minimizes the need for canonical MT attachment error correction in normally dividing embryos.
Collapse
Affiliation(s)
- Angus D Macaulay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Adélaïde Allais
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Greg FitzHarris
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Department of OBGYN, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
14
|
Luteinizing Hormone Action in Human Oocyte Maturation and Quality: Signaling Pathways, Regulation, and Clinical Impact. Reprod Sci 2020; 27:1223-1252. [PMID: 32046451 PMCID: PMC7190682 DOI: 10.1007/s43032-019-00137-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
The ovarian follicle luteinizing hormone (LH) signaling molecules that regulate oocyte meiotic maturation have recently been identified. The LH signal reduces preovulatory follicle cyclic nucleotide levels which releases oocytes from the first meiotic arrest. In the ovarian follicle, the LH signal reduces cyclic nucleotide levels via the CNP/NPR2 system, the EGF/EGF receptor network, and follicle/oocyte gap junctions. In the oocyte, reduced cyclic nucleotide levels activate the maturation promoting factor (MPF). The activated MPF induces chromosome segregation and completion of the first and second meiotic divisions. The purpose of this paper is to present an overview of the current understanding of human LH signaling regulation of oocyte meiotic maturation by identifying and integrating the human studies on this topic. We found 89 human studies in the literature that identified 24 LH follicle/oocyte signaling proteins. These studies show that human oocyte meiotic maturation is regulated by the same proteins that regulate animal oocyte meiotic maturation. We also found that these LH signaling pathway molecules regulate human oocyte quality and subsequent embryo quality. Remarkably, in vitro maturation (IVM) prematuration culture (PMC) protocols that manipulate the LH signaling pathway improve human oocyte quality of cultured human oocytes. This knowledge has improved clinical human IVM efficiency which may become a routine alternative ART for some infertile patients.
Collapse
|
15
|
He Y, Li X, Gao M, Liu H, Gu L. Loss of HDAC3 contributes to meiotic defects in aged oocytes. Aging Cell 2019; 18:e13036. [PMID: 31498540 PMCID: PMC6826132 DOI: 10.1111/acel.13036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 01/12/2023] Open
Abstract
Maternal age‐related decline in oocyte quality is associated with meiotic defects, but the underlying mechanisms remain to be explored. Histone deacetylase 3 (HDAC3) has been shown to govern multiple cellular events via deacetylating diverse substrates. We previously found that HDAC3 could promote meiotic apparatus assembly in mouse oocytes. In the present study, we identified a substantial reduction in HDAC3 protein in oocytes from old mice. Importantly, overexpression of HDAC3 in old oocytes not only partially prevents spindle/chromosome disorganization, but also significantly lowers the incidence of aneuploidy. Meanwhile, we noticed the elevated acetylation level of α‐tubulin in oocytes derived from old mice. By employing site‐directed mutagenesis, we showed that acetylation‐mimetic mutant tubulin‐K40Q disrupts the kinetochore–microtubule attachments and results in the assembly failure of meiotic apparatus in mouse oocytes. Importantly, forced expression of tubulin‐K40R (nonacetylatable‐mimetic mutant) was capable of alleviating the defective phenotypes of oocytes from aged mice. To sum up, this study uncovers that loss of HDAC3 represents one potential mechanism mediating the effects of advanced maternal age on oocyte quality.
Collapse
Affiliation(s)
- Yongfu He
- College of Animal Science & Technology Nanjing Agricultural University Nanjing China
| | - Xiaoyan Li
- College of Animal Science & Technology Nanjing Agricultural University Nanjing China
| | - Min Gao
- College of Animal Science & Technology Nanjing Agricultural University Nanjing China
| | - Honglin Liu
- College of Animal Science & Technology Nanjing Agricultural University Nanjing China
| | - Ling Gu
- College of Animal Science & Technology Nanjing Agricultural University Nanjing China
| |
Collapse
|
16
|
Abstract
Chromosome segregation errors in human oocytes lead to aneuploid embryos that cause infertility and birth defects. Here we provide an overview of the chromosome-segregation process in the mammalian oocyte, highlighting mechanistic differences between oocytes and somatic cells that render oocytes so prone to segregation error. These differences include the extremely large size of the oocyte cytoplasm, the unique geometry of meiosis-I chromosomes, idiosyncratic function of the spindle assembly checkpoint, and dramatically altered oocyte cell-cycle control and spindle assembly, as compared to typical somatic cells. We summarise recent work suggesting that aging leads to a further deterioration in fidelity of chromosome segregation by impacting multiple components of the chromosome-segregation machinery. In addition, we compare and contrast recent results from mouse and human oocytes, which exhibit overlapping defects to differing extents. We conclude that the striking propensity of the oocyte to mis-segregate chromosomes reflects the unique challenges faced by the spindle in a highly unusual cellular environment.
Collapse
Affiliation(s)
- Aleksandar I Mihajlović
- Centre Recherche CHUM and Department OBGYN, Université de Montreal, Montreal, Quebec, Canada
| | - Greg FitzHarris
- Centre Recherche CHUM and Department OBGYN, Université de Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
17
|
Regulation of Translationally Repressed mRNAs in Zebrafish and Mouse Oocytes. Results Probl Cell Differ 2019; 63:297-324. [PMID: 28779323 DOI: 10.1007/978-3-319-60855-6_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
From the beginning of oogenesis, oocytes accumulate tens of thousands of mRNAs for promoting oocyte growth and development. A large number of these mRNAs are translationally repressed and localized within the oocyte cytoplasm. Translational activation of these dormant mRNAs at specific sites and timings plays central roles in driving progression of the meiotic cell cycle, axis formation, mitotic cleavages, transcriptional initiation, and morphogenesis. Regulation of the localization and temporal translation of these mRNAs has been shown to rely on cis-acting elements in the mRNAs and trans-acting factors recognizing and binding to the elements. Recently, using model vertebrate zebrafish, localization itself and formation of physiological structures such as RNA granules have been shown to coordinate the accurate timings of translational activation of dormant mRNAs. This subcellular regulation of mRNAs is also utilized in other animals including mouse. In this chapter, we review fundamental roles of temporal regulation of mRNA translation in oogenesis and early development and then focus on the mechanisms of mRNA regulation in the oocyte cytoplasm by which the activation of dormant mRNAs at specific timings is achieved.
Collapse
|
18
|
Daldello EM, Luong XG, Yang CR, Kuhn J, Conti M. Cyclin B2 is required for progression through meiosis in mouse oocytes. Development 2019; 146:dev172734. [PMID: 30952665 PMCID: PMC6503990 DOI: 10.1242/dev.172734] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Abstract
Cyclins associate with cyclin-dependent serine/threonine kinase 1 (CDK1) to generate the M phase-promoting factor (MPF) activity essential for progression through mitosis and meiosis. Although cyclin B1 (CCNB1) is required for embryo development, previous studies concluded that CCNB2 is dispensable for cell cycle progression. Given previous findings of high Ccnb2 mRNA translation rates in prophase-arrested oocytes, we re-evaluated the role of this cyclin during meiosis. Ccnb2-/- oocytes underwent delayed germinal vesicle breakdown and showed defects during the metaphase-to-anaphase transition. This defective maturation was associated with compromised Ccnb1 and Moloney sarcoma oncogene (Mos) mRNA translation, delayed spindle assembly and increased errors in chromosome segregation. Given these defects, a significant percentage of oocytes failed to complete meiosis I because the spindle assembly checkpoint remained active and anaphase-promoting complex/cyclosome function was inhibited. In vivo, CCNB2 depletion caused ovulation of immature oocytes, premature ovarian failure, and compromised female fecundity. These findings demonstrate that CCNB2 is required to assemble sufficient pre-MPF for timely meiosis re-entry and progression. Although endogenous cyclins cannot compensate, overexpression of CCNB1/2 rescues the meiotic phenotypes, indicating similar molecular properties but divergent modes of regulation of these cyclins.
