1
|
Zheng Z, Nan B, Liu C, Tang D, Li W, Zhao L, Nie G, He Y. Inhibition of histone methyltransferase PRMT5 attenuates cisplatin-induced hearing loss through the PI3K/Akt-mediated mitochondrial apoptotic pathway. J Pharm Anal 2023; 13:590-602. [PMID: 37440906 PMCID: PMC10334280 DOI: 10.1016/j.jpha.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to evaluate the therapeutic potential of inhibiting protein arginine methyltransferase 5 (PRMT5) in cisplatin-induced hearing loss. The effects of PRMT5 inhibition on cisplatin-induced auditory injury were determined using immunohistochemistry, apoptosis assays, and auditory brainstem response. The mechanism of PRMT5 inhibition on hair cell survival was assessed using RNA-seq and Cleavage Under Targets and Tagment-quantitative polymerase chain reaction (CUT&Tag-qPCR) analyses in the HEI-OC1 cell line. Pharmacological inhibition of PRMT5 significantly alleviated cisplatin-induced damage to hair cells and spiral ganglion neurons in the cochlea and decreased apoptosis by protecting mitochondrial function and preventing the accumulation of reactive oxygen species. CUT&Tag-qPCR analysis demonstrated that inhibition of PRMT5 in HEI-OC1 cells reduced the accumulation of H4R3me2s/H3R8me2s marks at the promoter region of the Pik3ca gene, thus activating the expression of Pik3ca. These findings suggest that PRMT5 inhibitors have strong potential as agents against cisplatin-induced ototoxicity and can lay the foundation for further research on treatment strategies of hearing loss.
Collapse
Affiliation(s)
- Zhiwei Zheng
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, Shanghai, 200031, China
| | - Benyu Nan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chang Liu
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Dongmei Tang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, Shanghai, 200031, China
| | - Wen Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, Shanghai, 200031, China
| | - Liping Zhao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, Shanghai, 200031, China
| | - Guohui Nie
- Department of Otolaryngology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine (Fudan University), Fudan University, Shanghai, 200031, China
| |
Collapse
|
2
|
Wang Z, Cai H, Zhao E, Cui H. The Diverse Roles of Histone Demethylase KDM4B in Normal and Cancer Development and Progression. Front Cell Dev Biol 2022; 9:790129. [PMID: 35186950 PMCID: PMC8849108 DOI: 10.3389/fcell.2021.790129] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/31/2021] [Indexed: 01/05/2023] Open
Abstract
Histone methylation status is an important process associated with cell growth, survival, differentiation and gene expression in human diseases. As a member of the KDM4 family, KDM4B specifically targets H1.4K26, H3K9, H3K36, and H4K20, which affects both histone methylation and gene expression. Therefore, KDM4B is often regarded as a key intermediate protein in cellular pathways that plays an important role in growth and development as well as organ differentiation. However, KDM4B is broadly defined as an oncoprotein that plays key roles in processes related to tumorigenesis, including cell proliferation, cell survival, metastasis and so on. In this review, we discuss the diverse roles of KDM4B in contributing to cancer progression and normal developmental processes. Furthermore, we focus on recent studies highlighting the oncogenic functions of KDM4B in various kinds of cancers, which may be a novel therapeutic target for cancer treatment. We also provide a relatively complete report of the progress of research related to KDM4B inhibitors and discuss their potential as therapeutic agents for overcoming cancer.
