1
|
Acevedo-Sánchez Y, Woida PJ, Anderson C, Kraemer S, Lamason RL. Rickettsia parkeri forms extensive, stable contacts with the rough endoplasmic reticulum. J Cell Biol 2025; 224:e202406122. [PMID: 39775737 PMCID: PMC11706211 DOI: 10.1083/jcb.202406122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Upon invasion into the host cell, a subset of bacterial pathogens resides exclusively in the cytosol. While previous research revealed how they reshape the plasma membrane during invasion, subvert the immune response, and hijack cytoskeletal dynamics to promote their motility, it was unclear if these pathogens also interacted with the organelles in this crowded intracellular space. Here, we examined if the obligate intracellular pathogen Rickettsia parkeri interacts with the endoplasmic reticulum (ER), a large and dynamic organelle spread throughout the cell. Using live-cell microscopy and transmission and focused-ion-beam scanning electron microscopy, we show that R. parkeri forms extensive contacts with the rough ER that are ∼55 nm apart and cover more than half the bacterial surface. Depletion of the ER-specific tethers VAPA and VAPB reduced rickettsia-ER contacts, and VAPA and VAPB were localized around intracellular rickettsiae. Overall, our findings illuminate an interkingdom ER contact uniquely mediated by rickettsiae that mimics some characteristics of traditional host membrane contact sites.
Collapse
Affiliation(s)
| | - Patrick J. Woida
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline Anderson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Microbiology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stephan Kraemer
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA
| | - Rebecca L. Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Microbiology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
2
|
Pabon A, Bhupana JN, Wong CO. Crosstalk between degradation and bioenergetics: how autophagy and endolysosomal processes regulate energy production. Neural Regen Res 2025; 20:671-681. [PMID: 38886933 PMCID: PMC11433889 DOI: 10.4103/nrr.nrr-d-23-02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/08/2024] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.
Collapse
Affiliation(s)
- Angelid Pabon
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | | | - Ching-On Wong
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| |
Collapse
|
3
|
Gao X, Feng Q, Zhang Q, Zhang Y, Hu C, Zhang L, Zhang H, Wang G, Hu K, Ma M, Wang Z, Liu Y, An D, Yi H, Peng Y, Wu X, Chen G, Jia X, Cai H, Shi J. Targeting enolase 1 reverses bortezomib resistance in multiple myeloma through YWHAZ/Parkin axis. J Biomed Sci 2025; 32:9. [PMID: 39828712 PMCID: PMC11744840 DOI: 10.1186/s12929-024-01101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/12/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Enolase 1 (ENO1) is a conserved glycolytic enzyme that regulates glycolysis metabolism. However, its role beyond glycolysis in the pathophysiology of multiple myeloma (MM) remains largely elusive. Herein, this study aimed to elucidate the function of ENO1 in MM, particularly its impact on mitophagy under bortezomib-induced apoptosis. METHODS The bone marrow of clinical MM patients and healthy normal donors was used to compare the expression level of ENO1. Using online databases, we conducted an analysis to examine the correlation between ENO1 expression and both clinicopathological characteristics and patient outcomes. To investigate the biological functions of ENO1 in MM and the underlying molecular mechanisms involved, we conducted the following experiment: construction of a subcutaneous graft tumor model, co-immunoprecipitation, western blot, quantitative real-time polymerase chain reaction, immunohistochemistry, flow cytometry, and cell functional assays. RESULTS ENO1 was identified as an unfavorable prognostic factor in MM. ENO1 knockdown suppresses tumorigenicity and causes cell cycle arrest. Inhibition of ENO1-regulated mitophagy sensitizes tumor cells to apoptosis. ENO1 enhanced the stability of the YWHAZ protein by increasing the acetylation of lysine in YWHAZ while antagonizing its ubiquitination, which in turn promoted mitophagy. HDAC6 mediates the deacetylation of YWHAZ by deacetylating the K138 site of YWHAZ. Inhibition of HDAC6 increased YWHAZ acetylation and decreased YWHAZ ubiquitination. Furthermore, combination treatment with bortezomib and pharmaceutical agents targeting ENO1 has synergistic anti-MM effects both in vivo and in vitro. CONCLUSION Our data suggest that ENO1 promotes MM tumorigenesis and progression. ENO1 activates mitophagy by promoting the stability of YWHAZ and inhibits apoptosis and thus, leads to the drug resistance. ENO1-dependent mitophagy promotes MM proliferation and suppresses the level of bortezomib-induced apoptosis. Inhibition of ENO1 may represent a potential strategy to reverse the resistance of MM to bortezomib.
Collapse
Affiliation(s)
- Xuejie Gao
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qilin Feng
- Department of Hematology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Qikai Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yifei Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Chaolu Hu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Li Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Guanli Wang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ke Hu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Mengmeng Ma
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhuning Wang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yujie Liu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Dong An
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hongfei Yi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yu Peng
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Gege Chen
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xinyan Jia
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Haiyan Cai
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Hematology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China.
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
4
|
Zhang L, Zheng Y, Shao M, Chen A, Liu M, Sun W, Li T, Fang Y, Dong Y, Zhao S, Luo H, Feng J, Wang Q, Li L, Zheng Y. AlphaFold-based AI docking reveals AMPK/SIRT1-TFEB pathway modulation by traditional Chinese medicine in metabolic-associated fatty liver disease. Pharmacol Res 2025; 212:107617. [PMID: 39832686 DOI: 10.1016/j.phrs.2025.107617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic, progressive disorder characterized by hepatic steatosis and excessive lipid accumulation. Its high global adult prevalence (approximately 50.7 %) is a significant concern worldwide. However, FDA-approved therapeutic drugs remains lacking. Qigui Jiangzhi Formula (QGJZF) shows promise in treating MAFLD by effectively decreasing lipid levels and improving hepatic steatosis, however its mechanisms remain unclear. This study investigated QGJZF's effects in high-fat diet-induced zebrafish and golden hamsters, and in palmitate (PA) and oleic acid (OA) - induced HepG2 cells, using the SymMap database to identify potential targets and pathways of QGJZF in MAFLD and AlphaFold algorithms to predict protein structures. In vivo, QGJZF significantly alleviated hepatic lipid deposition. Intriguingly, QGJZF decreased lipid droplets and its levels are negative correlated with the numbers of autolysosomes, indicating that QGJZF's mechanism of ameliorating liver lipid deposition may be related to the regulation of autophagy. QGJZF upregulated the expressions of phosphorylated -Adenosine 5'-monophosphate (AMP) - activated protein kinase (p-AMPK), Sirtuin deacetylase 1 (SIRT1) and Transcription factor EB (TFEB), accompanied by the changes in autophagy-related proteins. In vitro, QGJZF inhibited the lipid deposition in PA/OA-stimulated HepG2 cells, and its effect was blocked by an autophagy inhibitor Baf-A1, which was mediated through upregulation of TFEB and its mediated autophagy-lysosomal pathway. Moreover, cotreatment with AMPK inhibitor Compound C, the regulation of QGJZF on TFEB, SIRT1, autophagy-related protein levels, and lipid deposition were reversed. Network pharmacology identified the PRKAA2 (AMPK) and SIRT1 as key hub targets. Futher analysis of their structures using AlphaFold3 algorithms, yielded high-ranking scores of 0.97 and 0.93, respectively. Liquid chromatography-mass spectrometry combined with molecular docking expounded its five compounds in QGJZF binding to AMPK protein. These findings suggest that QGJZF as a therapeutic agent in augmenting autophagy-facilitated lipid clearance for the management of MAFLD via AMPK/SIRT1-TFEB axis.
Collapse
Affiliation(s)
- Lulu Zhang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, China
| | - Yi Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyan Shao
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Aiping Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Meiyi Liu
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Dong
- Monitoning and Statistical Research Center, National Administration of Traditional Chinese Medicine, Beijing 100600, China
| | - Shipeng Zhao
- Graduate School of China Academy of Chinese Medical Sciences, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Luo
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China.
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
5
|
Feng X, Cai W, Li Q, Zhao L, Meng Y, Xu H. Activation of lysosomal Ca2+ channels mitigates mitochondrial damage and oxidative stress. J Cell Biol 2025; 224:e202403104. [PMID: 39500490 PMCID: PMC11540856 DOI: 10.1083/jcb.202403104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/09/2024] Open
Abstract
Elevated levels of plasma-free fatty acids and oxidative stress have been identified as putative primary pathogenic factors in endothelial dysfunction etiology, though their roles are unclear. In human endothelial cells, we found that saturated fatty acids (SFAs)-including the plasma-predominant palmitic acid (PA)-cause mitochondrial fragmentation and elevation of intracellular reactive oxygen species (ROS) levels. TRPML1 is a lysosomal ROS-sensitive Ca2+ channel that regulates lysosomal trafficking and biogenesis. Small-molecule agonists of TRPML1 prevented PA-induced mitochondrial damage and ROS elevation through activation of transcriptional factor EB (TFEB), which boosts lysosome biogenesis and mitophagy. Whereas genetically silencing TRPML1 abolished the protective effects of TRPML1 agonism, TRPML1 overexpression conferred a full resistance to PA-induced oxidative damage. Pharmacologically activating the TRPML1-TFEB pathway was sufficient to restore mitochondrial and redox homeostasis in SFA-damaged endothelial cells. The present results suggest that lysosome activation represents a viable strategy for alleviating oxidative damage, a common pathogenic mechanism of metabolic and age-related diseases.
Collapse
Affiliation(s)
- Xinghua Feng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Weijie Cai
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Qian Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Liding Zhao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Meng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Haoxing Xu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Clementino LC, Thomas AP, Rocha EM, Hilfiker S. A role for lysosomal calcium channels in mitigating mitochondrial damage and oxidative stress. Cell Calcium 2025; 125:102986. [PMID: 39693913 DOI: 10.1016/j.ceca.2024.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Elevated free fatty acids and oxidative stress may function as pathogenic factors in endothelial dysfunction that is associated with various cardiovascular complications. In recent work, Feng and colleagues report that activation of a lysosomal Ca2+ channel may be a viable option to alleviate oxidative damage by boosting lysosome biogenesis and mitophagy.
Collapse
Affiliation(s)
- Leandro C Clementino
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, USA
| | - Andrew P Thomas
- Department of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, USA
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sabine Hilfiker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, USA.
| |
Collapse
|
7
|
Lei X, Wu S, Xu Z, Xu Q, Cao H, Zhan Z, Qin Q, Wei J. Parkin is a critical factor in grouper immune response to virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105293. [PMID: 39608657 DOI: 10.1016/j.dci.2024.105293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/15/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Parkin is an E3 ubiquitinated ligase that mainly participates in mitophagy and plays an essential biological role in organisms. To investigate Parkin's function in fish, a Parkin homolog was cloned from Epinephelus coioides (EcParkin). The open reading frame (ORF) of EcParkin consists of 1461 nucleotides and encodes a protein of 486 amino acids, with a predicted molecular weight of 53.32 kDa. EcParkin was highly expressed in the heart, kidney, and head kidney of healthy groupers, especially in the heart. The expression levels of EcParkin were upregulated after Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) infection. Intracellular localization studies revealed that EcParkin is distributed in both the cytoplasm and nucleus of GS cells. Overexpression of EcParkin promoted SGIV and RGNNV replication in vitro, while knockdown of EcParkin inhibited SGIV and RGNNV replication. EcParkin suppressed the promoter activities of IFN-β, ISRE, and NF-κB, as well as the expression of interferon-related factors and inflammatory cytokines. EcParkin was found to colocalize and interact with EcMDA5, EcMAVS, EcTBK1, EcIRF3, and EcIRF7. Additionally, EcParkin enhanced LC3-II production in GS cells. These findings suggest that EcParkin may play a crucial role in the antiviral innate immunity and cellular autophagy of fish.
Collapse
Affiliation(s)
- Xiaoxia Lei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhuqing Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiongyue Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Helong Cao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhouling Zhan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China.
