1
|
Zhang L, Wang S, Wang L. SKA1/2/3 is a prognostic and predictive biomarker in esophageal adenocarcinoma and squamous cell carcinoma. BMC Cancer 2024; 24:1480. [PMID: 39614199 DOI: 10.1186/s12885-024-13257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Esophageal carcinoma (ESCA) ranks among the most prevalent malignant tumors globally. Despite significant advancements in treatment options and improved patient outcomes, the 5-year survival rate remains unsatisfactory. The spindle and kinetochore associated complex subunit 1/2/3 (SKA1/2/3) attached to the kinetochore (KT) in the metaphase of mitosis are implicated in the occurrence and development of various tumors. However, the expression patterns, diagnostic significance and prognostic implications of SKA1/2/3 in ESCA have not been comprehensively determined. METHODS TCGA, UALCAN, Kaplan-Meier Plotter, and TIMER databases were leveraged to dissect the expression patterns, prognostic implications and diagnostic value of SKA1/2/3 in ESCA patients, as well as to investigate the potential regulatory mechanism of SKA1/2/3 in the onset and progression of ESCA. RESULTS In ESCA, SKA1/2/3 exhibited substantial expression, with higher levels relating significantly with clinicopathological features and patient prognosis. Enrichment analysis of genes co-expressed with SKA1/2/3 highlighted their involvement in the cell cycle, DNA replication and p53 signaling pathway. Protein-protein interaction (PPI) analysis identified ten hub genes that were not only markedly upregulated but also portended a poor prognosis in ESCA. Additionally, immune infiltration assays uncovered a significant link between SKA1/2/3 expression and the immune cell infiltration within ESCA. Silencing of SKA1/2/3 significantly suppresses cell proliferation and migration, while concurrently promoting apoptosis in ESCA cells. CONCLUSIONS SKA1/2/3 may serve as promising biomarkers for the prognosis and diagnosis of ESCA, which holds promise as a novel therapeutic target for the disease.
Collapse
Affiliation(s)
- Liming Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, 272029, P. R. China
- Department of Thoracic Surgery, Weifang Second People's Hospital, Weifang, Shandong Province, 261041, P. R. China
| | - Shaoqiang Wang
- Department of Thoracic Surgery, Weifang People's Hospital, Weifang, Shandong Province, 261000, P. R. China
| | - Lina Wang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, 272029, P. R. China.
- Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272029, China.
| |
Collapse
|
2
|
Ryabukha YA, Zatsepina OV, Rubtsov YP. The completing of the second meiotic division by MII mouse oocytes correlates with the positioning of F-actin and mitochondria in the ooplasm. Biochimie 2024:S0300-9084(24)00259-1. [PMID: 39577618 DOI: 10.1016/j.biochi.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Actin filaments play an essential role in the process of oocyte maturation and completion of meiosis. However, whether the localization of F-actin in the ooplasm is associated with normal completion of the second meiotic division remains unclear. Mitochondrial distribution is another important parameter correlating directly with MII oocyte capacity to finalize meiosis. Our objective was to examine the role of actin microfilaments in the distribution of mitochondria and, respectively, Metaphase II (MII) oocytes meiotic potential. We show monoclonal antibody-mediated inhibition of actin polymerization in young mouse oocytes, reduction of the amount of F-actin, and induction of mitochondrial clustering induced by antibody treatment. Similar phenotype, even in untreated eggs, was observed in in vitro oocyte aging experiments. Observed changes correlate with reduced ability of MII oocytes to extrude the second polar body and form the pronuclei. Changes in colocalization of F-actin and mitochondria likely resulted from disturbed cytoskeleton architecture. The perturbations in the amount of F-actin and its distribution largely coincide with mitochondrial redistribution. Based on these data, we suggest actin microfilament's participation in redistribution of mitochondria during MII oocyte aging in vitro. Accordingly, patterning of F-actin is indicative of high rate of the completed second meiotic division. These results help evaluating oocyte's quality and choosing optimal time between placement into culture and in vitro fertilization.
Collapse
Affiliation(s)
- Yana A Ryabukha
- Laboratory of Molecular Virology, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Olga V Zatsepina
- Laboratory of Molecular Virology, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Yury P Rubtsov
- Laboratory of Molecular Virology, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
3
|
Valles SY, Bural S, Godek KM, Compton DA. Cyclin A/Cdk1 promotes chromosome alignment and timely mitotic progression. Mol Biol Cell 2024; 35:ar141. [PMID: 39356777 PMCID: PMC11617097 DOI: 10.1091/mbc.e23-12-0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
To ensure genomic fidelity, a series of spatially and temporally coordinated events is executed during prometaphase of mitosis, including bipolar spindle formation, chromosome attachment to spindle microtubules at kinetochores, the correction of erroneous kinetochore-microtubule (k-MT) attachments, and chromosome congression to the spindle equator. Cyclin A/Cdk1 kinase plays a key role in destabilizing k-MT attachments during prometaphase to promote correction of erroneous k-MT attachments. However, it is unknown whether Cyclin A/Cdk1 kinase regulates other events during prometaphase. Here, we investigate additional roles of Cyclin A/Cdk1 in prometaphase by using an siRNA knockdown strategy to deplete endogenous Cyclin A from human cells. We find that depleting Cyclin A significantly extends mitotic duration, specifically prometaphase, because chromosome alignment is delayed. Unaligned chromosomes display erroneous monotelic, syntelic, or lateral k-MT attachments suggesting that bioriented k-MT attachment formation is delayed in the absence of Cyclin A. Mechanistically, chromosome alignment is likely impaired because the localization of the kinetochore proteins BUB1 kinase, KNL1, and MPS1 kinase are reduced in Cyclin A-depleted cells. Moreover, we find that Cyclin A promotes BUB1 kinetochore localization independently of its role in destabilizing k-MT attachments. Thus, Cyclin A/Cdk1 facilitates chromosome alignment during prometaphase to support timely mitotic progression.
Collapse
Affiliation(s)
- Sarah Y. Valles
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Shrea Bural
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Kristina M. Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Duane A. Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| |
Collapse
|
4
|
Asai K, Zhou Y, Takenouchi O, Kitajima TS. Artificial kinetochore beads establish a biorientation-like state in the spindle. Science 2024; 385:1366-1375. [PMID: 39298589 DOI: 10.1126/science.adn5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/24/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024]
Abstract
Faithful chromosome segregation requires biorientation, where the pair of kinetochores on the chromosome establish bipolar microtubule attachment. The integrity of the kinetochore, a macromolecular complex built on centromeric DNA, is required for biorientation, but components sufficient for biorientation remain unknown. Here, we show that tethering the outer kinetochore heterodimer NDC80-NUF2 to the surface of apolar microbeads establishes their biorientation-like state in mouse cells. NDC80-NUF2 microbeads align at the spindle equator and self-correct alignment errors. The alignment is associated with stable bipolar microtubule attachment and is independent of the outer kinetochore proteins SPC24-SPC25, KNL1, the Mis12 complex, inner kinetochore proteins, and Aurora. Larger microbeads align more rapidly, suggesting a size-dependent biorientation mechanism. This study demonstrates a biohybrid kinetochore design for synthetic biorientation of microscale particles in cells.