Collapse
Affiliation(s)
- Zhongze Wang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China
| | - Huarui Cai
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China
- *Correspondence: Erhu Zhao, ; Hongjuan Cui,
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China
- *Correspondence: Erhu Zhao, ; Hongjuan Cui,
| |
Collapse
|
3
|
KMT2D deficiency disturbs the proliferation and cell cycle activity of dental epithelial cell line (LS8) partially via Wnt signaling. Biosci Rep 2021; 41:230093. [PMID: 34724040 PMCID: PMC8607332 DOI: 10.1042/bsr20211148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Lysine methyltransferase 2D (KMT2D), as one of the key histone methyltransferases responsible for histone 3 lysine 4 methylation (H3K4me), has been proved to be the main pathogenic gene of Kabuki syndrome disease. Kabuki patients with KMT2D mutation frequently present various dental abnormalities, including abnormal tooth number and crown morphology. However, the exact function of KMT2D in tooth development remains unclear. In this report, we systematically elucidate the expression pattern of KMT2D in early tooth development and outline the molecular mechanism of KMT2D in dental epithelial cell line. KMT2D and H3K4me mainly expressed in enamel organ and Kmt2d knockdown led to the reduction in cell proliferation activity and cell cycling activity in dental epithelial cell line (LS8). RNA-sequencing (RNA-seq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis screened out several important pathways affected by Kmt2d knockdown including Wnt signaling. Consistently, Top/Fop assay confirmed the reduction in Wnt signaling activity in Kmt2d knockdown cells. Nuclear translocation of β-catenin was significantly reduced by Kmt2d knockdown, while lithium chloride (LiCl) partially reversed this phenomenon. Moreover, LiCl partially reversed the decrease in cell proliferation activity and G1 arrest, and the down-regulation of Wnt-related genes in Kmt2d knockdown cells. In summary, the present study uncovered a pivotal role of histone methyltransferase KMT2D in dental epithelium proliferation and cell cycle homeostasis partially through regulating Wnt/β-catenin signaling. The findings are important for understanding the role of KMT2D and histone methylation in tooth development.
Collapse
|
4
|
Yi SJ, Jang YJ, Kim HJ, Lee K, Lee H, Kim Y, Kim J, Hwang SY, Song JS, Okada H, Park JI, Kang K, Kim K. The KDM4B-CCAR1-MED1 axis is a critical regulator of osteoclast differentiation and bone homeostasis. Bone Res 2021; 9:27. [PMID: 34031372 PMCID: PMC8144413 DOI: 10.1038/s41413-021-00145-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Bone undergoes a constant and continuous remodeling process that is tightly regulated by the coordinated and sequential actions of bone-resorbing osteoclasts and bone-forming osteoblasts. Recent studies have shown that histone demethylases are implicated in osteoblastogenesis; however, little is known about the role of histone demethylases in osteoclast formation. Here, we identified KDM4B as an epigenetic regulator of osteoclast differentiation. Knockdown of KDM4B significantly blocked the formation of tartrate-resistant acid phosphatase-positive multinucleated cells. Mice with myeloid-specific conditional knockout of KDM4B showed an osteopetrotic phenotype due to osteoclast deficiency. Biochemical analysis revealed that KDM4B physically and functionally associates with CCAR1 and MED1 in a complex. Using genome-wide chromatin immunoprecipitation (ChIP)-sequencing, we revealed that the KDM4B–CCAR1–MED1 complex is localized to the promoters of several osteoclast-related genes upon receptor activator of NF-κB ligand stimulation. We demonstrated that the KDM4B–CCAR1–MED1 signaling axis induces changes in chromatin structure (euchromatinization) near the promoters of osteoclast-related genes through H3K9 demethylation, leading to NF-κB p65 recruitment via a direct interaction between KDM4B and p65. Finally, small molecule inhibition of KDM4B activity impeded bone loss in an ovariectomized mouse model. Taken together, our findings establish KDM4B as a critical regulator of osteoclastogenesis, providing a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - You-Jee Jang
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea
| | - Hye-Jung Kim
- New Drug Development Center, KBIO Osong Medical Innovation Foundation, Cheongju, Chungbuk, Republic of Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hyerim Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yeojin Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Junil Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Seon Young Hwang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jin Sook Song
- Data Convergence Drug Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hitoshi Okada
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
5
|
Kannan-Sundhari A, Abad C, Maloof ME, Ayad NG, Young JI, Liu XZ, Walz K. Bromodomain Protein BRD4 Is Essential for Hair Cell Function and Survival. Front Cell Dev Biol 2020; 8:576654. [PMID: 33015071 PMCID: PMC7509448 DOI: 10.3389/fcell.2020.576654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Hair cells (HCs) play crucial roles in perceiving sound, acceleration, and fluid motion. The tonotopic architecture of the sensory epithelium recognizes mechanical stimuli and convert them into electrical signals. The expression and regulation of the genes in the inner ear is very important to keep the sensory organ functional. Our study is the first to investigate the role of the epigenetic reader Brd4 in the mouse inner ear. We demonstrate that HC specific deletion of Brd4 in vivo in the mouse inner ear is sufficient to cause profound hearing loss (HL), degeneration of stereocilia, nerve fibers and HC loss postnatally in mouse; suggesting an important role in hearing function and maintenance.
