1
|
King SM. Inherently disordered regions of axonemal dynein assembly factors. Cytoskeleton (Hoboken) 2024; 81:515-528. [PMID: 37712517 PMCID: PMC10940205 DOI: 10.1002/cm.21789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The dynein-driven beating of cilia is required to move individual cells and to generate fluid flow across surfaces and within cavities. These motor enzymes are highly complex and can contain upwards of 20 different protein components with a total mass approaching 2 MDa. The dynein heavy chains are enormous proteins consisting of ~4500 residues and ribosomes take approximately 15 min to synthesize one. Studies in a broad array of organisms ranging from the green alga Chlamydomonas to humans has identified 19 cytosolic factors (DNAAFs) that are needed to specifically build axonemal dyneins; defects in many of these proteins lead to primary ciliary dyskinesia in mammals which can result in infertility, severe bronchial problems, and situs inversus. How all these factors cooperate in a spatially and temporally regulated manner to promote dynein assembly in cytoplasm remains very uncertain. These DNAAFs contain a variety of well-folded domains many of which provide protein interaction surfaces. However, many also exhibit large regions that are predicted to be inherently disordered. Here I discuss the nature of these unstructured segments, their predicted propensity for driving protein phase separation, and their potential for adopting more defined conformations during the dynein assembly process.
Collapse
Affiliation(s)
- Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Mao YQ, Seraphim TV, Wan Y, Wu R, Coyaud E, Bin Munim M, Mollica A, Laurent E, Babu M, Mennella V, Raught B, Houry WA. DPCD is a regulator of R2TP in ciliogenesis initiation through Akt signaling. Cell Rep 2024; 43:113713. [PMID: 38306274 DOI: 10.1016/j.celrep.2024.113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/31/2023] [Accepted: 01/12/2024] [Indexed: 02/04/2024] Open
Abstract
R2TP is a chaperone complex consisting of the AAA+ ATPases RUVBL1 and RUVBL2, as well as RPAP3 and PIH1D1 proteins. R2TP is responsible for the assembly of macromolecular complexes mainly acting through different adaptors. Using proximity-labeling mass spectrometry, we identified deleted in primary ciliary dyskinesia (DPCD) as an adaptor of R2TP. Here, we demonstrate that R2TP-DPCD influences ciliogenesis initiation through a unique mechanism by interaction with Akt kinase to regulate its phosphorylation levels rather than its stability. We further show that DPCD is a heart-shaped monomeric protein with two domains. A highly conserved region in the cysteine- and histidine-rich domains-containing proteins and SGT1 (CS) domain of DPCD interacts with the RUVBL2 DII domain with high affinity to form a stable R2TP-DPCD complex both in cellulo and in vitro. Considering that DPCD is one among several CS-domain-containing proteins found to associate with RUVBL1/2, we propose that RUVBL1/2 are CS-domain-binding proteins that regulate complex assembly and downstream signaling.
Collapse
Affiliation(s)
- Yu-Qian Mao
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Thiago V Seraphim
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Yimei Wan
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Ruikai Wu
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Muhammad Bin Munim
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Antonio Mollica
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Estelle Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mohan Babu
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Vito Mennella
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; MRC Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QR, UK; Department of Pathology, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QP, UK
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
3
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
4
|
Sakato-Antoku M, Balsbaugh JL, King SM. N-Terminal Processing and Modification of Ciliary Dyneins. Cells 2023; 12:2492. [PMID: 37887336 PMCID: PMC10605206 DOI: 10.3390/cells12202492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Axonemal dyneins are highly complex microtubule motors that power ciliary motility. These multi-subunit enzymes are assembled at dedicated sites within the cytoplasm. At least nineteen cytosolic factors are specifically needed to generate dynein holoenzymes and/or for their trafficking to the growing cilium. Many proteins are subject to N-terminal processing and acetylation, which can generate degrons subject to the AcN-end rule, alter N-terminal electrostatics, generate new binding interfaces, and affect subunit stoichiometry through targeted degradation. Here, we have used mass spectrometry of cilia samples and electrophoretically purified dynein heavy chains from Chlamydomonas to define their N-terminal processing; we also detail the N-terminal acetylase complexes present in this organism. We identify four classes of dynein heavy chain based on their processing pathways by two distinct acetylases, one of which is dependent on methionine aminopeptidase activity. In addition, we find that one component of both the outer dynein arm intermediate/light chain subcomplex and the docking complex is processed to yield an unmodified Pro residue, which may provide a setpoint to direct the cytosolic stoichiometry of other dynein complex subunits that contain N-terminal degrons. Thus, we identify and describe an additional level of processing and complexity in the pathways leading to axonemal dynein formation in cytoplasm.