Collapse
Affiliation(s)
- Kohei Asai
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuanzhuo Zhou
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Osamu Takenouchi
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Nong C, Chen Y, Yang H, Chen N, Tian C, Li S, Chen H. Phenotypic sorting of individual male and female intersex Cherax quadricarinatus and analysis of molecular differences in the gonadal transcriptome. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101194. [PMID: 38246110 DOI: 10.1016/j.cbd.2024.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Cherax quadricarinatus exhibit sexual dimorphism, with males outpacing females in size specification and growth rate. However, there is limited understanding of the molecular mechanisms underlying sex determination and sex differentiation in crustaceans. To study the differences between intersex individuals and normal individuals, this study counted the proportion of intersex individuals in the natural population, collected the proportion of 7 different phenotypes in 200 intersex individuals, and observed the differences in tissue sections. RNA-seq was used to study the different changes in the transcriptome of normal and intersex gonads. The results showed that: the percentage of intersex in the natural population was 1.5 %, and the percentage of different types of intersex ranged from 0.5 % to 22.5 %; the sections revealed that the development of normal ovaries was stagnant at the primary oocyte stage when intersex individuals with ovaries were present; We screened for pathways and genes that may be associated with gonadal development and sex, including ovarian steroid synthesis, estrogen signaling pathway, oocyte meiosis, progesterone-mediated oocyte maturation, etc. Relevant genes including tra2a, dmrta2, ccnb2, foxl2, and smad4. This study provides an important molecular basis for sex determination, sex-controlled breeding, and unisex breeding in red crayfish.
Collapse
Affiliation(s)
- Chuntai Nong
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Yibin Chen
- Guangdong Evergreen Feed Industry Co., Ltd., Evergreen Tower, Zhanjiang, Guangdong, China
| | - Hao Yang
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Nanxiong Chen
- Guangdong Evergreen Feed Industry Co., Ltd., Evergreen Tower, Zhanjiang, Guangdong, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Sedong Li
- Guangdong Evergreen Feed Industry Co., Ltd., Evergreen Tower, Zhanjiang, Guangdong, China.; Zhanjiang Ocean and Fishery Development Research Center, Zhanjiang, China.
| | - Huapu Chen
- Fisheries College, Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Havwii agriculture group Co., Ltd, Zhanjiang 524266, China.
| |
Collapse
|
6
|
Valles SY, Godek KM, Compton DA. Cyclin A/Cdk1 promotes chromosome alignment and timely mitotic progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572788. [PMID: 38187612 PMCID: PMC10769330 DOI: 10.1101/2023.12.21.572788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
To ensure genomic fidelity a series of spatially and temporally coordinated events are executed during prometaphase of mitosis, including bipolar spindle formation, chromosome attachment to spindle microtubules at kinetochores, the correction of erroneous kinetochore-microtubule (k-MT) attachments, and chromosome congression to the spindle equator. Cyclin A/Cdk1 kinase plays a key role in destabilizing k-MT attachments during prometaphase to promote correction of erroneous k-MT attachments. However, it is unknown if Cyclin A/Cdk1 kinase regulates other events during prometaphase. Here, we investigate additional roles of Cyclin A/Cdk1 in prometaphase by using an siRNA knockdown strategy to deplete endogenous Cyclin A from human cells. We find that depleting Cyclin A significantly extends mitotic duration, specifically prometaphase, because chromosome alignment is delayed. Unaligned chromosomes display erroneous monotelic, syntelic, or lateral k-MT attachments suggesting that bioriented k-MT attachment formation is delayed in the absence of Cyclin A. Mechanistically, chromosome alignment is likely impaired because the localization of the kinetochore proteins BUB1 kinase, KNL1, and MPS1 kinase are reduced in Cyclin A-depleted cells. Moreover, we find that Cyclin A promotes BUB1 kinetochore localization independently of its role in destabilizing k-MT attachments. Thus, Cyclin A/Cdk1 facilitates chromosome alignment during prometaphase to support timely mitotic progression.
Collapse
Affiliation(s)
- Sarah Y Valles
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kristina M Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Duane A Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
7
|
Kim HM, Kang MK, Seong SY, Jo JH, Kim MJ, Shin EK, Lee CG, Han SJ. Meiotic Cell Cycle Progression in Mouse Oocytes: Role of Cyclins. Int J Mol Sci 2023; 24:13659. [PMID: 37686466 PMCID: PMC10487953 DOI: 10.3390/ijms241713659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
All eukaryotic cells, including oocytes, utilize an engine called cyclin-dependent kinase (Cdk) to drive the cell cycle. Cdks are activated by a co-factor called cyclin, which regulates their activity. The key Cdk-cyclin complex that regulates the oocyte cell cycle is known as Cdk1-cyclin B1. Recent studies have elucidated the roles of other cyclins, such as B2, B3, A2, and O, in oocyte cell cycle regulation. This review aims to discuss the recently discovered roles of various cyclins in mouse oocyte cell cycle regulation in accordance with the sequential progression of the cell cycle. In addition, this review addresses the translation and degradation of cyclins to modulate the activity of Cdks. Overall, the literature indicates that each cyclin performs unique and redundant functions at various stages of the cell cycle, while their expression and degradation are tightly regulated. Taken together, this review provides new insights into the regulatory role and function of cyclins in oocyte cell cycle progression.