Collapse
Affiliation(s)
- Abhiraami Kannan-Sundhari
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States.,The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, United States
| | - Clemer Abad
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | - Marie E Maloof
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nagi G Ayad
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Juan I Young
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, United States.,John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | - Xue Zhong Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States.,The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, United States.,John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | - Katherina Walz
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, United States.,John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| |
Collapse
|
6
|
He Y, Li W, Zheng Z, Zhao L, Li W, Wang Y, Li H. Inhibition of Protein arginine methyltransferase 6 reduces reactive oxygen species production and attenuates aminoglycoside- and cisplatin-induced hair cell death. Theranostics 2020; 10:133-150. [PMID: 31903111 PMCID: PMC6929624 DOI: 10.7150/thno.37362] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Hair cells in the inner ear have been shown to be susceptible to ototoxicity from some beneficial pharmaceutical drugs, such as aminoglycosides and cisplatin. Thus, there is great interest in discovering new targets or compounds that protect hair cells from these ototoxic drugs. Epigenetic regulation is closely related to inner ear development; however, little is known about epigenetic regulation in the process of ototoxic drugs-induced hearing loss. Methods: In this study, we investigated the role of protein arginine methyltransferase 6 (PRMT6) in aminoglycoside- and cisplatin-induced hair cell loss by using EPZ020411, a selective small molecule PRMT6 inhibitor, in vitro in neonatal mouse cochlear explants and in vivo in C57BL/6 mice. We also took advantage of the HEI-OC1 cell line to evaluate the anti-apoptosis effects of PRMT6 knockdown on cisplatin-induced ototoxicity. Apoptotic cells were identified using cleaved caspase-3 staining and TUNEL assay. The levels of reactive oxygen species (ROS) were evaluated by DCFH-DA and cellROX green staining. The mitochondrial membrane potential (ΔΨm) were determined by JC-1, TMRM, and rhodamine 123 staining. Results: We found that EPZ020411 significantly alleviated neomycin- and cisplatin-induced cell apoptosis and increased hair cell survival. Moreover, pretreatment with EPZ020411 could attenuate neomycin- and cisplatin-induced hearing loss in vivo. Mechanistic studies revealed that inhibition of PRMT6 could reverse the increased expression of caspase-3 and cytochrome c translocation, mitochondrial dysfunction, increased accumulation of ROS, and activation of cell apoptosis after cisplatin injury. Conclusions: Our findings suggested that PRMT6 might serve as a new therapeutic target to prevent hearing loss caused by aminoglycoside- and cisplatin-induced ototoxicity by preventing ROS formation and modulating the mitochondria-related damage and apoptosis.
Collapse
|
7
|
Tian C, Johnson KR. TBX1 is required for normal stria vascularis and semicircular canal development. Dev Biol 2019; 457:91-103. [PMID: 31550482 DOI: 10.1016/j.ydbio.2019.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
Little is known about the role of TBX1 in post-otocyst stages of inner ear development. Here, we report on mice with a missense mutation of Tbx1 that are viable with fully developed but abnormally formed inner ears. Mutant mice are deaf due to an undeveloped stria vascularis and show vestibular dysfunction associated with abnormal semicircular canal formation. We show that TBX1 is expressed in endolymph-producing strial marginal cells and vestibular dark cells of the inner ear and is an upstream regulator of Esrrb, which previously was shown to control the developmental fate of these cells. We also show that TBX1 is expressed in sensory cells of the crista ampullaris, which may relate to the semicircular canal abnormalities observed in mutant mice. Inner ears of mutant embryos have a non-resorbed fusion plate in the posterior semicircular canal and a single ampulla connecting anterior and lateral canals. We hypothesize that the TBX1 missense mutation prevents binding with specific co-regulatory proteins. These findings reveal previously unknown functions of TBX1 during later stages of inner ear development.
