1
|
Chew YM, Cross RA. Structural switching of tubulin in the microtubule lattice. Biochem Soc Trans 2025; 53:BST20240360. [PMID: 39910801 DOI: 10.1042/bst20240360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025]
Abstract
Microtubule (MT) dynamic instability, a cycle of growth, catastrophe, shrinkage and rescue, is driven by the switching of tubulin between two structural states, one stabilised by GTP and the other by GDP. Recent work has uncovered the ancient origins of this structural switch and revealed further fundamental elements of microtubule dynamic instability, whereby switching can be brought about by a range of allosteric effectors, propagate deep within the lattice of assembled MTs, and profoundly affect MT function. Here, we review evidence for structural switching within the MT lattice and discuss current ideas about its mechanisms.
Collapse
Affiliation(s)
- Yean-Ming Chew
- Centre for Mechanochemical Cell Biology, University of Warwick, Warwick Medical School, Coventry CV4 7LA, U.K
| | - Robert A Cross
- Centre for Mechanochemical Cell Biology, University of Warwick, Warwick Medical School, Coventry CV4 7LA, U.K
| |
Collapse
|
2
|
Kumar P, Khan R, Singh BN, Kumari A, Rai A, Singh AK, Prakash A, Ray S. Hydroxyethylamine based analog targets microtubule assembly: an in silico study for anti-cancerous drug development. Sci Rep 2024; 14:31381. [PMID: 39732970 DOI: 10.1038/s41598-024-82823-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Microtubules are dynamic cytoskeletal structures essential for cell architecture, cellular transport, cell motility, and cell division. Due to their dynamic nature, known as dynamic instability, microtubules can spontaneously switch between phases of growth and shortening. Disruptions in microtubule functions have been implicated in several diseases, including cancer, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and birth defects. The role of microtubules during various phases of the cell cycle, particularly in cell division, makes them attractive targets for drug development against cancer. Several successful drugs currently on the market are designed to target microtubules. However, the presence of cellular toxicity and the development of multidrug resistance necessitate the search for new microtubule-targeting drugs.Here, a library of 106 biologically active compounds were screened to identify potent microtubule assembly inhibitors. Out of all the screened compounds, the hydroxyethylamine (HEA) analogues are found to be the best hit.We identified three inhibitors, BKS3031A, BKS3045A and BKS3046A, that bind at the same site as the well-known microtubule targeting agent colchicine. These inhibitors were simulated for 100 ns with tubulin complexes, and the results indicated that they remain stable within the binding pocket of α-β tubulin complexes. In addition, we estimated the binding free energy of BKS3031A, BKS3045A and BKS3046A by using molecular mechanics generalized Born surface area (MM-GBSA) calculations, and it was found to be -32.67 ± 6.01, -21.77 ± 5.12 and - 22.92 ± 5.09 kcal/mol, respectively. Our findings suggest that these novel inhibitors have potential to bind and perturb the microtubule network, positioning them as promising microtubule-targeting agents.
Collapse
Affiliation(s)
- Pawan Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Rajni Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Basant Narain Singh
- Department of Botany, Pandit Deendayal Upadhyaya Shekhawati University, Sikar, Nawalgarh Road, Katrathal, Rajasthan, 332024, India
| | - Anisha Kumari
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India
| | - Ankit Rai
- Department of Medical Biotechnology, Gujrat Biotechnology University, Gandhinagar, 382355, Gujarat, India.
| | - Anil Kumar Singh
- Department of Chemistry, Mahatma Gandhi Central University, Motihari, 845401, India.
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India.
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India.
| |
Collapse
|
3
|
Peng H, Zhao M, Liu X, Tong T, Zhang W, Gong C, Chowdhury R, Wang Q. Biomimetic Materials to Fabricate Artificial Cells. Chem Rev 2024; 124:13178-13215. [PMID: 39591535 PMCID: PMC11671219 DOI: 10.1021/acs.chemrev.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
As the foundation of life, a cell is generally considered an advanced microreactor with a complicated structure and function. Undeniably, this fascinating complexity motivates scientists to try to extricate themselves from natural living matter and work toward rebuilding artificial cells in vitro. Driven by synthetic biology and bionic technology, the research of artificial cells has gradually become a subclass. It is not only held import in many disciplines but also of great interest in its synthesis. Therefore, in this review, we have reviewed the development of cell and bionic strategies and focused on the efforts of bottom-up strategies in artificial cell construction. Different from starting with existing living organisms, we have also discussed the construction of artificial cells based on biomimetic materials, from simple cell scaffolds to multiple compartment systems, from the construction of functional modules to the simulation of crucial metabolism behaviors, or even to the biomimetic of communication networks. All of them could represent an exciting advance in the field. In addition, we will make a rough analysis of the bottlenecks in this field. Meanwhile, the future development of this field has been prospecting. This review may bridge the gap between materials engineering and life sciences, forming a theoretical basis for developing various life-inspired assembly materials.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College of Shaoxing University, 508 Huancheng Western Road, Shaoxing 312099, China
| | - Man Zhao
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenyuan Zhang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Chen Gong
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
4
|
Liu H, Welburn JPI. A circle of life: platelet and megakaryocyte cytoskeleton dynamics in health and disease. Open Biol 2024; 14:240041. [PMID: 38835242 DOI: 10.1098/rsob.240041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024] Open
Abstract
Platelets are blood cells derived from megakaryocytes that play a central role in regulating haemostasis and vascular integrity. The microtubule cytoskeleton of megakaryocytes undergoes a critical dynamic reorganization during cycles of endomitosis and platelet biogenesis. Quiescent platelets have a discoid shape maintained by a marginal band composed of microtubule bundles, which undergoes remarkable remodelling during platelet activation, driving shape change and platelet function. Disrupting or enhancing this process can cause platelet dysfunction such as bleeding disorders or thrombosis. However, little is known about the molecular mechanisms underlying the reorganization of the cytoskeleton in the platelet lineage. Recent studies indicate that the emergence of a unique platelet tubulin code and specific pathogenic tubulin mutations cause platelet defects and bleeding disorders. Frequently, these mutations exhibit dominant negative effects, offering valuable insights into both platelet disease mechanisms and the functioning of tubulins. This review will highlight our current understanding of the role of the microtubule cytoskeleton in the life and death of platelets, along with its relevance to platelet disorders.
Collapse
Affiliation(s)
- Haonan Liu
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
5
|
Yan Y, Dai L, Wang T, Zhang Y. Damage-repair events increase the instability of cortical microtubules in Arabidopsis. Mol Biol Cell 2024; 35:ar86. [PMID: 38656813 PMCID: PMC11238082 DOI: 10.1091/mbc.e23-11-0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
Microtubules rely on dynamic assembly and disassembly for their functions. Increasing evidences support that the damage-repair of microtubule lattices can affect microtubule dynamics in vitro and in animal cells. Here we successfully established a way for visualizing damage-repair sites on microtubule lattices in plant cells, via labeling the tubulin proteins with the photoconvertible fluorescent protein mEOS3.2. We observed that the crossovers of the microtubule lattice were more prone to be damaged and repaired, with the frequency of damage-repair events positively correlated with the crossing angle between microtubules. The microtubules with damage-repair events displayed shorter lifespans and significantly increased severing frequency compared with the undamaged microtubules. These observations suggested that the damage-repair events promoted instability of cortical microtubules in plant cells.
Collapse
Affiliation(s)
- Yu Yan
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Liufeng Dai
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
- Center for Biological Science and Technology, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China
| | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Ezelarab HAA, Ali TFS, Abbas SH, Sayed AM, Beshr EAM, Hassan HA. New antiproliferative 3-substituted oxindoles inhibiting EGFR/VEGFR-2 and tubulin polymerization. Mol Divers 2024; 28:563-580. [PMID: 36790582 PMCID: PMC11070402 DOI: 10.1007/s11030-023-10603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023]
Abstract
New 3-substituted oxindole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of compounds 6a-j was evaluated against 60 NCI cell lines. Among these tested compounds, compounds 6f and 6g showed remarkable antiproliferative activity, specifically against leukemia and breast cancer cell lines. Compound 6f was the most promising antiproliferative agent against MCF-7 (human breast cancer) with an IC50 value of 14.77 µM compared to 5-fluorouracil (5FU) (IC50 = 2.02 µM). Notably, compound 6f hampered receptor tyrosine EGFR fundamentally with an IC50 value of 1.38 µM, compared to the reference sunitinib with an IC50 value of 0.08 µM. Moreover, compound 6f afforded anti-tubulin polymerization activity with an IC50 value of 7.99 µM as an outstanding observable activity compared with the reference combretastatin A4 with an IC50 value of 2.64 µM. In silico molecular-docking results of compound 6f in the ATP-binding site of EGFR agreed with the in vitro results. Besides, the investigation of the physicochemical properties of compound 6f via the egg-boiled method clarified good lipophilicity, GIT absorption, and blood-brain barrier penetration properties.
Collapse
Affiliation(s)
- Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt.
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt.
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt.
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Mini, Minia, Egypt
| |
Collapse
|
7
|
Dong H, Lu L, Song X, Li Y, Zhou J, Xu Y, Zhang Y, Qi J, Liang T, Wang J. Design, synthesis and biological evaluation of tetrahydroquinoxaline sulfonamide derivatives as colchicine binding site inhibitors. RSC Adv 2023; 13:30202-30216. [PMID: 37849704 PMCID: PMC10577396 DOI: 10.1039/d3ra05720h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Colchicine binding site inhibitors (CBSIs) are potential microtubule targeting agents (MTAs), which can overcome multidrug resistance, improve aqueous solubility and reduce toxicity faced by most MTAs. Novel tetrahydroquinoxaline sulfonamide derivatives were designed, synthesized and evaluated for their antiproliferative activities. The MTT assay results demonstrated that some derivatives exhibited moderate to strong inhibitory activities against HT-29 cell line. Among them, compound I-7 was the most active compound. Moreover, I-7 inhibited tubulin polymerization, disturbed microtubule network, disrupted the formation of mitotic spindle and arrested cell cycle at G2/M phase. However, I-7 didn't induce cell apoptosis. Furthermore, the prediction of ADME demonstrated that I-7 showed favorable physiochemical and pharmacokinetic properties. And the detailed molecular docking confirmed I-7 targeted the site of colchicine through hydrogen and hydrophobic interactions.