Collapse
Affiliation(s)
- Miho Sakato-Antoku
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA;
| | - Jeremy L. Balsbaugh
- Proteomics and Metabolomics Facility, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269, USA;
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA;
| |
Collapse
|
5
|
Prozzillo Y, Fattorini G, Ferreri D, Leo M, Dimitri P, Messina G. Knockdown of DOM/Tip60 Complex Subunits Impairs Male Meiosis of Drosophila melanogaster. Cells 2023; 12:1348. [PMID: 37408183 DOI: 10.3390/cells12101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 07/07/2023] Open
Abstract
ATP-dependent chromatin remodeling complexes are involved in nucleosome sliding and eviction and/or the incorporation of histone variants into chromatin to facilitate several cellular and biological processes, including DNA transcription, replication and repair. The DOM/TIP60 chromatin remodeling complex of Drosophila melanogaster contains 18 subunits, including the DOMINO (DOM), an ATPase that catalyzes the exchange of the canonical H2A with its variant (H2A.V), and TIP60, a lysine-acetyltransferase that acetylates H4, H2A and H2A.V histones. In recent decades, experimental evidence has shown that ATP-dependent chromatin remodeling factors, in addition to their role in chromatin organization, have a functional relevance in cell division. In particular, emerging studies suggested the direct roles of ATP-dependent chromatin remodeling complex subunits in controlling mitosis and cytokinesis in both humans and D. melanogaster. However, little is known about their possible involvement during meiosis. The results of this work show that the knockdown of 12 of DOM/TIP60 complex subunits generates cell division defects that, in turn, cause total/partial sterility in Drosophila males, providing new insights into the functions of chromatin remodelers in cell division control during gametogenesis.
Collapse
Affiliation(s)
- Yuri Prozzillo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Gaia Fattorini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM), Consiglio Nazionale delle Ricerche (CNR), Sapienza University of Rome, 00185 Rome, Italy
| | - Diego Ferreri
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Manuela Leo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Patrizio Dimitri
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Giovanni Messina
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Fondazione Cenci-Bolognetti, 00161 Rome, Italy
- Department of Biotechnology and Biosciences, Milano-Bicocca University, 20126 Milan, Italy
| |
Collapse
|
6
|
Rabiasz A, Ziętkiewicz E. Schmidtea mediterranea as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies. Int J Mol Sci 2023; 24:ijms24054472. [PMID: 36901899 PMCID: PMC10002865 DOI: 10.3390/ijms24054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles that form protrusions on the surface of many growth-arrested or differentiated eukaryotic cells. Due to the structural and functional differences, cilia can be roughly classified as motile and non-motile (primary). Genetically determined dysfunction of motile cilia is the basis of primary ciliary dyskinesia (PCD), a heterogeneous ciliopathy affecting respiratory airways, fertility, and laterality. In the face of the still incomplete knowledge of PCD genetics and phenotype-genotype relations in PCD and the spectrum of PCD-like diseases, a continuous search for new causative genes is required. The use of model organisms has been a great part of the advances in understanding molecular mechanisms and the genetic basis of human diseases; the PCD spectrum is not different in this respect. The planarian model (Schmidtea mediterranea) has been intensely used to study regeneration processes, and-in the context of cilia-their evolution, assembly, and role in cell signaling. However, relatively little attention has been paid to the use of this simple and accessible model for studying the genetics of PCD and related diseases. The recent rapid development of the available planarian databases with detailed genomic and functional annotations prompted us to review the potential of the S. mediterranea model for studying human motile ciliopathies.
Collapse
|
7
|
Requena T, Keder A, zur Lage P, Albert JT, Jarman AP. A Drosophila model for Meniere's disease: Dystrobrevin is required for support cell function in hearing and proprioception. Front Cell Dev Biol 2022; 10:1015651. [PMID: 36438562 PMCID: PMC9688402 DOI: 10.3389/fcell.2022.1015651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/27/2022] [Indexed: 08/04/2023] Open
Abstract
Meniere's disease (MD) is an inner ear disorder characterised by recurrent vertigo attacks associated with sensorineural hearing loss and tinnitus. Evidence from epidemiology and Whole Exome Sequencing (WES) suggests a genetic susceptibility involving multiple genes, including α-Dystrobrevin (DTNA). Here we investigate a Drosophila model. We show that mutation, or knockdown, of the DTNA orthologue in Drosophila, Dystrobrevin (Dyb), results in defective proprioception and impaired function of Johnston's Organ (JO), the fly's equivalent of the inner ear. Dyb and another component of the dystrophin-glycoprotein complex (DGC), Dystrophin (Dys), are expressed in support cells within JO. Their specific locations suggest that they form part of support cell contacts, thereby helping to maintain the integrity of the hemolymph-neuron diffusion barrier, which is equivalent to a blood-brain barrier. These results have important implications for the human condition, and notably, we note that DTNA is expressed in equivalent cells of the mammalian inner ear.