Collapse
Affiliation(s)
- Cong Tian
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | |
Collapse
|
8
|
Epigenetics in neuronal regeneration. Semin Cell Dev Biol 2019; 97:63-73. [PMID: 30951894 DOI: 10.1016/j.semcdb.2019.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Abstract
Damage to neuronal tissues in mammals leads to permanent loss of tissue function that can have major health consequences. While mammals have no inherent regenerative capacity to functionally repair neuronal tissue, other species such as amphibians and teleost fish readily replace damaged tissue. The exploration of development and native regeneration can thus inform the process of inducing regeneration in non-regenerative systems, which can be used to develop new therapeutics. Increasing evidence points to an epigenetic component in the regulation of the changes in cellular gene expression necessary for regeneration. In this review, we compare evidence of epigenetic roles in development and regeneration of neuronal tissue. We have focused on three key systems of important clinical significance: the neural retina, the inner ear, and the spinal cord in regenerative and non-regenerative species. While evidence for epigenetic regulation of regeneration is still limited, changes in DNA accessibility, histone acetylation and DNA methylation have all emerged as key elements in this process. To date, most studies have used broadly acting experimental manipulations to establish a role for epigenetics in regeneration, but the advent of more targeted approaches to modify the epigenome will be critical to dissecting the relative contributions of these regulatory factors in this process and the development of methods to stimulate the regeneration in those organisms like ourselves where only limited regeneration occurs in these neural systems.
Collapse
|
9
|
Ma JH, Kim HP, Shin JO. CTCF deficiency causes expansion of the sensory domain in the mouse cochlea. Biochem Biophys Res Commun 2019; 512:896-901. [PMID: 30929920 DOI: 10.1016/j.bbrc.2019.03.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023]
Abstract
The cochlea in the mammalian inner ear is a sensitive and sharply organized sound-detecting structure. The proper specification of neurosensory-competent domain in the otic epithelium is required for the formation of mature neuronal and sensory domains. Genetic studies have provided many insights into inner ear development, but there have been few epigenetic studies of inner ear development. CTCF is an epigenetic factor that plays a pivotal role in the organization of global chromatin conformation. To determine the role of CTCF in the otic sensory formation, we made a conditional knockout of Ctcf in the developing otic epithelium by crossing Ctcffl/fl mice with Pax2-Cre mice. Ctcf deficiency resulted in extra rows of auditory hair cells in the shortened cochlea on mouse embryonic day 14.5 (E14.5) and E17.5. The massive and ectopic expression of sensory specifiers such as Jag1 and Sox2 indicated that the sensory domain was expanded in the Ctcf-deficient cochlea. Other regulators of the sensory domain such as Bmp4, Gata3, and Fgf10 were not affected. These results suggest that CTCF plays a role in the regulation of the sensory domain in mammalian cochlear development.
Collapse
Affiliation(s)
- Ji-Hyun Ma
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jeong-Oh Shin
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
10
|
Wilson C, Krieg AJ. KDM4B: A Nail for Every Hammer? Genes (Basel) 2019; 10:E134. [PMID: 30759871 PMCID: PMC6410163 DOI: 10.3390/genes10020134] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 01/01/2023] Open
Abstract
Epigenetic changes are well-established contributors to cancer progression and normal developmental processes. The reversible modification of histones plays a central role in regulating the nuclear processes of gene transcription, DNA replication, and DNA repair. The KDM4 family of Jumonj domain histone demethylases specifically target di- and tri-methylated lysine 9 on histone H3 (H3K9me3), removing a modification central to defining heterochromatin and gene repression. KDM4 enzymes are generally over-expressed in cancers, making them compelling targets for study and therapeutic inhibition. One of these family members, KDM4B, is especially interesting due to its regulation by multiple cellular stimuli, including DNA damage, steroid hormones, and hypoxia. In this review, we discuss what is known about the regulation of KDM4B in response to the cellular environment, and how this context-dependent expression may be translated into specific biological consequences in cancer and reproductive biology.