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China.
| |
Collapse
|
8
|
Xu Y, Wang Q, Wang J, Qian C, Wang Y, Lu S, Song L, He Z, Liu W, Wan W. The cGAS-STING pathway activates transcription factor TFEB to stimulate lysosome biogenesis and pathogen clearance. Immunity 2024:S1074-7613(24)00532-6. [PMID: 39689715 DOI: 10.1016/j.immuni.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/27/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024]
Abstract
Induction of autophagy is an ancient function of the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway through which autophagic cargoes are delivered to lysosomes for degradation. However, whether lysosome function is also modulated by the cGAS-STING pathway remains unknown. Here, we discovered that the cGAS-STING pathway upregulated lysosomal activity by stimulating lysosome biogenesis independently of the downstream protein kinase TANK-binding kinase 1 (TBK1). STING activation enhanced lysosome biogenesis through inducing the nuclear translocation of transcription factor EB (TFEB) as well as its paralogs transcription factor E3 (TFE3) and microphthalmia-associated transcription factor (MITF). STING-induced lipidation of GABA type A receptor-associated protein (GABARAP), an autophagy-related protein, on STING vesicles was responsible for TFEB activation. Membrane-bound GABARAP sequestered the GTPase-activating protein folliculin (FLCN) and FLCN-interacting protein (FNIP) complex to block its function toward the Rag GTPases Ras-related GTP-binding C and D (RagC and RagD), abolishing mechanistic target of rapamycin (mTOR) complex 1 (mTORC1)-dependent phosphorylation and inactivation of TFEB. Functionally, STING-induced lysosome biogenesis within cells facilitated the clearance of cytoplasmic DNA and invading pathogens. Thus, our findings reveal that induction of lysosome biogenesis is another important function of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Yinfeng Xu
- Laboratory of Basic Biology, Hunan First Normal University, Changsha 410205, Hunan, China.
| | - Qian Wang
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jun Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chuying Qian
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yusha Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Sheng Lu
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Lijiang Song
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Zhengfu He
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Wei Liu
- Department of Metabolic Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang, China.
| | - Wei Wan
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
9
|
Keshri S, Vicinanza M, Takla M, Rubinsztein DC. USP7 protects TFEB from proteasome-mediated degradation. Cell Rep 2024; 43:114872. [PMID: 39412987 DOI: 10.1016/j.celrep.2024.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
The transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and autophagy. We identify a distinct nuclear interactome of TFEB, with ubiquitin-specific protease 7 (USP7) emerging as a key post-translational modulator of TFEB. Genetic depletion and inhibition of USP7 reveal its critical role in preserving TFEB stability within both nuclear and cytoplasmic compartments. Specifically, USP7 is identified as the deubiquitinase responsible for removing the K48-linked polyubiquitination signal from TFEB at lysine residues K116, K264, and K274, thereby preventing its proteasomal degradation. Functional assays demonstrate the involvement of USP7 in preserving TFEB-mediated transcriptional responses to nutrient deprivation while also modulating autophagy flux and lysosome biogenesis. As USP7 is a deubiquitinase that protects TFEB from proteasomal degradation, these findings provide the foundation for therapeutic targeting of the USP7-TFEB axis in conditions characterized by TFEB dysregulation and metabolic abnormalities, particularly in certain cancers.
Collapse
Affiliation(s)
- Swati Keshri
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Mariella Vicinanza
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael Takla
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
10
|
Rawnsley DR, Islam M, Zhao C, Kargar Gaz Kooh Y, Mendoza A, Navid H, Kumari M, Guan X, Murphy JT, Nigro J, Kovacs A, Mani K, Huebsch N, Ma X, Diwan A. Mitophagy Facilitates Cytosolic Proteostasis to Preserve Cardiac Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.624947. [PMID: 39651239 PMCID: PMC11623534 DOI: 10.1101/2024.11.24.624947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background Protein quality control (PQC) is critical for maintaining sarcomere structure and function in cardiac myocytes, and mutations in PQC pathway proteins, such as CRYAB (arginine to glycine at position 120, R120G) and BAG3 (proline to lysine at position 209, P209L) induce protein aggregate pathology with cardiomyopathy in humans. Novel observations in yeast and mammalian cells demonstrate mitochondrial uptake of cytosolic protein aggregates. We hypothesized that mitochondrial uptake of cytosolic protein aggregates and their removal by mitophagy, a lysosomal degradative pathway essential for myocardial homeostasis, facilitates cytosolic protein quality control in cardiac myocytes. Methods Mice with inducible cardiac myocyte specific ablation of TRAF2 (TRAF2icKO), which impairs mitophagy, were assessed for protein aggregates with biochemical fractionation and super-resolution imaging in comparison to floxed controls. Induced pluripotent stem cell (iPSC)-derived cardiac myocytes with R120G knock-in to the CRYAB locus were assessed for localization of the CRYAB protein. Transgenic mice expressing R120G CRYAB protein (R120G-TG) were subjected to both TRAF2 gain-of-function (with AAV9-cardiac Troponin T promoter-driven TRAF2 transduction) and TRAF2 loss-of-function (with tamoxifen-inducible ablation of one Traf2 allele) in cardiac myocytes to determine the effect of mitophagy modulation on cardiac structure, function, and protein aggregate pathology. Results Cardiomyocyte-specific ablation of TRAF2 results accumulation of mitochondrial and cytosolic protein aggregates and DESMIN mis-localization to protein aggregates. Isolated mitochondria take up cardiomyopathy-associated aggregate-prone cytosolic chaperone proteins, namely arginine to glycine (R120G) CRYAB mutant and proline to lysine (P209L) BAG3 mutant. R120G-CRYAB mutant protein increasingly localizes to mitochondria in human and mouse cardiomyocytes. R120G-TG mice demonstrate upregulation of TRAF2 in the mitochondrial fraction with increased mitophagy as compared with wild type. Adult-onset inducible haplo-insufficiency of TRAF2 resulted in accelerated mortality, impaired left ventricular systolic function and increased protein aggregates in R120G-TG mice as compared with controls. Conversely, AAV9-mediated TRAF2 transduction in R120G-TG mice reduced mortality and attenuated left ventricular systolic dysfunction, with reduced protein aggregates and restoration of normal localization of DESMIN, a cytosolic scaffolding protein chaperoned by CRYAB, as compared with control AAV9-GFP group. Conclusions TRAF2-mediated mitophagy in cardiac myocytes facilitates removal of cytosolic protein aggregates and can be stimulated to ameliorate proteotoxic cardiomyopathy.
Collapse
|
11
|
Huang Y, Luo G, Peng K, Song Y, Wang Y, Zhang H, Li J, Qiu X, Pu M, Liu X, Peng C, Neculai D, Sun Q, Zhou T, Huang P, Liu W. Lactylation stabilizes TFEB to elevate autophagy and lysosomal activity. J Cell Biol 2024; 223:e202308099. [PMID: 39196068 PMCID: PMC11354204 DOI: 10.1083/jcb.202308099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/04/2024] [Accepted: 04/03/2024] [Indexed: 08/29/2024] Open
Abstract
The transcription factor TFEB is a major regulator of lysosomal biogenesis and autophagy. There is growing evidence that posttranslational modifications play a crucial role in regulating TFEB activity. Here, we show that lactate molecules can covalently modify TFEB, leading to its lactylation and stabilization. Mechanically, lactylation at K91 prevents TFEB from interacting with E3 ubiquitin ligase WWP2, thereby inhibiting TFEB ubiquitination and proteasome degradation, resulting in increased TFEB activity and autophagy flux. Using a specific antibody against lactylated K91, enhanced TFEB lactylation was observed in clinical human pancreatic cancer samples. Our results suggest that lactylation is a novel mode of TFEB regulation and that lactylation of TFEB may be associated with high levels of autophagy in rapidly proliferating cells, such as cancer cells.
Collapse
Affiliation(s)
- Yewei Huang
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Gan Luo
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Kesong Peng
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yue Song
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yusha Wang
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Hongtao Zhang
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jin Li
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Xiangmin Qiu
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Maomao Pu
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Xinchang Liu
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Chao Peng
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dante Neculai
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qiming Sun
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Tianhua Zhou
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Pintong Huang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Kang J, Li CM, Kim N, Baek J, Jung YK. Non-autophagic Golgi-LC3 lipidation facilitates TFE3 stress response against Golgi dysfunction. EMBO J 2024; 43:5085-5113. [PMID: 39284911 PMCID: PMC11535212 DOI: 10.1038/s44318-024-00233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Lipidated ATG8/LC3 proteins are recruited to single membrane compartments as well as autophagosomes, supporting their functions. Although recent studies have shown that Golgi-LC3 lipidation follows Golgi damage, its molecular mechanism and function under Golgi stress remain unknown. Here, by combining DLK1 overexpression as a new strategy for induction of Golgi-specific LC3 lipidation, and the application of Golgi-damaging reagents, we unravel the mechanism and role of Golgi-LC3 lipidation. Upon DLK1 overexpression, LC3 is lipidated on the Golgi apparatus in an ATG12-ATG5-ATG16L1 complex-dependent manner; a post-Golgi trafficking blockade is the primary cause of this lipidation. During Golgi stress, ATG16L1 is recruited through its interaction with V-ATPase for Golgi-LC3 lipidation. After post-Golgi trafficking inhibition, TFE3, a key regulator of the Golgi stress response, is translocated to the nucleus. Defects in LC3 lipidation disrupt this translocation, leading to an attenuation of the Golgi stress response. Together, our results reveal the mechanism and unexplored function of Golgi-LC3 lipidation in the Golgi stress response.
Collapse
Affiliation(s)
- Jaemin Kang
- School of biological sciences, Seoul National University, Seoul, 08826, Korea
| | - Cathena Meiling Li
- School of biological sciences, Seoul National University, Seoul, 08826, Korea
| | - Namhoon Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, 08826, Korea
| | - Jongyeon Baek
- School of biological sciences, Seoul National University, Seoul, 08826, Korea
| | - Yong-Keun Jung
- School of biological sciences, Seoul National University, Seoul, 08826, Korea.
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
13
|
Hushmandi K, Einollahi B, Aow R, Suhairi SB, Klionsky DJ, Aref AR, Reiter RJ, Makvandi P, Rabiee N, Xu Y, Nabavi N, Saadat SH, Farahani N, Kumar AP. Investigating the interplay between mitophagy and diabetic neuropathy: Uncovering the hidden secrets of the disease pathology. Pharmacol Res 2024; 208:107394. [PMID: 39233055 DOI: 10.1016/j.phrs.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitophagy, the cellular process of selectively eliminating damaged mitochondria, plays a crucial role in maintaining metabolic balance and preventing insulin resistance, both key factors in type 2 diabetes mellitus (T2DM) development. When mitophagy malfunctions in diabetic neuropathy, it triggers a cascade of metabolic disruptions, including reduced energy production, increased oxidative stress, and cell death, ultimately leading to various complications. Thus, targeting mitophagy to enhance the process may have emerged as a promising therapeutic strategy for T2DM and its complications. Notably, plant-derived compounds with β-cell protective and mitophagy-stimulating properties offer potential as novel therapeutic agents. This review highlights the intricate mechanisms linking mitophagy dysfunction to T2DM and its complications, particularly neuropathy, elucidating potential therapeutic interventions for this debilitating disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rachel Aow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suhana Binte Suhairi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Pooyan Makvandi
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
14
|
Killips B, Heaton EJB, Augusto L, Omsland A, Gilk SD. Coxiella burnetii inhibits nuclear translocation of TFEB, the master transcription factor for lysosomal biogenesis. J Bacteriol 2024; 206:e0015024. [PMID: 39057917 PMCID: PMC11340324 DOI: 10.1128/jb.00150-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Coxiella burnetii is a highly infectious, Gram-negative, obligate intracellular bacterium and the causative agent of human Q fever. The Coxiella Containing Vacuole (CCV) is a modified phagolysosome that forms through fusion with host endosomes and lysosomes. While an initial acidic pH < 4.7 is essential to activate Coxiella metabolism, the mature, growth-permissive CCV has a luminal pH of ~5.2 that remains stable throughout infection. Inducing CCV acidification to a lysosomal pH (~4.7) causes Coxiella degradation, suggesting that Coxiella regulates CCV pH. Supporting this hypothesis, Coxiella blocks host lysosomal biogenesis, leading to fewer host lysosomes available to fuse with the CCV. Host cell lysosome biogenesis is primarily controlled by the transcription factor EB (TFEB), which binds Coordinated Lysosomal Expression And Regulation (CLEAR) motifs upstream of genes involved in lysosomal biogenesis and function. TFEB is a member of the microphthalmia/transcription factor E (MiT/TFE) protein family, which also includes MITF, TFE3, and TFEC. This study examines the roles of MiT/TFE proteins during Coxiella infection. We found that in cells lacking TFEB, both Coxiella growth and CCV size increase. Conversely, TFEB overexpression or expression in the absence of other family members leads to significantly less bacterial growth and smaller CCVs. TFE3 and MITF do not appear to play a significant role during Coxiella infection. Surprisingly, we found that Coxiella actively blocks TFEB nuclear translocation in a Type IV Secretion System-dependent manner, thus decreasing lysosomal biogenesis. Together, these results suggest that Coxiella inhibits TFEB nuclear translocation to limit lysosomal biogenesis, thus avoiding further CCV acidification through CCV-lysosomal fusion. IMPORTANCE The obligate intracellular bacterial pathogen Coxiella burnetii causes the zoonotic disease Q fever, which is characterized by a debilitating flu-like illness in acute cases and life-threatening endocarditis in patients with chronic disease. While Coxiella survives in a unique lysosome-like vacuole called the Coxiella Containing Vacuole (CCV), the bacterium inhibits lysosome biogenesis as a mechanism to avoid increased CCV acidification. Our results establish that transcription factor EB (TFEB), a member of the microphthalmia/transcription factor E (MiT/TFE) family of transcription factors that regulate lysosomal gene expression, restricts Coxiella infection. Surprisingly, Coxiella blocks TFEB translocation from the cytoplasm to the nucleus, thus downregulating the expression of lysosomal genes. These findings reveal a novel bacterial mechanism to regulate lysosomal biogenesis.