Collapse
Affiliation(s)
- Hye Min Kim
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Min Kook Kang
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Se Yoon Seong
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Jun Hyeon Jo
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Min Ju Kim
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Eun Kyeong Shin
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Chang Geun Lee
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Seung Jin Han
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
- Department of Medical Biotechnology, Inje University, Gimhae 50834, Republic of Korea
- Institute of Basic Science, Inje University, Gimhae 50834, Republic of Korea
| |
Collapse
|
8
|
Cai X, Stringer JM, Zerafa N, Carroll J, Hutt KJ. Xrcc5/Ku80 is required for the repair of DNA damage in fully grown meiotically arrested mammalian oocytes. Cell Death Dis 2023; 14:397. [PMID: 37407587 DOI: 10.1038/s41419-023-05886-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/07/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Mammalian oocytes spend most of their life in a unique state of cell cycle arrest at meiotic prophase I, during which time they are exposed to countless DNA-damaging events. Recent studies have shown that DNA double-strand break repair occurs predominantly via the homologous recombination (HR) pathway in small non-growing meiotically arrested oocytes (primordial follicle stage). However, the DNA repair mechanisms employed by fully grown meiotically arrested oocytes (GV-stage) have not been studied in detail. Here we established a conditional knockout mouse model to explore the role of Ku80, a critical component of the nonhomologous end joining (NHEJ) pathway, in the repair of DNA damage in GV oocytes. GV oocytes lacking Ku80 failed to repair etoposide-induced DNA damage, even when only low levels of damage were sustained. This indicates Ku80 is needed to resolve DSBs and that HR cannot compensate for a compromised NHEJ pathway in fully-grown oocytes. When higher levels of DNA damage were induced, a severe delay in M-phase entry was observed in oocytes lacking XRCC5 compared to wild-type oocytes, suggesting that Ku80-dependent repair of DNA damage is important for the timely release of oocytes from prophase I and resumption of meiosis. Ku80 was also found to be critical for chromosome integrity during meiotic maturation following etoposide exposure. These data demonstrate that Ku80, and NHEJ, are vital for quality control in mammalian GV stage oocytes and reveal that DNA repair pathway choice differs in meiotically arrested oocytes according to growth status.
Collapse
Affiliation(s)
- Xuebi Cai
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Jessica M Stringer
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Nadeen Zerafa
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - John Carroll
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Karla J Hutt
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
9
|
Eight Aging-Related Genes Prognostic Signature for Cervical Cancer. Int J Genomics 2023; 2023:4971345. [PMID: 36880057 PMCID: PMC9985510 DOI: 10.1155/2023/4971345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 02/27/2023] Open
Abstract
This study searched for aging-related genes (ARGs) to predict the prognosis of patients with cervical cancer (CC). All data were obtained from Molecular Signatures Database, Cancer Genome Atlas, Gene Expression Integration, and Genotype Organization Expression. The R software was used to screen out the differentially expressed ARGs (DE-ARGs) between CC and normal tissues. A protein-protein interaction network was established by the DE-ARGs. The univariate and multivariate Cox regression analyses were conducted on the first extracted Molecular Complex Detection component, and a prognostic model was constructed. The prognostic model was further validated in the testing set and GSE44001 dataset. Prognosis was analyzed by Kaplan-Meier curves, and accuracy of the prognostic model was assessed by receiver operating characteristic area under the curve analysis. An independent prognostic analysis of risk score and some clinicopathological factors of CC was also performed. The copy-number variant (CNV) and single-nucleotide variant (SNV) of prognostic ARGs were analyzed by the BioPortal database. A clinical practical nomogram was established to predict individual survival probability. Finally, we carried out cell experiment to further verify the prognostic model. An eight-ARG prognostic signature for CC was constructed. High-risk CC patients had significantly shorter overall survival than low-risk patients. The receiver operating characteristic (ROC) curve validated the good performance of the signature in survival prediction. The Figo_stage and risk score served as independent prognostic factors. The eight ARGs mainly enriched in growth factor regulation and cell cycle pathway, and the deep deletion of FN1 was the most common CNV. An eight-ARG prognostic signature for CC was successfully constructed.
Collapse
|
10
|
Understanding the Underlying Molecular Mechanisms of Meiotic Arrest during In Vitro Spermatogenesis in Rat Prepubertal Testicular Tissue. Int J Mol Sci 2022; 23:ijms23115893. [PMID: 35682573 PMCID: PMC9180380 DOI: 10.3390/ijms23115893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/10/2022] Open
Abstract
In vitro spermatogenesis appears to be a promising approach to restore the fertility of childhood cancer survivors. The rat model has proven to be challenging, since germ cell maturation is arrested in organotypic cultures. Here, we report that, despite a meiotic entry, abnormal synaptonemal complexes were found in spermatocytes, and in vitro matured rat prepubertal testicular tissues displayed an immature phenotype. RNA-sequencing analyses highlighted up to 600 differentially expressed genes between in vitro and in vivo conditions, including genes involved in blood-testis barrier (BTB) formation and steroidogenesis. BTB integrity, the expression of two steroidogenic enzymes, and androgen receptors were indeed altered in vitro. Moreover, most of the top 10 predicted upstream regulators of deregulated genes were involved in inflammatory processes or immune cell recruitment. However, none of the three anti-inflammatory molecules tested in this study promoted meiotic progression. By analysing for the first time in vitro matured rat prepubertal testicular tissues at the molecular level, we uncovered the deregulation of several genes and revealed that defective BTB function, altered steroidogenic pathway, and probably inflammation, could be at the origin of meiotic arrest.
Collapse
|
11
|
Zahra A, Kerslake R, Kyrou I, Randeva HS, Sisu C, Karteris E. Impact of Environmentally Relevant Concentrations of Bisphenol A (BPA) on the Gene Expression Profile in an In Vitro Model of the Normal Human Ovary. Int J Mol Sci 2022; 23:5334. [PMID: 35628146 PMCID: PMC9141570 DOI: 10.3390/ijms23105334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs), including the xenoestrogen Bisphenol A (BPA), can interfere with hormonal signalling. Despite increasing reports of adverse health effects associated with exposure to EDCs, there are limited data on the effect of BPA in normal human ovaries. In this paper, we present a detailed analysis of the transcriptomic landscape in normal Human Epithelial Ovarian Cells (HOSEpiC) treated with BPA (10 and 100 nM). Gene expression profiles were determined using high-throughput RNA sequencing, followed by functional analyses using bioinformatics tools. In total, 272 and 454 differentially expressed genes (DEGs) were identified in 10 and 100 nM BPA-treated HOSEpiCs, respectively, compared to untreated controls. Biological pathways included mRNA surveillance pathways, oocyte meiosis, cellular senescence, and transcriptional misregulation in cancer. BPA exposure has a considerable impact on 10 genes: ANAPC2, AURKA, CDK1, CCNA2, CCNB1, PLK1, BUB1, KIF22, PDE3B, and CCNB3, which are also associated with progesterone-mediated oocyte maturation pathways. Future studies should further explore the effects of BPA and its metabolites in the ovaries in health and disease, making use of validated in vitro and in vivo models to generate data that will address existing knowledge gaps in basic biology, hazard characterisation, and risk assessment associated with the use of xenoestrogens such as BPA.