Collapse
Affiliation(s)
- Cailin Wilson
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Adam J Krieg
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA.
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| |
Collapse
|
11
|
Ma JH, Kim HP, Bok J, Shin JO. CTCF is required for maintenance of auditory hair cells and hearing function in the mouse cochlea. Biochem Biophys Res Commun 2018; 503:2646-2652. [PMID: 30107916 DOI: 10.1016/j.bbrc.2018.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Auditory hair cells play an essential role in hearing. These cells convert sound waves, mechanical stimuli, into electrical signals that are conveyed to the brain via spiral ganglion neurons. The hair cells are located in the organ of Corti within the cochlea. They assemble in a special arrangement with three rows of outer hair cells and one row of inner hair cells. The proper differentiation and preservation of auditory hair cells are essential for acquiring and maintaining hearing function, respectively. Many genetic regulatory mechanisms underlying hair-cell differentiation and maintenance have been elucidated to date. However, the role of epigenetic regulation in hair-cell differentiation and maintenance has not been definitively demonstrated. CTCF is an essential epigenetic component that plays a primary role in the organization of global chromatin architecture. To determine the role of CTCF in mammalian hair cells, we specifically deleted Ctcf in developing hair cells by crossing Ctcffl/fl mice with Gfi1Cre/+ mice. Gfi1Cre; Ctcffl/fl mice did not exhibit obvious developmental defects in hair cells until postnatal day 8. However, at 3 weeks, the Ctcf deficiency caused intermittent degeneration of the stereociliary bundles of outer hair cells, resulting in profound hearing impairment. At 5 weeks, most hair cells were degenerated in Gfi1Cre; Ctcffl/fl mice, and defects in other structures of the organ of Corti, such as the tunnel of Corti and Nuel's space, became apparent. These results suggest that CTCF plays an essential role in maintaining hair cells and hearing function in mammalian cochlea.
Collapse
Affiliation(s)
- Ji-Hyun Ma
- Department of Anatomy, Republic of Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Republic of Korea; BK21 PLUS Project for Medical Science, Republic of Korea
| | - Jinwoong Bok
- Department of Anatomy, Republic of Korea; BK21 PLUS Project for Medical Science, Republic of Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | | |
Collapse
|
12
|
Shin JO, Lee JJ, Kim M, Chung YW, Min H, Kim JY, Kim HP, Bok J. CTCF Regulates Otic Neurogenesis via Histone Modification in the Neurog1 Locus. Mol Cells 2018; 41:695-702. [PMID: 30008200 PMCID: PMC6078853 DOI: 10.14348/molcells.2018.0230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/04/2018] [Indexed: 11/27/2022] Open
Abstract
The inner ear is a complex sensory organ responsible for hearing and balance. Formation of the inner ear is dependent on tight regulation of spatial and temporal expression of genes that direct a series of developmental processes. Recently, epigenetic regulation has emerged as a crucial regulator of the development of various organs. However, what roles higher-order chromatin organization and its regulator molecules play in inner ear development are unclear. CCCTC-binding factor (CTCF) is a highly conserved 11-zinc finger protein that regulates the three-dimensional architecture of chromatin, and is involved in various gene regulation processes. To delineate the role of CTCF in inner ear development, the present study investigated inner ear-specific Ctcf knockout mouse embryos (Pax2-Cre; Ctcffl/fl ). The loss of Ctcf resulted in multiple defects of inner ear development and severely compromised otic neurogenesis, which was partly due to a loss of Neurog1 expression. Furthermore, reduced Neurog1 gene expression by CTCF knockdown was found to be associated with changes in histone modification at the gene's promoter, as well as its upstream enhancer. The results of the present study demonstrate that CTCF plays an essential role in otic neurogenesis by modulating histone modification in the Neurog1 locus.