Collapse
Affiliation(s)
- T. Requena
- Biomedical Sciences: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Division of Functional Genetics and Development, The Royal Dick School of Veterinary Sciences, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - A. Keder
- Ear Institute, University College London, London, United Kingdom
| | - P. zur Lage
- Biomedical Sciences: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - J. T. Albert
- Ear Institute, University College London, London, United Kingdom
| | - A. P. Jarman
- Biomedical Sciences: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Xiang W, Zur Lage P, Newton FG, Qiu G, Jarman AP. The dynamics of protein localisation to restricted zones within Drosophila mechanosensory cilia. Sci Rep 2022; 12:13338. [PMID: 35922464 PMCID: PMC9349282 DOI: 10.1038/s41598-022-17189-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
The Drosophila chordotonal neuron cilium is the site of mechanosensory transduction. The cilium has a 9 + 0 axoneme structure and is highly sub-compartmentalised, with proximal and distal zones harbouring different TRP channels and the proximal zone axoneme also being decorated with axonemal dynein motor complexes. The activity of the dynein complexes is essential for mechanotransduction. We investigate the localisation of TRP channels and dynein motor complexes during ciliogenesis. Differences in timing of TRP channel localisation correlate with order of construction of the two ciliary zones. Dynein motor complexes are initially not confined to their target proximal zone, but ectopic complexes beyond the proximal zone are later cleared, perhaps by retrograde transport. Differences in transient distal localisation of outer and inner dynein arm complexes (ODAs and IDAs) are consistent with previous suggestions from unicellular eukaryotes of differences in processivity during intraflagellar transport. Stable localisation depends on the targeting of their docking proteins in the proximal zone. For ODA, we characterise an ODA docking complex (ODA-DC) that is targeted directly to the proximal zone. Interestingly, the subunit composition of the ODA-DC in chordotonal neuron cilia appears to be different from the predicted ODA-DC in Drosophila sperm.
Collapse
Affiliation(s)
- Wangchu Xiang
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Department of Neurobiology, Harvard Medical School, Boston, MA, 02215, USA
| | - Petra Zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Fay G Newton
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Guiyun Qiu
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
9
|
Wang L, Li X, Liu G, Pan J. FBB18 participates in preassembly of almost all axonemal dyneins independent of R2TP complex. PLoS Genet 2022; 18:e1010374. [PMID: 36026524 PMCID: PMC9455862 DOI: 10.1371/journal.pgen.1010374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/08/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
Assembly of dynein arms requires cytoplasmic processes which are mediated by dynein preassembly factors (DNAAFs). CFAP298, which is conserved in organisms with motile cilia, is required for assembly of dynein arms but with obscure mechanisms. Here, we show that FBB18, a Chlamydomonas homologue of CFAP298, localizes to the cytoplasm and functions in folding/stabilization of almost all axonemal dyneins at the early steps of dynein preassembly. Mutation of FBB18 causes no or short cilia accompanied with partial loss of both outer and inner dynein arms. Comparative proteomics using 15N labeling suggests partial degradation of almost all axonemal dynein heavy chains (DHCs). A mutant mimicking a patient variant induces particular loss of DHCα. FBB18 associates with 9 DNAAFs and 14 out of 15 dynein HCs but not with IC1/IC2. FBB18 interacts with RuvBL1/2, components of the HSP90 co-chaperone R2TP complex but not the holo-R2TP complex. Further analysis suggests simultaneous formation of multiple DNAAF complexes involves dynein folding/stability and thus provides new insights into axonemal dynein preassembly.