Collapse
Affiliation(s)
- Aeman Zahra
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (R.K.)
| | - Rachel Kerslake
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (R.K.)
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (I.K.); (H.S.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (I.K.); (H.S.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
| | - Cristina Sisu
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (R.K.)
| | - Emmanouil Karteris
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (R.K.)
| |
Collapse
|
12
|
A morphological study of adipose-derived stem cell sheets created with temperature-responsive culture dishes using scanning electron microscopy. Med Mol Morphol 2022; 55:187-198. [PMID: 35449367 DOI: 10.1007/s00795-022-00319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Adipose-derived stem cell (ADSC) sheets have potential to be effective in various therapies. In this study, we first demonstrated that a cell sheet composed of human ADSCs could be created using a new temperature-responsive culture dish from the DIC Corporation. The dish can cause detachment of adherent cells due to temperature changes, but a few morphological analyses have evaluated the presence or absence of damage on the detached surface of cell sheet. To characterize our ADSC sheet, we tried to observe the surface of ADSC sheets with scanning electron microscope (SEM) using the ionic liquid, which enables the rapid preparation of samples. No damage was found on the surface of the ADSC sheets on the side that had been in contact with the surface of the culture dishes. In addition, when the transcriptomes of the harvested cell sheets were compared with those of monolayer cultures, no up-regulation of cell death related genes were detected. These results propose that the detachment from temperature-responsive culture dish causes no serious damage on the prepared ADSC sheet. It is also suggested that the SEM with ionic liquids is a useful and rapid method for the analysis of ADSC sheets for therapy.
Collapse
|
13
|
Blengini CS, Schindler K. Acentriolar spindle assembly in mammalian female meiosis and the consequences of its perturbations on human reproduction. Biol Reprod 2021; 106:253-263. [PMID: 34791041 DOI: 10.1093/biolre/ioab210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 12/18/2022] Open
Abstract
The purpose of meiosis is to generate developmentally competent, haploid gametes with the correct number of chromosomes. For reasons not completely understood, female meiosis is more prone to chromosome segregation errors than meiosis in males, leading to an abnormal number of chromosomes, or aneuploidy, in gametes. Meiotic spindles are the cellular machinery essential for the proper segregation of chromosomes. One unique feature of spindle structures in female meiosis is spindles poles that lack centrioles. The process of building a meiotic spindle without centrioles is complex and requires precise coordination of different structural components, assembly factors, motor proteins, and signaling molecules at specific times and locations to regulate each step. In this review, we discuss the basics of spindle formation during oocyte meiotic maturation focusing on mouse and human studies. Finally, we review different factors that could alter the process of spindle formation and its stability. We conclude with a discussion of how different assisted reproductive technologies (ART) could affect spindles and the consequences these perturbations may have for subsequent embryo development.
Collapse
Affiliation(s)
- Cecilia S Blengini
- Rutgers University, Human Genetics Institute of New Jersey, Piscataway, NJ 08854 USA
| | - Karen Schindler
- Rutgers University, Human Genetics Institute of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
14
|
Anger M, Radonova L, Horakova A, Sekach D, Charousova M. Impact of Global Transcriptional Silencing on Cell Cycle Regulation and Chromosome Segregation in Early Mammalian Embryos. Int J Mol Sci 2021; 22:9073. [PMID: 34445775 PMCID: PMC8396661 DOI: 10.3390/ijms22169073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
The onset of an early development is, in mammals, characterized by profound changes of multiple aspects of cellular morphology and behavior. These are including, but not limited to, fertilization and the merging of parental genomes with a subsequent transition from the meiotic into the mitotic cycle, followed by global changes of chromatin epigenetic modifications, a gradual decrease in cell size and the initiation of gene expression from the newly formed embryonic genome. Some of these important, and sometimes also dramatic, changes are executed within the period during which the gene transcription is globally silenced or not progressed, and the regulation of most cellular activities, including those mentioned above, relies on controlled translation. It is known that the blastomeres within an early embryo are prone to chromosome segregation errors, which might, when affecting a significant proportion of a cell within the embryo, compromise its further development. In this review, we discuss how the absence of transcription affects the transition from the oocyte to the embryo and what impact global transcriptional silencing might have on the basic cell cycle and chromosome segregation controlling mechanisms.
Collapse
Affiliation(s)
- Martin Anger
- Central European Institute of Technology, Department of Genetics and Reproduction, Veterinary Research Institute, 621 00 Brno, Czech Republic; (L.R.); (A.H.); (D.S.); (M.C.)
| | | | | | | | | |
Collapse
|
15
|
Chen Q, Shen P, Ge WL, Yang TY, Wang WJ, Meng LD, Huang XM, Zhang YH, Cao SJ, Miao Y, Jiang KR, Zhang JJ. Roundabout homolog 1 inhibits proliferation via the YY1-ROBO1-CCNA2-CDK2 axis in human pancreatic cancer. Oncogene 2021; 40:2772-2784. [PMID: 33714986 DOI: 10.1038/s41388-021-01741-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 01/31/2023]
Abstract
Pancreatic cancer (PC) is highly malignant and has a high mortality with a 5-year survival rate of less than 8%. As a member of the roundabout immunoglobulin superfamily of proteins, ROBO1 plays an important role in embryogenesis and organogenesis and also inhibits metastasis in PC. Our study was designed to explore whether ROBO1 has effects on the proliferation of PC and its specific mechanism. The expression of ROBO1 was higher in cancer tissues than in matched adjacent tissues by immunohistochemistry (IHC) and qRT-PCR. Low ROBO1 expression is associated with PC progression and poor prognosis. Overexpression of ROBO1 can inhibit the proliferation of PC cells in vitro, and the S phase fraction can also be induced. Further subcutaneous tumor formation in nude mice showed that ROBO1 overexpression can significantly inhibit tumor growth. YY1 was found to directly bind to the promoter region of ROBO1 to promote transcription by a luciferase reporter gene assay, a chromatin immunoprecipitation (ChIP) and an electrophoretic mobility shift assay (EMSA). Mechanistic studies showed that YY1 can inhibit the development of PC by directly regulating ROBO1 via the CCNA2/CDK2 axis. Taken together, our results suggest that ROBO1 may be involved in the development and progression of PC by regulating cell proliferation and shows that ROBO1 may be a novel and promising therapeutic target for PC.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Peng Shen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Wan-Li Ge
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Tao-Yue Yang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Wu-Jun Wang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling-Dong Meng
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Xu-Min Huang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yi-Han Zhang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Shou-Ji Cao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Kui-Rong Jiang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Jing-Jing Zhang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Genome-wide transcriptome profiling uncovers differential miRNAs and lncRNAs in ovaries of Hu sheep at different developmental stages. Sci Rep 2021; 11:5865. [PMID: 33712687 PMCID: PMC7971002 DOI: 10.1038/s41598-021-85245-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Ovary development is an important determinant of the procreative capacity of female animals. Here, we performed genome-wide sequencing of long non-coding RNAs (lncRNAs) and mRNAs on ovaries of 1, 3 and 8 months old Hu sheep to assess their expression profiles and roles in ovarian development. We identified 37,309 lncRNAs, 45,404 messenger RNAs (mRNAs) and 330 novel micro RNAs (miRNAs) from the transcriptomic analysis. Six thousand, seven hundred and sixteen (6716) mRNAs and 1972 lncRNAs were significantly and differentially expressed in ovaries of 1 month and 3 months old Hu sheep (H1 vs H3). These mRNAs and target genes of lncRNAs were primarily enriched in the TGF-β and PI3K-Akt signalling pathways which are closely associated with ovarian follicular development and steroid hormone biosynthesis regulation. We identified MSTRG.162061.1, MSTRG.222844.7, MSTRG.335777.1, MSTRG.334059.16, MSTRG.188947.6 and MSTRG.24344.3 as vital genes in ovary development by regulating CTNNB1, CCNA2, CDK2, CDC20, CDK1 and EGFR expressions. A total of 2903 mRNAs and 636 lncRNAs were differentially expressed in 3 and 8 months old ovaries of Hu sheep (H3 vs H8); and were predominantly enriched in PI3K-Akt, progesterone-mediated oocyte maturation, estrogen metabolism, ovulation from the ovarian follicle and oogenesis pathways. These lncRNAs were also found to regulate FGF7, PRLR, PTK2, AMH and INHBA expressions during follicular development. Our result indicates the identified genes participate in the development of the final stages of follicles and ovary development in Hu sheep.