Collapse
Affiliation(s)
- Haiyang Dong
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus Kaifeng 475004 Henan China
| | - Lu Lu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus Kaifeng 475004 Henan China
| | - Xueting Song
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus Kaifeng 475004 Henan China
| | - Youkang Li
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus Kaifeng 475004 Henan China
| | - Jinguang Zhou
- Huaihe Hospital of Henan University Kaifeng 475004 Henan China
| | - Yungen Xu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University Nanjing 211198 China
| | - Yahong Zhang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus Kaifeng 475004 Henan China
| | - Jianguo Qi
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus Kaifeng 475004 Henan China
| | - Tingting Liang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus Kaifeng 475004 Henan China
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus Kaifeng 475004 Henan China
| |
Collapse
|
8
|
Zhou J, Wang A, Song Y, Liu N, Wang J, Li Y, Liang X, Li G, Chu H, Wang HW. Structural insights into the mechanism of GTP initiation of microtubule assembly. Nat Commun 2023; 14:5980. [PMID: 37749104 PMCID: PMC10519996 DOI: 10.1038/s41467-023-41615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
In eukaryotes, the dynamic assembly of microtubules (MT) plays an important role in numerous cellular processes. The underlying mechanism of GTP triggering MT assembly is still unknown. Here, we present cryo-EM structures of tubulin heterodimer at their GTP- and GDP-bound states, intermediate assembly states of GTP-tubulin, and final assembly stages of MT. Both GTP- and GDP-tubulin heterodimers adopt similar curved conformations with subtle flexibility differences. In head-to-tail oligomers of tubulin heterodimers, the inter-dimer interface of GDP-tubulin exhibits greater flexibility, particularly in tangential bending. Cryo-EM of the intermediate assembly states reveals two types of tubulin lateral contacts, "Tube-bond" and "MT-bond". Further, molecular dynamics (MD) simulations show that GTP triggers lateral contact formation in MT assembly in multiple sequential steps, gradually straightening the curved tubulin heterodimers. Therefore, we propose a flexible model of GTP-initiated MT assembly, including the formation of longitudinal and lateral contacts, to explain the nucleation and assembly of MT.
Collapse
Affiliation(s)
- Ju Zhou
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
- University of California Berkeley, Berkeley, CA, USA
| | - Anhui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Yinlong Song
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nan Liu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
| | - Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Xin Liang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China.
| | - Hong-Wei Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Madabushi S, Chow KM, Song ES, Goswami A, Hersh LB, Rodgers DW. Structure of puromycin-sensitive aminopeptidase and polyglutamine binding. PLoS One 2023; 18:e0287086. [PMID: 37440518 PMCID: PMC10343166 DOI: 10.1371/journal.pone.0287086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Puromycin-sensitive aminopeptidase (E.C. 3.4.11.14, UniProt P55786), a zinc metallopeptidase belonging to the M1 family, degrades a number of bioactive peptides as well as peptides released from the proteasome, including polyglutamine. We report the crystal structure of PSA at 2.3 Ǻ. Overall, the enzyme adopts a V-shaped architecture with four domains characteristic of the M1 family aminopeptidases, but it is in a less compact conformation compared to most M1 enzymes of known structure. A microtubule binding sequence is present in a C-terminal HEAT repeat domain of the enzyme in a position where it might serve to mediate interaction with tubulin. In the catalytic metallopeptidase domain, an elongated active site groove lined with aromatic and hydrophobic residues and a large S1 subsite may play a role in broad substrate recognition. The structure with bound polyglutamine shows a possible interacting mode of this peptide, which is supported by mutation.
Collapse
Affiliation(s)
- Sowmya Madabushi
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - K. Martin Chow
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Eun Suk Song
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Anwesha Goswami
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Louis B. Hersh
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - David W. Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
10
|
Lawrence EJ, Chatterjee S, Zanic M. CLASPs stabilize the pre-catastrophe intermediate state between microtubule growth and shrinkage. J Cell Biol 2023; 222:e202107027. [PMID: 37184584 PMCID: PMC10195879 DOI: 10.1083/jcb.202107027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/03/2022] [Accepted: 04/18/2023] [Indexed: 05/16/2023] Open
Abstract
Cytoplasmic linker-associated proteins (CLASPs) regulate microtubules in fundamental cellular processes. CLASPs stabilize dynamic microtubules by suppressing microtubule catastrophe and promoting rescue, the switch-like transitions between growth and shrinkage. How CLASPs specifically modulate microtubule transitions is not understood. Here, we investigate the effects of CLASPs on the pre-catastrophe intermediate state of microtubule dynamics, employing distinct microtubule substrates to mimic the intermediate state. Surprisingly, we find that CLASP1 promotes the depolymerization of stabilized microtubules in the presence of GTP, but not in the absence of nucleotide. This activity is also observed for CLASP2 family members and a minimal TOG2-domain construct. Conversely, we find that CLASP1 stabilizes unstable microtubules upon tubulin dilution in the presence of GTP. Strikingly, our results reveal that CLASP1 drives microtubule substrates with vastly different inherent stabilities into the same slowly depolymerizing state in a nucleotide-dependent manner. We interpret this state as the pre-catastrophe intermediate state. Therefore, we conclude that CLASPs suppress microtubule catastrophe by stabilizing the intermediate state between growth and shrinkage.
Collapse
Affiliation(s)
- Elizabeth J. Lawrence
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Saptarshi Chatterjee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
11
|
Chen X, Portran D, Widmer LA, Stangier MM, Czub MP, Liakopoulos D, Stelling J, Steinmetz MO, Barral Y. The motor domain of the kinesin Kip2 promotes microtubule polymerization at microtubule tips. J Cell Biol 2023; 222:214052. [PMID: 37093124 PMCID: PMC10130750 DOI: 10.1083/jcb.202110126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/01/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Kinesins are microtubule-dependent motor proteins, some of which moonlight as microtubule polymerases, such as the yeast protein Kip2. Here, we show that the CLIP-170 ortholog Bik1 stabilizes Kip2 at microtubule ends where the motor domain of Kip2 promotes microtubule polymerization. Live-cell imaging and mathematical estimation of Kip2 dynamics reveal that disrupting the Kip2-Bik1 interaction aborts Kip2 dwelling at microtubule ends and abrogates its microtubule polymerization activity. Structural modeling and biochemical experiments identify a patch of positively charged residues that enables the motor domain to bind free tubulin dimers alternatively to the microtubule shaft. Neutralizing this patch abolished the ability of Kip2 to promote microtubule growth both in vivo and in vitro without affecting its ability to walk along microtubules. Our studies suggest that Kip2 utilizes Bik1 as a cofactor to track microtubule tips, where its motor domain then recruits free tubulin and catalyzes microtubule assembly.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich , Zurich, Switzerland
| | - Didier Portran
- CRBM, Université de Montpellier , CNRS, Montpellier, France
| | - Lukas A Widmer
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Marcel M Stangier
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Mateusz P Czub
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Dimitris Liakopoulos
- CRBM, Université de Montpellier , CNRS, Montpellier, France
- Laboratory of Biology, University of Ioannina, Faculty of Medicine, Ioannina, Greece
| | - Jörg Stelling
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Michel O Steinmetz
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- University of Basel, Biozentrum , Basel, Switzerland
| | - Yves Barral
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich , Zurich, Switzerland
| |
Collapse
|
12
|
Wranik M, Weinert T, Slavov C, Masini T, Furrer A, Gaillard N, Gioia D, Ferrarotti M, James D, Glover H, Carrillo M, Kekilli D, Stipp R, Skopintsev P, Brünle S, Mühlethaler T, Beale J, Gashi D, Nass K, Ozerov D, Johnson PJM, Cirelli C, Bacellar C, Braun M, Wang M, Dworkowski F, Milne C, Cavalli A, Wachtveitl J, Steinmetz MO, Standfuss J. Watching the release of a photopharmacological drug from tubulin using time-resolved serial crystallography. Nat Commun 2023; 14:903. [PMID: 36807348 PMCID: PMC9936131 DOI: 10.1038/s41467-023-36481-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
The binding and release of ligands from their protein targets is central to fundamental biological processes as well as to drug discovery. Photopharmacology introduces chemical triggers that allow the changing of ligand affinities and thus biological activity by light. Insight into the molecular mechanisms of photopharmacology is largely missing because the relevant transitions during the light-triggered reaction cannot be resolved by conventional structural biology. Using time-resolved serial crystallography at a synchrotron and X-ray free-electron laser, we capture the release of the anti-cancer compound azo-combretastatin A4 and the resulting conformational changes in tubulin. Nine structural snapshots from 1 ns to 100 ms complemented by simulations show how cis-to-trans isomerization of the azobenzene bond leads to a switch in ligand affinity, opening of an exit channel, and collapse of the binding pocket upon ligand release. The resulting global backbone rearrangements are related to the action mechanism of microtubule-destabilizing drugs.
Collapse
Affiliation(s)
- Maximilian Wranik
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Tobias Weinert
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Tiziana Masini
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Antonia Furrer
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Natacha Gaillard
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Dario Gioia
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Marco Ferrarotti
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Daniel James
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Hannah Glover
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Melissa Carrillo
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Demet Kekilli
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Robin Stipp
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Petr Skopintsev
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Steffen Brünle
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Tobias Mühlethaler
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - John Beale
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Dardan Gashi
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Karol Nass
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Dmitry Ozerov
- Scientific Computing, Theory and Data, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Philip J M Johnson
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Claudio Cirelli
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Camila Bacellar
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Meitian Wang
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Florian Dworkowski
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Chris Milne
- Photon Science Division, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Andrea Cavalli
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163, Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Michel O Steinmetz
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland.
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland.
| |
Collapse
|
13
|
Zhang J, Tan L, Wu C, Li Y, Chen H, Liu Y, Wang Y. Discovery and biological evaluation of 4,6-pyrimidine analogues with potential anticancer agents as novel colchicine binding site inhibitors. Eur J Med Chem 2023; 248:115085. [PMID: 36621138 DOI: 10.1016/j.ejmech.2022.115085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Novel 4,6-pyrimidine analogues were designed and synthesized as colchicine binding site inhibitors (CBSIs) with potent antiproliferative activities. Among them, compound 17j has the most potent activities against 6 human cancer cell lines with IC50 values from 1.1 nM to 4.4 nM, which was 76 times higher than the lead compound 3 in A549 cells. The co-crystal structure of 17j in complex with tubulin confirms the key binding mode at the colchicine binding site. Moreover, 17j inhibited the tubulin polymerization in biochemical assays, depolymerized cellular microtubules, induced the G2/M arrest, inhibited the cell migration, and promoted the initiation of apoptosis. In vivo, 17j effectively inhibits primary tumor growth with tumor growth inhibition rates of 42.51% (5 mg/kg) and 65.42% (10 mg/kg) in A549 xenograft model. Taken together, 17j represents a promising new generation of CBSIs.