Collapse
Affiliation(s)
- Limei Wang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuecheng Li
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Guang Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China
| |
Collapse
|
10
|
The Role of Hsp90-R2TP in Macromolecular Complex Assembly and Stabilization. Biomolecules 2022; 12:biom12081045. [PMID: 36008939 PMCID: PMC9406135 DOI: 10.3390/biom12081045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Hsp90 is a ubiquitous molecular chaperone involved in many cell signaling pathways, and its interactions with specific chaperones and cochaperones determines which client proteins to fold. Hsp90 has been shown to be involved in the promotion and maintenance of proper protein complex assembly either alone or in association with other chaperones such as the R2TP chaperone complex. Hsp90-R2TP acts through several mechanisms, such as by controlling the transcription of protein complex subunits, stabilizing protein subcomplexes before their incorporation into the entire complex, and by recruiting adaptors that facilitate complex assembly. Despite its many roles in protein complex assembly, detailed mechanisms of how Hsp90-R2TP assembles protein complexes have yet to be determined, with most findings restricted to proteomic analyses and in vitro interactions. This review will discuss our current understanding of the function of Hsp90-R2TP in the assembly, stabilization, and activity of the following seven classes of protein complexes: L7Ae snoRNPs, spliceosome snRNPs, RNA polymerases, PIKKs, MRN, TSC, and axonemal dynein arms.
Collapse
|
11
|
Dos Santos Morais R, Santo PE, Ley M, Schelcher C, Abel Y, Plassart L, Deslignière E, Chagot ME, Quinternet M, Paiva ACF, Hessmann S, Morellet N, M F Sousa P, Vandermoere F, Bertrand E, Charpentier B, Bandeiras TM, Plisson-Chastang C, Verheggen C, Cianférani S, Manival X. Deciphering cellular and molecular determinants of human DPCD protein in complex with RUVBL1/RUVBL2 AAA-ATPases. J Mol Biol 2022; 434:167760. [PMID: 35901867 DOI: 10.1016/j.jmb.2022.167760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
DPCD is a protein that may play a role in cilia formation and whose absence leads to primary ciliary dyskinesia (PCD), a rare disease caused by impairment of ciliated cells. Except for high-throughput studies that identified DPCD as a possible RUVBL1 (R1) and RUVBL2 (R2) partner, no in-depth cellular, biochemical, and structural investigation involving DPCD have been reported so far. R1 and R2 proteins are ubiquitous highly conserved AAA+ family ATPases that assemble and mature a plethora of macromolecular complexes and are pivotal in numerous cellular processes, especially by guaranteeing a co-chaperoning function within R2TP or R2TP-like machineries. In the present study, we identified DPCD as a new R1R2 partner in vivo. We show that DPCD interacts directly with R1 and R2 in vitro and in cells. We characterized the physico-chemical properties of DPCD in solution and built a 3D model of DPCD. In addition, we used a variety of orthogonal biophysical techniques including small-angle X-ray scattering, structural mass spectrometry and electron microscopy to assess the molecular determinants of DPCD interaction with R1R2. Interestingly, DPCD disrupts the dodecameric state of R1R2 complex upon binding and this interaction occurs mainly via the DII domains of R1R2.
Collapse
Affiliation(s)
| | - Paulo E Santo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marie Ley
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg 67000, France; Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | | | - Yoann Abel
- IGH, CNRS, Univ Montpellier, Montpellier, France; Equipe labélisée Ligue Nationale Contre le Cancer, 34293 Montpellier, France
| | - Laura Plassart
- MCD, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Evolène Deslignière
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg 67000, France; Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | | | - Marc Quinternet
- Université de Lorraine, CNRS, INSERM, IBSLor, Biophysics and Structural Biology Core Facility, F-54000, France
| | - Ana C F Paiva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg 67000, France; Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Nelly Morellet
- Très Grandes Infrastructures de Recherche, Institut de Chimie des Substances Naturelles - CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Pedro M F Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | - Edouard Bertrand
- IGH, CNRS, Univ Montpellier, Montpellier, France; Equipe labélisée Ligue Nationale Contre le Cancer, 34293 Montpellier, France
| | | | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Célia Plisson-Chastang
- MCD, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Céline Verheggen
- IGH, CNRS, Univ Montpellier, Montpellier, France; Equipe labélisée Ligue Nationale Contre le Cancer, 34293 Montpellier, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg 67000, France; Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Xavier Manival
- IMoPA, CNRS, Université de Lorraine, Nancy F-54000, France
| |
Collapse
|
12
|
Lennon J, zur Lage P, von Kriegsheim A, Jarman AP. Strongly Truncated Dnaaf4 Plays a Conserved Role in Drosophila Ciliary Dynein Assembly as Part of an R2TP-Like Co-Chaperone Complex With Dnaaf6. Front Genet 2022; 13:943197. [PMID: 35873488 PMCID: PMC9298768 DOI: 10.3389/fgene.2022.943197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