Collapse
|
17
|
Li J, Qian WP, Sun QY. Cyclins regulating oocyte meiotic cell cycle progression†. Biol Reprod 2020; 101:878-881. [PMID: 31347666 PMCID: PMC6877757 DOI: 10.1093/biolre/ioz143] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/17/2019] [Accepted: 07/18/2019] [Indexed: 11/30/2022] Open
Abstract
Oocyte meiotic maturation is a vital and final process in oogenesis. Unlike somatic cells, the oocyte needs to undergo two continuous meiotic divisions (meiosis I and meiosis II) to become a haploid gamete. Notably, oocyte meiotic progression includes two rounds of unique meiotic arrest and resumption. The first arrest occurs at the G2 (germinal vesicle) stage and meiosis resumption is stimulated by a gonadotropin surge; the second arrest takes place at the metaphase II stage, the stage from which it is released when fertilization takes place. The maturation-promoting factor, which consists of cyclin B1 (CCNB1) and cyclin-dependent kinase 1 (CDK1), is responsible for regulating meiotic resumption and progression, while CDK1 is the unique CDK that acts as the catalytic subunit of maturation-promoting factor. Recent studies showed that except for cyclin B1, multiple cyclins interact with CDK1 to form complexes, which are involved in the regulation of meiotic progression at different stages. Here, we review and discuss the control of oocyte meiotic progression by cyclins A1, A2, B1, B2, B3, and O.
Collapse
Affiliation(s)
- Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Chotiner JY, Wolgemuth DJ, Wang PJ. Functions of cyclins and CDKs in mammalian gametogenesis†. Biol Reprod 2020; 101:591-601. [PMID: 31078132 DOI: 10.1093/biolre/ioz070] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Cyclins and cyclin-dependent kinases (CDKs) are key regulators of the cell cycle. Most of our understanding of their functions has been obtained from studies in single-cell organisms and mitotically proliferating cultured cells. In mammals, there are more than 20 cyclins and 20 CDKs. Although genetic ablation studies in mice have shown that most of these factors are dispensable for viability and fertility, uncovering their functional redundancy, CCNA2, CCNB1, and CDK1 are essential for embryonic development. Cyclin/CDK complexes are known to regulate both mitotic and meiotic cell cycles. While some mechanisms are common to both types of cell divisions, meiosis has unique characteristics and requirements. During meiosis, DNA replication is followed by two successive rounds of cell division. In addition, mammalian germ cells experience a prolonged prophase I in males or a long period of arrest in prophase I in females. Therefore, cyclins and CDKs may have functions in meiosis distinct from their mitotic functions and indeed, meiosis-specific cyclins, CCNA1 and CCNB3, have been identified. Here, we describe recent advances in the field of cyclins and CDKs with a focus on meiosis and early embryogenesis.
Collapse
Affiliation(s)
- Jessica Y Chotiner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Debra J Wolgemuth
- Department of Genetics & Development, Columbia University Medical Center, New York, New York, USA
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Tatour Y, Bar-Joseph H, Shalgi R, Ben-Yosef T. Male sterility and reduced female fertility in SCAPER-deficient mice. Hum Mol Genet 2020; 29:2240-2249. [PMID: 32510560 DOI: 10.1093/hmg/ddaa113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 11/12/2022] Open
Abstract
Mutations in S-phase cyclin A-associated protein in the endoplasmic reticulum (SCAPER) cause a recessively inherited multisystemic disorder whose main features are retinal degeneration and intellectual disability. SCAPER, originally identified as a cell cycle regulator, was also suggested to be a ciliary protein. Because Scaper mutant males are sterile, we set up to characterize their phenotype. The testes of Scaper mutant mice are significantly smaller than those of WT mice. Histology revealed no signs of spermatogenesis, and seminiferous tubules contained mainly Sertoli cells with a few spermatogonia/spermatogonial stem cells (SSCs). In WT testes, SCAPER is expressed by SSCs and in the various stages of spermatogenesis, as well as in Sertoli cells. In WT spermatozoa SCAPER is not expressed in the flagellum but rather in the head compartment, where it is found both in the nucleus and in the perinuclear region. Scaper mutant females present reduced fertility, manifested by a significantly smaller litter size compared to WT females. Mutant ovaries are similar in size but comprised of significantly less primordial and antral follicles, compared to WT ovaries, while the number of atretic follicles is significantly higher. In WT ovarian follicles SCAPER is expressed in the somatic granulosa cells as well as in the oocyte. In conclusion, our data demonstrate that SCAPER is a crucial component in both male and female reproductive systems. We hypothesize that the reproductive phenotype observed in Scaper mutant mice is rooted in SCAPER's interaction with cyclin A/Cdk2, which play an important role, however different, in male and female gonads.