Collapse
Affiliation(s)
- Enrico Maria Daldello
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Xuan G Luong
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Cai-Rong Yang
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Jonathan Kuhn
- Cell and Tissue Biology Department, University of California, San Francisco, CA 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
19
|
Schneider I, Ellenberg J. Mysteries in embryonic development: How can errors arise so frequently at the beginning of mammalian life? PLoS Biol 2019; 17:e3000173. [PMID: 30840627 PMCID: PMC6422315 DOI: 10.1371/journal.pbio.3000173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Chromosome segregation errors occur frequently during female meiosis but also in the first mitoses of mammalian preimplantation development. Such errors can lead to aneuploidy, spontaneous abortions, and birth defects. Some of the mechanisms underlying these errors in meiosis have been deciphered but which mechanisms could cause chromosome missegregation in the first embryonic cleavage divisions is mostly a “mystery”. In this article, we describe the starting conditions and challenges of these preimplantation divisions, which might impair faithful chromosome segregation. We also highlight the pending research to provide detailed insight into the mechanisms and regulation of preimplantation mitoses. Starting a new life is a challenging business. This Essay explores the changes at the oocyte-to-embryo transition to highlight the circumstances under which the very first and decisive — but ‘mysteriously’ error-prone — mitotic divisions occur.
Collapse
Affiliation(s)
- Isabell Schneider
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Candidate for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
20
|
Levasseur MD, Thomas C, Davies OR, Higgins JMG, Madgwick S. Aneuploidy in Oocytes Is Prevented by Sustained CDK1 Activity through Degron Masking in Cyclin B1. Dev Cell 2019; 48:672-684.e5. [PMID: 30745144 PMCID: PMC6416240 DOI: 10.1016/j.devcel.2019.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/22/2018] [Accepted: 12/29/2018] [Indexed: 01/10/2023]
Abstract
Successful mitosis requires that cyclin B1:CDK1 kinase activity remains high until chromosomes are correctly aligned on the mitotic spindle. It has therefore been unclear why, in mammalian oocyte meiosis, cyclin B1 destruction begins before chromosome alignment is complete. Here, we resolve this paradox and show that mouse oocytes exploit an imbalance in the ratio of cyclin B1 to CDK1 to control CDK1 activity; early cyclin B1 destruction reflects the loss of an excess of non-CDK1-bound cyclin B1 in late prometaphase, while CDK1-bound cyclin B1 is destroyed only during metaphase. The ordered destruction of the two forms of cyclin B1 is brought about by a previously unidentified motif that is accessible in free cyclin B1 but masked when cyclin B1 is in complex with CDK1. This protects the CDK1-bound fraction from destruction in prometaphase, ensuring a period of prolonged CDK1 activity sufficient to achieve optimal chromosome alignment and prevent aneuploidy. In mouse oocytes, an excess of cyclin B1 preserves CDK1 activity A motif in non-CDK1-bound cyclin B1 confers preferential APC/C targeting Non-CDK1-bound cyclin B1 is gradually destroyed before CDK1-bound cyclin B1 Prolonged CDK1 activity assists the spindle checkpoint and prevents aneuploidy
Collapse
Affiliation(s)
- Mark D Levasseur
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Christopher Thomas
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Owen R Davies
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jonathan M G Higgins
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Suzanne Madgwick
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
21
|
Cao L, Li WJ, Yang JH, Wang Y, Hua ZJ, Liu D, Chen YQ, Zhang HM, Zhang R, Zhao JS, Cheng SJ, Zhang Q. Inflammatory cytokine-induced expression of MASTL is involved in hepatocarcinogenesis by regulating cell cycle progression. Oncol Lett 2019; 17:3163-3172. [PMID: 30867746 PMCID: PMC6396276 DOI: 10.3892/ol.2019.9983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Microtubule associated serine/threonine kinase-like (MASTL) is the functional mammalian ortholog of Greatwall kinase (Gwl), which was originally discovered in Drosophila. Gwl is an essential kinase for accurate chromosome condensation and mitotic progression, and inhibits protein phosphatase 2A (PP2A), which subsequently dephosphorylates the substrates of cyclin B1-cyclin-dependent kinase 1, leading to mitotic exit. Previous studies have indicated that MASTL has a critical function in the regulation of mitosis in HeLa and U2OS cell lines, though there is currently limited evidence for the involvement of MASTL in hepatocarcinogenesis. The results of the present study revealed that MASTL was inducible by the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), which promoted the proliferation and mitotic entry of human liver cancer cells. It was also determined that MASTL was significantly overexpressed in cancerous liver tissues compared with non-tumor liver tissues. Mechanistically, stimulation by IL-6 and TNF-α induced the trimethylation of histone H3 lysine 4 (H3K4Me3) at the MASTL promoter to facilitate chromatin accessibility. Additionally, H3K4Me3 was associated with the activation of nuclear factor-κB, which subsequently upregulated MASTL expression. These findings suggested that MASTL may have pivotal functions in the development of hepatocarcinoma, and that it may be a potential target for treatment.
Collapse
Affiliation(s)
- Liye Cao
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Wen-Juan Li
- College of Medicine, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Ji-Hong Yang
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yu Wang
- College of Medicine, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Zhi-Juan Hua
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Dan Liu
- Department of Ultrasound Imaging, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong 519000, P.R. China
| | - Ya-Qing Chen
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Hao-Miao Zhang
- College of Medicine, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Rui Zhang
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Ji-Sen Zhao
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Shu-Jie Cheng
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Quan Zhang
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
22
|
Wei Z, Greaney J, Zhou C, A Homer H. Cdk1 inactivation induces post-anaphase-onset spindle migration and membrane protrusion required for extreme asymmetry in mouse oocytes. Nat Commun 2018; 9:4029. [PMID: 30279413 PMCID: PMC6168559 DOI: 10.1038/s41467-018-06510-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/31/2018] [Indexed: 11/09/2022] Open
Abstract
Female meiotic divisions are extremely asymmetric, producing large oocytes and small polar bodies (PBs). In mouse oocytes, the spindle relocates to the cortex before anaphase of meiosis I (MI). It is presumed that by displacing the future midzone, pre-anaphase spindle repositioning alone ensures asymmetry. But how subsequent anaphase events might contribute to asymmetric PB extrusion (PBE) is unknown. Here, we find that inactivation of cyclin-dependent kinase 1 (Cdk1) induces anaphase and simultaneously triggers cytoplasmic formin-mediated F-actin polymerisation that propels the spindle into the cortex causing it to protrude while anaphase progresses. Significantly, if post-anaphase-onset spindle migration fails, protrusion and asymmetry are severely threatened even with intact pre-anaphase migration. Conversely, post-anaphase migration can completely compensate for failed pre-anaphase migration. These data identify a cell-cycle-triggered phase of spindle displacement occurring after anaphase-onset, which, by inducing protrusion, is necessary for extreme asymmetry in mouse oocytes and uncover a pathway for maximising unequal division.