Axonemal dynein motors are large multi-subunit complexes that drive ciliary movement. Cytoplasmic assembly of these motor complexes involves several co-chaperones, some of which are related to the R2TP co-chaperone complex. Mutations of these genes in humans cause the motile ciliopathy, Primary Ciliary Dyskinesia (PCD), but their different roles are not completely known. Two such dynein (axonemal) assembly factors (DNAAFs) that are thought to function together in an R2TP-like complex are DNAAF4 (DYX1C1) and DNAAF6 (PIH1D3). Here we investigate the Drosophila homologues, CG14921/Dnaaf4 and CG5048/Dnaaf6. Surprisingly, Drosophila Dnaaf4 is truncated such that it completely lacks a TPR domain, which in human DNAAF4 is likely required to recruit HSP90. Despite this, we provide evidence that Drosophila Dnaaf4 and Dnaaf6 proteins can associate in an R2TP-like complex that has a conserved role in dynein assembly. Both are specifically expressed and required during the development of the two Drosophila cell types with motile cilia: mechanosensory chordotonal neurons and sperm. Flies that lack Dnaaf4 or Dnaaf6 genes are viable but with impaired chordotonal neuron function and lack motile sperm. We provide molecular evidence that Dnaaf4 and Dnaaf6 are required for assembly of outer dynein arms (ODAs) and a subset of inner dynein arms (IDAs).
Collapse
Affiliation(s)
- Jennifer Lennon
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Petra zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P. Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Smith AJ, Bustamante-Marin XM, Yin W, Sears PR, Herring LE, Dicheva NN, López-Giráldez F, Mane S, Tarran R, Leigh MW, Knowles MR, Zariwala MA, Ostrowski LE. The role of SPAG1 in the assembly of axonemal dyneins in human airway epithelia. J Cell Sci 2022; 135:jcs259512. [PMID: 35178554 PMCID: PMC8995097 DOI: 10.1242/jcs.259512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Mutations in SPAG1, a dynein axonemal assembly factor (DNAAF) that facilitates the assembly of dynein arms in the cytoplasm before their transport into the cilium, result in primary ciliary dyskinesia (PCD), a genetically heterogenous disorder characterized by chronic oto-sino-pulmonary disease, infertility and laterality defects. To further elucidate the role of SPAG1 in dynein assembly, we examined its expression, interactions and ciliary defects in control and PCD human airway epithelia. Immunoprecipitations showed that SPAG1 interacts with multiple DNAAFs, dynein chains and canonical components of the R2TP complex. Protein levels of dynein heavy chains (DHCs) and interactions between DHCs and dynein intermediate chains (DICs) were reduced in SPAG1 mutants. We also identified a previously uncharacterized 60 kDa SPAG1 isoform, through examination of PCD subjects with an atypical ultrastructural defect for SPAG1 variants, that can partially compensate for the absence of full-length SPAG1 to assemble a reduced number of outer dynein arms. In summary, our data show that SPAG1 is necessary for axonemal dynein arm assembly by scaffolding R2TP-like complexes composed of several DNAAFs that facilitate the folding and/or binding of the DHCs to the DIC complex.
Collapse
Affiliation(s)
- Amanda J. Smith
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ximena M. Bustamante-Marin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weining Yin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick R. Sears
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nedyalka N. Dicheva
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06520, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Margaret W. Leigh
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael R. Knowles
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maimoona A. Zariwala
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lawrence E. Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Braschi B, Omran H, Witman GB, Pazour GJ, Pfister KK, Bruford EA, King SM. Consensus nomenclature for dyneins and associated assembly factors. J Cell Biol 2022; 221:e202109014. [PMID: 35006274 PMCID: PMC8754002 DOI: 10.1083/jcb.202109014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Dyneins are highly complex, multicomponent, microtubule-based molecular motors. These enzymes are responsible for numerous motile behaviors in cytoplasm, mediate retrograde intraflagellar transport (IFT), and power ciliary and flagellar motility. Variants in multiple genes encoding dyneins, outer dynein arm (ODA) docking complex subunits, and cytoplasmic factors involved in axonemal dynein preassembly (DNAAFs) are associated with human ciliopathies and are of clinical interest. Therefore, clear communication within this field is particularly important. Standardizing gene nomenclature, and basing it on orthology where possible, facilitates discussion and genetic comparison across species. Here, we discuss how the human gene nomenclature for dyneins, ODA docking complex subunits, and DNAAFs has been updated to be more functionally informative and consistent with that of the unicellular green alga Chlamydomonas reinhardtii, a key model organism for studying dyneins and ciliary function. We also detail additional nomenclature updates for vertebrate-specific genes that encode dynein chains and other proteins involved in dynein complex assembly.