Collapse
Affiliation(s)
- Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lun Tan
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengyong Wu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuyan Li
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Yinghuan Liu
- Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Shemesh A, Ghareeb H, Dharan R, Levi-Kalisman Y, Metanis N, Ringel I, Raviv U. Effect of tubulin self-association on GTP hydrolysis and nucleotide exchange reactions. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140869. [PMID: 36400388 DOI: 10.1016/j.bbapap.2022.140869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
We investigated how the self-association of isolated tubulin dimers affects the rate of GTP hydrolysis and the equilibrium of nucleotide exchange. Both reactions are relevant for microtubule (MT) dynamics. We used HPLC to determine the concentrations of GDP and GTP and thereby the GTPase activity of SEC-eluted tubulin dimers in assembly buffer solution, free of glycerol and tubulin aggregates. When GTP hydrolysis was negligible, the nucleotide exchange mechanism was studied by determining the concentrations of tubulin-free and tubulin-bound GTP and GDP. We observed no GTP hydrolysis below the critical conditions for MT assembly (either below the critical tubulin concentration and/or at low temperature), despite the assembly of tubulin 1D curved oligomers and single-rings, showing that their assembly did not involve GTP hydrolysis. Under conditions enabling spontaneous slow MT assembly, a slow pseudo-first-order GTP hydrolysis kinetics was detected, limited by the rate of MT assembly. Cryo-TEM images showed that GTP-tubulin 1D oligomers were curved also at 36 °C. Nucleotide exchange depended on the total tubulin concentration and the molar ratio between tubulin-free GDP and GTP. We used a thermodynamic model of isodesmic tubulin self-association, terminated by the formation of tubulin single-rings to determine the molar fractions of dimers with exposed and buried nucleotide exchangeable sites (E-sites). Our analysis shows that the GDP to GTP exchange reaction equilibrium constant was an order-of-magnitude larger for tubulin dimers with exposed E-sites than for assembled dimers with buried E-sites. This conclusion may have implications on the dynamics at the tip of the MT plus end.
Collapse
Affiliation(s)
- Asaf Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Hiba Ghareeb
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Raviv Dharan
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yael Levi-Kalisman
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Israel Ringel
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.
| |
Collapse
|
15
|
Xie P. A model for the catalytic activity of microtubule polymerases. Cytoskeleton (Hoboken) 2023; 80:7-20. [PMID: 36305831 DOI: 10.1002/cm.21734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/04/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2022]
Abstract
A XMAP215/Stu2/Alp14 polymerase can catalyze processively the tubulin addition to the microtubule (MT) plus end. In this work, a model is proposed for the underlying molecular mechanism of the polymerase activity, where the polymerase can not only catalyze processively the tubulin addition to but also promote the tubulin removal from the MT plus end. Based on the model the dynamics of both the wild-type and mutant polymerases is studied theoretically, explaining consistently and well various available experimental data. To further test the model, predicted results are provided.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, China
| |
Collapse
|
16
|
Taguchi S, Nakano J, Imasaki T, Kita T, Saijo-Hamano Y, Sakai N, Shigematsu H, Okuma H, Shimizu T, Nitta E, Kikkawa S, Mizobuchi S, Niwa S, Nitta R. Structural model of microtubule dynamics inhibition by kinesin-4 from the crystal structure of KLP-12 -tubulin complex. eLife 2022; 11:77877. [PMID: 36065637 PMCID: PMC9451533 DOI: 10.7554/elife.77877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Kinesin superfamily proteins are microtubule-based molecular motors driven by the energy of ATP hydrolysis. Among them, the kinesin-4 family is a unique motor that inhibits microtubule dynamics. Although mutations of kinesin-4 cause several diseases, its molecular mechanism is unclear because of the difficulty of visualizing the high-resolution structure of kinesin-4 working at the microtubule plus-end. Here, we report that KLP-12, a C. elegans kinesin-4 ortholog of KIF21A and KIF21B, is essential for proper length control of C. elegans axons, and its motor domain represses microtubule polymerization in vitro. The crystal structure of the KLP-12 motor domain complexed with tubulin, which represents the high-resolution structural snapshot of the inhibition state of microtubule-end dynamics, revealed the bending effect of KLP-12 for tubulin. Comparison with the KIF5B-tubulin and KIF2C-tubulin complexes, which represent the elongation and shrinking forms of microtubule ends, respectively, showed the curvature of tubulin introduced by KLP-12 is in between them. Taken together, KLP-12 controls the proper length of axons by modulating the curvature of the microtubule ends to inhibit the microtubule dynamics. From meter-long structures that allow nerve cells to stretch across a body to miniscule ‘hairs’ required for lung cells to clear mucus, many life processes rely on cells sporting projections which have the right size for their role. Networks of hollow filaments known as microtubules shape these structures and ensure that they have the appropriate dimensions. Controlling the length of microtubules is therefore essential for organisms, yet how this process takes place is still not fully elucidated. Previous research has shown that microtubules continue to grow when their end is straight but stop when it is curved. A family of molecular motors known as kinesin-4 participate in this process, but the exact mechanisms at play remain unclear. To investigate, Tuguchi, Nakano, Imasaki et al. focused on the KLP-12 protein, a kinesin-4 equivalent which helps to controls the length of microtubules in the tiny worm Caenorhabditis elegans. They performed genetic manipulations and imaged the interactions between KLP-12 and the growing end of a microtubule using X-ray crystallography. This revealed that KLP-12 controls the length of neurons by inhibiting microtubule growth. It does so by modulating the curvature of the growing end of the filament to suppress its extension. A ‘snapshot’ of KLP-12 binding to a microtubule at the resolution of the atom revealed exactly how the protein helps to bend the end of the filament to prevent it from growing further. These results will help to understand how nerve cells are shaped. This may also provide insights into the molecular mechanisms for various neurodegenerative disorders caused by problems with the human equivalents of KLP-12, potentially leading to new therapies.
Collapse
Affiliation(s)
- Shinya Taguchi
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Anesthesiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Juri Nakano
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoki Kita
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yumiko Saijo-Hamano
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | - Hiromichi Okuma
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takahiro Shimizu
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eriko Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Kikkawa
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Mizobuchi
- Division of Anesthesiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinsuke Niwa
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan.,Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Japan
| | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
17
|
Naghsh F, Monajjemi M. Thermodynamic Study of Assembling ↔ Disassembling of Microtubules via the Monte Carlo Simulation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422070111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Shemesh A, Ginsburg A, Dharan R, Levi-Kalisman Y, Ringel I, Raviv U. Mechanism of Tubulin Oligomers and Single-Ring Disassembly Catastrophe. J Phys Chem Lett 2022; 13:5246-5252. [PMID: 35671351 PMCID: PMC9208022 DOI: 10.1021/acs.jpclett.2c00947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Cold tubulin dimers coexist with tubulin oligomers and single rings. These structures are involved in microtubule assembly; however, their dynamics are poorly understood. Using state-of-the-art solution synchrotron time-resolved small-angle X-ray scattering, we discovered a disassembly catastrophe (half-life of ∼0.1 s) of tubulin rings and oligomers upon dilution or addition of guanosine triphosphate. A slower disassembly (half-life of ∼38 s) was observed following an increase in temperature. Our analysis showed that the assembly and disassembly processes were consistent with an isodesmic mechanism, involving a sequence of reversible reactions in which dimers were rapidly added or removed one at a time, terminated by a 2 order-of-magnitude slower ring-closing/opening step. We revealed how assembly conditions varied the mass fraction of tubulin in each of the coexisting structures, the rate constants, and the standard Helmholtz free energies for closing a ring and for longitudinal dimer-dimer associations.
Collapse
Affiliation(s)
- Asaf Shemesh
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Avi Ginsburg
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Raviv Dharan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yael Levi-Kalisman
- Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Institute
of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Israel Ringel
- Institute
for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Uri Raviv
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
19
|
Xiao H, He H, Wu T, Ni X, Liu F, Yin F, Peng J. Functional Investigation of TUBB4A Variants Associated with Different Clinical Phenotypes. Mol Neurobiol 2022; 59:5056-5069. [PMID: 35668344 DOI: 10.1007/s12035-022-02900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
Abstract
Dominant TUBB4A variants result in different phenotypes, including hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC), dystonia type 4 (DYT4), and isolated hypomyelination. Here, we report four new patients with a novel TUBB4A variant (p.K324T) and three new patients with previously reported variants (p.Q292K, p.V255I, p.E410K). The individual carrying the novel p.K324T variant exhibits epilepsy of infancy with migrating focal seizures (EIMFS), while the other three have isolated hypomyelination phenotype. We also present a study of the cellular effects of TUBB4A variants responsible for H-ABC (p.D249N), DYT4 (p.R2G), a severe combined phenotype with combination of hypomyelination and EIMFS (p.K324T), and isolated hypomyelination (p.Q292K and p.E410K) on microtubule stability and dynamics, neurite outgrowth, dendritic spine development, and kinesin binding. Cellular-based assays reveal that all variants except p.R2G increase microtubule stability, decrease microtubule polymerization rates, reduce axonal outgrowth, and alter the density and shape of dendritic spines. We also find that the p.K324T and p.E410K variants perturb the binding of TUBB4A to KIF1A, a neuron-specific kinesin required for transport of synaptic vesicle precursors. Taken together, our data suggest that impaired microtubule stability and dynamics, defected axonal growth, and dendritic spine development form the common molecular basis of TUBB4A-related leukodystrophy. Impairment of TUBB4A binding to KIF1A is more likely to be involved in the isolated hypomyelination phenotype, which suggests that alterations in kinesin binding may cause different phenotypes. In conclusion, our study extends the spectrum of TUBB4A mutations and related phenotypes and provides insight into why different TUBB4A variants cause distinct clinical phenotypes.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410005, Hunan, China
| | - Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410005, Hunan, China
| | - Tenghui Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410005, Hunan, China
| | - Xiaoyuan Ni
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410005, Hunan, China
| | - Fangyun Liu
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410005, Hunan, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410005, Hunan, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410005, Hunan, China.