Collapse
Affiliation(s)
- Brigham Killips
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Emily J. Bremer Heaton
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Leonardo Augusto
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anders Omsland
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Stacey D. Gilk
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
15
|
Brunialti E, Rizzi N, Pinto-Costa R, Villa A, Panzeri A, Meda C, Rebecchi M, Di Monte DA, Ciana P. Design and validation of a reporter mouse to study the dynamic regulation of TFEB and TFE3 activity through in vivo imaging techniques. Autophagy 2024; 20:1879-1894. [PMID: 38522425 PMCID: PMC11262230 DOI: 10.1080/15548627.2024.2334111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
TFEB and TFE3 belong to the MiT/TFE family of transcription factors that bind identical DNA responsive elements in the regulatory regions of target genes. They are involved in regulating lysosomal biogenesis, function, exocytosis, autophagy, and lipid catabolism. Precise control of TFEB and TFE3 activity is crucial for processes such as senescence, stress response, energy metabolism, and cellular catabolism. Dysregulation of these factors is implicated in various diseases, thus researchers have explored pharmacological approaches to modulate MiT/TFE activity, considering these transcription factors as potential therapeutic targets. However, the physiological complexity of their functions and the lack of suitable in vivo tools have limited the development of selective MiT/TFE modulating agents. Here, we have created a reporter-based biosensor, named CLEARoptimized, facilitating the pharmacological profiling of TFEB- and TFE3-mediated transcription. This innovative tool enables the measurement of TFEB and TFE3 activity in living cells and mice through imaging and biochemical techniques. CLEARoptimized consists of a promoter with six coordinated lysosomal expression and regulation motifs identified through an in-depth bioinformatic analysis of the promoters of 128 TFEB-target genes. The biosensor drives the expression of luciferase and tdTomato reporter genes, allowing the quantification of TFEB and TFE3 activity in cells and in animals through optical imaging and biochemical assays. The biosensor's validity was confirmed by modulating MiT/TFE activity in both cell culture and reporter mice using physiological and pharmacological stimuli. Overall, this study introduces an innovative tool for studying autophagy and lysosomal pathway modulation at various biological levels, from individual cells to the entire organism.Abbreviations: CLEAR: coordinated lysosomal expression and regulation; MAR: matrix attachment regions; MiT: microphthalmia-associated transcription factor; ROI: region of interest; TBS: tris-buffered saline; TF: transcription factor; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcription factor EB; TH: tyrosine hydroxylase; TK: thymidine kinase; TSS: transcription start site.
Collapse
Affiliation(s)
| | | | - Rita Pinto-Costa
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Alessandro Villa
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Alessia Panzeri
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Clara Meda
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Monica Rebecchi
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Paolo Ciana
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Yasasilka XR, Lee M. Role of β-cell autophagy in β-cell physiology and the development of diabetes. J Diabetes Investig 2024; 15:656-668. [PMID: 38470018 PMCID: PMC11143416 DOI: 10.1111/jdi.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Elucidating the molecular mechanism of autophagy was a landmark in understanding not only the physiology of cells and tissues, but also the pathogenesis of diverse diseases, including diabetes and metabolic disorders. Autophagy of pancreatic β-cells plays a pivotal role in the maintenance of the mass, structure and function of β-cells, whose dysregulation can lead to abnormal metabolic profiles or diabetes. Modulators of autophagy are being developed to improve metabolic profile and β-cell function through the removal of harmful materials and rejuvenation of organelles, such as mitochondria and endoplasmic reticulum. Among the known antidiabetic drugs, glucagon-like peptide-1 receptor agonists enhance the autophagic activity of β-cells, which might contribute to the profound effects of glucagon-like peptide-1 receptor agonists on systemic metabolism. In this review, the results from studies on the role of autophagy in β-cells and their implication in the development of diabetes are discussed. In addition to non-selective (macro)autophagy, the role and mechanisms of selective autophagy and other minor forms of autophagy that might occur in β-cells are discussed. As β-cell failure is the ultimate cause of diabetes and unresponsiveness to conventional therapy, modulation of β-cell autophagy might represent a future antidiabetic treatment approach, particularly in patients who are not well managed with current antidiabetic therapy.
Collapse
Affiliation(s)
- Xaviera Riani Yasasilka
- Soonchunhyang Institute of Medi‐bio Science and Division of Endocrinology, Department of Internal MedicineSoonchunhyang University College of MedicineCheonanKorea
| | - Myung‐Shik Lee
- Soonchunhyang Institute of Medi‐bio Science and Division of Endocrinology, Department of Internal MedicineSoonchunhyang University College of MedicineCheonanKorea
| |
Collapse
|
17
|
Coukos R, Krainc D. Key genes and convergent pathogenic mechanisms in Parkinson disease. Nat Rev Neurosci 2024; 25:393-413. [PMID: 38600347 DOI: 10.1038/s41583-024-00812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder marked by the preferential dysfunction and death of dopaminergic neurons in the substantia nigra. The onset and progression of PD is influenced by a diversity of genetic variants, many of which lack functional characterization. To identify the most high-yield targets for therapeutic intervention, it is important to consider the core cellular compartments and functional pathways upon which the varied forms of pathogenic dysfunction may converge. Here, we review several key PD-linked proteins and pathways, focusing on the mechanisms of their potential convergence in disease pathogenesis. These dysfunctions primarily localize to a subset of subcellular compartments, including mitochondria, lysosomes and synapses. We discuss how these pathogenic mechanisms that originate in different cellular compartments may coordinately lead to cellular dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Robert Coukos
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
18
|
Pu X, Qi B. Lysosomal dysfunction by inactivation of V-ATPase drives innate immune response in C. elegans. Cell Rep 2024; 43:114138. [PMID: 38678555 DOI: 10.1016/j.celrep.2024.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Pathogens target vacuolar ATPase (V-ATPase) to inhibit lysosomal acidification or lysosomal fusion, causing lysosomal dysfunction. However, it remains unknown whether cells can detect dysfunctional lysosomes and initiate an immune response. In this study, we discover that dysfunction of lysosomes caused by inactivation of V-ATPase enhances innate immunity against bacterial infections. We find that lysosomal V-ATPase interacts with DVE-1, whose nuclear localization serves as a proxy for the induction of mitochondrial unfolded protein response (UPRmt). The inactivation of V-ATPase promotes the nuclear localization of DVE-1, activating UPRmt and inducing downstream immune response genes. Furthermore, pathogen resistance conferred by inactivation of V-ATPase requires dve-1 and its downstream immune effectors. Interestingly, animals grow slower after vha RNAi, suggesting that the vha-RNAi-induced immune response costs the most energy through activation of DVE-1, which trades off with growth. This study reveals how dysfunctional lysosomes can trigger an immune response, emphasizing the importance of conserving energy during immune defense.
Collapse
Affiliation(s)
- Xuepiao Pu
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Bin Qi
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
19
|
Li Y, Pan J, Yu JJJ, Wu X, Yang G, Pan X, Sui G, Wang M, Cheng M, Zhu S, Tai H, Xiao H, Xu L, Wu J, Yang Y, Tang J, Gong L, Jia L, Min D. Huayu Qutan Recipe promotes lipophagy and cholesterol efflux through the mTORC1/TFEB/ABCA1-SCARB1 signal axis. J Cell Mol Med 2024; 28:e18257. [PMID: 38526033 PMCID: PMC10962127 DOI: 10.1111/jcmm.18257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024] Open
Abstract
This study aims to investigate the mechanism of the anti-atherosclerosis effect of Huayu Qutan Recipe (HYQT) on the inhibition of foam cell formation. In vivo, the mice were randomly divided into three groups: CTRL group, MOD group and HYQT group. The HYQT group received HYQT oral administration twice a day (20.54 g/kg/d), and the plaque formation in ApoE-/- mice was observed using haematoxylin-eosin (HE) staining and oil red O (ORO) staining. The co-localization of aortic macrophages and lipid droplets (LDs) was examined using fluorescent labelling of CD11b and BODIPY fluorescence probe. In vitro, RAW 264.7 cells were exposed to 50 μg/mL ox-LDL for 48 h and then treated with HYQT for 24 h. The accumulation of LDs was evaluated using ORO and BODIPY. Cell viability was assessed using the CCK-8 assay. The co-localization of LC3b and BODIPY was detected via immunofluorescence and fluorescence probe. LysoTracker Red and BODIPY 493/503 were used as markers for lysosomes and LDs, respectively. Autophagosome formation were observed via transmission electron microscopy. The levels of LC3A/B II/LC3A/B I, p-mTOR/mTOR, p-4EBP1/4EBP1, p-P70S6K/P70S6K and TFEB protein level were examined via western blotting, while SQSTM1/p62, Beclin1, ABCA1, ABCG1 and SCARB1 were examined via qRT-PCR and western blotting. The nuclear translocation of TFEB was detected using immunofluorescence. The components of HYQT medicated serum were determined using Q-Orbitrap high-resolution MS analysis. Molecular docking was employed to identify the components of HYQT medicated serum responsible for the mTOR signalling pathway. The mechanism of taurine was illustrated. HYQT has a remarkable effect on atherosclerotic plaque formation and blood lipid level in ApoE-/- mice. HYQT decreased the co-localization of CD11b and BODIPY. HYQT (10% medicated serum) reduced the LDs accumulation in RAW 264.7 cells. HYQT and RAPA (rapamycin, a mTOR inhibitor) could promote cholesterol efflux, while chloroquine (CQ, an autophagy inhibitor) weakened the effect of HYQT. Moreover, MHY1485 (a mTOR agonist) also mitigated the effects of HYQT by reduced cholesterol efflux. qRT-PCR and WB results suggested that HYQT improved the expression of the proteins ABCA1, ABCG1 and SCARB1.HYQT regulates ABCA1 and SCARB1 protein depending on the mTORC1/TFEB signalling pathway. However, the activation of ABCG1 does not depend on this pathway. Q-Orbitrap high-resolution MS analysis results demonstrated that seven core compounds have good binding ability to the mTOR protein. Taurine may play an important role in the mechanism regulation. HYQT may reduce cardiovascular risk by promoting cholesterol efflux and degrading macrophage-derived foam cell formation. It has been observed that HYQT and ox-LDL regulate lipophagy through the mTOR/TFEB signalling pathway, rather than the mTOR/4EBP1/P70S6K pathway. Additionally, HYQT is found to regulate cholesterol efflux through the mTORC1/TFEB/ABCA1-SCARB1 signal axis, while taurine plays a significant role in lipophagy.