Collapse
Affiliation(s)
- Bryony Braschi
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, MA
| | - K. Kevin Pfister
- Cell Biology Department, School of Medicine University of Virginia, Charlottesville, VA
| | - Elspeth A. Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
15
|
Qiu T, Roy S. Ciliary dynein arms: Cytoplasmic preassembly, intraflagellar transport, and axonemal docking. J Cell Physiol 2022; 237:2644-2653. [DOI: 10.1002/jcp.30689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Tao Qiu
- Institute of Molecular and Cell Biology, Proteos Singapore Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore Singapore
- Department of Pediatrics, Yong Loo Ling School of Medicine National University of Singapore Singapore Singapore
| |
Collapse
|
16
|
Seraphim TV, Nano N, Cheung YWS, Aluksanasuwan S, Colleti C, Mao YQ, Bhandari V, Young G, Höll L, Phanse S, Gordiyenko Y, Southworth DR, Robinson CV, Thongboonkerd V, Gava LM, Borges JC, Babu M, Barbosa LRS, Ramos CHI, Kukura P, Houry WA. Assembly principles of the human R2TP chaperone complex reveal the presence of R2T and R2P complexes. Structure 2022; 30:156-171.e12. [PMID: 34492227 DOI: 10.1016/j.str.2021.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
R2TP is a highly conserved chaperone complex formed by two AAA+ ATPases, RUVBL1 and RUVBL2, that associate with PIH1D1 and RPAP3 proteins. R2TP acts in promoting macromolecular complex formation. Here, we establish the principles of R2TP assembly. Three distinct RUVBL1/2-based complexes are identified: R2TP, RUVBL1/2-RPAP3 (R2T), and RUVBL1/2-PIH1D1 (R2P). Interestingly, we find that PIH1D1 does not bind to RUVBL1/RUVBL2 in R2TP and does not function as a nucleotide exchange factor; instead, RPAP3 is found to be the central subunit coordinating R2TP architecture and linking PIH1D1 and RUVBL1/2. We also report that RPAP3 contains an intrinsically disordered N-terminal domain mediating interactions with substrates whose sequences are primarily enriched for Armadillo repeat domains and other helical-type domains. Our work provides a clear and consistent model of R2TP complex structure and gives important insights into how a chaperone machine concerned with assembly of folded proteins into multisubunit complexes might work.
Collapse
Affiliation(s)
- Thiago V Seraphim
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Nardin Nano
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada
| | - Yiu Wing Sunny Cheung
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada
| | - Siripat Aluksanasuwan
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Carolina Colleti
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | - Yu-Qian Mao
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada
| | - Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada
| | - Gavin Young
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Larissa Höll
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Yuliya Gordiyenko
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lisandra M Gava
- Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Mohan Babu
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Leandro R S Barbosa
- Institute of Physics, University of São Paulo, São Paulo, SP 05508-090, Brazil; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-100, Brazil
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
17
|
Abel Y, Charron C, Virciglio C, Bourguignon-Igel V, Quinternet M, Chagot ME, Robert MC, Verheggen C, Branlant C, Bertrand E, Manival X, Charpentier B, Rederstorff M. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2172-2189. [PMID: 35150569 PMCID: PMC8887487 DOI: 10.1093/nar/gkac086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/14/2022] Open
Abstract
MicroRNAs silence mRNAs by guiding the RISC complex. RISC assembly occurs following cleavage of pre-miRNAs by Dicer, assisted by TRBP or PACT, and the transfer of miRNAs to AGO proteins. The R2TP complex is an HSP90 co-chaperone involved in the assembly of ribonucleoprotein particles. Here, we show that the R2TP component RPAP3 binds TRBP but not PACT. The RPAP3-TPR1 domain interacts with the TRBP-dsRBD3, and the 1.5 Å resolution crystal structure of this complex identifies key residues involved in the interaction. Remarkably, binding of TRBP to RPAP3 or Dicer is mutually exclusive. Additionally, we found that AGO(1/2), TRBP and Dicer are all sensitive to HSP90 inhibition, and that TRBP sensitivity is increased in the absence of RPAP3. Finally, RPAP3 seems to impede miRNA activity, raising the possibility that the R2TP chaperone might sequester TRBP to regulate the miRNA pathway.