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, 410005, China.
| |
Collapse
|
20
|
Kirchner S, Pianowski Z. Photopharmacology of Antimitotic Agents. Int J Mol Sci 2022; 23:5657. [PMID: 35628467 PMCID: PMC9145521 DOI: 10.3390/ijms23105657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/12/2023] Open
Abstract
Antimitotic agents such as the clinically approved vinca alkaloids, taxanes and epothilone can arrest cell growth during interphase and are therefore among the most important drugs available for treating cancer. These agents suppress microtubule dynamics and thus interfere with intracellular transport, inhibit cell proliferation and promote cell death. Because these drugs target biological processes that are essential to all cells, they face an additional challenge when compared to most other drug classes. General toxicity can limit the applicable dose and therefore reduce therapeutic benefits. Photopharmacology aims to avoid these side-effects by introducing compounds that can be applied globally to cells in their inactive form, then be selectively induced to bioactivity in targeted cells or tissue during a defined time window. This review discusses photoswitchable analogues of antimitotic agents that have been developed by combining different photoswitchable motifs with microtubule-stabilizing or microtubule-destabilizing agents.
Collapse
Affiliation(s)
- Susanne Kirchner
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
| | - Zbigniew Pianowski
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany;
- Institute of Biological and Chemical Systems–FMS, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
21
|
Cleary JM, Kim T, Cook ASI, McCormick LA, Hancock WO, Rice LM. Measurements and simulations of microtubule growth imply strong longitudinal interactions and reveal a role for GDP on the elongating end. eLife 2022; 11:75931. [PMID: 35420545 PMCID: PMC9064298 DOI: 10.7554/elife.75931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubule polymerization dynamics result from the biochemical interactions of αβ-tubulin with the polymer end, but a quantitative understanding has been challenging to establish. We used interference reflection microscopy to make improved measurements of microtubule growth rates and growth fluctuations in the presence and absence of GTP hydrolysis. In the absence of GTP hydrolysis, microtubules grew steadily with very low fluctuations. These data were best described by a computational model implementing slow assembly kinetics, such that the rate of microtubule elongation is primarily limited by the rate of αβ-tubulin associations. With GTPase present, microtubules displayed substantially larger growth fluctuations than expected based on the no GTPase measurements. Our modeling showed that these larger fluctuations occurred because exposure of GDP-tubulin on the microtubule end transiently 'poisoned' growth, yielding a wider range of growth rates compared to GTP only conditions. Our experiments and modeling point to slow association kinetics (strong longitudinal interactions), such that drugs and regulatory proteins that alter microtubule dynamics could do so by modulating either the association or dissociation rate of tubulin from the microtubule tip. By causing slower growth, exposure of GDP tubulin at the growing microtubule end may be an important early event determining catastrophe.
Collapse
Affiliation(s)
- Joseph M Cleary
- Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
| | - Tae Kim
- Departments of Biophysics and Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Annan S I Cook
- Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
| | - Lauren A McCormick
- Departments of Biophysics and Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States
| | - William O Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
| | - Luke M Rice
- Departments of Biophysics and Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
22
|
Effects of length-dependent positive feedback on length distributions of microtubules undergoing hydrolysis. J Biosci 2022. [DOI: 10.1007/s12038-022-00255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Pal D, Song IH, Dashrath Warkad S, Song KS, Seong Yeom G, Saha S, Shinde PB, Balasaheb Nimse S. Indazole-based microtubule-targeting agents as potential candidates for anticancer drugs discovery. Bioorg Chem 2022; 122:105735. [PMID: 35298962 DOI: 10.1016/j.bioorg.2022.105735] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
Tremendous research is focused on developing novel drug candidates targeting microtubules to inhibit their function in several cellular processes, including cell division. In this regard, several indazole derivatives were sought to target the colchicine binding site on the β-tubulin, a crucial protein required to form microtubules, to develop microtubule targeting agents. Even though there are several reviews on the indazole-based compounds, none of them focused on using indazole scaffold to develop microtubule targeting agents. Therefore, this review aims to present the advances in research on compounds containing indazole scaffolds as microtubule targeting agents based on the articles published in the last two decades. Among the articles reviewed, we found that compounds 6 and 7 showed the lowest IC50 values of 0.6 ∼ 0.9 nM in the cell line studies, making them the strongest indazole derivatives that target microtubules. The compounds 30, 31, 37 (IC50 = ∼ 1 nM) and compounds 8, 38 (IC50 = ∼ 2 nM) have proved to be potent microtubule inhibitors. The compounds 18, 31, 44, 45 also showed strong anticancer activity (IC50 = ∼ 8 nM). It is important to notice that except for compounds 9, 12, 13, 15, and SRF, the top activity compounds including 6, 7, 8, 10, 11, 30, 31, 37, 44, and 45 contain 3,4,5‑trimethoxyphenyl substitution similar to that of colchicine. Therefore, it appears that the 3,4,5‑trimethoxyphenyl substituent on the indazole scaffold is crucial for targeting CBS.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Viswavidyalaya (A Central University), Bilaspur, Chhattisgarh 495009, India
| | - In-Ho Song
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | | | - Keum-Soo Song
- Biometrix Technology, Inc., 2-2 Bio Venture Plaza 56, Chuncheon 24232, South Korea
| | - Gyu Seong Yeom
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - Supriyo Saha
- Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research, India
| | - Pramod B Shinde
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea.
| |
Collapse
|
24
|
Shape multistability in flexible tubular crystals through interactions of mobile dislocations. Proc Natl Acad Sci U S A 2022; 119:2115423119. [PMID: 35110407 PMCID: PMC8833160 DOI: 10.1073/pnas.2115423119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2021] [Indexed: 12/03/2022] Open
Abstract
Crystalline sheets rolled up into cylinders occur in diverse biological and synthetic systems, including carbon nanotubes, biofilaments of the cellular cytoskeleton, and packings of colloidal particles. In this work, we show, computationally, that such tubular crystals can be programmed with reconfigurable shapes, due to motions of defects that interrupt the periodicity of the crystalline lattice. By identifying and exploiting stable patterns of these defects, we cause tubular crystals to relax into desired target geometries, a design principle that could guide the creation of versatile colloidal analogues to nanotubes. Our results suggest routes to tunable and switchable material properties in ordered, soft materials on deformable surfaces. We study avenues to shape multistability and shape morphing in flexible crystalline membranes of cylindrical topology, enabled by glide mobility of dislocations. Using computational modeling, we obtain states of mechanical equilibrium presenting a wide variety of tubular crystal deformation geometries, due to an interplay of effective defect interactions with out-of-tangent-plane deformations that reorient the tube axis. Importantly, this interplay often stabilizes defect configurations quite distinct from those predicted for a two-dimensional crystal confined to the surface of a rigid cylinder. We find that relative and absolute stability of competing states depend strongly on control parameters such as bending rigidity, applied stress, and spontaneous curvature. Using stable dislocation pair arrangements as building blocks, we demonstrate that targeted macroscopic three-dimensional conformations of thin crystalline tubes can be programmed by imposing certain sparse patterns of defects. Our findings reveal a broad design space for controllable and reconfigurable colloidal tube geometries, with potential relevance also to architected carbon nanotubes and microtubules.
Collapse
|
25
|
Effects of random hydrolysis on biofilament length distributions in a shared subunit pool. Biophys J 2022; 121:502-514. [PMID: 34954156 PMCID: PMC8822617 DOI: 10.1016/j.bpj.2021.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 08/15/2021] [Accepted: 12/20/2021] [Indexed: 02/03/2023] Open
Abstract
The sizes of filamentous structures in a cell are often regulated for many physiological processes. A key question in cell biology is how such size control is achieved. Here, we theoretically study the length distributions of multiple filaments, growing by stochastic assembly and disassembly of subunits from a limiting subunit pool. Importantly, we consider a chemical switching of subunits (hydrolysis) prevalent in many biofilaments like microtubules (MTs). We show by simulations of different models that hydrolysis leads to a skewed unimodal length distribution for a single MT. In contrast, hydrolysis can lead to bimodal distributions of individual lengths for two MTs, where individual filaments toggle stochastically between bigger and smaller sizes. For more than two MTs, length distributions are also bimodal, although the bimodality becomes less prominent. We further show that this collective phenomenon is connected with the nonequilibrium nature of hydrolysis, and the bimodality disappears for reversible dynamics. Consistent with earlier theoretical studies, a homogeneous subunit pool, without hydrolysis, cannot control filament lengths. We thus elucidate the role of hydrolysis as a control mechanism on MT length diversity.
Collapse
|
26
|
Zhuang Y, Yang G, Wu S, Chen J, Guo J, Quan D, Zhang T, Yang Z, Tan S, Ji Y, Chen Z, Lv L. 5-arylalkynyl-2-benzoyl thiophene: a novel microtubule inhibitor exhibits antitumor activity without neurological toxicity. Am J Cancer Res 2022; 12:229-246. [PMID: 35141015 PMCID: PMC8822276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/15/2021] [Indexed: 06/14/2023] Open
Abstract
The composition of microtubules involving several steps, including the polymerization and depolymerization of α-tubulin and β-tubulin heterodimers. Microtubule-targeting agents can increase or inhibit microtubule polymerization, thereby disrupting the dynamic process and stalling cells in G2/M phase. Microtubule-targeting agents are generally cytotoxic, which neurological toxicity being one of the significant adverse events associated. We recently reported a novel 5-arylalkynyl-2-benzoyl thiophene (PST-3) that exhibited broad-spectrum cellular cytotoxicity and in vivo potency with high safety. PST-3 was a substrate of p-gp, which could not cross the blood-brain barrier and lead to less neurotoxicity. The antitumor activities in vitro demonstrated that PST-3 combined with the colchicine-binding site on microtubule, induces morphological changes, disrupts microtubule networks, inhibits polymerization of tubulin, arrests breast cancer cells in the G2/M phase of the cell cycle and induces apoptosis. Evaluation of the antitumor effect in vivo demonstrated that PST-3 elicited MDA-MB-468 tumor %T/C of 11.75%, whereas elicited MCF7 tumor %T/C of 44.38% in breast cancer xenograft models. Besides, in vivo experiments of a higher dose (60 mg/kg) of PST-3 treatment for 21 days did not produce any significant neurotoxicity. These results provide evidence that PST-3 might possess the potential to be developed into a new microtubule inhibitor without neurological toxicity.