Collapse
Affiliation(s)
- Yue Li
- Department of Cardiologythe Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangChina
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio‐Cerebrovascular DiseasesShenyangChina
| | - Jiaxiang Pan
- Department of Cardiologythe Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangChina
- Graduate School of Liaoning University of Traditional Chinese MedicineShenyangChina
| | - J. J. Jiajia Yu
- Postdoctoral Program of Liaoning University of Traditional Chinese MedicineShenyangChina
| | - Xize Wu
- Graduate School of Liaoning University of Traditional Chinese MedicineShenyangChina
- Nantong Hospital of Traditional Chinese MedicineNantong Hospital Affiliated to Nanjing University of Chinese MedicineNantongChina
| | - Guanlin Yang
- Innovation Engineering Technology Center of Traditional Chinese MedicineLiaoning University of Traditional Chinese MedicineShenyangChina
| | - Xue Pan
- Graduate School of Liaoning University of Traditional Chinese MedicineShenyangChina
- Dazhou Vocational College of Chinese MedicineDazhouChina
| | - Guoyuan Sui
- Innovation Engineering Technology Center of Traditional Chinese MedicineLiaoning University of Traditional Chinese MedicineShenyangChina
| | - Mingyang Wang
- College of Animal Science and Veterinary Medicine of Shenyang Agricultural UniversityShenyangChina
| | - Meijia Cheng
- Experimental Center of Traditional Chinese Medicinethe Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangChina
| | - Shu Zhu
- Department of Paediatric Dentistry, School of StomatologyChina Medical UniversityShenyangChina
| | - He Tai
- School of PharmacyLiaoning University of Traditional Chinese MedicineDalianChina
| | - Honghe Xiao
- School of PharmacyLiaoning University of Traditional Chinese MedicineDalianChina
| | - Lili Xu
- Department of Cardiology, 924 Hospital of Joint Logistic Support Force of PLAGuilinChina
| | - Jin Wu
- Innovation Engineering Technology Center of Traditional Chinese MedicineLiaoning University of Traditional Chinese MedicineShenyangChina
| | - Yongju Yang
- Experimental Center of Traditional Chinese Medicinethe Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangChina
| | - Jing Tang
- Department of Cardiologythe Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangChina
| | - Lihong Gong
- Department of Cardiologythe Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangChina
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio‐Cerebrovascular DiseasesShenyangChina
| | - Lianqun Jia
- Innovation Engineering Technology Center of Traditional Chinese MedicineLiaoning University of Traditional Chinese MedicineShenyangChina
| | - Dongyu Min
- Experimental Center of Traditional Chinese Medicinethe Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangChina
| |
Collapse
|
20
|
Zimmermann A, Madeo F, Diwan A, Sadoshima J, Sedej S, Kroemer G, Abdellatif M. Metabolic control of mitophagy. Eur J Clin Invest 2024; 54:e14138. [PMID: 38041247 DOI: 10.1111/eci.14138] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Mitochondrial dysfunction is a major hallmark of ageing and related chronic disorders. Controlled removal of damaged mitochondria by the autophagic machinery, a process known as mitophagy, is vital for mitochondrial homeostasis and cell survival. The central role of mitochondria in cellular metabolism places mitochondrial removal at the interface of key metabolic pathways affecting the biosynthesis or catabolism of acetyl-coenzyme A, nicotinamide adenine dinucleotide, polyamines, as well as fatty acids and amino acids. Molecular switches that integrate the metabolic status of the cell, like AMP-dependent protein kinase, protein kinase A, mechanistic target of rapamycin and sirtuins, have also emerged as important regulators of mitophagy. In this review, we discuss how metabolic regulation intersects with mitophagy. We place special emphasis on the metabolic regulatory circuits that may be therapeutically targeted to delay ageing and mitochondria-associated chronic diseases. Moreover, we identify outstanding knowledge gaps, such as the ill-defined distinction between basal and damage-induced mitophagy, which must be resolved to boost progress in this area.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Abhinav Diwan
- Division of Cardiology and Center for Cardiovascular Research, Washington University School of Medicine, and John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Simon Sedej
- BioTechMed Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Department of Biology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, Paris, France
| | - Mahmoud Abdellatif
- BioTechMed Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| |
Collapse
|
21
|
Yamano K, Sawada M, Kikuchi R, Nagataki K, Kojima W, Endo R, Kinefuchi H, Sugihara A, Fujino T, Watanabe A, Tanaka K, Hayashi G, Murakami H, Matsuda N. Optineurin provides a mitophagy contact site for TBK1 activation. EMBO J 2024; 43:754-779. [PMID: 38287189 PMCID: PMC10907724 DOI: 10.1038/s44318-024-00036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
Tank-binding kinase 1 (TBK1) is a Ser/Thr kinase that is involved in many intracellular processes, such as innate immunity, cell cycle, and apoptosis. TBK1 is also important for phosphorylating the autophagy adaptors that mediate the selective autophagic removal of damaged mitochondria. However, the mechanism by which PINK1-Parkin-mediated mitophagy activates TBK1 remains largely unknown. Here, we show that the autophagy adaptor optineurin (OPTN) provides a unique platform for TBK1 activation. Both the OPTN-ubiquitin and the OPTN-pre-autophagosomal structure (PAS) interaction axes facilitate assembly of the OPTN-TBK1 complex at a contact sites between damaged mitochondria and the autophagosome formation sites. At this assembly point, a positive feedback loop for TBK1 activation is initiated that accelerates hetero-autophosphorylation of the protein. Expression of monobodies engineered here to bind OPTN impaired OPTN accumulation at contact sites, as well as the subsequent activation of TBK1, thereby inhibiting mitochondrial degradation. Taken together, these data show that a positive and reciprocal relationship between OPTN and TBK1 initiates autophagosome biogenesis on damaged mitochondria.
Collapse
Affiliation(s)
- Koji Yamano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | - Momoha Sawada
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Reika Kikuchi
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Kafu Nagataki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Waka Kojima
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Ryu Endo
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroki Kinefuchi
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Atsushi Sugihara
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tomoshige Fujino
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Aiko Watanabe
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Keiji Tanaka
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Noriyuki Matsuda
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| |
Collapse
|
22
|
Settembre C, Perera RM. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 2024; 25:223-245. [PMID: 38001393 DOI: 10.1038/s41580-023-00676-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/26/2023]
Abstract
Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Rushika M Perera
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Chauhan N, Patro BS. Emerging roles of lysosome homeostasis (repair, lysophagy and biogenesis) in cancer progression and therapy. Cancer Lett 2024; 584:216599. [PMID: 38135207 DOI: 10.1016/j.canlet.2023.216599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
In the era of personalized therapy, precise targeting of subcellular organelles holds great promise for cancer modality. Taking into consideration that lysosome represents the intersection site in numerous endosomal trafficking pathways and their modulation in cancer growth, progression, and resistance against cancer therapies, the lysosome is proposed as an attractive therapeutic target for cancer treatment. Based on the recent advances, the current review provides a comprehensive understanding of molecular mechanisms of lysosome homeostasis under 3R responses: Repair, Removal (lysophagy) and Regeneration of lysosomes. These arms of 3R responses have distinct role in lysosome homeostasis although their interdependency along with switching between the pathways still remain elusive. Recent advances underpinning the crucial role of (1) ESCRT complex dependent/independent repair of lysosome, (2) various Galectins-based sensing and ubiquitination in lysophagy and (3) TFEB/TFE proteins in lysosome regeneration/biogenesis of lysosome are outlined. Later, we also emphasised how these recent advancements may aid in development of phytochemicals and pharmacological agents for targeting lysosomes for efficient cancer therapy. Some of these lysosome targeting agents, which are now at various stages of clinical trials and patents, are also highlighted in this review.
Collapse
Affiliation(s)
- Nitish Chauhan
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400094, India
| | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
24
|
Ramirez AT, Liu Z, Xu Q, Nowosadtko S, Liu X. Cloflucarban Illuminates Specificity and Context-Dependent Activation of the PINK1-Parkin Pathway by Mitochondrial Complex Inhibition. Biomolecules 2024; 14:248. [PMID: 38540668 PMCID: PMC10967832 DOI: 10.3390/biom14030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 05/30/2024] Open
Abstract
The PTEN-induced kinase 1 (PINK1)-Parkin pathway plays a vital role in maintaining a healthy pool of mitochondria in higher eukaryotic cells. While the downstream components of this pathway are well understood, the upstream triggers remain less explored. In this study, we conducted an extensive analysis of inhibitors targeting various mitochondrial electron transport chain (ETC) complexes to investigate their potential as activators of the PINK1-Parkin pathway. We identified cloflucarban, an antibacterial compound, as a novel pathway activator that simultaneously inhibits mitochondrial complexes III and V, and V. RNA interference (RNAi) confirmed that the dual inhibition of these complexes activates the PINK1-Parkin pathway. Intriguingly, we discovered that albumin, specifically bovine serum albumin (BSA) and human serum albumin (HSA) commonly present in culture media, can hinder carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-induced pathway activation. However, cloflucarban's efficacy remains unaffected by albumin, highlighting its reliability for studying the PINK1-Parkin pathway. This study provides insights into the activation of the upstream PINK1-Parkin pathway and underscores the influence of culture conditions on research outcomes. Cloflucarban emerges as a promising tool for investigating mitochondrial quality control and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Xuedong Liu
- Department of Biochemistry, Jennie Smoly Caruthers Biotechnology Building, University of Colorado-Boulder, 3415 Colorado Ave, Boulder, CO 80303, USA; (A.T.R.); (Q.X.); (S.N.)
| |
Collapse
|
25
|
Calabrese C, Nolte H, Pitman MR, Ganesan R, Lampe P, Laboy R, Ripa R, Fischer J, Polara R, Panda SK, Chipurupalli S, Gutierrez S, Thomas D, Pitson SM, Antebi A, Robinson N. Mitochondrial translocation of TFEB regulates complex I and inflammation. EMBO Rep 2024; 25:704-724. [PMID: 38263327 PMCID: PMC10897448 DOI: 10.1038/s44319-024-00058-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
TFEB is a master regulator of autophagy, lysosome biogenesis, mitochondrial metabolism, and immunity that works primarily through transcription controlled by cytosol-to-nuclear translocation. Emerging data indicate additional regulatory interactions at the surface of organelles such as lysosomes. Here we show that TFEB has a non-transcriptional role in mitochondria, regulating the electron transport chain complex I to down-modulate inflammation. Proteomics analysis reveals extensive TFEB co-immunoprecipitation with several mitochondrial proteins, whose interactions are disrupted upon infection with S. Typhimurium. High resolution confocal microscopy and biochemistry confirms TFEB localization in the mitochondrial matrix. TFEB translocation depends on a conserved N-terminal TOMM20-binding motif and is enhanced by mTOR inhibition. Within the mitochondria, TFEB and protease LONP1 antagonistically co-regulate complex I, reactive oxygen species and the inflammatory response. Consequently, during infection, lack of TFEB specifically in the mitochondria exacerbates the expression of pro-inflammatory cytokines, contributing to innate immune pathogenesis.
Collapse
Affiliation(s)
- Chiara Calabrese
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Hendrik Nolte
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Raja Ganesan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Philipp Lampe
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Raymond Laboy
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Roberto Ripa
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Julia Fischer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Centre for Molecular Medicine Cologne, Cologne, Germany
| | - Ruhi Polara
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Sameer Kumar Panda
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sandhya Chipurupalli
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Saray Gutierrez
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Daniel Thomas
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Adam Antebi
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Nirmal Robinson
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia.
| |
Collapse
|
26
|
Inpanathan S, Ospina-Escobar E, Li VC, Adamji Z, Lackraj T, Cho YH, Porco N, Choy CH, McPhee JB, Botelho RJ. Salmonella actively modulates TFEB in murine macrophages in a growth-phase and time-dependent manner. Microbiol Spectr 2024; 12:e0498122. [PMID: 38051049 PMCID: PMC10783059 DOI: 10.1128/spectrum.04981-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Activation of the host transcription factor TFEB helps mammalian cells adapt to stresses such as starvation and infection by upregulating lysosome, autophagy, and immuno-protective gene expression. Thus, TFEB is generally thought to protect host cells. However, it may also be that pathogenic bacteria like Salmonella orchestrate TFEB in a spatio-temporal manner to harness its functions to grow intracellularly. Indeed, the relationship between Salmonella and TFEB is controversial since some studies showed that Salmonella actively promotes TFEB, while others have observed that Salmonella degrades TFEB and that compounds that promote TFEB restrict bacterial growth. Our work provides a path to resolve these apparent discordant observations since we showed that stationary-grown Salmonella actively delays TFEB after infection, while late-log Salmonella is permissive of TFEB activation. Nevertheless, the exact function of this manipulation remains unclear, but conditions that erase the conditional control of TFEB by Salmonella may be detrimental to the microbe.