Collapse
Affiliation(s)
- Jeong-Oh Shin
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Jong-Joo Lee
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 03722,
Korea
- BK21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Mikyoung Kim
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Youn Wook Chung
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Hyehyun Min
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Jae-Yoon Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722,
Korea
- BK21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul 03722,
Korea
- BK21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722,
Korea
- BK21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722,
Korea
| |
Collapse
|
13
|
Ahmed M, Streit A. Lsd1 interacts with cMyb to demethylate repressive histone marks and maintain inner ear progenitor identity. Development 2018; 145:dev.160325. [PMID: 29437831 DOI: 10.1242/dev.160325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/20/2018] [Indexed: 01/30/2023]
Abstract
During development, multipotent progenitor cells must maintain their identity while retaining the competence to respond to new signalling cues that drive cell fate decisions. This depends on both DNA-bound transcription factors and surrounding histone modifications. Here, we identify the histone demethylase Lsd1 as a crucial component of the molecular machinery that preserves progenitor identity in the developing ear prior to lineage commitment. Although Lsd1 is mainly associated with repressive complexes, we show that, in ear precursors, it is required to maintain active transcription of otic genes. We reveal a novel interaction between Lsd1 and the transcription factor cMyb, which in turn recruits Lsd1 to the promoters of key ear transcription factors. Here, Lsd1 prevents the accumulation of repressive H3K9me2, while allowing H3K9 acetylation. Loss of Lsd1 function causes rapid silencing of active promoters and loss of ear progenitor genes, and shuts down the entire ear developmental programme. Our data suggest that Lsd1-cMyb acts as a co-activator complex that maintains a regulatory module at the top of the inner ear gene network.
Collapse
Affiliation(s)
- Mohi Ahmed
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy's Hospital, Dental Institute, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, Floor 27 Tower Wing, Guy's Hospital, Dental Institute, King's College London, London SE1 9RT, UK
| |
Collapse
|
14
|
Ladher RK. Changing shape and shaping change: Inducing the inner ear. Semin Cell Dev Biol 2017; 65:39-46. [DOI: 10.1016/j.semcdb.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/21/2022]
|
15
|
Doetzlhofer A, Avraham KB. Insights into inner ear-specific gene regulation: Epigenetics and non-coding RNAs in inner ear development and regeneration. Semin Cell Dev Biol 2017; 65:69-79. [PMID: 27836639 PMCID: PMC5512292 DOI: 10.1016/j.semcdb.2016.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/14/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
The vertebrate inner ear houses highly specialized sensory organs, tuned to detect and encode sound, head motion and gravity. Gene expression programs under the control of transcription factors orchestrate the formation and specialization of the non-sensory inner ear labyrinth and its sensory constituents. More recently, epigenetic factors and non-coding RNAs emerged as an additional layer of gene regulation, both in inner ear development and disease. In this review, we provide an overview on how epigenetic modifications and non-coding RNAs, in particular microRNAs (miRNAs), influence gene expression and summarize recent discoveries that highlight their critical role in the proper formation of the inner ear labyrinth and its sensory organs. Finally, we discuss recent insights into how epigenetic factors and miRNAs may facilitate, or in the case of mammals, restrict inner ear sensory hair cell regeneration.