Collapse
Affiliation(s)
- Yuxin Zhuang
- School of Pharmaceutical Science, Southern Medical UniversityGuangzhou 510515, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and TechnologyMacau, People’s Republic of China
| | - Guang Yang
- School of Pharmaceutical Science, Southern Medical UniversityGuangzhou 510515, People’s Republic of China
- Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University)Zhuhai 519000, People’s Republic of China
| | - Shaoyu Wu
- School of Pharmaceutical Science, Southern Medical UniversityGuangzhou 510515, People’s Republic of China
| | - Jianjun Chen
- School of Pharmaceutical Science, Southern Medical UniversityGuangzhou 510515, People’s Republic of China
| | - Jiayin Guo
- School of Pharmaceutical Science, Southern Medical UniversityGuangzhou 510515, People’s Republic of China
| | - Dongling Quan
- School of Pharmaceutical Science, Southern Medical UniversityGuangzhou 510515, People’s Republic of China
| | - Tingting Zhang
- School of Pharmaceutical Science, Southern Medical UniversityGuangzhou 510515, People’s Republic of China
| | - Zichao Yang
- School of Pharmaceutical Science, Southern Medical UniversityGuangzhou 510515, People’s Republic of China
| | - Shaobin Tan
- School of Pharmaceutical Science, Southern Medical UniversityGuangzhou 510515, People’s Republic of China
| | - Yuheng Ji
- School of Pharmaceutical Science, Southern Medical UniversityGuangzhou 510515, People’s Republic of China
| | - Zhipeng Chen
- School of Pharmaceutical Science, Southern Medical UniversityGuangzhou 510515, People’s Republic of China
| | - Lin Lv
- School of Pharmaceutical Science, Southern Medical UniversityGuangzhou 510515, People’s Republic of China
| |
Collapse
|
27
|
Murray LE, Kim H, Rice LM, Asbury CL. Catching the Conformational Wave: Measuring the Working Strokes of Protofilaments as They Curl Outward from Disassembling Microtubule Tips. Methods Mol Biol 2022; 2478:653-676. [PMID: 36063337 PMCID: PMC9542027 DOI: 10.1007/978-1-0716-2229-2_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Optical traps have enabled foundational studies of how mechanoenzymes such as kinesins and dynein motors walk along microtubules, how myosins move along F-actin, and how nucleic acid enzymes move along DNA or RNA. Often the filamentous substrates serve merely as passive tracks for mechanoenzymes but microtubules and F-actin are themselves dynamic protein polymers, capable of generating movement and force independently of conventional motors. Microtubule-driven forces are particularly important during mitosis, when they align duplicated chromosomes at the metaphase plate and then pull them apart during anaphase. These vital movements depend on specialized protein assemblies called kinetochores that couple the chromosomes to the tips of dynamic microtubule filaments, thereby allowing filament shortening to produce pulling forces. Although great strides have been made toward understanding the structures and functions of many kinetochore subcomplexes, the biophysical basis for their coupling to microtubule tips remains unclear. During tip disassembly, strain energy is released when straight protofilaments in the microtubule lattice curl outward, creating a conformational wave that propagates down the microtubule. A popular viewpoint is that the protofilaments as they curl outward hook elements of the kinetochore and tug on them, transferring some of their curvature strain energy to the kinetochore. As a first step toward testing this idea, we recently developed a laser trap assay to directly measure the working strokes generated by curling protofilaments. Our "wave" assay is based on an earlier pioneering study, with improvements that allow measurement of curl-driven movements as functions of force and quantification of their conformational strain energy. In this chapter, we provide a detailed protocol for our assay and describe briefly our instrument setup and data analysis methods.
Collapse
Affiliation(s)
- Lucas E Murray
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Haein Kim
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Luke M Rice
- Departments of Biophysics and Biochemistry, UT Southwestern, Dallas, TX, USA
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
28
|
Mechanisms of influence of the microtubule over-stabilizing ligands on the structure and intrinsic dynamics of α,β-Tubulin. Comput Biol Chem 2021; 96:107617. [PMID: 34942453 DOI: 10.1016/j.compbiolchem.2021.107617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022]
Abstract
The intervention into the cell cycle progression by administering microtubule over-stabilizing ligands that arrest the mitotic cell division by preventing spindle dissociation, is a promising strategy to fight against cancers. The building blocks of the microtubules and the spindles, i.e. the α,β-tubulin dimer, upon binding of such ligands, stay more comfortably in the microtubular multimeric form; the phenomenon of which is the key to the said over-stabilization. Using two such over-stabilizing ligands, Taxol and Taxotere, the present work reports the collective changes that these ligands induce on the structure and dynamics of the α,β-tubulin dimer which could be reconciled as the molecular basis of the over-stabilization of the microtubules; the trends have been found to be statistically significant across all independent calculations on them. The ligand binding increases the coherence between the residue communities of the two opposite faces of the β-subunit, which in a periodic arrangement in microtubule are knwon to form intermolecular contact with each other. This is likely to create an indirect cooperativity between those structural regions and this is a consequence of the reshuffling of the internal network of interactions upon ligand binding. Such reorganizations are also complemented by the increased contributions of the softer modes of the intrinsic dynamics more, which is likely to increase the plasticity of the system favourable for making structural adjustments in a multimer. Further, the ligands are able to compensate the drawback of lacking one phosphate group in protein-GDP interactions compared to the same for protein-GTP and this is in agreement with the hints form the earlier reports. The findings form a mechanistic basis of the enhanced capacity of the α,β-tubulin dimer to get more favourably accommodated into the microtubule superstructure upon binding either of Taxol and Taxotere.
Collapse
|
29
|
Soltan OM, Shoman ME, Abdel-Aziz SA, Narumi A, Konno H, Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur J Med Chem 2021; 225:113768. [PMID: 34450497 DOI: 10.1016/j.ejmech.2021.113768] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023]
Abstract
Protein kinases have grown over the past few years as a crucial target for different cancer types. With the multifactorial nature of cancer, and the fast development of drug resistance for conventional chemotherapeutics, a strategy for designing multi-target agents was suggested to potentially increase drug efficacy, minimize side effects and retain the proper pharmacokinetic properties. Kinase inhibitors were used extensively in such strategy. Different kinase inhibitor agents which target EGFR, VEGFR, c-Met, CDK, PDK and other targets were merged into hybrids with conventional chemotherapeutics such as tubulin polymerization and topoisomerase inhibitors. Other hybrids were designed gathering kinase inhibitors with targeted cancer therapy such as HDAC, PARP, HSP 90 inhibitors. Nitric oxide donor molecules were also merged with kinase inhibitors for cancer therapy. The current review presents the hybrids designed in the past five years discussing their design principles, results and highlights their future perspectives.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111, Minia, Egypt
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| |
Collapse
|
30
|
Shemesh A, Ginsburg A, Dharan R, Levi-Kalisman Y, Ringel I, Raviv U. Structure and Energetics of GTP- and GDP-Tubulin Isodesmic Self-Association. ACS Chem Biol 2021; 16:2212-2227. [PMID: 34643366 DOI: 10.1021/acschembio.1c00369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tubulin self-association is a critical process in microtubule dynamics. The early intermediate structures, energetics, and their regulation by fluxes of chemical energy, associated with guanosine triphosphate (GTP) hydrolysis, are poorly understood. We reconstituted an in vitro minimal model system, mimicking the key elements of the nontemplated tubulin assembly. To resolve the distribution of GTP- and guanosine diphosphate (GDP)-tubulin structures, at low temperatures (∼10 °C) and below the critical concentration for the microtubule assembly, we analyzed in-line size-exclusion chromatography-small-angle X-ray scattering (SEC-SAXS) chromatograms of GTP- and GDP-tubulin solutions. Both solutions rapidly attained steady state. The SEC-SAXS data were consistent with an isodesmic thermodynamic model of longitudinal tubulin self-association into 1D oligomers, terminated by the formation of tubulin single rings. The analysis showed that free dimers coexisted with tetramers and hexamers. Tubulin monomers and lateral association between dimers were not detected. The dimer-dimer longitudinal self-association standard Helmholtz free energies were -14.2 ± 0.4 kBT (-8.0 ± 0.2 kcal mol-1) and -13.1 ± 0.5 kBT (-7.4 ± 0.3 kcal mol-1) for GDP- and GTP-tubulin, respectively. We then determined the mass fractions of dimers, tetramers, and hexamers as a function of the total tubulin concentration. A small fraction of stable tubulin single rings, with a radius of 19.2 ± 0.2 nm, was detected in the GDP-tubulin solution. In the GTP-tubulin solution, this fraction was significantly lower. Cryo-TEM images and SEC-multiangle light-scattering analysis corroborated these findings. Our analyses provide an accurate structure-stability description of cold tubulin solutions.
Collapse
Affiliation(s)
- Asaf Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 9190401, Israel
| | - Avi Ginsburg
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Raviv Dharan
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yael Levi-Kalisman
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 9190401, Israel
- Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Israel Ringel
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, Jerusalem 9112102, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 9190401, Israel
| |
Collapse
|
31
|
Huang Y, Li Z, Lin E, He P, Ru G. Oxidative damage-induced hyperactive ribosome biogenesis participates in tumorigenesis of offspring by cross-interacting with the Wnt and TGF-β1 pathways in IVF embryos. Exp Mol Med 2021; 53:1792-1806. [PMID: 34848840 PMCID: PMC8640061 DOI: 10.1038/s12276-021-00700-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
In vitro fertilization (IVF) increases the risk of tumorigenesis in offspring. The increased oxidative damage during IVF may be involved in tumor formation. However, the molecular mechanisms underlying this phenomenon remain largely unclear. Using a well-established model of oxidatively damaged IVF mouse embryos, we applied the iTRAQ method to identify proteins differentially expressed between control and oxidatively damaged zygotes and explored the possible tumorigenic mechanisms, especially with regard to the effects of oxidative damage on ribosome biogenesis closely related to tumorigenesis. The iTRAQ results revealed that ribosomal proteins were upregulated by oxidative stress through the Nucleolin/β-Catenin/n-Myc pathway, which stimulated ribosomes to synthesize an abundance of repair proteins to correct the damaged DNA/chromosomes in IVF-derived embryos. However, the increased percentages of γH2AX-positive cells and apoptotic cells in the blastocyst suggested that DNA repair was insufficient, resulting in aberrant ribosome biogenesis. Overexpression of ribosomal proteins, particularly Rpl15, which gradually increased from the 1-cell to 8-cell stages, indicated persistent hyperactivation of ribosome biogenesis, which promoted tumorigenesis in offspring derived from oxidatively damaged IVF embryos by selectively enhancing the translation of β-Catenin and TGF-β1. The antioxidant epigallocatechin-3-gallate (EGCG) was added to the in vitro culture medium to protect embryos from oxidative damage, and the expression of ribosome-/tumor-related proteins returned to normal after EGCG treatment. This study suggests that regulation of ribosome biogenesis by EGCG may be a means of preventing tumor formation in human IVF-derived offspring, providing a scientific basis for optimizing in vitro culture conditions and improving human-assisted reproductive technology.