Collapse
Affiliation(s)
- Zhe Wei
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Jessica Greaney
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Chenxi Zhou
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
| | - Hayden A Homer
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia.
| |
Collapse
|
23
|
Increased Expression of Maturation Promoting Factor Components Speeds Up Meiosis in Oocytes from Aged Females. Int J Mol Sci 2018; 19:ijms19092841. [PMID: 30235877 PMCID: PMC6164426 DOI: 10.3390/ijms19092841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022] Open
Abstract
The rate of chromosome segregation errors that emerge during meiosis I in the mammalian female germ line are known to increase with maternal age; however, little is known about the underlying molecular mechanism. The objective of this study was to analyze meiotic progression of mouse oocytes in relation to maternal age. Using the mouse as a model system, we analyzed the timing of nuclear envelope breakdown and the morphology of the nuclear lamina of oocytes obtained from young (2 months old) and aged females (12 months old). Oocytes obtained from older females display a significantly faster progression through meiosis I compared to the ones obtained from younger females. Furthermore, in oocytes from aged females, lamin A/C structures exhibit rapid phosphorylation and dissociation. Additionally, we also found an increased abundance of MPF components and increased translation of factors controlling translational activity in the oocytes of aged females. In conclusion, the elevated MPF activity observed in aged female oocytes affects precocious meiotic processes that can multifactorially contribute to chromosomal errors in meiosis I.
Collapse
|
24
|
Sharma A, Tiwari M, Gupta A, Pandey AN, Yadav PK, Chaube SK. Journey of oocyte from metaphase-I to metaphase-II stage in mammals. J Cell Physiol 2018; 233:5530-5536. [PMID: 29331044 DOI: 10.1002/jcp.26467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022]
Abstract
In mammals, journey from metaphase-I (M-I) to metaphase-II (M-II) is important since oocyte extrude first polar body (PB-I) and gets converted into haploid gamete. The molecular and cellular changes associated with meiotic cell cycle progression from M-I to M-II stage and extrusion of PB-I remain ill understood. Several factors drive oocyte meiosis from M-I to M-II stage. The mitogen-activated protein kinase3/1 (MAPK3/1), signal molecules and Rho family GTPases act through various pathways to drive cell cycle progression from M-I to M-II stage. The down regulation of MOS/MEK/MAPK3/1 pathway results in the activation of anaphase-promoting complex/cyclosome (APC/C). The active APC/C destabilizes maturation promoting factor (MPF) and induces meiotic resumption. Several signal molecules such as, c-Jun N-terminal kinase (JNK2), SENP3, mitotic kinesin-like protein 2 (MKlp2), regulator of G-protein signaling (RGS2), Epsin2, polo-like kinase 1 (Plk1) are directly or indirectly involved in chromosomal segregation. Rho family GTPase is another enzyme that along with cell division cycle (Cdc42) to form actomyosin contractile ring required for chromosomal segregation. In the presence of origin recognition complex (ORC4), eccentrically localized haploid set of chromosomes trigger cortex differentiation and determine the division site for polar body formation. The actomyosin contractile activity at the site of division plane helps to form cytokinetic furrow that results in the formation and extrusion of PB-I. Indeed, oocyte journey from M-I to M-II stage is coordinated by several factors and pathways that enable oocyte to extrude PB-I. Quality of oocyte directly impact fertilization rate, early embryonic development, and reproductive outcome in mammals.
Collapse
Affiliation(s)
- Alka Sharma
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anumegha Gupta
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
25
|
Chaurasia S, Lehner CF. Dynamics and control of sister kinetochore behavior during the meiotic divisions in Drosophila spermatocytes. PLoS Genet 2018; 14:e1007372. [PMID: 29734336 PMCID: PMC5957430 DOI: 10.1371/journal.pgen.1007372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/17/2018] [Accepted: 04/19/2018] [Indexed: 11/19/2022] Open
Abstract
Sister kinetochores are connected to the same spindle pole during meiosis I and to opposite poles during meiosis II. The molecular mechanisms controlling the distinct behavior of sister kinetochores during the two meiotic divisions are poorly understood. To study kinetochore behavior during meiosis, we have optimized time lapse imaging with Drosophila spermatocytes, enabling kinetochore tracking with high temporal and spatial resolution through both meiotic divisions. The correct bipolar orientation of chromosomes within the spindle proceeds rapidly during both divisions. Stable bi-orientation of the last chromosome is achieved within ten minutes after the onset of kinetochore-microtubule interactions. Our analyses of mnm and tef mutants, where univalents instead of bivalents are present during meiosis I, indicate that the high efficiency of normal bi-orientation depends on pronounced stabilization of kinetochore attachments to spindle microtubules by the mechanical tension generated by spindle forces upon bi-orientation. Except for occasional brief separation episodes, sister kinetochores are so closely associated that they cannot be resolved individually by light microscopy during meiosis I, interkinesis and at the start of meiosis II. Permanent evident separation of sister kinetochores during M II depends on spindle forces resulting from bi-orientation. In mnm and tef mutants, sister kinetochore separation can be observed already during meiosis I in bi-oriented univalents. Interestingly, however, this sister kinetochore separation is delayed until the metaphase to anaphase transition and depends on the Fzy/Cdc20 activator of the anaphase-promoting complex/cyclosome. We propose that univalent bi-orientation in mnm and tef mutants exposes a release of sister kinetochore conjunction that occurs also during normal meiosis I in preparation for bi-orientation of dyads during meiosis II. For production of oocytes and sperm, cells have to complete meiosis which includes two successive divisions. These divisions convert diploid cells with a maternal and a paternal copy of each chromosome into haploid cells with only one copy of each chromosome. Chromosome copy reduction requires regulation of sister kinetochore behavior during the meiotic divisions. Kinetochores are protein networks assembled at the start of divisions within the centromeric region of chromosomes. They provide attachment sites for spindle microtubules which in turn exert poleward pulling forces. During pre-meiotic S phase, each chromosome is duplicated into two closely associated sister chromatids. At the start of the first meiotic division, both sister chromatids together assemble only one functional kinetochore, permitting subsequent separation of paired homologous chromosomes to opposite spindle poles. In contrast, at the onset of the second meiotic division, each sister chromatid organizes its own kinetochore followed by separation of sister chromatids to opposite spindle poles. To analyze when and how sister kinetochores are individualized, we have improved time lapse imaging with Drosophila spermatocytes. Our analyses in normal and genetically altered spermatocytes suggest that the release of sister kinetochore conjunction occurs during the first meiotic division after activation of the anaphase promoting complex/cyclosome.
Collapse
Affiliation(s)
- Soumya Chaurasia
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | - Christian F. Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Lee IW, Jo YJ, Jung SM, Wang HY, Kim NH, Namgoong S. Distinct roles of Cep192 and Cep152 in acentriolar MTOCs and spindle formation during mouse oocyte maturation. FASEB J 2018; 32:625-638. [PMID: 28970258 DOI: 10.1096/fj.201700559rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian oocytes lack a centriole that acts as a microtubule organization center (MTOC) in most somatic cells. During oocyte maturation, MTOCs undergo remodeling processes, including decondensation, fragmentation, and self-organization. However, the underlying mechanisms of MTOC remodeling in mouse oocytes are not well understood. We showed that two pericentriolar proteins, Cep192 and Cep152, play crucial roles during MTOC remodeling in mouse oocytes. Cep192 is present in MTOCs at all stages of oocyte maturation, and its depletion induces ablation of MTOCs, delay in spindle formation, and abnormal chromosomal alignment in spindles. In the case of Cep152, its localization on MTOCs is limited at the germinal vesicle stage and then disappears from the MTOCs after the germinal vesicle breakdown stage. Cep152 exclusion from MTOCs is involved in the fragmentation of MTOCs, and it is regulated by cyclin-dependent kinase 1 activity. Our results demonstrate the different roles of Cep192 and Cep152 in MTOC remodeling and a novel regulatory mechanism during meiotic spindle formation in mouse oocytes.-Lee, I.-W., Jo, Y.-J., Jung, S.-M., Wang, H.-Y., Kim, N.-H., Namgoong, S. Distinct roles of Cep192 and Cep152 in acentriolar MTOCs and spindle formation during mouse oocyte maturation.