Collapse
Affiliation(s)
- Angelika Doetzlhofer
- The Solomon H. Snyder Department of Neuroscience, the Center for Sensory Biology, the Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
16
|
Chen Y, Li W, Li W, Chai R, Li H. Spatiotemporal expression of Ezh2 in the developing mouse cochlear sensory epithelium. Front Med 2016; 10:330-5. [PMID: 27465826 DOI: 10.1007/s11684-016-0459-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
The enhancer of zeste 2 polycomb repressive complex 2 subunit (Ezh2) is a histone-lysine Nmethyltransferase enzyme that participates in DNA methylation. Ezh2 has also been reported to play crucial roles in stem cell proliferation and differentiation. However, the detailed expression profile of Ezh2 during mouse cochlear development has not been investigated. Here, we examined the spatiotemporal expression of Ezh2 in the cochlea during embryonic and postnatal development. Ezh2 expression began to be observed in the whole otocyst nuclei at embryonic day 9.5 (E9.5). At E12.5, Ezh2 was expressed in the nuclei of the cochlear prosensory epithelium. At E13.5 and E15.5, Ezh2 was expressed from the apical to the basal turns in the nuclei of the differentiating cochlear epithelium. At postnatal day (P) 0 and 7, the Ezh2 expression was located in the nuclei of the cochlear epithelium in all three turns and could be clearly seen in outer and inner hair cells, supporting cells, the stria vascularis, and spiral ganglion cells. Ezh2 continued to be expressed in the cochlear epithelium of adult mice. Our results provide the basic Ezh2 expression pattern and might be useful for further investigating the detailed role of Ezh2 during cochlear development.
Collapse
Affiliation(s)
- Yan Chen
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Central Laboratory, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of the National Health and Family Planning Commission, Shanghai, 200031, China
| | - Wenyan Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of the National Health and Family Planning Commission, Shanghai, 200031, China
| | - Wen Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China.,Central Laboratory, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.,Key Laboratory of Hearing Medicine of the National Health and Family Planning Commission, Shanghai, 200031, China
| | - Renjie Chai
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing, 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Huawei Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China. .,Key Laboratory of Hearing Medicine of the National Health and Family Planning Commission, Shanghai, 200031, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Mateo Sánchez S, Freeman SD, Delacroix L, Malgrange B. The role of post-translational modifications in hearing and deafness. Cell Mol Life Sci 2016; 73:3521-33. [PMID: 27147466 PMCID: PMC11108544 DOI: 10.1007/s00018-016-2257-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
Abstract
Post-translational modifications (PTMs) are key molecular events that modify proteins after their synthesis and modulate their ultimate functional properties by affecting their stability, localisation, interaction potential or activity. These chemical changes expand the size of the proteome adding diversity to the molecular pathways governing the biological outcome of cells. PTMs are, thus, crucial in regulating a variety of cellular processes such as apoptosis, proliferation and differentiation and have been shown to be instrumental during embryonic development. In addition, alterations in protein PTMs have been implicated in the pathogenesis of many human diseases, including deafness. In this review, we summarize the recent progress made in understanding the roles of PTMs during cochlear development, with particular emphasis on the enzymes driving protein phosphorylation, acetylation, methylation, glycosylation, ubiquitination and SUMOylation. We also discuss how these enzymes may contribute to hearing impairment and deafness.
Collapse
Affiliation(s)
- Susana Mateo Sánchez
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Stephen D Freeman
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium.
| |
Collapse
|
18
|
Singh S, Groves AK. The molecular basis of craniofacial placode development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:363-76. [PMID: 26952139 DOI: 10.1002/wdev.226] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/22/2015] [Accepted: 12/27/2015] [Indexed: 12/20/2022]
Abstract
The sensory organs of the vertebrate head originate from simple ectodermal structures known as cranial placodes. All cranial placodes derive from a common domain adjacent to the neural plate, the preplacodal region, which is induced at the border of neural and non-neural ectoderm during gastrulation. Induction and specification of the preplacodal region is regulated by the fibroblast growth factor, bone morphogenetic protein, WNT, and retinoic acid signaling pathways, and characterized by expression of the EYA and SIX family of transcriptional regulators. Once the preplacodal region is specified, different combinations of local signaling molecules and placode-specific transcription factors, including competence factors, promote the induction of individual cranial placodes along the neural axis of the head region. In this review, we summarize the steps of cranial placode development and discuss the roles of the main signaling molecules and transcription factors that regulate these steps during placode induction, specification, and development. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Sunita Singh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
19
|
Leslie M. KDM4B doesn’t leave a mark. J Biophys Biochem Cytol 2015. [PMCID: PMC4657182 DOI: 10.1083/jcb.2114iti2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|