Collapse
Affiliation(s)
- Subothan Inpanathan
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Erika Ospina-Escobar
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Vanessa Cruz Li
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Zainab Adamji
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Tracy Lackraj
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Youn Hee Cho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Natasha Porco
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Christopher H. Choy
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Joseph B. McPhee
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Roberto J. Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Cui M, Yamano K, Yamamoto K, Yamamoto-Imoto H, Minami S, Yamamoto T, Matsui S, Kaminishi T, Shima T, Ogura M, Tsuchiya M, Nishino K, Layden BT, Kato H, Ogawa H, Oki S, Okada Y, Isaka Y, Kosako H, Matsuda N, Yoshimori T, Nakamura S. HKDC1, a target of TFEB, is essential to maintain both mitochondrial and lysosomal homeostasis, preventing cellular senescence. Proc Natl Acad Sci U S A 2024; 121:e2306454120. [PMID: 38170752 PMCID: PMC10786298 DOI: 10.1073/pnas.2306454120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondrial and lysosomal functions are intimately linked and are critical for cellular homeostasis, as evidenced by the fact that cellular senescence, aging, and multiple prominent diseases are associated with concomitant dysfunction of both organelles. However, it is not well understood how the two important organelles are regulated. Transcription factor EB (TFEB) is the master regulator of lysosomal function and is also implicated in regulating mitochondrial function; however, the mechanism underlying the maintenance of both organelles remains to be fully elucidated. Here, by comprehensive transcriptome analysis and subsequent chromatin immunoprecipitation-qPCR, we identified hexokinase domain containing 1 (HKDC1), which is known to function in the glycolysis pathway as a direct TFEB target. Moreover, HKDC1 was upregulated in both mitochondrial and lysosomal stress in a TFEB-dependent manner, and its function was critical for the maintenance of both organelles under stress conditions. Mechanistically, the TFEB-HKDC1 axis was essential for PINK1 (PTEN-induced kinase 1)/Parkin-dependent mitophagy via its initial step, PINK1 stabilization. In addition, the functions of HKDC1 and voltage-dependent anion channels, with which HKDC1 interacts, were essential for the clearance of damaged lysosomes and maintaining mitochondria-lysosome contact. Interestingly, HKDC1 regulated mitophagy and lysosomal repair independently of its prospective function in glycolysis. Furthermore, loss function of HKDC1 accelerated DNA damage-induced cellular senescence with the accumulation of hyperfused mitochondria and damaged lysosomes. Our results show that HKDC1, a factor downstream of TFEB, maintains both mitochondrial and lysosomal homeostasis, which is critical to prevent cellular senescence.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo156-8506, Japan
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo113-8510, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Hitomi Yamamoto-Imoto
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Satoshi Minami
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Sho Matsui
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Tatsuya Kaminishi
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
| | - Takayuki Shima
- Department of Biochemistry, Nara Medical University, Kashihara, Nara634-8521, Japan
| | - Monami Ogura
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Megumi Tsuchiya
- Laboratory of Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima770-8503, Japan
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, University of Illinois Chicago, Chicago, IL60612
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL60612
| | - Hisakazu Kato
- Department of Medical Biochemistry, Graduate School of Medicine/Frontier Bioscience, Osaka University, Suita, Osaka565-0871, Japan
| | - Hidesato Ogawa
- Laboratory of Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center, World Premier International Research Center (WPI-IFReC), Osaka University, Suita, Osaka565-0871, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima770-8503, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo156-8506, Japan
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo113-8510, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Shuhei Nakamura
- Department of Biochemistry, Nara Medical University, Kashihara, Nara634-8521, Japan
| |
Collapse
|
28
|
Shao J, Lang Y, Ding M, Yin X, Cui L. Transcription Factor EB: A Promising Therapeutic Target for Ischemic Stroke. Curr Neuropharmacol 2024; 22:170-190. [PMID: 37491856 PMCID: PMC10788889 DOI: 10.2174/1570159x21666230724095558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 07/27/2023] Open
Abstract
Transcription factor EB (TFEB) is an important endogenous defensive protein that responds to ischemic stimuli. Acute ischemic stroke is a growing concern due to its high morbidity and mortality. Most survivors suffer from disabilities such as numbness or weakness in an arm or leg, facial droop, difficulty speaking or understanding speech, confusion, impaired balance or coordination, or loss of vision. Although TFEB plays a neuroprotective role, its potential effect on ischemic stroke remains unclear. This article describes the basic structure, regulation of transcriptional activity, and biological roles of TFEB relevant to ischemic stroke. Additionally, we explore the effects of TFEB on the various pathological processes underlying ischemic stroke and current therapeutic approaches. The information compiled here may inform clinical and basic studies on TFEB, which may be an effective therapeutic drug target for ischemic stroke.
Collapse
Affiliation(s)
- Jie Shao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Manqiu Ding
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
29
|
Lee YY, Ha J, Kim YS, Ramani S, Sung S, Gil ES, Choo OS, Jang JH, Choung YH. Abnormal Cholesterol Metabolism and Lysosomal Dysfunction Induce Age-Related Hearing Loss by Inhibiting mTORC1-TFEB-Dependent Autophagy. Int J Mol Sci 2023; 24:17513. [PMID: 38139347 PMCID: PMC10743727 DOI: 10.3390/ijms242417513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cholesterol is a risk factor for age-related hearing loss (ARHL). However, the effect of cholesterol on the organ of Corti during the onset of ARHL is unclear. We established a mouse model for the ARHL group (24 months, n = 12) and a young group (6 months, n = 12). Auditory thresholds were measured in both groups using auditory brainstem response (ABR) at frequencies of 8, 16, and 32 kHz. Subsequently, mice were sacrificed and subjected to histological analyses, including transmission electron microscopy (TEM), H&E, Sudan Black B (SBB), and Filipin staining, as well as biochemical assays such as IHC, enzymatic analysis, and immunoblotting. Additionally, mRNA extracted from both young and aged cochlea underwent RNA sequencing. To identify the mechanism, in vitro studies utilizing HEI-OC1 cells were also performed. RNA sequencing showed a positive correlation with increased expression of genes related to metabolic diseases, cholesterol homeostasis, and target of rapamycin complex 1 (mTORC1) signaling in the ARHL group as compared to the younger group. In addition, ARHL tissues exhibited increased cholesterol and lipofuscin aggregates in the organ of Corti, lateral walls, and spiral ganglion neurons. Autophagic flux was inhibited by the accumulation of damaged lysosomes and autolysosomes. Subsequently, we observed a decrease in the level of transcription factor EB (TFEB) protein, which regulates lysosomal biosynthesis and autophagy, together with increased mTORC1 activity in ARHL tissues. These changes in TFEB and mTORC1 expression were observed in a cholesterol-dependent manner. Treatment of ARHL mice with atorvastatin, a cholesterol synthesis inhibitor, delayed hearing loss by reducing the cholesterol level and maintaining lysosomal function and autophagy by inhibiting mTORC1 and activating TFEB. The above findings were confirmed using stress-induced premature senescent House Ear Institute organ of Corti 1 (HEI-OC1) cells. The findings implicate cholesterol in the pathogenesis of ARHL. We propose that atorvastatin could prevent ARHL by maintaining lysosomal function and autophagy by inhibiting mTORC1 and activating TFEB during the aging process.
Collapse
Affiliation(s)
- Yun Yeong Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
| | - Jungho Ha
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Young Sun Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
| | - Sivasubramanian Ramani
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
| | - Siung Sung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Eun Sol Gil
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Oak-Sung Choo
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
30
|
Takla M, Keshri S, Rubinsztein DC. The post-translational regulation of transcription factor EB (TFEB) in health and disease. EMBO Rep 2023; 24:e57574. [PMID: 37728021 PMCID: PMC10626434 DOI: 10.15252/embr.202357574] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Transcription factor EB (TFEB) is a basic helix-loop-helix leucine zipper transcription factor that acts as a master regulator of lysosomal biogenesis, lysosomal exocytosis, and macro-autophagy. TFEB contributes to a wide range of physiological functions, including mitochondrial biogenesis and innate and adaptive immunity. As such, TFEB is an essential component of cellular adaptation to stressors, ranging from nutrient deprivation to pathogenic invasion. The activity of TFEB depends on its subcellular localisation, turnover, and DNA-binding capacity, all of which are regulated at the post-translational level. Pathological states are characterised by a specific set of stressors, which elicit post-translational modifications that promote gain or loss of TFEB function in the affected tissue. In turn, the resulting increase or decrease in survival of the tissue in which TFEB is more or less active, respectively, may either benefit or harm the organism as a whole. In this way, the post-translational modifications of TFEB account for its otherwise paradoxical protective and deleterious effects on organismal fitness in diseases ranging from neurodegeneration to cancer. In this review, we describe how the intracellular environment characteristic of different diseases alters the post-translational modification profile of TFEB, enabling cellular adaptation to a particular pathological state.
Collapse
Affiliation(s)
- Michael Takla
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| | - Swati Keshri
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR)University of CambridgeCambridgeUK
| |
Collapse
|
31
|
Wen W, Zheng H, Li W, Huang G, Chen P, Zhu X, Cao Y, Li J, Huang X, Huang Y. Transcription factor EB: A potential integrated network regulator in metabolic-associated cardiac injury. Metabolism 2023; 147:155662. [PMID: 37517793 DOI: 10.1016/j.metabol.2023.155662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
With the worldwide pandemic of metabolic diseases, such as obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD), cardiometabolic disease (CMD) has become a significant cause of death in humans. However, the pathophysiology of metabolic-associated cardiac injury is complex and not completely clear, and it is important to explore new strategies and targets for the treatment of CMD. A series of pathophysiological disturbances caused by metabolic disorders, such as insulin resistance (IR), hyperglycemia, hyperlipidemia, mitochondrial dysfunction, oxidative stress, inflammation, endoplasmic reticulum stress (ERS), autophagy dysfunction, calcium homeostasis imbalance, and endothelial dysfunction, may be related to the incidence and development of CMD. Transcription Factor EB (TFEB), as a transcription factor, has been extensively studied for its role in regulating lysosomal biogenesis and autophagy. Recently, the regulatory role of TFEB in other biological processes, including the regulation of glucose homeostasis, lipid metabolism, etc. has been gradually revealed. In this review, we will focus on the relationship between TFEB and IR, lipid metabolism, endothelial dysfunction, oxidative stress, inflammation, ERS, calcium homeostasis, autophagy, and mitochondrial quality control (MQC) and the potential regulatory mechanisms among them, to provide a comprehensive summary for TFEB as a potential new therapeutic target for CMD.
Collapse
Affiliation(s)
- Weixing Wen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Haoxiao Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Weiwen Li
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Guolin Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Peng Chen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Xiaolin Zhu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| | - Yue Cao
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Jiahuan Li
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Xiaohui Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China; The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation Research, Guangzhou, China; Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong 528308, China.
| |
Collapse
|
32
|
Zheng HY, Wang YX, Zhou K, Xie HL, Ren Z, Liu HT, Ou YS, Zhou ZX, Jiang ZS. Biological functions of CRTC2 and its role in metabolism-related diseases. J Cell Commun Signal 2023; 17:495-506. [PMID: 36856929 PMCID: PMC10409973 DOI: 10.1007/s12079-023-00730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
CREB-regulated transcription coactivator2 (CRTC2 or TORC2) is a transcriptional coactivator of CREB(cAMP response element binding protein), which affects human energy metabolism through cyclic adenosine phosphate pathway, Mammalian target of rapamycin (mTOR) pathway, Sterol regulatory element binding protein 1(SREBP1), Sterol regulatory element binding protein 2 (SREBP2) and other substances Current studies on CRTC2 mainly focus on glucose and lipid metabolism, relevant studies show that CRTC2 can participate in the occurrence and development of related diseases by affecting metabolic homeostasis. It has been found that Crtc2 acts as a signaling regulator for cAMP and Ca2 + signaling pathways in many cell types, and phosphorylation at ser171 and ser275 can regulate downstream biological functions by controlling CRTC2 shuttling between cytoplasm and nucleus.