Collapse
Affiliation(s)
- Yue Huang
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
| | - Zhiling Li
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China.
| | - En Lin
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, 518000, Shenzhen, Guangdong, China
| | - Pei He
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
| | - Gaizhen Ru
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, 515000, Shantou, Guangdong, China
| |
Collapse
|
32
|
Nasedkin A, Ermilova I, Swenson J. Atomistic molecular dynamics simulations of tubulin heterodimers explain the motion of a microtubule. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:927-940. [PMID: 34215900 PMCID: PMC8448678 DOI: 10.1007/s00249-021-01553-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Microtubules are essential parts of the cytoskeleton that are built by polymerization of tubulin heterodimers into a hollow tube. Regardless that their structures and functions have been comprehensively investigated in a modern soft matter, it is unclear how properties of tubulin heterodimer influence and promote the self-assembly. A detailed knowledge of such structural mechanisms would be helpful in drug design against neurodegenerative diseases, cancer, diabetes etc. In this work atomistic molecular dynamics simulations were used to investigate the fundamental dynamics of tubulin heterodimers in a sheet and a short microtubule utilizing well-equilibrated structures. The breathing motions of the tubulin heterodimers during assembly show that the movement at the lateral interface between heterodimers (wobbling) dominates in the lattice. The simulations of the protofilament curvature agrees well with recently published experimental data, showing curved protofilaments at polymerization of the microtubule plus end. The tubulin heterodimers exposed at the microtubule minus end were less curved and displayed altered interactions at the site of sheet closure around the outmost heterodimers, which may slow heterodimer binding and polymerization, providing a potential explanation for the limited dynamics observed at the minus end.
Collapse
Affiliation(s)
- Alexandr Nasedkin
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| | - Inna Ermilova
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology, SE 41296 Göteborg, Sweden
| |
Collapse
|
33
|
El-Sayed NF, El-Hussieny M, Ewies EF, El Shehry MF, Awad HM, Fouad MA. Design, synthesis, biological evaluation, and molecular docking of new benzofuran and indole derivatives as tubulin polymerization inhibitors. Drug Dev Res 2021; 83:485-500. [PMID: 34523738 DOI: 10.1002/ddr.21880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/08/2021] [Accepted: 08/29/2021] [Indexed: 11/11/2022]
Abstract
Microtubules and the mitotic spindle have become an important target for cancer treatment due to their critical role in cell division. In this work, a novel series of benzofuran and indole derivatives were designed and synthesized, to be evaluated as tubulin polymerization inhibitors. 2-Acetylbenzofuran derivatives 1a,b and 3-acetylindole 1c were condensed with Wittig reagents 2a-d and Wittig-Horner reagents 3a-e to afford the respective 2-ethylidene derivatives 5a-j and 7a-e. Also, iminomethylene triphenylphosphine (2e) reacted with 1a,b to afford benzofuran-2-ylethylidene aniline derivatives 6a,b. In addition, compounds 1a,b reacted with trialkylphosphites 4a-c to give 1:1 adduct for which the Oxaphospholo[4,3-b]benzofuran-7-yl)diazene derivatives 8a-f, were assigned. The possible reactions mechanisms were discussed and structural reasoning for the new compounds were based upon spectroscopic data. Their antiproliferative activities against two cell lines namely, HepG2 and MCF7 cells were then evaluated. It was found that the benzofuran compounds 5b, 6a, and 8c exhibited the strongest antiproliferative activities against both cell lines compared to doxorubicin. By studying the mechanism of action, compound 6a showed good inhibition of tubulin polymerization which leads to mitotic spindle formation disruption, cell cycle arrest in the G2/M phase, and apoptosis of HepG2 cells. A conducted docking study confirmed the in vitro results indicating that compound 6a fitted properly at the colchicine binding site of tubulin. Based on these findings, compound 6a can be considered as a promising anticancer candidate that can be subjected for further development as a tubulin polymerization inhibitor for treating liver and breast cell carcinoma.
Collapse
Affiliation(s)
- Naglaa F El-Sayed
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 El-Bohouth St. (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Marwa El-Hussieny
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 El-Bohouth St. (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Ewies F Ewies
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 El-Bohouth St. (former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | | | - Hanem M Awad
- Department of Tanning Materials and Leather Technology, National Research Centre, Giza, Egypt
| | - Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Giza, Egypt.,Pharmaceutical Chemistry Department, School of Pharmacy, New Giza University, Cairo, Egypt
| |
Collapse
|
34
|
Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat Rev Mol Cell Biol 2021; 22:777-795. [PMID: 34408299 DOI: 10.1038/s41580-021-00399-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Microtubule dynamics and their control are essential for the normal function and division of all eukaryotic cells. This plethora of functions is, in large part, supported by dynamic microtubule tips, which can bind to various intracellular targets, generate mechanical forces and couple with actin microfilaments. Here, we review progress in the understanding of microtubule assembly and dynamics, focusing on new information about the structure of microtubule tips. First, we discuss evidence for the widely accepted GTP cap model of microtubule dynamics. Next, we address microtubule dynamic instability in the context of structural information about assembly intermediates at microtubule tips. Three currently discussed models of microtubule assembly and dynamics are reviewed. These are considered in the context of established facts and recent data, which suggest that some long-held views must be re-evaluated. Finally, we review structural observations about the tips of microtubules in cells and describe their implications for understanding the mechanisms of microtubule regulation by associated proteins, by mechanical forces and by microtubule-targeting drugs, prominently including cancer chemotherapeutics.
Collapse
|
35
|
Liu R, Zhang S, Huang M, Guo Z, Li L, Li M, Wu L, Guan Q, Zhang W. Design, synthesis and bioevaluation of 2,7-diaryl-pyrazolo[1,5-a]pyrimidines as tubulin polymerization inhibitors. Bioorg Chem 2021; 115:105220. [PMID: 34352709 DOI: 10.1016/j.bioorg.2021.105220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 11/26/2022]
Abstract
Two series of 2,7-diaryl-pyrazolo[1,5-a]pyrimidines as tubulin polymerization inhibitors were designed to restrict bioactive configuration of (E,Z)-vinylogous CA-4. All of the target compounds were synthesized and then evaluated for their in vitro antiproliferative activities against three cancer cell lines (MCF-7, SGC-7901 and A549). Among them, 6d exhibited the most potent antiproliferative activity against the MCF-7 with IC50 value of 0.047 μM. Moreover, 6d significantly inhibited tubulin polymerization, disrupted microtubule networks, arrested cell cycle at G2/M phase, induced apoptosis and hindered cancer cell migration. Colchicine competition assay and molecular docking studies suggested that 6d could interact with tubulin by binding to the colchicine site.
Collapse
Affiliation(s)
- Runlai Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Shuai Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Mingxin Huang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zhenpeng Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Long Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Mi Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lan Wu
- Department of Geratology, The First Affiliated Hospital, Chinese Medical University, Shenyang 110001, China.
| | - Qi Guan
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
36
|
Farmer V, Arpağ G, Hall SL, Zanic M. XMAP215 promotes microtubule catastrophe by disrupting the growing microtubule end. J Cell Biol 2021; 220:212518. [PMID: 34324632 PMCID: PMC8327381 DOI: 10.1083/jcb.202012144] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 01/13/2023] Open
Abstract
The GTP-tubulin cap is widely accepted to protect microtubules against catastrophe. The GTP-cap size is thought to increase with the microtubule growth rate, presumably endowing fast-growing microtubules with enhanced stability. It is unknown what GTP-cap properties permit frequent microtubule catastrophe despite fast growth. Here, we investigate microtubules growing in the presence and absence of the polymerase XMAP215. Using EB1 as a GTP-cap marker, we find that GTP-cap size increases regardless of whether growth acceleration is achieved by increasing tubulin concentration or by XMAP215. Despite increased mean GTP-cap size, microtubules grown with XMAP215 display increased catastrophe frequency, in contrast to microtubules grown with more tubulin, for which catastrophe is abolished. However, microtubules polymerized with XMAP215 have large fluctuations in growth rate; display tapered and curled ends; and undergo catastrophe at faster growth rates and with higher EB1 end-localization. Our results suggest that structural perturbations induced by XMAP215 override the protective effects of the GTP-cap, ultimately driving microtubule catastrophe.
Collapse
Affiliation(s)
- Veronica Farmer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Göker Arpağ
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Sarah L Hall
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN.,Department of Biochemistry, Vanderbilt University, Nashville, TN
| |
Collapse
|
37
|
Shuai W, Wang G, Zhang Y, Bu F, Zhang S, Miller DD, Li W, Ouyang L, Wang Y. Recent Progress on Tubulin Inhibitors with Dual Targeting Capabilities for Cancer Therapy. J Med Chem 2021; 64:7963-7990. [PMID: 34101463 DOI: 10.1021/acs.jmedchem.1c00100] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microtubules play a crucial role in multiple cellular functions including mitosis, cell signaling, and organelle trafficking, which makes the microtubule an important target for cancer therapy. Despite the great successes of microtubule-targeting agents in the clinic, the development of drug resistance and dose-limiting toxicity restrict their clinical efficacy. In recent years, multitarget therapy has been considered an effective strategy to achieve higher therapeutic efficacy, in particular dual-target drugs. In terms of the synergetic effect of tubulin and other antitumor agents such as receptor tyrosine kinases inhibitors, histone deacetylases inhibitors, DNA-damaging agents, and topoisomerase inhibitors in combination therapy, designing dual-target tubulin inhibitors is regarded as a promising approach to overcome these limitations and improve therapeutic efficacy. In this Perspective, we discussed rational target combinations, design strategies, structure-activity relationships, and future directions of dual-target tubulin inhibitors.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
38
|
Chen L, Li S, Liu J, Gan X, Jiang Z, Xu J, Cai S. Evaluating Pharmacokinetic and Distribution Characteristics for A New Antitumor Activity Ortho-aryl Chalcone Compound of OC26 in Rats by LC-MS/MS Method. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200526113828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
OC26, an ortho-aryl chalcone compound, shows excellent antitumor activity
in vitro and vivo. However, the pharmacokinetic characteristics of OC26 have not been comprehensively
reported. It is essential to investigate the correlation of pharmacological response.