Collapse
Affiliation(s)
| | | | | | | | - Marc Quinternet
- Université de Lorraine, CNRS, INSERM, IBSLOR, F-54000, Nancy, France
| | | | - Marie-Cécile Robert
- IGH, Université de Montpellier, CNRS, F-34090, Montpellier, France
- IGMM, Université de Montpellier, CNRS, F-34090, Montpellier, France
- Equipe labélisée Ligue Nationale contre le Cancer, University of Montpellier, CNRS, F-34090, Montpellier, France
| | - Céline Verheggen
- IGH, Université de Montpellier, CNRS, F-34090, Montpellier, France
- IGMM, Université de Montpellier, CNRS, F-34090, Montpellier, France
- Equipe labélisée Ligue Nationale contre le Cancer, University of Montpellier, CNRS, F-34090, Montpellier, France
| | | | - Edouard Bertrand
- IGH, Université de Montpellier, CNRS, F-34090, Montpellier, France
- IGMM, Université de Montpellier, CNRS, F-34090, Montpellier, France
- Equipe labélisée Ligue Nationale contre le Cancer, University of Montpellier, CNRS, F-34090, Montpellier, France
| | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | | |
Collapse
|
18
|
Zur Lage P, Xi Z, Lennon J, Hunter I, Chan WK, Bolado Carrancio A, von Kriegsheim A, Jarman AP. The Drosophila orthologue of the primary ciliary dyskinesia-associated gene, DNAAF3, is required for axonemal dynein assembly. Biol Open 2021; 10:272257. [PMID: 34553759 PMCID: PMC8565470 DOI: 10.1242/bio.058812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022] Open
Abstract
Ciliary motility is powered by a suite of highly conserved axoneme-specific dynein motor complexes. In humans, the impairment of these motors through mutation results in the disease primary ciliary dyskinesia (PCD). Studies in Drosophila have helped to validate several PCD genes whose products are required for cytoplasmic pre-assembly of axonemal dynein motors. Here we report the characterisation of the Drosophila orthologue of the less-known assembly factor DNAAF3. This gene, CG17669 (Dnaaf3), is expressed exclusively in developing mechanosensory chordotonal (Ch) neurons and the cells that generate spermatozoa, The only two Drosophila cell types bearing cilia/flagella containing dynein motors. Mutation of Dnaaf3 results in larvae that are deaf and adults that are uncoordinated, indicating defective Ch neuron function. The mutant Ch neuron cilia of the antenna specifically lack dynein arms, while Ca imaging in larvae reveals a complete loss of Ch neuron response to vibration stimulus, confirming that mechanotransduction relies on ciliary dynein motors. Mutant males are infertile with immotile sperm whose flagella lack dynein arms and show axoneme disruption. Analysis of proteomic changes suggest a reduction in heavy chains of all axonemal dynein forms, consistent with an impairment of dynein pre-assembly.
Collapse
Affiliation(s)
- Petra Zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK EH8 9XD, UK
| | - Zhiyan Xi
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK EH8 9XD, UK
| | - Jennifer Lennon
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK EH8 9XD, UK
| | - Iain Hunter
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK EH8 9XD, UK
| | - Wai Kit Chan
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK EH8 9XD, UK
| | - Alfonso Bolado Carrancio
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK EH8 9XD, UK
| |
Collapse
|
19
|
Abstract
Axonemal dyneins power the beating of motile cilia and flagella. These massive multimeric motor complexes are assembled in the cytoplasm, and subsequently trafficked to cilia and incorporated into the axonemal superstructure. Numerous cytoplasmic factors are required for the dynein assembly process, and, in mammals, defects lead to primary ciliary dyskinesia, which results in infertility, bronchial problems and failure to set up the left-right body axis correctly. Liquid-liquid phase separation (LLPS) has been proposed to underlie the formation of numerous membrane-less intracellular assemblies or condensates. In multiciliated cells, cytoplasmic assembly of axonemal dyneins also occurs in condensates that exhibit liquid-like properties, including fusion, fission and rapid exchange of components both within condensates and with bulk cytoplasm. However, a recent extensive meta-analysis suggests that the general methods used to define LLPS systems in vivo may not readily distinguish LLPS from other mechanisms. Here, I consider the time and length scales of axonemal dynein heavy chain synthesis, and the possibility that during translation of dynein heavy chain mRNAs, polysomes are crosslinked via partially assembled proteins. I propose that axonemal dynein factory formation in the cytoplasm may be a direct consequence of the sheer scale and complexity of the assembly process itself.