Collapse
Affiliation(s)
- In-Won Lee
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Yu-Jin Jo
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Seung-Min Jung
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Hai-Yang Wang
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Suk Namgoong
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
27
|
Kitajima TS. Mechanisms of kinetochore-microtubule attachment errors in mammalian oocytes. Dev Growth Differ 2018; 60:33-43. [PMID: 29318599 PMCID: PMC11520954 DOI: 10.1111/dgd.12410] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Proper kinetochore-microtubule attachment is essential for correct chromosome segregation. Therefore, cells normally possess multiple mechanisms for the prevention of errors in kinetochore-microtubule attachments and for selective stabilization of correct attachments. However, the oocyte, a cell that produces an egg through meiosis, exhibits a high frequency of errors in kinetochore-microtubule attachments. These attachment errors predispose oocytes to chromosome segregation errors, resulting in aneuploidy in eggs. This review aims to provide possible explanations for the error-prone nature of oocytes by examining key differences among other cell types in the mechanisms for the establishment of kinetochore-microtubule attachments.
Collapse
Affiliation(s)
- Tomoya S. Kitajima
- Laboratory for Chromosome SegregationRIKEN Center for Developmental BiologyKobe650‐0047Japan
| |
Collapse
|
28
|
Greaney J, Wei Z, Homer H. Immunofluorescence Staining of K-Fibers in Mouse Oocytes Using Cold Fixation. Methods Mol Biol 2018; 1818:77-87. [PMID: 29961257 DOI: 10.1007/978-1-4939-8603-3_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The kinetochore is a multiprotein complex that assembles on centromeric DNA and constitutes the main attachment interface between chromosomes and microtubules of the spindle apparatus. Kinetochores also provide the platform for integrating the surveillance mechanism known as the spindle assembly checkpoint (SAC) that regulates the timing of anaphase onset. Saturation of microtubule binding sites on kinetochores displaces SAC proteins leading to loss of SAC-mediated inhibition and the triggering of anaphase. Microtubule binding sites become saturated by bundles of microtubules attached in an end-on manner to kinetochores, termed kinetochore fibers or K-fibers. The appearance of K-fibers therefore signifies the completion of attachment between kinetochores and microtubules and the silencing of the SAC. Here we describe a method involving cold-fixation for immunostaining and imaging K-fibers during meiosis I in mouse oocytes.
Collapse
Affiliation(s)
- Jessica Greaney
- Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Zhe Wei
- Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Hayden Homer
- Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia.
| |
Collapse
|
29
|
Greaney J, Wei Z, Homer H. Regulation of chromosome segregation in oocytes and the cellular basis for female meiotic errors. Hum Reprod Update 2017; 24:135-161. [PMID: 29244163 DOI: 10.1093/humupd/dmx035] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/12/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Meiotic chromosome segregation in human oocytes is notoriously error-prone, especially with ageing. Such errors markedly reduce the reproductive chances of increasing numbers of women embarking on pregnancy later in life. However, understanding the basis for these errors is hampered by limited access to human oocytes. OBJECTIVE AND RATIONALE Important new discoveries have arisen from molecular analyses of human female recombination and aneuploidy along with high-resolution analyses of human oocyte maturation and mouse models. Here, we review these findings to provide a contemporary picture of the key players choreographing chromosome segregation in mammalian oocytes and the cellular basis for errors. SEARCH METHODS A search of PubMed was conducted using keywords including meiosis, oocytes, recombination, cohesion, cohesin complex, chromosome segregation, kinetochores, spindle, aneuploidy, meiotic cell cycle, spindle assembly checkpoint, anaphase-promoting complex, DNA damage, telomeres, mitochondria, female ageing and female fertility. We extracted papers focusing on mouse and human oocytes that best aligned with the themes of this review and that reported transformative and novel discoveries. OUTCOMES Meiosis incorporates two sequential rounds of chromosome segregation executed by a spindle whose component microtubules bind chromosomes via kinetochores. Cohesion mediated by the cohesin complex holds chromosomes together and should be resolved at the appropriate time, in a specific step-wise manner and in conjunction with meiotically programmed kinetochore behaviour. In women, the stage is set for meiotic error even before birth when female-specific crossover maturation inefficiency leads to the formation of at-risk recombination patterns. In adult life, multiple co-conspiring factors interact with at-risk crossovers to increase the likelihood of mis-segregation. Available evidence support that these factors include, but are not limited to, cohesion deterioration, uncoordinated sister kinetochore behaviour, erroneous microtubule attachments, spindle instability and structural chromosomal defects that impact centromeres and telomeres. Data from mice indicate that cohesin and centromere-specific histones are long-lived proteins in oocytes. Since these proteins are pivotal for chromosome segregation, but lack any obvious renewal pathway, their deterioration with age provides an appealing explanation for at least some of the problems in older oocytes. WIDER IMPLICATIONS Research in the mouse model has identified a number of candidate genes and pathways that are important for chromosome segregation in this species. However, many of these have not yet been investigated in human oocytes so it is uncertain at this stage to what extent they apply to women. The challenge for the future involves applying emerging knowledge of female meiotic molecular regulation towards improving clinical fertility management.
Collapse
Affiliation(s)
- Jessica Greaney
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| | - Zhe Wei
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| | - Hayden Homer
- Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia
| |
Collapse
|
30
|
Severance AL, Latham KE. PLK1 regulates spindle association of phosphorylated eukaryotic translation initiation factor 4E-binding protein and spindle function in mouse oocytes. Am J Physiol Cell Physiol 2017; 313:C501-C515. [PMID: 28794108 PMCID: PMC5792166 DOI: 10.1152/ajpcell.00075.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 11/22/2022]
Abstract
Oocyte meiotic spindles are associated with spindle-enriched mRNAs, phosphorylated ribosome protein S6, and phosphorylated variants of the key translational regulator, eukaryotic translation initiation factor 4E-binding protein 1 (eIF4E-BP1), consistent with translational control of localized mRNAs by eIF4E-BP1 in facilitating spindle formation and stability. Using specific kinase inhibitors, we determined which kinases regulate phosphorylation status of eIF4E-BP1 associated with meiotic spindles in mouse oocytes and effects of kinase inhibition on chromosome congression and spindle formation. Neither ataxia telangiectasia-mutated kinase nor mechanistic target of rapamycin inhibition significantly affected phosphorylation status of spindle-associated eIF4E-BP1 at the phosphorylation sites examined. Spindle-associated phospho-eIF4E-BP1, spindle formation, and chromosome congression were strongly disrupted by polo-like kinase I (PLK1) inhibition at both metaphase I (MI) and MII. In addition, direct inhibition of eIF4E-BP1 via 4EGI led to spindle defects at MI, indicating a direct role for eIF4E-BP1 phosphorylation in meiotic spindle formation. PLK1 also regulated microtubule dynamics throughout the ooplasm, indicating likely coordination between spindle dynamics and broader ooplasm cytoskeletal dynamics. Because diverse upstream signaling pathways converge on PLK1, these results implicate PLK1 as a major regulatory nexus coupling endogenous and exogenous signals via eIF4E-BP1 to the regulation of spindle formation and stability.