Objective:
To further explore OC26, this study aims to develop an ultra-performance liquid chromatography-
tandem mass spectrometric (UPLC-MS/MS) method to reveal the pharmacokinetics and distribution
characteristics in rats of OC26.
Methods:
An UPLC-MS/MS method was developed to detect OC26 in plasma and various tissues. The
protein precipitation method was applied to process the biological samples. After intravenous injection
12.5mg/kg of OC26 in rats, plasma and tissue samples were collected from rats and the method was
applied to investigate pharmacokinetic and distribution characteristics of OC26.
Results:
Calibration curve samples of OC26 concentration range from 20 to 2000 ng/mL with the
goodness of fit (r2> 0.99). The precisions for the method were within 12.3%, while the accuracies for
the method were within ±11% (bias). The matrix effect had no influence on the accuracy and precision
of the method. After intravenous injection 12.5mg/kg of OC26 in rats, OC26 was rapidly eliminated
(t1/2=31.39±7.87min, MRT0→∞=15.03±2.55min) from rat plasma and widely distributed
(Vd=4.83±0.96L/kg) in tissues. The highest concentration of OC26 was detected in the brain in which
peak content (~8962.78ng/g at 15min) was over 5-fold higher than that of in other tissues, which
prompted new potential targets in the brain. Besides, lung and heart also detected quite a high level of
OC26. Benefited from quick elimination in the collected tissues and plasma, long-term accumulation
was not observed as chronic toxicity might be less.
Conclusions:
This UPLC-MS/MS method was successfully applied to detect OC26 and provide a theoretical
basis for the further study of OC26.
Collapse
Affiliation(s)
- Lexing Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shiying Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiang Liu
- Sichuan Greentech Biotechnology Co., Ltd, Meishan 620042, China
| | - Xia Gan
- Sichuan Greentech Biotechnology Co., Ltd, Meishan 620042, China
| | - Zhounan Jiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jun Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shaohui Cai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
39
|
Malacrida A, Semperboni S, Di Domizio A, Palmioli A, Broggi L, Airoldi C, Meregalli C, Cavaletti G, Nicolini G. Tubulin binding potentially clears up Bortezomib and Carfilzomib differential neurotoxic effect. Sci Rep 2021; 11:10523. [PMID: 34006972 PMCID: PMC8131610 DOI: 10.1038/s41598-021-89856-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Proteasome inhibitors (PIs) represent the gold standard in the treatment of multiple myeloma. Among PIs, Bortezomib (BTZ) is frequently used as first line therapy, but peripheral neuropathy (PN), occurring approximately in 50% of patients, impairs their life, representing a dose-limiting toxicity. Carfilzomib (CFZ), a second-generation PI, induces a significantly less severe PN. We investigated possible BTZ and CFZ off-targets able to explain their different neurotoxicity profiles. In order to identify the possible PIs off-targets we used the SPILLO-PBSS software that performs a structure-based in silico screening on a proteome-wide scale. Among the top-ranked off-targets of BTZ identified by SPILLO-PBSS we focused on tubulin which, by contrast, did not turn out to be an off-target of CFZ. We tested the hypothesis that the direct interaction between BTZ and microtubules would inhibit the tubulin alfa GTPase activity, thus reducing the microtubule catastrophe and consequently furthering the microtubules polymerization. This hypothesis was validated in a cell-free model, since BTZ (but not CFZ) reduces the concentration of the free phosphate released during GTP hydrolysis. Moreover, NMR binding studies clearly demonstrated that BTZ, unlike CFZ, is able to interact with both tubulin dimers and polymerized form. Our data suggest that different BTZ and CFZ neurotoxicity profiles are independent from their proteasome inhibition, as demonstrated in adult mice dorsal root ganglia primary sensory neurons, and, first, we demonstrate, in a cell free model, that BTZ is able to directly bind and perturb microtubules.
Collapse
Affiliation(s)
- A Malacrida
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy. .,Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy.
| | - S Semperboni
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy.,Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
| | - A Di Domizio
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milan, Italy.,SPILLOproject, Via Stradivari 17, Paderno Dugnano, 20037, Milano, Italy
| | - A Palmioli
- Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy.,Department of Biotechnology and Biosciences, BioOrgNMR Lab, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| | - L Broggi
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy
| | - C Airoldi
- Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy.,Department of Biotechnology and Biosciences, BioOrgNMR Lab, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| | - C Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy. .,Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy.
| | - G Cavaletti
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy.,Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
| | - G Nicolini
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano - Bicocca, Via Cadore 48, 20900, Monza, MB, Italy.,Milan Center for Neuroscience, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
| |
Collapse
|
40
|
Kesarwani S, Lama P, Chandra A, Reddy PP, Jijumon AS, Bodakuntla S, Rao BM, Janke C, Das R, Sirajuddin M. Genetically encoded live-cell sensor for tyrosinated microtubules. J Cell Biol 2021; 219:152071. [PMID: 32886100 PMCID: PMC7659708 DOI: 10.1083/jcb.201912107] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Microtubule cytoskeleton exists in various biochemical forms in different cells due to tubulin posttranslational modifications (PTMs). Tubulin PTMs are known to affect microtubule stability, dynamics, and interaction with MAPs and motors in a specific manner, widely known as tubulin code hypothesis. At present, there exists no tool that can specifically mark tubulin PTMs in living cells, thus severely limiting our understanding of their dynamics and cellular functions. Using a yeast display library, we identified a binder against terminal tyrosine of α-tubulin, a unique PTM site. Extensive characterization validates the robustness and nonperturbing nature of our binder as tyrosination sensor, a live-cell tubulin nanobody specific towards tyrosinated microtubules. Using this sensor, we followed nocodazole-, colchicine-, and vincristine-induced depolymerization events of tyrosinated microtubules in real time and found each distinctly perturbs the microtubule polymer. Together, our work describes a novel tyrosination sensor and its potential applications to study the dynamics of microtubule and their PTM processes in living cells.
Collapse
Affiliation(s)
- Shubham Kesarwani
- Centre for Cardiovascular Biology and Diseases, Institute for Stem Cell Science and Regenerative Medicine, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prakash Lama
- Centre for Cardiovascular Biology and Diseases, Institute for Stem Cell Science and Regenerative Medicine, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anchal Chandra
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| | - P Purushotam Reddy
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| | - A S Jijumon
- Institut Curie, Paris Sciences et Lettres University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, Paris Sciences et Lettres University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC
| | - Carsten Janke
- Institut Curie, Paris Sciences et Lettres University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Ranabir Das
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| | - Minhajuddin Sirajuddin
- Centre for Cardiovascular Biology and Diseases, Institute for Stem Cell Science and Regenerative Medicine, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| |
Collapse
|
41
|
Ayukawa R, Iwata S, Imai H, Kamimura S, Hayashi M, Ngo KX, Minoura I, Uchimura S, Makino T, Shirouzu M, Shigematsu H, Sekimoto K, Gigant B, Muto E. GTP-dependent formation of straight tubulin oligomers leads to microtubule nucleation. J Cell Biol 2021; 220:211760. [PMID: 33544140 PMCID: PMC7871348 DOI: 10.1083/jcb.202007033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Nucleation of microtubules (MTs) is essential for cellular activities, but its mechanism is unknown because of the difficulty involved in capturing rare stochastic events in the early stage of polymerization. Here, combining rapid flush negative stain electron microscopy (EM) and kinetic analysis, we demonstrate that the formation of straight oligomers of critical size is essential for nucleation. Both GDP and GTP tubulin form single-stranded oligomers with a broad range of curvatures, but upon nucleation, the curvature distribution of GTP oligomers is shifted to produce a minor population of straight oligomers. With tubulin having the Y222F mutation in the β subunit, the proportion of straight oligomers increases and nucleation accelerates. Our results support a model in which GTP binding generates a minor population of straight oligomers compatible with lateral association and further growth to MTs. This study suggests that cellular factors involved in nucleation promote it via stabilization of straight oligomers.
Collapse
Affiliation(s)
- Rie Ayukawa
- Laboratory for Molecular Biophysics, RIKEN Center for Brain Science, Saitama, Japan
| | - Seigo Iwata
- Laboratory for Molecular Biophysics, RIKEN Center for Brain Science, Saitama, Japan
| | - Hiroshi Imai
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Shinji Kamimura
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Masahito Hayashi
- Laboratory for Molecular Biophysics, RIKEN Center for Brain Science, Saitama, Japan
| | - Kien Xuan Ngo
- Laboratory for Molecular Biophysics, RIKEN Center for Brain Science, Saitama, Japan
| | - Itsushi Minoura
- Laboratory for Molecular Biophysics, RIKEN Center for Brain Science, Saitama, Japan
| | - Seiichi Uchimura
- Laboratory for Molecular Biophysics, RIKEN Center for Brain Science, Saitama, Japan
| | - Tsukasa Makino
- Laboratory for Molecular Biophysics, RIKEN Center for Brain Science, Saitama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Hideki Shigematsu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Ken Sekimoto
- Matière et Systèmes Complexes (MSC), CNRS UMR 7057, Université de Paris, Paris, France.,Gulliver, CNRS UMR 7083, ESPCI Paris and Université Paris Sciences et Lettres, Paris, France
| | - Benoît Gigant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Etsuko Muto
- Laboratory for Molecular Biophysics, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
42
|
Stewman SF, Tsui KK, Ma A. Dynamic Instability from Non-equilibrium Structural Transitions on the Energy Landscape of Microtubule. Cell Syst 2020; 11:608-624.e9. [PMID: 33086051 DOI: 10.1016/j.cels.2020.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 09/12/2019] [Accepted: 09/25/2020] [Indexed: 11/30/2022]
Abstract
Microtubules are the backbone of the cytoskeleton and vital to numerous cellular processes. The central dogma of microtubules is that all their functions are driven by dynamic instability, but its mechanism has remained unresolved for over 30 years because of conceptual difficulties inherent in the dominant GTP-cap framework. We present a physically rigorous structural mechanochemical model: dynamic instability is driven by non-equilibrium transitions between the bent (B), straight (S), and curved (C) forms of tubulin monomers and longitudinal interfaces in the two-dimensional lattice of microtubule. All the different phenomena (growth, shortening, catastrophe, rescue, and pausing) are controlled by the kinetic pathways for B↔S↔C transitions and corresponding energy landscapes. Different kinetics at minus end are due to different B↔S↔C pathways imposed by the polarity of microtubule lattice. This model enables us to reproduce all the observed phenomena of dynamic instability of purified tubulins in kinetic simulations.