Collapse
Affiliation(s)
- Yasmin Tatour
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Hadas Bar-Joseph
- The TMCR unit, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ruth Shalgi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
20
|
Al-Zubaidi U, Liu J, Cinar O, Robker RL, Adhikari D, Carroll J. The spatio-temporal dynamics of mitochondrial membrane potential during oocyte maturation. Mol Hum Reprod 2020; 25:695-705. [PMID: 31579926 PMCID: PMC6884418 DOI: 10.1093/molehr/gaz055] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/03/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are highly dynamic organelles and their distribution, structure and activity affect a wide range of cellular functions. Mitochondrial membrane potential (∆Ψm) is an indicator of mitochondrial activity and plays a major role in ATP production, redox balance, signaling and metabolism. Despite the absolute reliance of oocyte and early embryo development on mitochondrial function, there is little known about the spatial and temporal aspects of ΔΨm during oocyte maturation. The one exception is that previous findings using a ΔΨm indicator, JC-1, report that mitochondria in the cortex show a preferentially increased ΔΨm, relative to the rest of the cytoplasm. Using live-cell imaging and a new ratiometric approach for measuring ΔΨm in mouse oocytes, we find that ΔΨm increases through the time course of oocyte maturation and that mitochondria in the vicinity of the first meiotic spindle show an increase in ΔΨm, compared to other regions of the cytoplasm. We find no evidence for an elevated ΔΨm in the oocyte cortex. These findings suggest that mitochondrial activity is adaptive and responsive to the events of oocyte maturation at both a global and local level. In conclusion, we have provided a new approach to reliably measure ΔΨm that has shed new light onto the spatio-temporal regulation of mitochondrial function in oocytes and early embryos.
Collapse
Affiliation(s)
- Usama Al-Zubaidi
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Applied Embryology Department, High Institute for Infertility Diagnosis and Assisted Reproductive Technologies, AL-Nahrain University, Baghdad, Iraq
| | - Jun Liu
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ozgur Cinar
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Rebecca L Robker
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,School of Pediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Deepak Adhikari
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - John Carroll
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Ma F, Wang X, Chung SSW, Sicinski P, Shang E, Wolgemuth DJ. Cyclin A2 is essential for mouse gonocyte maturation. Cell Cycle 2020; 19:1654-1664. [PMID: 32420805 DOI: 10.1080/15384101.2020.1762314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In mammals, male gonocytes are derived from primordial germ cells during embryogenesis, enter a period of mitotic proliferation, and then become quiescent until birth. After birth, the gonocytes proliferate and migrate from the center of testicular cord toward the basement membrane to form the pool of spermatogonial stem cells (SSCs) and establish the SSC niche architecture. However, the molecular mechanisms underlying gonocyte proliferation, migration and differentiation are largely unknown. Cyclin A2 is a key component of the cell cycle and required for cell proliferation. Here, we show that cyclin A2 is required in mouse male gonocyte development and the establishment of spermatogenesis in the neonatal testis. Loss of cyclin A2 function in embryonic gonocytes by targeted gene disruption affected the regulation of the male gonocytes to SSC transition, resulting in the disruption of SSC pool formation, imbalance between SSC self-renewal and differentiation, and severely abnormal spermatogenesis in the adult testis.
Collapse
Affiliation(s)
- Fanhua Ma
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, College of Animal Science, Huazhong Agricultural University , Wuhan, Hubei, China.,Department of Genetics & Development, Columbia University Medical Center , New York, NY, USA
| | - Xiangyuan Wang
- Department of Genetics & Development, Columbia University Medical Center , New York, NY, USA
| | - Sanny S W Chung
- Department of Genetics & Development, Columbia University Medical Center , New York, NY, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute , Boston, MA, USA
| | - Enyuan Shang
- Department of Biological Sciences, Bronx Community College, City University of New York , New York, NY, USA
| | - Debra J Wolgemuth
- Department of Genetics & Development, Columbia University Medical Center , New York, NY, USA.,Institute of Human Nutrition, Columbia University Medical Center , New York, NY, USA
| |
Collapse
|
22
|
Cyclin A1 in Oocytes Prevents Chromosome Segregation And Anaphase Entry. Sci Rep 2020; 10:7455. [PMID: 32366979 PMCID: PMC7198627 DOI: 10.1038/s41598-020-64418-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/13/2020] [Indexed: 11/08/2022] Open
Abstract
In several species, including Xenopus, mouse and human, two members of cyclin A family were identified. Cyclin A2, which is ubiquitously expressed in dividing cells and plays role in DNA replication, entry into mitosis and spindle assembly, and cyclin A1, whose function is less clear and which is expressed in spermatocytes, leukemia cells and in postmitotic multiciliated cells. Deletion of the gene showed that cyclin A1 is essential for male meiosis, but nonessential for female meiosis. Our results revealed, that the cyclin A1 is not only dispensable in oocytes, we show here that its expression is in fact undesirable in these cells. Our data demonstrate that the APC/C and proteasome in oocytes are unable to target sufficiently cyclin A1 before anaphase, which leads into anaphase arrest and direct inhibition of separase. The cyclin A1-induced cell cycle arrest is oocyte-specific and the presence of cyclin A1 in early embryos has no effect on cell cycle progression or chromosome division. Cyclin A1 is therefore not only an important cell cycle regulator with biased expression in germline, being essential for male and damaging for female meiosis, its persistent expression during anaphase in oocytes shows fundamental differences between APC/C function in oocytes and in early embryos.
Collapse
|
23
|
Li J, Dong F, Ouyang YC, Sun QY, Qian WP. Overexpression of cyclin A1 promotes meiotic resumption but induces premature chromosome separation in mouse oocyte. J Cell Physiol 2020; 235:7136-7145. [PMID: 32030765 DOI: 10.1002/jcp.29612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/22/2020] [Indexed: 01/29/2023]
Abstract
Mammalian cyclin A1 is prominently expressed in testis and essential for meiosis in the male mouse, however, it shows weak expression in ovary, especially during oocyte maturation. To understand why cyclin A1 behaves in this way in the oocyte, we investigated the effect of cyclin A1 overexpression on mouse oocyte meiotic maturation. Our results revealed that cyclin A1 overexpression triggered meiotic resumption even in the presence of germinal vesicle breakdown inhibitor, milrinone. Nevertheless, the cyclin A1-overexpressed oocytes failed to extrude the first polar body but were completely arrested at metaphase I. Consequently, cyclin A1 overexpression destroyed the spindle morphology and chromosome alignment by inducing premature separation of chromosomes and sister chromatids. Therefore, cyclin A1 overexpression will prevent oocyte maturation although it can promote meiotic resumption. All these results show that decreased expression of cyclin A1 in oocytes may have an evolutional significance to keep long-lasting prophase arrest and orderly chromosome separation during oocyte meiotic maturation.