Collapse
Affiliation(s)
- Ashley L Severance
- Reproductive and Developmental Sciences Program, Michigan State University , East Lansing, Michigan
- Genetics Graduate Program, Michigan State University , East Lansing, Michigan
| | - Keith E Latham
- Reproductive and Developmental Sciences Program, Michigan State University , East Lansing, Michigan
- Genetics Graduate Program, Michigan State University , East Lansing, Michigan
- Department of Animal Science, Michigan State University , East Lansing, Michigan ; and
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
31
|
Zhang Z, Chen C, Ma L, Yu Q, Li S, Abbasi B, Yang J, Rui R, Ju S. Plk1 is essential for proper chromosome segregation during meiosis I/meiosis II transition in pig oocytes. Reprod Biol Endocrinol 2017; 15:69. [PMID: 28851440 PMCID: PMC5575893 DOI: 10.1186/s12958-017-0289-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/13/2017] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Polo-like kinase 1 (Plk1), as a characteristic regulator in meiosis, organizes multiple biological events of cell division. Although Plk1 has been implicated in various functions in somatic cell mitotic processes, considerably less is known regarding its function during the transition from metaphase I (MI) to metaphase II (MII) stage in oocyte meiotic progression. METHODS In this study, the possible role of Plk1 during the MI-to-MII stage transition in pig oocytes was addressed. Initially, the spatiotemporal expression and subcellular localization pattern of Plk1 were revealed in pig oocytes from MI to MII stage using indirect immunofluorescence and confocal microscopy imaging techniques combined with western blot analyses. Moreover, a highly selective Plk1 inhibitor, GSK461364, was used to determine the potential role of Plk1 during this MI-to-MII transition progression. RESULTS Upon expression, Plk1 exhibited a specific dynamic intracellular localization, and co-localization of Plk1 with α-tubulin was revealed in the meiotic spindle of pig oocyte during the transition from MI to MII stage. GSK461364 treatment significantly blocked the first polar body (pbI) emission in a dose-dependent manner and resulted in a failure of meiotic maturation, with a larger percentage of the GSK461364-treated oocytes arresting in the anaphase-telophase I (ATI) stage. Further subcellular structure examination results showed that inhibition of Plk1 with GSK461364 had no visible effect on spindle assembly but caused a significantly higher proportion of the treated oocytes to have obvious defects in homologous chromosome segregation at ATI stage. CONCLUSIONS Thus, these results indicate that Plk1 plays an essential role during the meiosis I/meiosis II transition in porcine oocytes, and the regulation is associated with Plk1's effects on homologous chromosome segregation in the ATI stage.
Collapse
Affiliation(s)
- Zixiao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Changchao Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liying Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qiuchen Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shuai Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Benazir Abbasi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiayi Yang
- Nanjing Foreign Languages School, Nanjing, 210008 China
| | - Rong Rui
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shiqiang Ju
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
32
|
Tiwari M, Chaube SK. Maturation promoting factor destabilization mediates human chorionic gonadotropin induced meiotic resumption in rat oocytes. Dev Growth Differ 2017; 59:603-614. [PMID: 28815566 DOI: 10.1111/dgd.12387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 12/13/2022]
Abstract
Human chorionic gonadotropin (hCG) mimics the action of luteinizing hormone (LH) and triggers meiotic maturation and ovulation in mammals. The mechanism by which hCG triggers meiotic resumption in mammalian oocytes remains poorly understood. We aimed to find out the impact of hCG surge on morphological changes, adenosine 3',5'-cyclic monophosphate (cAMP), guanosine 3',5'-cyclic monophosphate (cGMP), cell division cycle 25B (Cdc25B), Wee1, early mitotic inhibitor 2 (Emi2), anaphase-promoting complex/cyclosome (APC/C), meiotic arrest deficient protein 2 (MAD2), phosphorylation status of cyclin-dependent kinase 1 (Cdk1), its activity and cyclin B1 expression levels during meiotic resumption from diplotene as well as metaphase-II (M-II) arrest in cumulus oocyte complexes (COCs). Our data suggest that hCG surge increased cyclic nucleotides level in encircling granulosa cells but decreased their level in oocyte. The reduced intraoocyte cyclic nucleotides level is associated with the decrease of Cdc25B, Thr161 phosphorylated Cdk1 and Emi2 expression levels. On the other hand, hCG surge increased Wee1, Thr14/Tyr15 phosphorylated Cdk1, APC/C as well as MAD2 expression levels. The elevated APC/C activity reduced cyclin B1 level. The changes in phosphorylation status of Cdk1 and reduced cyclin B1 level might have resulted in maturation promoting factor (MPF) destabilization. The destabilized MPF finally triggered resumption of meiosis from diplotene as well as M-II arrest in rat oocytes.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P., India
| |
Collapse
|
33
|
Tiwari M, Gupta A, Sharma A, Prasad S, Pandey AN, Yadav PK, Pandey AK, Shrivastav TG, Chaube SK. Role of Mitogen Activated Protein Kinase and Maturation Promoting Factor During the Achievement of Meiotic Competency in Mammalian Oocytes. J Cell Biochem 2017; 119:123-129. [DOI: 10.1002/jcb.26184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Anumegha Gupta
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Alka Sharma
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Shilpa Prasad
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Ashutosh N. Pandey
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Pramod K. Yadav
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Ajai K. Pandey
- Faculty of AyurvedaDepartment of KayachikitsaBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Tulsidas G. Shrivastav
- Department of Reproductive BiomedicineNational Institute of Health and Family WelfareBaba Gang Nath MargMunirkaNew Delhi 110067India
| | - Shail K. Chaube
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| |
Collapse
|
34
|
Rattani A, Ballesteros Mejia R, Roberts K, Roig MB, Godwin J, Hopkins M, Eguren M, Sanchez-Pulido L, Okaz E, Ogushi S, Wolna M, Metson J, Pendás AM, Malumbres M, Novák B, Herbert M, Nasmyth K. APC/C Cdh1 Enables Removal of Shugoshin-2 from the Arms of Bivalent Chromosomes by Moderating Cyclin-Dependent Kinase Activity. Curr Biol 2017; 27:1462-1476.e5. [PMID: 28502659 PMCID: PMC5457479 DOI: 10.1016/j.cub.2017.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/23/2017] [Accepted: 04/12/2017] [Indexed: 01/06/2023]
Abstract
In mammalian females, germ cells remain arrested as primordial follicles. Resumption of meiosis is heralded by germinal vesicle breakdown, condensation of chromosomes, and their eventual alignment on metaphase plates. At the first meiotic division, anaphase-promoting complex/cyclosome associated with Cdc20 (APC/CCdc20) activates separase and thereby destroys cohesion along chromosome arms. Because cohesion around centromeres is protected by shugoshin-2, sister chromatids remain attached through centromeric/pericentromeric cohesin. We show here that, by promoting proteolysis of cyclins and Cdc25B at the germinal vesicle (GV) stage, APC/C associated with the Cdh1 protein (APC/CCdh1) delays the increase in Cdk1 activity, leading to germinal vesicle breakdown (GVBD). More surprisingly, by moderating the rate at which Cdk1 is activated following GVBD, APC/CCdh1 creates conditions necessary for the removal of shugoshin-2 from chromosome arms by the Aurora B/C kinase, an event crucial for the efficient resolution of chiasmata.