Collapse
Affiliation(s)
- Shannon F Stewman
- Department of Bioengineering, the University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607, USA
| | - Kenneth K Tsui
- Department of Bioengineering, the University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607, USA
| | - Ao Ma
- Department of Bioengineering, the University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607, USA.
| |
Collapse
|
43
|
Boiarska Z, Passarella D. Microtubule-targeting agents and neurodegeneration. Drug Discov Today 2020; 26:604-615. [PMID: 33279455 DOI: 10.1016/j.drudis.2020.11.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 11/25/2022]
Abstract
The association of microtubule (MT) breakdown with neurodegeneration and neurotoxicity has provided an emerging therapeutic approach for neurodegenerative diseases. Tubulin binders are able to modulate MT dynamics and, as a result, are of particular interest both as potential therapeutics and experimental tools used to validate this strategy. Here, we provide a comprehensive overview of current knowledge and recent advancements regarding MT-targeting approaches for neurodegeneration and evaluate the potential application of MT-targeting agents (MTAs) based on available preclinical and clinical data.
Collapse
Affiliation(s)
- Zlata Boiarska
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
44
|
A novel orally active microtubule destabilizing agent S-40 targets the colchicine-binding site and shows potent antitumor activity. Cancer Lett 2020; 495:22-32. [PMID: 32931884 DOI: 10.1016/j.canlet.2020.08.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022]
Abstract
The tubulin colchicine binding site has been recognized as an attractive drug target to combat cancer, but none of the candidate drugs have been approved for medical treatment. We recently identified a structurally distinct small molecule S-40 as an oral potent tubulin destabilizing agent. Crystal structure analysis of S-40 in a complex with tubulin at a resolution of 2.4 Å indicated that S-40 occupies all 3 zones in the colchicine pocket with interactions different from known microtubule inhibitors, presenting unique effects on assembly and curvature of tubulin dimers. S-40 overcomes paclitaxel resistance and lacks neurotoxicity, which are the main obstacles limiting clinical applications of paclitaxel. Moreover, S-40 harbors the ability to inhibit growth of cancer cell lines as well as patient-derived organoids, induce mitotic arrest and cell apoptosis. Xenograft mouse models of human prostate cancer DU145, non-small cell lung cancer NCI-H1299 and paclitaxel-resistant A549 were strongly restrained without apparent side effects by S-40 oral administration once daily. These findings provide evidence for the development of S-40 as the next generation of orally effective microtubule inhibitors for cancer therapy.
Collapse
|
45
|
Design, synthesis, in vitro and in vivo biological evaluation of 2-amino-3-aroylbenzo[b]furan derivatives as highly potent tubulin polymerization inhibitors. Eur J Med Chem 2020; 200:112448. [DOI: 10.1016/j.ejmech.2020.112448] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/09/2020] [Accepted: 05/09/2020] [Indexed: 01/02/2023]
|
46
|
Corbin LC, Erickson HP. A Unified Model for Treadmilling and Nucleation of Single-Stranded FtsZ Protofilaments. Biophys J 2020; 119:792-805. [PMID: 32763138 DOI: 10.1016/j.bpj.2020.05.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 10/25/2022] Open
Abstract
Bacterial cell division is tightly coupled to the dynamic behavior of FtsZ, a tubulin homolog. Recent experimental work in vitro and in vivo has attributed FtsZ's assembly dynamics to treadmilling, in which subunits add to the bottom and dissociate from the top of protofilaments. However, the molecular mechanisms producing treadmilling have yet to be characterized and quantified. We have developed a Monte Carlo model for FtsZ assembly that explains treadmilling, and also explains assembly nucleation by the same mechanisms. A key element of the model is a conformational change from R (relaxed), which is highly favored for monomers, to T (tense), which is favored for subunits in a protofilament. This model was created in MATLAB. Kinetic parameters were converted to probabilities of execution during a single, small time step. These were used to stochastically determine FtsZ dynamics. Our model is able to accurately describe the results of several in vitro and in vivo studies for a variety of FtsZ flavors. With standard conditions, the model FtsZ polymerized and produced protofilaments that treadmilled at 23 nm/s, hydrolyzed GTP at 3.6-3.7 GTP min-1 FtsZ-1, and had an average length of 30-40 subunits, all similar to experimental results. Adding a bottom capper resulted in shorter protofilaments and higher GTPase, similar to the effect of the known bottom capper protein MciZ. The model could match nucleation kinetics of several flavors of FtsZ using the same parameters as treadmilling and varying only the R to T transition of monomers.
Collapse
Affiliation(s)
- Lauren C Corbin
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Harold P Erickson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina; Department of Cell Biology, Duke University, Durham, North Carolina.
| |
Collapse
|
47
|
Consolati T, Locke J, Roostalu J, Chen ZA, Gannon J, Asthana J, Lim WM, Martino F, Cvetkovic MA, Rappsilber J, Costa A, Surrey T. Microtubule Nucleation Properties of Single Human γTuRCs Explained by Their Cryo-EM Structure. Dev Cell 2020; 53:603-617.e8. [PMID: 32433913 PMCID: PMC7280788 DOI: 10.1016/j.devcel.2020.04.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/21/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
The γ-tubulin ring complex (γTuRC) is the major microtubule nucleator in cells. The mechanism of its regulation is not understood. We purified human γTuRC and measured its nucleation properties in a total internal reflection fluorescence (TIRF) microscopy-based real-time nucleation assay. We find that γTuRC stably caps the minus ends of microtubules that it nucleates stochastically. Nucleation is inefficient compared with microtubule elongation. The 4 Å resolution cryoelectron microscopy (cryo-EM) structure of γTuRC, combined with crosslinking mass spectrometry analysis, reveals an asymmetric conformation with only part of the complex in a "closed" conformation matching the microtubule geometry. Actin in the core of the complex, and MZT2 at the outer perimeter of the closed part of γTuRC appear to stabilize the closed conformation. The opposite side of γTuRC is in an "open," nucleation-incompetent conformation, leading to a structural asymmetry explaining the low nucleation efficiency of purified human γTuRC. Our data suggest possible regulatory mechanisms for microtubule nucleation by γTuRC closure.
Collapse
Affiliation(s)
- Tanja Consolati
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain
| | - Julia Locke
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Zhuo Angel Chen
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Julian Gannon
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jayant Asthana
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain
| | - Wei Ming Lim
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain
| | | | | | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Alessandro Costa
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Thomas Surrey
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain; ICREA, Passeig de Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
48
|
Wang C, Li Y, Liu T, Wang Z, Zhang Y, Bao K, Wu Y, Guan Q, Zuo D, Zhang W. Design, synthesis and evaluation of antiproliferative and antitubulin activities of 5-methyl-4-aryl-3-(4-arylpiperazine-1-carbonyl)-4H-1,2,4-triazoles. Bioorg Chem 2020; 104:103909. [PMID: 33142419 DOI: 10.1016/j.bioorg.2020.103909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023]
Abstract
A series of novel 5-methyl-4-aryl-3-(4-arylpiperazine-1-carbonyl)-4H-1,2,4-triazoles possessing 1,2,4-triazole as the hydrogen-bond acceptor were designed, synthesized and evaluated for their antiproliferative and tubulin polymerization inhibitory activities. Some of them exhibited moderate activities in vitro against the three cancer cell lines including SGC-7901, A549 and HeLa. Compound 6e exhibited the highest potency against the three cancer cell lines. Moreover, the tubulin polymerization experiments indicated that compound 6e could inhibit the tubulin polymerization. Immunofluorescence study and cell cycle analysis clearly revealed compound 6e could disrupt intracellular microtubule organization, arrest cell cycle at the G2/M phase. In addition, molecular docking analysis demonstrated the interaction of compound 6e at the colchicine-binding site of tubulin. These preliminary results suggested that compound 6e is a new colchicine binding site inhibitor and worthy of further investigation.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yuelin Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Tong Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zeyu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yujing Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Kai Bao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
49
|
Ye X, Kim T, Geyer EA, Rice LM. Insights into allosteric control of microtubule dynamics from a buried β-tubulin mutation that causes faster growth and slower shrinkage. Protein Sci 2020; 29:1429-1439. [PMID: 32077153 DOI: 10.1002/pro.3842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/27/2023]
Abstract
αβ-tubulin subunits cycle through a series of different conformations in the polymer lattice during microtubule growing and shrinking. How these allosteric responses to different tubulin:tubulin contacts contribute to microtubule dynamics, and whether the contributions are evolutionarily conserved, remains poorly understood. Here, we sought to determine whether the microtubule-stabilizing effects (slower shrinking) of the β:T238A mutation we previously observed using yeast αβ-tubulin would generalize to mammalian microtubules. Using recombinant human microtubules as a model, we found that the mutation caused slow microtubule shrinking, indicating that this effect of the mutation is indeed conserved. However, unlike in yeast, β:T238A human microtubules grew faster than wild-type and the mutation did not appear to attenuate the conformational change associated with guanosine 5'-triphosphate (GTP) hydrolysis in the lattice. We conclude that the assembly-dependent conformational change in αβ-tubulin can contribute to determine the rates of microtubule growing as well as shrinking. Our results also suggest that an allosteric perturbation like the β:T238A mutation can alter the behavior of terminal subunits without accompanying changes in the conformation of fully surrounded subunits in the body of the microtubule.
Collapse
Affiliation(s)
- Xuecheng Ye
- UT Southwestern Medical Center, Departments of Biophysics and Biochemistry, Dallas, Texas, USA
| | - Tae Kim
- UT Southwestern Medical Center, Departments of Biophysics and Biochemistry, Dallas, Texas, USA
| | - Elisabeth A Geyer
- UT Southwestern Medical Center, Departments of Biophysics and Biochemistry, Dallas, Texas, USA
| | - Luke M Rice
- UT Southwestern Medical Center, Departments of Biophysics and Biochemistry, Dallas, Texas, USA
| |
Collapse
|
50
|
Cui YJ, Ma CC, Zhang CM, Tang LQ, Liu ZP. The discovery of novel indazole derivatives as tubulin colchicine site binding agents that displayed potent antitumor activity both in vitro and in vivo. Eur J Med Chem 2020; 187:111968. [DOI: 10.1016/j.ejmech.2019.111968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
|