Collapse
Affiliation(s)
- Hong-Yu Zheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Yan-Xia Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Hai-Lin Xie
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Hui-Ting Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Yang-Shao Ou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China.
| |
Collapse
|
33
|
Zhang L, Li Z, Zhang L, Qin Y, Yu D. Dissecting the multifaced function of transcription factor EB (TFEB) in human diseases: From molecular mechanism to pharmacological modulation. Biochem Pharmacol 2023; 215:115698. [PMID: 37482200 DOI: 10.1016/j.bcp.2023.115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The transcription factor EB (TFEB) is a transcription factor of the MiT/TFE family that translocations from the cytoplasm to the nucleus in response to various stimuli, including lysosomal stress and nutrient starvation. By activating genes involved in lysosomal function, autophagy, and lipid metabolism, TFEB plays a crucial role in maintaining cellular homeostasis. Dysregulation of TFEB has been implicated in various diseases, including cancer, neurodegenerative diseases, metabolic diseases, cardiovascular diseases, infectious diseases, and inflammatory diseases. Therefore, modulating TFEB activity with agonists or inhibitors may have therapeutic potential. In this review, we reviewed the recently discovered regulatory mechanisms of TFEB and their impact on human diseases. Additionally, we also summarize the existing TFEB inhibitors and agonists (targeted and non-targeted) and discuss unresolved issues and future research directions in the field. In summary, this review sheds light on the crucial role of TFEB, which may pave the way for its translation from basic research to practical applications, bringing us closer to realizing the full potential of TFEB in various fields.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuan Qin
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
34
|
Oh SJ, Park K, Sonn SK, Oh GT, Lee MS. Pancreatic β-cell mitophagy as an adaptive response to metabolic stress and the underlying mechanism that involves lysosomal Ca 2+ release. Exp Mol Med 2023; 55:1922-1932. [PMID: 37653033 PMCID: PMC10545665 DOI: 10.1038/s12276-023-01055-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023] Open
Abstract
Mitophagy is an excellent example of selective autophagy that eliminates damaged or dysfunctional mitochondria, and it is crucial for the maintenance of mitochondrial integrity and function. The critical roles of autophagy in pancreatic β-cell structure and function have been clearly shown. Furthermore, morphological abnormalities and decreased function of mitochondria have been observed in autophagy-deficient β-cells, suggesting the importance of β-cell mitophagy. However, the role of authentic mitophagy in β-cell function has not been clearly demonstrated, as mice with pancreatic β-cell-specific disruption of Parkin, one of the most important players in mitophagy, did not exhibit apparent abnormalities in β-cell function or glucose homeostasis. Instead, the role of mitophagy in pancreatic β-cells has been investigated using β-cell-specific Tfeb-knockout mice (TfebΔβ-cell mice); Tfeb is a master regulator of lysosomal biogenesis or autophagy gene expression and participates in mitophagy. TfebΔβ-cell mice were unable to adaptively increase mitophagy or mitochondrial complex activity in response to high-fat diet (HFD)-induced metabolic stress. Consequently, TfebΔβ-cell mice exhibited impaired β-cell responses and further exacerbated metabolic deterioration after HFD feeding. TFEB was activated by mitochondrial or metabolic stress-induced lysosomal Ca2+ release, which led to calcineurin activation and mitophagy. After lysosomal Ca2+ release, depleted lysosomal Ca2+ stores were replenished by ER Ca2+ through ER→lysosomal Ca2+ refilling, which supplemented the low lysosomal Ca2+ capacity. The importance of mitophagy in β-cell function was also demonstrated in mice that developed β-cell dysfunction and glucose intolerance after treatment with a calcineurin inhibitor that hampered TFEB activation and mitophagy.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea
| | - Kihyoun Park
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea
| | - Seong Keun Sonn
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03767, Korea
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03767, Korea
| | - Myung-Shik Lee
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea.
| |
Collapse
|
35
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
36
|
Comerota MM, Gedam M, Xiong W, Jin F, Deng L, Wang MC, Wang J, Zheng H. Oleoylethanolamide facilitates PPARα and TFEB signaling and attenuates Aβ pathology in a mouse model of Alzheimer's disease. Mol Neurodegener 2023; 18:56. [PMID: 37580742 PMCID: PMC10426131 DOI: 10.1186/s13024-023-00648-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Age is the strongest risk factor for the development of Alzheimer's disease (AD). Besides the pathological hallmarks of β-amyloid (Aβ) plaques and neurofibrillary tangles, emerging evidence demonstrates a critical role of microglia and neuroinflammation in AD pathogenesis. Oleoylethanolamide (OEA) is an endogenous lipid amide that has been shown to promote lifespan and healthspan in C. elegans through regulation of lysosome-to-nucleus signaling and cellular metabolism. The goal of our study was to determine the role of OEA in the mediation of microglial activity and AD pathology using its stable analog, KDS-5104. METHODS We used primary microglial cultures and genetic and pharmacological approaches to examine the signaling mechanisms and functional roles of OEA in mediating Aβ phagocytosis and clearance, lipid metabolism and inflammasome formation. Further, we tested the effect of OEA in vivo in acute LPS-induced neuroinflammation and by chronic treatment of 5xFAD mice. RESULTS We found that OEA activates PPARα signaling and its downstream cell-surface receptor CD36 activity. In addition, OEA promotes TFEB lysosomal function in a PPARα-dependent but mTORC1-independent manner, the combination of which leads to enhanced microglial Aβ uptake and clearance. These are associated with the suppression of LPS-induced lipid droplet accumulation and inflammasome activation. Chronic treatment of 5xFAD mice with KDS-5104 restored dysregulated lipid profiles, reduced reactive gliosis and Aβ pathology and rescued cognitive impairments. CONCLUSION Together, our study provides support that augmenting OEA-mediated lipid signaling may offer therapeutic benefit against aging and AD through modulating lipid metabolism and microglia phagocytosis and clearance.
Collapse
Affiliation(s)
- Michele M Comerota
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Manasee Gedam
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Translational Biology and Molecular Medicine Graduate Program, Houston, TX, USA
| | - Wen Xiong
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Feng Jin
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Houston, TX, USA
| | - Lisheng Deng
- Department of Pharmacology and Chemical Biology, Houston, TX, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Houston, TX, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Translational Biology and Molecular Medicine Graduate Program, Houston, TX, USA.
- Department of Molecular and Human Genetics, Houston, TX, USA.
| |
Collapse
|
37
|
Ning B, Hang S, Zhang W, Mao C, Li D. An update on the bridging factors connecting autophagy and Nrf2 antioxidant pathway. Front Cell Dev Biol 2023; 11:1232241. [PMID: 37621776 PMCID: PMC10445655 DOI: 10.3389/fcell.2023.1232241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Macroautophagy/autophagy is a lysosome-dependent catabolic pathway for the degradation of intracellular proteins and organelles. Autophagy dysfunction is related to many diseases, including lysosomal storage diseases, cancer, neurodegenerative diseases, cardiomyopathy, and chronic metabolic diseases, in which increased reactive oxygen species (ROS) levels are also observed. ROS can randomly oxidize proteins, lipids, and DNA, causing oxidative stress and damage. Cells have developed various antioxidant pathways to reduce excessive ROS and maintain redox homeostasis. Treatment targeting only one aspect of diseases with autophagy dysfunction and oxidative stress shows very limited effects. Herein, identifying the bridging factors that can regulate both autophagy and antioxidant pathways is beneficial for dual-target therapies. This review intends to provide insights into the current identified bridging factors that connect autophagy and Nrf2 antioxidant pathway, as well as their tight interconnection with each other. These factors could be potential dual-purpose targets for the treatment of diseases implicated in both autophagy dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Baike Ning
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shuqi Hang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenhe Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Caiwen Mao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
38
|
Abokyi S, Ghartey-Kwansah G, Tse DYY. TFEB is a central regulator of the aging process and age-related diseases. Ageing Res Rev 2023; 89:101985. [PMID: 37321382 DOI: 10.1016/j.arr.2023.101985] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Old age is associated with a greater burden of disease, including neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, as well as other chronic diseases. Coincidentally, popular lifestyle interventions, such as caloric restriction, intermittent fasting, and regular exercise, in addition to pharmacological interventions intended to protect against age-related diseases, induce transcription factor EB (TFEB) and autophagy. In this review, we summarize emerging discoveries that point to TFEB activity affecting the hallmarks of aging, including inhibiting DNA damage and epigenetic modifications, inducing autophagy and cell clearance to promote proteostasis, regulating mitochondrial quality control, linking nutrient-sensing to energy metabolism, regulating pro- and anti-inflammatory pathways, inhibiting senescence and promoting cell regenerative capacity. Furthermore, the therapeutic impact of TFEB activation on normal aging and tissue-specific disease development is assessed in the contexts of neurodegeneration and neuroplasticity, stem cell differentiation, immune responses, muscle energy adaptation, adipose tissue browning, hepatic functions, bone remodeling, and cancer. Safe and effective strategies of activating TFEB hold promise as a therapeutic strategy for multiple age-associated diseases and for extending lifespan.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China.
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong SAR of China.