Collapse
Affiliation(s)
- Ahmed Rattani
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Randy Ballesteros Mejia
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne NE1 4EP, UK; Wellcome Trust Centre for Mitochondrial Research, Institute for Genetic Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Katherine Roberts
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Maurici B Roig
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jonathan Godwin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Michael Hopkins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Manuel Eguren
- Cell Division and Cancer Group, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Luis Sanchez-Pulido
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Elwy Okaz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Sugako Ogushi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Magda Wolna
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jean Metson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alberto M Pendás
- Instituto de Biología Molecular y Celular del Cáncer de Salamanca, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Béla Novák
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mary Herbert
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne NE1 4EP, UK; Wellcome Trust Centre for Mitochondrial Research, Institute for Genetic Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Kim Nasmyth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
35
|
Baumann C, Wang X, Yang L, Viveiros MM. Error-prone meiotic division and subfertility in mice with oocyte-conditional knockdown of pericentrin. J Cell Sci 2017; 130:1251-1262. [PMID: 28193732 DOI: 10.1242/jcs.196188] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/06/2017] [Indexed: 01/24/2023] Open
Abstract
Mouse oocytes lack canonical centrosomes and instead contain unique acentriolar microtubule-organizing centers (aMTOCs). To test the function of these distinct aMTOCs in meiotic spindle formation, pericentrin (Pcnt), an essential centrosome/MTOC protein, was knocked down exclusively in oocytes by using a transgenic RNAi approach. Here, we provide evidence that disruption of aMTOC function in oocytes promotes spindle instability and severe meiotic errors that lead to pronounced female subfertility. Pcnt-depleted oocytes from transgenic (Tg) mice were ovulated at the metaphase-II stage, but show significant chromosome misalignment, aneuploidy and premature sister chromatid separation. These defects were associated with loss of key Pcnt-interacting proteins (γ-tubulin, Nedd1 and Cep215) from meiotic spindle poles, altered spindle structure and chromosome-microtubule attachment errors. Live-cell imaging revealed disruptions in the dynamics of spindle assembly and organization, together with chromosome attachment and congression defects. Notably, spindle formation was dependent on Ran GTPase activity in Pcnt-deficient oocytes. Our findings establish that meiotic division is highly error-prone in the absence of Pcnt and disrupted aMTOCs, similar to what reportedly occurs in human oocytes. Moreover, these data underscore crucial differences between MTOC-dependent and -independent meiotic spindle assembly.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Xiaotian Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Luhan Yang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA .,Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
36
|
Abstract
Progression through the meiotic cell cycle must be strictly regulated in oocytes to generate viable embryos and offspring. During mitosis, the kinesin motor protein Kif4 is indispensable for chromosome condensation and separation, midzone formation and cytokinesis. Additionally, the bioactivity of Kif4 is dependent on phosphorylation via Aurora Kinase B and Cdk1, which regulate Kif4 function throughout mitosis. Here, we examine the role of Kif4 in mammalian oocyte meiosis. Kif4 localized in the cytoplasm throughout meiosis I and II, but was also observed to have a dynamic subcellular distribution, associating with both microtubules and kinetochores at different stages of development. Co-localization and proximity ligation assays revealed that the kinetochore proteins, CENP-C and Ndc80, are potential Kif4 interacting proteins. Functional analysis of Kif4 in oocytes via antisense knock-down demonstrated that this protein was not essential for meiosis I completion. However, Kif4 depleted oocytes displayed enlarged polar bodies and abnormal metaphase II spindles, indicating an essential role for this protein for correct asymmetric cell division in meiosis I. Further investigation of the phosphoregulation of meiotic Kif4 revealed that Aurora Kinase and Cdk activity is critical for Kif4 kinetochore localization and interaction with Ndc80 and CENP-C. Finally, Kif4 protein but not gene expression was found to be upregulated with age, suggesting a role for this protein in the decline of oocyte quality with age.
Collapse
|
37
|
Bennabi I, Terret ME, Verlhac MH. Meiotic spindle assembly and chromosome segregation in oocytes. J Cell Biol 2016; 215:611-619. [PMID: 27879467 PMCID: PMC5147004 DOI: 10.1083/jcb.201607062] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/10/2016] [Accepted: 11/02/2016] [Indexed: 11/22/2022] Open
Abstract
Centrosomes play a key role in organizing the microtubule spindle that separates chromosomes during mitosis. Bennabi et al. review how microtubule spindle formation and chromosomal segregation also occur in oocytes during cell division by meiosis despite the absence of centrosomes. Oocytes accumulate maternal stores (proteins, mRNAs, metabolites, etc.) during their growth in the ovary to support development after fertilization. To preserve this cytoplasmic maternal inheritance, they accomplish the difficult task of partitioning their cytoplasm unequally while dividing their chromosomes equally. Added to this complexity, most oocytes, for reasons still speculative, lack the major microtubule organizing centers that most cells use to assemble and position their spindles, namely canonical centrosomes. In this review, we will address recent work on the mechanisms of meiotic spindle assembly and chromosome alignment/segregation in female gametes to try to understand the origin of errors of oocyte meiotic divisions. The challenge of oocyte divisions appears indeed not trivial because in both mice and humans oocyte meiotic divisions are prone to chromosome segregation errors, a leading cause of frequent miscarriages and congenital defects.
Collapse
Affiliation(s)
- Isma Bennabi
- Centre for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, PSL Research University, Paris 75006, France
| | - Marie-Emilie Terret
- Centre for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, PSL Research University, Paris 75006, France
| | - Marie-Hélène Verlhac
- Centre for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, PSL Research University, Paris 75006, France
| |
Collapse
|
38
|
Radford SJ, Nguyen AL, Schindler K, McKim KS. The chromosomal basis of meiotic acentrosomal spindle assembly and function in oocytes. Chromosoma 2016; 126:351-364. [PMID: 27837282 DOI: 10.1007/s00412-016-0618-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022]
Abstract
Several aspects of meiosis are impacted by the absence of centrosomes in oocytes. Here, we review four aspects of meiosis I that are significantly affected by the absence of centrosomes in oocyte spindles. One, microtubules tend to assemble around the chromosomes. Two, the organization of these microtubules into a bipolar spindle is directed by the chromosomes. Three, chromosome bi-orientation and attachment to microtubules from the correct pole require modification of the mechanisms used in mitotic cells. Four, chromosome movement to the poles at anaphase cannot rely on polar anchoring of spindle microtubules by centrosomes. Overall, the chromosomes are more active participants during acentrosomal spindle assembly in oocytes, compared to mitotic and male meiotic divisions where centrosomes are present. The chromosomes are endowed with information that can direct the meiotic divisions and dictate their own behavior in oocytes. Processes beyond those known from mitosis appear to be required for their bi-orientation at meiosis I. As mitosis occurs without centrosomes in many systems other than oocytes, including all plants, the concepts discussed here may not be limited to oocytes. The study of meiosis in oocytes has revealed mechanisms that are operating in mitosis and will probably continue to do so.
Collapse
Affiliation(s)
- Sarah J Radford
- Waksman Institute, 190 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | | | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kim S McKim
- Waksman Institute, 190 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
39
|
Webster A, Schuh M. Mechanisms of Aneuploidy in Human Eggs. Trends Cell Biol 2016; 27:55-68. [PMID: 27773484 DOI: 10.1016/j.tcb.2016.09.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/03/2016] [Accepted: 09/02/2016] [Indexed: 01/24/2023]
Abstract
Eggs and sperm develop through a specialized cell division called meiosis. During meiosis, the number of chromosomes is reduced by two sequential divisions in preparation for fertilization. In human female meiosis, chromosomes frequently segregate incorrectly, resulting in eggs with an abnormal number of chromosomes. When fertilized, these eggs give rise to aneuploid embryos that usually fail to develop. As women become older, errors in meiosis occur more frequently, resulting in increased risks of infertility, miscarriage, and congenital syndromes, such as Down's syndrome. Here, we review recent studies that identify the mechanisms causing aneuploidy in female meiosis, with a particular emphasis on studies in humans.