Collapse
Affiliation(s)
- Jian Li
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
24
|
Paim LMG, FitzHarris G. Tetraploidy causes chromosomal instability in acentriolar mouse embryos. Nat Commun 2019; 10:4834. [PMID: 31645568 PMCID: PMC6811537 DOI: 10.1038/s41467-019-12772-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/20/2019] [Indexed: 11/16/2022] Open
Abstract
Tetraploidisation is considered a common event in the evolution of chromosomal instability (CIN) in cancer cells. The current model for how tetraploidy drives CIN in mammalian cells is that a doubling of the number of centrioles that accompany the genome doubling event leads to multipolar spindle formation and chromosome segregation errors. By exploiting the unusual scenario of mouse blastomeres, which lack centrioles until the ~64-cell stage, we show that tetraploidy can drive CIN by an entirely distinct mechanism. Tetraploid blastomeres assemble bipolar spindles dictated by microtubule organising centres, and multipolar spindles are rare. Rather, kinetochore-microtubule turnover is altered, leading to microtubule attachment defects and anaphase chromosome segregation errors. The resulting blastomeres become chromosomally unstable and exhibit a dramatic increase in whole chromosome aneuploidies. Our results thus reveal an unexpected mechanism by which tetraploidy drives CIN, in which the acquisition of chromosomally-unstable microtubule dynamics contributes to chromosome segregation errors following tetraploidisation.
Collapse
Affiliation(s)
- Lia Mara Gomes Paim
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, H2X 0A9, Montreal, QC, Canada
| | - Greg FitzHarris
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, H2X 0A9, Montreal, QC, Canada.
- Département d'Obstétrique-Gynécologie, Université de Montréal, H3T 1C5, Montreal, QC, Canada.
| |
Collapse
|
25
|
Abstract
Chromosome segregation errors in human oocytes lead to aneuploid embryos that cause infertility and birth defects. Here we provide an overview of the chromosome-segregation process in the mammalian oocyte, highlighting mechanistic differences between oocytes and somatic cells that render oocytes so prone to segregation error. These differences include the extremely large size of the oocyte cytoplasm, the unique geometry of meiosis-I chromosomes, idiosyncratic function of the spindle assembly checkpoint, and dramatically altered oocyte cell-cycle control and spindle assembly, as compared to typical somatic cells. We summarise recent work suggesting that aging leads to a further deterioration in fidelity of chromosome segregation by impacting multiple components of the chromosome-segregation machinery. In addition, we compare and contrast recent results from mouse and human oocytes, which exhibit overlapping defects to differing extents. We conclude that the striking propensity of the oocyte to mis-segregate chromosomes reflects the unique challenges faced by the spindle in a highly unusual cellular environment.
Collapse
Affiliation(s)
- Aleksandar I Mihajlović
- Centre Recherche CHUM and Department OBGYN, Université de Montreal, Montreal, Quebec, Canada
| | - Greg FitzHarris
- Centre Recherche CHUM and Department OBGYN, Université de Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
26
|
Kouznetsova A, Kitajima TS, Brismar H, Höög C. Post-metaphase correction of aberrant kinetochore-microtubule attachments in mammalian eggs. EMBO Rep 2019; 20:e47905. [PMID: 31290587 PMCID: PMC6680117 DOI: 10.15252/embr.201947905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/24/2019] [Accepted: 06/07/2019] [Indexed: 12/29/2022] Open
Abstract
The accuracy of the two sequential meiotic divisions in oocytes is essential for creating a haploid gamete with a normal chromosomal content. Here, we have analysed the 3D dynamics of chromosomes during the second meiotic division in live mouse oocytes. We find that chromosomes form stable kinetochore-microtubule attachments at the end of prometaphase II stage that are retained until anaphase II onset. Remarkably, we observe that more than 20% of the kinetochore-microtubule attachments at the metaphase II stage are merotelic or lateral. However, < 1% of all chromosomes at onset of anaphase II are found to lag at the spindle equator and < 10% of the laggards missegregate and give rise to aneuploid gametes. Our results demonstrate that aberrant kinetochore-microtubule attachments are not corrected at the metaphase stage of the second meiotic division. Thus, the accuracy of the chromosome segregation process in mouse oocytes during meiosis II is ensured by an efficient correction process acting at the anaphase stage.
Collapse
Affiliation(s)
- Anna Kouznetsova
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Tomoya S Kitajima
- Laboratory for Chromosome SegregationRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Hjalmar Brismar
- Science for Life LaboratoryDepartment of Applied PhysicsRoyal Institute of TechnologySolnaSweden
| | - Christer Höög
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
27
|
Cai Y, Mei J, Xiao Z, Xu B, Jiang X, Zhang Y, Zhu Y. Identification of five hub genes as monitoring biomarkers for breast cancer metastasis in silico. Hereditas 2019; 156:20. [PMID: 31285741 PMCID: PMC6588910 DOI: 10.1186/s41065-019-0096-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breast cancer is one of the most common endocrine cancers among females worldwide. Distant metastasis of breast cancer is causing an increasing number of breast cancer-related deaths. However, the potential mechanisms of metastasis and candidate biomarkers remain to be further explored. RESULTS The gene expression profiles of GSE102484 were downloaded from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was used to screen for the most potent gene modules associated with the metastatic risk of breast cancer, and a total of 12 modules were identified based on the analysis. In the most significant module (R2 = 0.68), 21 network hub genes (MM > 0.90) were retained for further analyses. Next, protein-protein interaction (PPI) networks were used to further explore the biomarkers with the most interactions in gene modules. According to the PPI networks, five hub genes (TPX2, KIF2C, CDCA8, BUB1B, and CCNA2) were identified as key genes associated with breast cancer progression. Furthermore, the prognostic value and differential expression of these genes were validated based on data from The Cancer Genome Atlas (TCGA) and Kaplan-Meier (KM) Plotter. Receiver operating characteristic (ROC) curve analysis revealed that the mRNA expression levels of these five hub genes showed excellent diagnostic value for breast cancer and adjacent tissues. Moreover, these five hub genes were significantly associated with worse distant metastasis-free survival (DMFS) in the patient cohort based on KM Plotter. CONCLUSION Five hub genes (TPX2, KIF2C, CDCA8, BUB1B, and CCNA2) associated with the risk of distant metastasis were extracted for further research, which might be used as biomarkers to predict distant metastasis of breast cancer.