| |
Collapse
|
39
|
Diwan A. Preserving mitochondria to treat hypertrophic cardiomyopathy: From rare mitochondrial DNA mutation to heart failure therapy? J Clin Invest 2023; 133:e171965. [PMID: 37463442 PMCID: PMC10348762 DOI: 10.1172/jci171965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Hypertrophic cardiomyopathy and pathological cardiac hypertrophy are characterized by mitochondrial structural and functional abnormalities. In this issue of the JCI, Zhuang et al. discovered 1-deoxynojirimycin (DNJ) through a screen of mitochondrially targeted compounds. The authors described the effects of DNJ in restoring mitochondria and preventing cardiac myocyte hypertrophy in cellular models carrying a mutant mitochondrial gene, MT-RNR2, which is causally implicated in familial hypertrophic cardiomyopathy. DNJ worked via stabilization of the mitochondrial inner-membrane GTPase OPA1 and other, hitherto unknown, mechanisms to preserve mitochondrial crista and respiratory chain components. The discovery is likely to spur development of a class of therapeutics that restore mitochondrial health to prevent cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Abhinav Diwan
- Department of Medicine
- Department of Cell Biology and Physiology
- Department of Obstetrics and Gynecology
- Department of Neurology
- Center for Cardiovascular Research, and
- Hope Center for Neurologic Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
40
|
Dang TT, Kim MJ, Lee YY, Le HT, Kim KH, Nam S, Hyun SH, Kim HL, Chung SW, Chung HT, Jho EH, Yoshida H, Kim K, Park CY, Lee MS, Back SH. Phosphorylation of EIF2S1 (eukaryotic translation initiation factor 2 subunit alpha) is indispensable for nuclear translocation of TFEB and TFE3 during ER stress. Autophagy 2023; 19:2111-2142. [PMID: 36719671 PMCID: PMC10283430 DOI: 10.1080/15548627.2023.2173900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
There are diverse links between macroautophagy/autophagy pathways and unfolded protein response (UPR) pathways under endoplasmic reticulum (ER) stress conditions to restore ER homeostasis. Phosphorylation of EIF2S1/eIF2α is an important mechanism that can regulate all three UPR pathways through transcriptional and translational reprogramming to maintain cellular homeostasis and overcome cellular stresses. In this study, to investigate the roles of EIF2S1 phosphorylation in regulation of autophagy during ER stress, we used EIF2S1 phosphorylation-deficient (A/A) cells in which residue 51 was mutated from serine to alanine. A/A cells exhibited defects in several steps of autophagic processes (such as autophagosome and autolysosome formation) that are regulated by the transcriptional activities of the autophagy master transcription factors TFEB and TFE3 under ER stress conditions. EIF2S1 phosphorylation was required for nuclear translocation of TFEB and TFE3 during ER stress. In addition, EIF2AK3/PERK, PPP3/calcineurin-mediated dephosphorylation of TFEB and TFE3, and YWHA/14-3-3 dissociation were required for their nuclear translocation, but were insufficient to induce their nuclear retention during ER stress. Overexpression of the activated ATF6/ATF6α form, XBP1s, and ATF4 differentially rescued defects of TFEB and TFE3 nuclear translocation in A/A cells during ER stress. Consequently, overexpression of the activated ATF6 or TFEB form more efficiently rescued autophagic defects, although XBP1s and ATF4 also displayed an ability to restore autophagy in A/A cells during ER stress. Our results suggest that EIF2S1 phosphorylation is important for autophagy and UPR pathways, to restore ER homeostasis and reveal how EIF2S1 phosphorylation connects UPR pathways to autophagy.Abbreviations: A/A: EIF2S1 phosphorylation-deficient; ACTB: actin beta; Ad-: adenovirus-; ATF6: activating transcription factor 6; ATZ: SERPINA1/α1-antitrypsin with an E342K (Z) mutation; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CDK4: cyclin dependent kinase 4; CDK6: cyclin dependent kinase 6; CHX: cycloheximide; CLEAR: coordinated lysosomal expression and regulation; Co-IP: coimmunoprecipitation; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; DAPI: 4',6-diamidino-2-phenylindole dihydrochloride; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; EBSS: Earle's Balanced Salt Solution; EGFP: enhanced green fluorescent protein; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERAD: endoplasmic reticulum-associated degradation; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FBS: fetal bovine serum; gRNA: guide RNA; GSK3B/GSK3β: glycogen synthase kinase 3 beta; HA: hemagglutinin; Hep: immortalized hepatocyte; IF: immunofluorescence; IRES: internal ribosome entry site; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LMB: leptomycin B; LPS: lipopolysaccharide; MAP1LC3A/B/LC3A/B: microtubule associated protein 1 light chain 3 alpha/beta; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MFI: mean fluorescence intensity; MTORC1: mechanistic target of rapamycin kinase complex 1; NES: nuclear export signal; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OE: overexpression; PBS: phosphate-buffered saline; PLA: proximity ligation assay; PPP3/calcineurin: protein phosphatase 3; PTM: post-translational modification; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEM: standard error of the mean; TEM: transmission electron microscopy; TFE3: transcription factor E3; TFEB: transcription factor EB; TFs: transcription factors; Tg: thapsigargin; Tm: tunicamycin; UPR: unfolded protein response; WB: western blot; WT: wild-type; Xbp1s: spliced Xbp1; XPO1/CRM1: exportin 1.
Collapse
Affiliation(s)
- Thao Thi Dang
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Mi-Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Yoon Young Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Hien Thi Le
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Kook Hwan Kim
- Severance Biomedical Research Institute, Yonsei University College of Medicine, 03722, Seoul, Korea
| | - Somi Nam
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Seung Hwa Hyun
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su Wol Chung
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Hiderou Yoshida
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo, 678-1297, Hyogo, Japan
| | - Kyoungmi Kim
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, 02841, Seoul, Korea
| | - Chan Young Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Myung-Shik Lee
- Department of Integrated Biomedical Science & Division of Endocrinology, Department of Internal Medicine, SIMS (Soonchunhyang Institute of Medi-bio Science) & Soonchunhyang University Hospital, Soonchunhyang University, 31151, Cheonan, Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| |
Collapse
|
41
|
Sambri I, Ferniani M, Campostrini G, Testa M, Meraviglia V, de Araujo MEG, Dokládal L, Vilardo C, Monfregola J, Zampelli N, Vecchio Blanco FD, Torella A, Ruosi C, Fecarotta S, Parenti G, Staiano L, Bellin M, Huber LA, De Virgilio C, Trepiccione F, Nigro V, Ballabio A. RagD auto-activating mutations impair MiT/TFE activity in kidney tubulopathy and cardiomyopathy syndrome. Nat Commun 2023; 14:2775. [PMID: 37188688 DOI: 10.1038/s41467-023-38428-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
Heterozygous mutations in the gene encoding RagD GTPase were shown to cause a novel autosomal dominant condition characterized by kidney tubulopathy and cardiomyopathy. We previously demonstrated that RagD, and its paralogue RagC, mediate a non-canonical mTORC1 signaling pathway that inhibits the activity of TFEB and TFE3, transcription factors of the MiT/TFE family and master regulators of lysosomal biogenesis and autophagy. Here we show that RagD mutations causing kidney tubulopathy and cardiomyopathy are "auto- activating", even in the absence of Folliculin, the GAP responsible for RagC/D activation, and cause constitutive phosphorylation of TFEB and TFE3 by mTORC1, without affecting the phosphorylation of "canonical" mTORC1 substrates, such as S6K. By using HeLa and HK-2 cell lines, human induced pluripotent stem cell-derived cardiomyocytes and patient-derived primary fibroblasts, we show that RRAGD auto-activating mutations lead to inhibition of TFEB and TFE3 nuclear translocation and transcriptional activity, which impairs the response to lysosomal and mitochondrial injury. These data suggest that inhibition of MiT/TFE factors plays a key role in kidney tubulopathy and cardiomyopathy syndrome.
Collapse
Affiliation(s)
- Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Marco Ferniani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | | | - Marialuisa Testa
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
| | | | - Mariana E G de Araujo
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ladislav Dokládal
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Claudia Vilardo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
| | - Jlenia Monfregola
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
| | - Nicolina Zampelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
| | | | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carolina Ruosi
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Simona Fecarotta
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Giancarlo Parenti
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Milena Bellin
- Leiden University Medical Center, 2333ZC, Leiden, the Netherlands
- Department of Biology, University of Padua, 35131, Padua, Italy
- Veneto Institute of Molecular Medicine, 35129, Padua, Italy
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
- Biogem Research Institute Ariano Irpino, Ariano Irpino, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy.
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
42
|
Park K, Sonn SK, Seo S, Kim J, Hur KY, Oh GT, Lee MS. Impaired TFEB activation and mitophagy as a cause of PPP3/calcineurin inhibitor-induced pancreatic β-cell dysfunction. Autophagy 2023; 19:1444-1458. [PMID: 36217215 PMCID: PMC10240995 DOI: 10.1080/15548627.2022.2132686] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy or mitophagy plays crucial roles in the maintenance of pancreatic β-cell function. PPP3/calcineurin can modulate the activity of TFEB, a master regulator of lysosomal biogenesis and autophagy gene expression, through dephosphorylation. We studied whether PPP3/calcineurin inhibitors can affect the mitophagy of pancreatic β-cells and pancreatic β-cell function employing FK506, an immunosuppressive drug against graft rejection. FK506 suppressed rotenone- or oligomycin+antimycin-A-induced mitophagy measured by Mito-Keima localization in acidic lysosomes or RFP-LC3 puncta colocalized with TOMM20 in INS-1 insulinoma cells. FK506 diminished nuclear translocation of TFEB after treatment with rotenone or oligomycin+antimycin A. Forced TFEB nuclear translocation by a constitutively active TFEB mutant transfection restored impaired mitophagy by FK506, suggesting the role of decreased TFEB nuclear translocation in FK506-mediated mitophagy impairment. Probably due to reduced mitophagy, recovery of mitochondrial potential or quenching of mitochondrial ROS after removal of rotenone or oligomycin+antimycin A was delayed by FK506. Mitochondrial oxygen consumption was reduced by FK506, indicating reduced mitochondrial function by FK506. Likely due to mitochondrial dysfunction, insulin release from INS-1 cells was reduced by FK506 in vitro. FK506 treatment also reduced insulin release and impaired glucose tolerance in vivo, which was associated with decreased mitophagy and mitochondrial COX activity in pancreatic islets. FK506-induced mitochondrial dysfunction and glucose intolerance were ameliorated by an autophagy enhancer activating TFEB. These results suggest that diminished mitophagy and consequent mitochondrial dysfunction of pancreatic β-cells contribute to FK506-induced β-cell dysfunction or glucose intolerance, and autophagy enhancement could be a therapeutic modality against post-transplantation diabetes mellitus caused by PPP3/calcineurin inhibitors.
Collapse
Affiliation(s)
- Kihyoun Park
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Keun Sonn
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Seungwoon Seo
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Jinyoung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyu Yeon Hur
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
43
|
Wagh AR, Sulakshane P, Glickman MH. Alzheimer's disease-associated mutant ubiquitin (UBB +1) is secreted through an autophagosome-like vesicle-mediated unconventional pathway. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194936. [PMID: 37075976 DOI: 10.1016/j.bbagrm.2023.194936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Misfolded protein aggregation at both intracellular and extracellular milieus is thought to be the major etiology of Alzheimer's disease (AD). UBB+1, a frameshift variant of the ubiquitin B gene (UBB) results in a folded ubiquitin domain fused to a flexible unstructured extension. Accumulation of UBB+1 in extracellular plaques in the brains of AD patients undoubtedly suggests a role of the ubiquitin-proteasome system in AD. However, the exact mechanism of extracellular secretion of UBB+1 remains unknown. In an attempt to understand the molecular mechanism of UBB+1 secretion, we performed a survey of secretory pathways and identified the involvement of unconventional autophagosome-mediated UBB+1 secretion. Expression of UBB+1 was sufficient to stimulate LC3B/Atg8 conversion from LC3B-I to LC3B-II, which indicates initiation of the autophagy pathway. Furthermore, deficiency of ATG5 - a key player in autophagosome formation - inhibited UBB+1 secretion. Based on immunofluorescence 3D structured illumination (SIM) microscopy and co-immunoprecipitation, we provide evidence that UBB+1 is associated with the secretory autophagosome marker, SEC22B, while HSP90 possibly acts as a carrier. Using LC-MS/MS and mutagenesis we found that in cells, UBB+1 is ubiquitinated on lysine 11, 29, and 48, however, this ubiquitination does not contribute to its secretion. By contrast, proteasome or lysosome inhibition slightly enhanced secretion. Taken together, this study suggests that by ridding cells of UBB+1, secretory autophagosomes may alleviate the cellular stress associated with UBB+1, yet simultaneously mediate the spreading of a mutant specie with disordered characteristics to the extracellular milieu.
Collapse
Affiliation(s)
- Ajay R Wagh
- The Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Prasad Sulakshane
- The Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Michael H Glickman
- The Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
44
|
Guo J, Ye X, Zhao Y, Huang D, Wu Q, Ihsan A, Wang X. NRF-2α and mitophagy underlie enhanced mitochondrial functions and biogenesis induced by T-2 toxin in GH3 cells. Food Chem Toxicol 2023; 174:113687. [PMID: 36863559 DOI: 10.1016/j.fct.2023.113687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
T-2 toxin is a natural contaminant in grain cereals produced by species of Fusarium. Studies indicate that T-2 toxin can positively affect mitochondrial function, but the underlying mechanism is unclear. In this study, we examined the role of nuclear respiratory factor 2α (NRF-2α) in T-2 toxin-activated mitochondrial biogenesis and the direct target genes of NRF-2α. Furthermore, we investigated T-2 toxin-induced autophagy and mitophagy, and the role of mitophagy in changes in mitochondrial function and apoptosis. It was found that T-2 toxin significantly increased NRF-2α levels and nuclear localization of NRF-2α was induced. NRF-2α deletion significantly increased the production of reactive oxygen species (ROS), abrogated T-2 toxin-induced increases in ATP and mitochondrial complex I activity, and inhibited the mitochondrial DNA copy number. Meanwhile, With chromatin immunoprecipitation sequencing (ChIP-Seq), various novel NRF-2α target genes were identified, such as mitochondrial iron-sulphur subunits (Ndufs 3,7) and mitochondrial transcription factors (Tfam, Tfb1m, and Tfb2m). Some target genes were also involved in mitochondrial fusion and fission (Drp1), mitochondrial translation (Yars2) and splicing (Ddx55), and mitophagy. Further studies showed that T-2 toxin induced Atg5 dependent autophagy and Atg5/PINK1-dependent mitophagy. In addition, mitophagy defects increase ROS production, inhibit ATP levels and the expression of genes related to mitochondrial dynamics, and promote apoptosis in the presence of T-2 toxins. Altogether, these results suggest that NRF-2α plays a critical role in promoting mitochondrial function and biogenesis through regulation of mitochondrial genes, and, interestingly, mitophagy caused by T-2 toxin positively affected mitochondrial function and protected cell survival against T-2 toxin.