Collapse
Affiliation(s)
- Alexandre Webster
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077, Göttingen, Germany.
| |
Collapse
|
40
|
Redgrove KA, Bernstein IR, Pye VJ, Mihalas BP, Sutherland JM, Nixon B, McCluskey A, Robinson PJ, Holt JE, McLaughlin EA. Dynamin 2 is essential for mammalian spermatogenesis. Sci Rep 2016; 6:35084. [PMID: 27725702 PMCID: PMC5057128 DOI: 10.1038/srep35084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/26/2016] [Indexed: 11/09/2022] Open
Abstract
The dynamin family of proteins play important regulatory roles in membrane remodelling and endocytosis, especially within brain and neuronal tissues. In the context of reproduction, dynamin 1 (DNM1) and dynamin 2 (DNM2) have recently been shown to act as key mediators of sperm acrosome formation and function. However, little is known about the roles that these proteins play in the developing testicular germ cells. In this study, we employed a DNM2 germ cell-specific knockout model to investigate the role of DNM2 in spermatogenesis. We demonstrate that ablation of DNM2 in early spermatogenesis results in germ cell arrest during prophase I of meiosis, subsequent loss of all post-meiotic germ cells and concomitant sterility. These effects become exacerbated with age, and ultimately result in the demise of the spermatogonial stem cells and a Sertoli cell only phenotype. We also demonstrate that DNM2 activity may be temporally regulated by phosphorylation of DNM2 via the kinase CDK1 in spermatogonia, and dephosphorylation by phosphatase PPP3CA during meiotic and post-meiotic spermatogenesis.
Collapse
Affiliation(s)
- Kate A Redgrove
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ilana R Bernstein
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Victoria J Pye
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Bettina P Mihalas
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jessie M Sutherland
- School of Biomedical Sciences &Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett Nixon
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Adam McCluskey
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Sydney, NSW 2145, Australia
| | - Janet E Holt
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,PRC in Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
41
|
Formation of mos RNA granules in the zebrafish oocyte that differ from cyclin B1 RNA granules in distribution, density and regulation. Eur J Cell Biol 2016; 95:563-573. [PMID: 27756483 DOI: 10.1016/j.ejcb.2016.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/07/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022] Open
Abstract
Many translationally repressed mRNAs are deposited in the oocyte cytoplasm for progression of the meiotic cell cycle and early development. mos and cyclin B1 mRNAs encode proteins promoting oocyte meiosis, and translational control of these mRNAs is important for normal progression of meiotic cell division. We previously demonstrated that cyclin B1 mRNA forms RNA granules in the zebrafish and mouse oocyte cytoplasm and that the formation of RNA granules is crucial for regulating the timing of translational activation of the mRNA. However, whether the granule formation is specific to cyclin B1 mRNA remains unknown. In this study, we found that zebrafish mos mRNA forms granules distinct from those of cyclin B1 mRNA. Fluorescent in situ hybridization analysis showed that cyclin B1 RNA granules were assembled in dense clusters, while mos RNA granules were distributed diffusely in the animal polar cytoplasm. Sucrose density gradient ultracentrifugation analysis showed that the density of mos RNA granules was partly lower than that of cyclin B1 mRNA. Similar to cyclin B1 RNA granules, mos RNA granules were disassembled after initiation of oocyte maturation at the timing at which the poly(A) tail was elongated. However, while almost all of the granules of cyclin B1 were disassembled simultaneously, a fraction of mos RNA granules firstly disappeared and then a large part of them was disassembled. In addition, while cyclin B1 RNA granules were disassembled in a manner dependent on actin filament depolymerization, certain fractions of mos RNA granules were disassembled independently of actin filaments. These results suggest that cytoplasmic regulation of translationally repressed mRNAs by formation of different RNA granules is a key mechanism for translational control of distinct mRNAs in the oocyte.
Collapse
|
42
|
Bury L, Coelho PA, Glover DM. From Meiosis to Mitosis: The Astonishing Flexibility of Cell Division Mechanisms in Early Mammalian Development. Curr Top Dev Biol 2016; 120:125-71. [PMID: 27475851 DOI: 10.1016/bs.ctdb.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The execution of female meiosis and the establishment of the zygote is arguably the most critical stage of mammalian development. The egg can be arrested in the prophase of meiosis I for decades, and when it is activated, the spindle is assembled de novo. This spindle must function with the highest of fidelity and yet its assembly is unusually achieved in the absence of conventional centrosomes and with minimal influence of chromatin. Moreover, its dramatic asymmetric positioning is achieved through remarkable properties of the actin cytoskeleton to ensure elimination of the polar bodies. The second meiotic arrest marks a uniquely prolonged metaphase eventually interrupted by egg activation at fertilization to complete meiosis and mark a period of preparation of the male and female pronuclear genomes not only for their entry into the mitotic cleavage divisions but also for the imminent prospect of their zygotic expression.
Collapse
Affiliation(s)
- L Bury
- University of Cambridge, Cambridge, United Kingdom.
| | - P A Coelho
- University of Cambridge, Cambridge, United Kingdom
| | - D M Glover
- University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Prasad S, Koch B, Chaube SK. Maturation promoting factor destabilization facilitates postovulatory aging-mediated abortive spontaneous egg activation in rat. Dev Growth Differ 2016; 58:293-302. [DOI: 10.1111/dgd.12272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Shilpa Prasad
- Department of Zoology; Biochemistry Unit, Cell Physiology Laboratory; Varanasi 221005 U.P. India
| | - Biplob Koch
- Department of Zoology; Genotoxicology and Cancer Biology Laboratory; Institute of Science; Banaras Hindu University; Varanasi 221005 U.P. India
| | - Shail K. Chaube
- Department of Zoology; Biochemistry Unit, Cell Physiology Laboratory; Varanasi 221005 U.P. India
| |
Collapse
|
44
|
Prasad S, Koch B, Chaube SK. Involvement of Cyclin-Dependent Kinase 1 during Postovulatory Aging-Mediated Abortive Spontaneous Egg Activation in Rat Eggs Cultured In Vitro. Cell Reprogram 2016; 18:96-107. [PMID: 26982431 DOI: 10.1089/cell.2015.0068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Freshly ovulated rat eggs do not remain arrested at metaphase II (MII) and undergo exit from MII arrest with initiation of extrusion of the second polar body (PBII), a characteristic feature of abortive spontaneous egg activation (SEA). The biochemical and molecular changes during postovulatory aging-mediated abortive SEA remain poorly understood. We investigated the morphological, cellular, and molecular changes during postovulatory aging-mediated abortive SEA in eggs cultured in vitro. Our results suggest that postovulatory egg aging in vitro induced initiation of PBII extrusion in a time-dependent manner. Postovulatory aging increased Wee1 kinase and Thr-14/Tyr-15 phosphorylated cyclin-dependent kinase 1 (Cdk1) levels, whereas Thr-161 phosphorylated Cdk1 and cyclin B1 levels were significantly decreased in eggs cultured in vitro. The early mitotic inhibitor 2 (Emi2) level was significantly reduced, but anaphase promoting complex/cyclosome (APC/C) and mitotic arrest deficient protein (MAD2) levels were increased initially and then reduced during a later period of in vitro culture. These results suggest that an increased Wee1 kinase level modulated the specific phosphorylation status of Cdk1, increased Cdk1 activity, and decreased the cyclin B1 level. Furthermore, the decreased Emi2 level was associated with an increased level of APC/C and decreased level of cyclin B1, which resulted in maturation promoting factor (MPF) destabilization and finally led to postovulatory aging-mediated abortive SEA in rat eggs cultured in vitro.