Collapse
Affiliation(s)
- Yun Cai
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, 211166 China
| | - Jie Mei
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
| | - Zhuang Xiao
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
| | - Bujie Xu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
| | - Xiaozheng Jiang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
| | - Yongjie Zhang
- Department of Human Anatomy, Nanjing Medical University, Nanjing, 211166 China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, Nanjing, 211166 China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
28
|
Karasu ME, Bouftas N, Keeney S, Wassmann K. Cyclin B3 promotes anaphase I onset in oocyte meiosis. J Cell Biol 2019; 218:1265-1281. [PMID: 30723090 PMCID: PMC6446836 DOI: 10.1083/jcb.201808091] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Cyclins control the switch-like cell cycle transitions that orchestrate orderly duplication and segregation of genomes. Karasu et al. delineate an essential function for mouse cyclin B3 for anaphase onset in the first meiotic division of oocytes. Meiosis poses unique challenges because two rounds of chromosome segregation must be executed without intervening DNA replication. Mammalian cells express numerous temporally regulated cyclins, but how these proteins collaborate to control meiosis remains poorly understood. Here, we show that female mice genetically ablated for cyclin B3 are viable—indicating that the protein is dispensable for mitotic divisions—but are sterile. Mutant oocytes appear normal until metaphase I but then display a highly penetrant failure to transition to anaphase I. They arrest with hallmarks of defective anaphase-promoting complex/cyclosome (APC/C) activation, including no separase activity, high CDK1 activity, and high cyclin B1 and securin levels. Partial APC/C activation occurs, however, as exogenously expressed APC/C substrates can be degraded. Cyclin B3 forms active kinase complexes with CDK1, and meiotic progression requires cyclin B3–associated kinase activity. Cyclin B3 homologues from frog, zebrafish, and fruit fly rescue meiotic progression in cyclin B3–deficient mouse oocytes, indicating conservation of the biochemical properties and possibly cellular functions of this germline-critical cyclin.
Collapse
Affiliation(s)
- Mehmet E Karasu
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY.,Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Nora Bouftas
- Institut de Biologie Paris Seine, Sorbonne Université, Paris, France.,Developmental Biology Lab, Sorbonne Université, Centre National de la Recherche Scientifique UMR7622, Paris, France
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY .,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY.,Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Katja Wassmann
- Institut de Biologie Paris Seine, Sorbonne Université, Paris, France .,Developmental Biology Lab, Sorbonne Université, Centre National de la Recherche Scientifique UMR7622, Paris, France
| |
Collapse
|
29
|
Xu L, Li T, Ding W, Cao Y, Ge X, Wang Y. Combined seven miRNAs for early hepatocellular carcinoma detection with chronic low-dose exposure to microcystin-LR in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:271-281. [PMID: 29438936 DOI: 10.1016/j.scitotenv.2018.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Aberrant miRNA expression has been detected in various tumor tissues, which may be considered as a marker for early cancer diagnosis. One miRNA has multiple downstream target genes, which can be regulated by multiple upstream other miRNAs. Hence, this dynamic regulation is likely characterized by volatility, and thus, finding the appropriate time point for tests becomes essential for the use of miRNAs as an early marker of tumor diagnosis. In this study, we established a chronic liver cancer progression model in mice by using low doses of the harmful substance microcystin-LR (MC-LR). On the basis of miRNAs microarray assay, we further tested seven miRNAs that showed characteristic expression changes in pre-hepatocarcinogenesis. Our results showed that the levels of four miRNAs (miR-122-5p, miR-125-5p, miR-199a-5p, and miR-503-5p) decreased dramatically, whereas those of two miRNAs (miR-222-5p and miR-590-5p) increased significantly in the early stages, which were all accompanied by an increase in atypia of hepatocytes. MiR-490-5p was a sensitive molecular, suitable only for evaluation of pathological changes in young mice. Therefore the combination the seven of miRNAs for a set may prove to be an effective method in healthy assessment of environmental toxicants for detection of hepatocarcinogenesis caused by hazardous materials.
Collapse
Affiliation(s)
- Lizhi Xu
- Basic Medical Education Center, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, People's Republic of China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, People's Republic of China.
| | - Tianfeng Li
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, People's Republic of China; Center for Reproductive Medicine, The Affiliated Shenzhen City Maternity and Child Healthcare Hospital of Southern Medical University, Shenzhen, Guangdong 518017, People's Republic of China
| | - Weidong Ding
- Basic Medical Education Center, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, People's Republic of China
| | - Yu Cao
- Basic Medical Education Center, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, People's Republic of China
| | - Xiaolong Ge
- Basic Medical Education Center, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, People's Republic of China
| | - Yaping Wang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, People's Republic of China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, People's Republic of China
| |
Collapse
|
30
|
Dumitru AMG, Rusin SF, Clark AEM, Kettenbach AN, Compton DA. Cyclin A/Cdk1 modulates Plk1 activity in prometaphase to regulate kinetochore-microtubule attachment stability. eLife 2017; 6:e29303. [PMID: 29154753 PMCID: PMC5706962 DOI: 10.7554/elife.29303] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022] Open
Abstract
The fidelity of chromosome segregation in mitosis is safeguarded by the precise regulation of kinetochore microtubule (k-MT) attachment stability. Previously, we demonstrated that Cyclin A/Cdk1 destabilizes k-MT attachments to promote faithful chromosome segregation. Here, we use quantitative phosphoproteomics to identify 156 Cyclin A/Cdk1 substrates in prometaphase. One Cyclin A/Cdk1 substrate is myosin phosphatase targeting subunit 1 (MYPT1), and we show that MYPT1 localization to kinetochores depends on Cyclin A/Cdk1 activity and that MYPT1 destabilizes k-MT attachments by negatively regulating Plk1 at kinetochores. Thus, Cyclin A/Cdk1 phosphorylation primes MYPT1 for Plk1 binding. Interestingly, priming of PBIP1 by Plk1 itself (self-priming) increased in MYPT1-depleted cells showing that MYPT1 provides a molecular link between the processes of Cdk1-dependent priming and self-priming of Plk1 substrates. These data demonstrate cross-regulation between Cyclin A/Cdk1-dependent and Plk1-dependent phosphorylation of substrates during mitosis to ensure efficient correction of k-MT attachment errors necessary for high mitotic fidelity.
Collapse
Affiliation(s)
- Ana Maria G Dumitru
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Scott F Rusin
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Amber E M Clark
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Duane A Compton
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| |
Collapse
|