Collapse
Affiliation(s)
- Jingchao Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaochun Ye
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongxia Zhao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Deyu Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal campus, Pakistan
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
45
|
Alim Al-Bari A, Ito Y, Thomes PG, Menon MB, García-Macia M, Fadel R, Stadlin A, Peake N, Faris ME, Eid N, Klionsky DJ. Emerging mechanistic insights of selective autophagy in hepatic diseases. Front Pharmacol 2023; 14:1149809. [PMID: 37007026 PMCID: PMC10060854 DOI: 10.3389/fphar.2023.1149809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Macroautophagy (hereafter referred to as autophagy), a highly conserved metabolic process, regulates cellular homeostasis by degrading dysfunctional cytosolic constituents and invading pathogens via the lysosomal system. In addition, autophagy selectively recycles specific organelles such as damaged mitochondria (via mitophagy), and lipid droplets (LDs; via lipophagy) or eliminates specialized intracellular pathogenic microorganisms such as hepatitis B virus (HBV) and coronaviruses (via virophagy). Selective autophagy, particularly mitophagy, plays a key role in the preservation of healthy liver physiology, and its dysfunction is connected to the pathogenesis of a wide variety of liver diseases. For example, lipophagy has emerged as a defensive mechanism against chronic liver diseases. There is a prominent role for mitophagy and lipophagy in hepatic pathologies including non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and drug-induced liver injury. Moreover, these selective autophagy pathways including virophagy are being investigated in the context of viral hepatitis and, more recently, the coronavirus disease 2019 (COVID-19)-associated hepatic pathologies. The interplay between diverse types of selective autophagy and its impact on liver diseases is briefly addressed. Thus, modulating selective autophagy (e.g., mitophagy) would seem to be effective in improving liver diseases. Considering the prominence of selective autophagy in liver physiology, this review summarizes the current understanding of the molecular mechanisms and functions of selective autophagy (mainly mitophagy and lipophagy) in liver physiology and pathophysiology. This may help in finding therapeutic interventions targeting hepatic diseases via manipulation of selective autophagy.
Collapse
Affiliation(s)
- Abdul Alim Al-Bari
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Paul G. Thomes
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Manoj B. Menon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Marina García-Macia
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca-CSIC, Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Raouf Fadel
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Al Manama, Bahrain
| | - Alfreda Stadlin
- Basic Medical Sciences Department, College of Medicine, Ajman university, Ajman, United Arab Emirates
| | - Nicholas Peake
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - MoezAlIslam Ezzat Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- *Correspondence: Nabil Eid,
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of MI, Ann Arbor, MI, United States
| |
Collapse
|
46
|
Li X, Chen Y, Gong S, Chen H, Liu H, Li X, Hao J. Emerging roles of TFE3 in metabolic regulation. Cell Death Discov 2023; 9:93. [PMID: 36906611 PMCID: PMC10008649 DOI: 10.1038/s41420-023-01395-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
TFE3 is a member of the MiT family of the bHLH-leucine zipper transcription factor. We previously focused on the role of TFE3 in autophagy and cancer. Recently, an increasing number of studies have revealed that TFE3 plays an important role in metabolic regulation. TFE3 participates in the metabolism of energy in the body by regulating pathways such as glucose and lipid metabolism, mitochondrial metabolism, and autophagy. This review summarizes and discusses the specific regulatory mechanisms of TFE3 in metabolism. We determined both the direct regulation of TFE3 on metabolically active cells, such as hepatocytes and skeletal muscle cells, and the indirect regulation of TFE3 through mitochondrial quality control and the autophagy-lysosome pathway. The role of TFE3 in tumor cell metabolism is also summarized in this review. Understanding the diverse roles of TFE3 in metabolic processes can provide new avenues for the treatment of some metabolism-related disorders.
Collapse
Affiliation(s)
- Xingyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yongming Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Siqiao Gong
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huixia Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Junfeng Hao
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
47
|
Liu Q, Zhu S, Zhao Z, Hao T, Xu X, Han S, Li Y, Mai K, Ai Q. Transcription factor EB (TFEB) participates in antiviral immune responses independent of mTORC1 in macrophage of large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108609. [PMID: 36764631 DOI: 10.1016/j.fsi.2023.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Transcription factor EB (TFEB) plays an integral role in the production of proinflammatory cytokines and chemokines in response to pathogen stimulation in mammals. However, the role of TFEB in antiviral immune responses and the potential regulatory mechanisms in fish remain poorly understood. Here, we cloned and characterized Larimichthys crocea TFEB (LcTFEB) with 524 amino acids and a typical basic helix-loop-helix-leucine zipper domain. LcTFEB could translocate into the nucleus upon starvation and had a comparatively high expression in immune tissues. Similar to the expression of antiviral immune genes, the transcriptional expression and activity of LcTFEB showed a trend of increasing and then decreasing with the prolongation of stimulation. Inhibition of LcTFEB using siRNA dramatically increased the polyinosinic-polycytidylic acid (poly (I:C))-induced interferon response and pro-inflammatory cytokines mRNA expression levels, whereas pharmacological activation and overexpression of LcTFEB exhibited the reverse effects. Mechanically, LcTFEB might promote the expression of IFNh as negative feedback to limit the virus-induced inflammatory responses. Notably, although inhibition of mTORC1 exacerbated poly (I:C)-triggered inflammatory responses, the effects of LcTFEB were independent of mTORC1. Overall, this study revealed an unidentified critical role of LcTFEB in the regulation of antiviral immune responses and promoted the understanding of TFEB in the antiviral immunity of fish macrophages.
Collapse
Affiliation(s)
- Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Si Zhu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Xiang Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Shangzhe Han
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, PR China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, PR China.
| |
Collapse
|
48
|
Dou C, Zhang Y, Zhang L, Qin C. Autophagy and autophagy-related molecules in neurodegenerative diseases. Animal Model Exp Med 2023; 6:10-17. [PMID: 35730702 PMCID: PMC9986236 DOI: 10.1002/ame2.12229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/18/2022] [Accepted: 03/27/2022] [Indexed: 11/07/2022] Open
Abstract
Autophagy is one of the degradation pathways to remove proteins or damaged organelles in cells that plays an important role in neuroprotection. Different stages of autophagy are regulated by autophagy-related genes, and many molecules such as transcription factor EB (TFEB) are involved. The complete autophagy process plays an important role in maintaining the dynamic balance of autophagy and is crucial to the homeostasis of intracellular substance and energy metabolism. Autophagy balance is disrupted in neurodegenerative diseases, accounting for a variety of degeneration disorders. These impairments can be alleviated or treated by the regulation of autophagy through molecules such as TFEB.
Collapse
Affiliation(s)
- Changsong Dou
- NHC Key Laboratory of Human Disease Comparative Medicine, Key Laboratory of Human Diseases Animal Model, Institute of Laboratory Animal Sciences, Comparative Medicine Center, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing, Comparative Medicine Center, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yu Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Key Laboratory of Human Diseases Animal Model, Institute of Laboratory Animal Sciences, Comparative Medicine Center, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing, Comparative Medicine Center, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Key Laboratory of Human Diseases Animal Model, Institute of Laboratory Animal Sciences, Comparative Medicine Center, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing, Comparative Medicine Center, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Key Laboratory of Human Diseases Animal Model, Institute of Laboratory Animal Sciences, Comparative Medicine Center, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing, Comparative Medicine Center, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| |
Collapse
|
49
|
Yu T, Lu X, Liang Y, Yang L, Yin Y, Chen H. Ononin alleviates DSS-induced colitis through inhibiting NLRP3 inflammasome via triggering mitophagy. Immun Inflamm Dis 2023; 11:e776. [PMID: 36840499 PMCID: PMC9910166 DOI: 10.1002/iid3.776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Ononin, a flavonoid isolated from Astragalus membranaceus root, is the active ingredient of A. membranaceus and has potential anti-inflammatory properties, but its effect on colitis is unclear. AIMS This study aimed to explore the anticolitis effect of Ononin by establishing a colitis model in mice induced by dextran sulfate sodium (DSS). METHODS Male C57BL/6 mice were provided DSS, then treated with Ononin (10, 20, 40 mg/kg) or 5-ASA (40 mg/kg). The colitis symptoms were observed, the disease activity index (DAI) score were recorded daily, and colonic inflammation was evaluted by histopathological scoring. The expression of cytokines, inflammatory mediators, and mitophagy/NLRP3 inflammasome-related proteins were measured. RESULTS Ononin significantly alleviated weight loss and colon shortening in mice with colitis (p < .01). Moreover, Ononin decreased the production of inflammatory cytokines and mediators associated with colitis (p < .05). In addition, Ononin inhibited macrophages infiltration and reduced caspase-1 activation in colitis mice. Caspase-1 activation is closely related to the NLRP3 inflammasome. Therefore, we investigated the effect of Ononin on NLRP3 inflammasome in vitro. The relevant results confirmed that Ononin inhibited NLRP3 inflammasome activation and inhibited mitochondrial damage (p < .05). Further studies revealed that Ononin inhibited mitochondrial damage through triggering mitophagy (p < .05). CONCLUSION Ononin alleviates DSS-induced colitis by activating mitophagy to inhibit NLRP3 inflammasome.
Collapse
Affiliation(s)
- Ting Yu
- Department of Gastroenterology, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPeople's Republic of China
| | - Xuejia Lu
- Department of Gastroenterology, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPeople's Republic of China
| | - Yan Liang
- Department of Gastroenterology, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPeople's Republic of China
| | - Lin Yang
- Department of Gastroenterology, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPeople's Republic of China
| | - Yuehan Yin
- China HuaYou Group CorporationBeijingPeople's Republic of China
| | - Hong Chen
- Department of Gastroenterology, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPeople's Republic of China
| |
Collapse
|
50
|
Cui Z, Napolitano G, de Araujo MEG, Esposito A, Monfregola J, Huber LA, Ballabio A, Hurley JH. Structure of the lysosomal mTORC1-TFEB-Rag-Ragulator megacomplex. Nature 2023; 614:572-579. [PMID: 36697823 PMCID: PMC9931586 DOI: 10.1038/s41586-022-05652-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023]
Abstract
The transcription factor TFEB is a master regulator of lysosomal biogenesis and autophagy1. The phosphorylation of TFEB by the mechanistic target of rapamycin complex 1 (mTORC1)2-5 is unique in its mTORC1 substrate recruitment mechanism, which is strictly dependent on the amino acid-mediated activation of the RagC GTPase activating protein FLCN6,7. TFEB lacks the TOR signalling motif responsible for the recruitment of other mTORC1 substrates. We used cryogenic-electron microscopy to determine the structure of TFEB as presented to mTORC1 for phosphorylation, which we refer to as the 'megacomplex'. Two full Rag-Ragulator complexes present each molecule of TFEB to the mTOR active site. One Rag-Ragulator complex is bound to Raptor in the canonical mode seen previously in the absence of TFEB. A second Rag-Ragulator complex (non-canonical) docks onto the first through a RagC GDP-dependent contact with the second Ragulator complex. The non-canonical Rag dimer binds the first helix of TFEB with a RagCGDP-dependent aspartate clamp in the cleft between the Rag G domains. In cellulo mutation of the clamp drives TFEB constitutively into the nucleus while having no effect on mTORC1 localization. The remainder of the 108-amino acid TFEB docking domain winds around Raptor and then back to RagA. The double use of RagC GDP contacts in both Rag dimers explains the strong dependence of TFEB phosphorylation on FLCN and the RagC GDP state.
Collapse
Affiliation(s)
- Zhicheng Cui
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Mariana E G de Araujo
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Alessandra Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Jlenia Monfregola
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- SSM School for Advanced Studies, Federico II University, Naples, Italy.
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|