Collapse
Affiliation(s)
- Shilpa Prasad
- 1 Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi-221005, Uttar Pradesh, India
| | - Biplob Koch
- 2 Genotoxicology and Cancer Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi-221005, Uttar Pradesh, India
| | - Shail K Chaube
- 1 Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
45
|
Abstract
Sexual reproduction is essential for many organisms to propagate themselves. It requires the formation of haploid female and male gametes: oocytes and sperms. These specialized cells are generated through meiosis, a particular type of cell division that produces cells with recombined genomes that differ from their parental origin. In this review, we highlight the end process of female meiosis, the divisions per se, and how they can give rise to a functional female gamete preparing itself for the ensuing zygotic development. In particular, we discuss why such an essential process in the propagation of species is so poorly controlled, producing a strong percentage of abnormal female gametes in the end. Eventually, we examine aspects related to the lack of centrosomes in female oocytes, the asymmetry in size of the mammalian oocyte upon division, and in mammals the direct consequences of these long-lived cells in the ovary.
Collapse
|
46
|
RO-3306 prevents postovulatory aging-mediated spontaneous exit from M-II arrest in rat eggs cultured in vitro. Biomed Pharmacother 2016; 78:216-225. [PMID: 26898445 DOI: 10.1016/j.biopha.2016.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/28/2015] [Accepted: 01/13/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Postovulatory aging-mediated spontaneous exit from metaphase-II (M-II) arrest deteriorates egg quality and limits assisted reproductive technologies outcome (ART) outcome. Present study was aimed to find out whether RO-3306, specific cyclin dependent kinase 1 (Cdk1) inhibitor could protect against postovulatory aging-mediated spontaneous exit from M-II arrest in rat eggs cultured in vitro. METHODS Freshly ovulated M-II arrested eggs were exposed to various concentrations of RO-3306 for 3h in vitro. The morphological changes, percentage of spontaneous exit from M-II arrest, total and specific phosphorylation status of Cdk1, cyclin B1 level and Cdk1 activity were analyzed. RESULTS Data suggest that RO-3306 protected postovulatory aging-mediated spontaneous exit from M-II arrest in a concentration-dependent manner. Postovulatory aging increased Thr14/Tyr15 phosphorylated Cdk1 level, decreased Thr161 phosphorylated Cdk1 as well as cyclin B1 levels and increased Cdk1 activity in aged eggs cultured in vitro. On the other hand, RO-3306 protected postovulatory aging-induced changes in specific phosphorylation of Cdk1, cyclin B1 level, inhibited the kinase activity and prevented spontaneous exit from M-II arrest. CONCLUSIONS Our results suggest that postovulatory aging destabilizes MPF by modulating specific phosphorylation of Cdk1 and cyclin B1 level. RO-3306 prevented these changes and maintained M-II arrest in rat eggs cultured in vitro. Hence, maintenance of M-II arrest in ovulated eggs using RO-3306 could be beneficial to increase the number of eggs available for various ART programs.
Collapse
|
47
|
Głuszek AA, Cullen CF, Li W, Battaglia RA, Radford SJ, Costa MF, McKim KS, Goshima G, Ohkura H. The microtubule catastrophe promoter Sentin delays stable kinetochore-microtubule attachment in oocytes. J Cell Biol 2015; 211:1113-20. [PMID: 26668329 PMCID: PMC4687879 DOI: 10.1083/jcb.201507006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023] Open
Abstract
The critical step in meiosis is to attach homologous chromosomes to the opposite poles. In mouse oocytes, stable microtubule end-on attachments to kinetochores are not established until hours after spindle assembly, and phosphorylation of kinetochore proteins by Aurora B/C is responsible for the delay. Here we demonstrated that microtubule ends are actively prevented from stable attachment to kinetochores until well after spindle formation in Drosophila melanogaster oocytes. We identified the microtubule catastrophe-promoting complex Sentin-EB1 as a major factor responsible for this delay. Without this activity, microtubule ends precociously form robust attachments to kinetochores in oocytes, leading to a high proportion of homologous kinetochores stably attached to the same pole. Therefore, regulation of microtubule ends provides an alternative novel mechanism to delay stable kinetochore-microtubule attachment in oocytes.
Collapse
Affiliation(s)
- A Agata Głuszek
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - C Fiona Cullen
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Wenjing Li
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | - Mariana F Costa
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Kim S McKim
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroyuki Ohkura
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| |
Collapse
|
48
|
Affiliation(s)
- Deepak Adhikari
- School of Biomedical Sciences, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Kui Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore.,National University of Singapore (NUS), Department of Biochemistry, Singapore, Republic of Singapore
| |
Collapse
|
49
|
Nukada Y, Horie M, Fukui A, Kotani T, Yamashita M. Real-time imaging of actin filaments in the zebrafish oocyte and embryo. Cytoskeleton (Hoboken) 2015; 72:491-501. [PMID: 26335601 DOI: 10.1002/cm.21253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/09/2015] [Accepted: 08/26/2015] [Indexed: 01/01/2023]
Abstract
Dynamic changes of cytoplasmic and cortical actin filaments drive various cellular and developmental processes. Although real-time imaging of actin filaments in living cells has been developed, imaging of actin filaments in specific cells of living organisms remains limited, particularly for the analysis of gamete formation and early embryonic development. Here, we report the production of transgenic zebrafish expressing the C-terminus of Moesin, an actin filament-binding protein, fused with green fluorescent protein or red fluorescent protein (GFP/RFP-MoeC), under the control of a cyclin B1 promoter. GFP/RFP-MoeC was expressed maternally, which labels the cortical actin cytoskeleton of blastula-stage cells. High levels of GFP/RFP fluorescence were detected in the adult ovary and testis. In the ovaries, GFP/RFP-MoeC was expressed in oocytes but not in follicle cells, which allows us to clearly visualize the organization of actin filaments in different stages of the oocyte. Using full-grown oocytes, we revealed the dynamic changes of actin columns assembled in the cortical cytoplasm during oocyte maturation. The number of columns slightly decreased in the early period before germinal vesicle breakdown (GVBD) and then significantly decreased at GVBD, followed by recovery after GVBD. Our transgenic fish are useful for analyzing the dynamics of actin filaments in oogenesis and early embryogenesis.
Collapse
Affiliation(s)
- Yumiko Nukada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Mayu Horie
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Akimasa Fukui
- Laboratory of Tissue and Polymer Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tomoya Kotani
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Masakane Yamashita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
50
|
Dumont J. Aurora B/C in Meiosis: Correct Me If I'm Right. Dev Cell 2015; 33:499-501. [PMID: 26058054 DOI: 10.1016/j.devcel.2015.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this issue of Developmental Cell, Yoshida et al. (2015) report that during meiosis I in mouse oocytes, the kinase Aurora B/C continuously destabilizes chromosome attachments to spindle microtubules, which potentially provides an explanation for the notably high error rate of chromosome segregation in mammalian oocytes.
Collapse
Affiliation(s)
- Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France.
| |
Collapse
|