Collapse
Affiliation(s)
- Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030-3305, USA
| |
Collapse
|
20
|
Yuda M, Kaneko I, Murata Y, Iwanaga S, Nishi T. Mechanisms of triggering malaria gametocytogenesis by AP2-G. Parasitol Int 2021; 84:102403. [PMID: 34119684 DOI: 10.1016/j.parint.2021.102403] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
The transcription factor (TF) AP2-G is essential for gametocytogenesis in the malaria parasite; however, it remains unclear if AP2-G determines commitment to sexual stage development fate in the schizont stage, or whether AP2-G directly initiates sexual stage differentiation and development beginning in the late-trophozoite stage. In this study, we addressed this issue by investigating the expression profile of AP2-G and determining genome-wide target genes in Plasmodium berghei. Fluorescence microscopy showed that AP2-G expression was first observed in the parasite 12 h after erythrocyte invasion and peaked at 18 h when sexual features were first manifested in early gametocytes. Expression of AP2-G decreased with manifestation of sex-specific features. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) was performed at peak AP2-G expression and identified over 1000 binding sites in the genome. The main binding motif of the TF predicted from the binding sites was GTACNY. Predicted targets contained a number of genes related to protein biogenesis, suggesting that AP2-G plays a role in establishing a cellular basis required for sexual differentiation. AP2-G binding sites also existed upstream of gametocyte-specific TFs, namely AP2-G2, AP2-FG, and AP2-G itself. Furthermore, the target contained two AP2 TF-related genes. Disruption of these genes resulted in the arrest of ookinete development. These results suggest another role of AP2-G: activating a transcriptional cascade to promote conversion into early gametocytes. Taken together, AP2-G is involved not in establishing sexual commitment of schizonts, but rather in triggering the initiation of differentiation and the early development of gametocytes in the late trophozoite stage.
Collapse
Affiliation(s)
- Masao Yuda
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu 514-8507, Japan.
| | - Izumi Kaneko
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu 514-8507, Japan
| | - Yuho Murata
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu 514-8507, Japan
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Center for Infectious Disease Control, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsubasa Nishi
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu 514-8507, Japan
| |
Collapse
|
21
|
Aprea I, Raidt J, Höben IM, Loges NT, Nöthe-Menchen T, Pennekamp P, Olbrich H, Kaiser T, Biebach L, Tüttelmann F, Horvath J, Schubert M, Krallmann C, Kliesch S, Omran H. Defects in the cytoplasmic assembly of axonemal dynein arms cause morphological abnormalities and dysmotility in sperm cells leading to male infertility. PLoS Genet 2021; 17:e1009306. [PMID: 33635866 PMCID: PMC7909641 DOI: 10.1371/journal.pgen.1009306] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Axonemal protein complexes, such as outer (ODA) and inner (IDA) dynein arms, are responsible for the generation and regulation of flagellar and ciliary beating. Studies in various ciliated model organisms have shown that axonemal dynein arms are first assembled in the cell cytoplasm and then delivered into axonemes during ciliogenesis. In humans, mutations in genes encoding for factors involved in this process cause structural and functional defects of motile cilia in various organs such as the airways and result in the hereditary disorder primary ciliary dyskinesia (PCD). Despite extensive knowledge about the cytoplasmic assembly of axonemal dynein arms in respiratory cilia, this process is still poorly understood in sperm flagella. To better define its clinical relevance on sperm structure and function, and thus male fertility, further investigations are required. Here we report the fertility status in different axonemal dynein preassembly mutant males (DNAAF2/ KTU, DNAAF4/ DYX1C1, DNAAF6/ PIH1D3, DNAAF7/ZMYND10, CFAP300/C11orf70 and LRRC6). Besides andrological examinations, we functionally and structurally analyzed sperm flagella of affected individuals by high-speed video- and transmission electron microscopy as well as systematically compared the composition of dynein arms in sperm flagella and respiratory cilia by immunofluorescence microscopy. Furthermore, we analyzed the flagellar length in dynein preassembly mutant sperm. We found that the process of axonemal dynein preassembly is also critical in sperm, by identifying defects of ODAs and IDAs in dysmotile sperm of these individuals. Interestingly, these mutant sperm consistently show a complete loss of ODAs, while some respiratory cilia from the same individual can retain ODAs in the proximal ciliary compartment. This agrees with reports of solely one distinct ODA type in sperm, compared to two different ODA types in proximal and distal respiratory ciliary axonemes. Consistent with observations in model organisms, we also determined a significant reduction of sperm flagellar length in these individuals. These findings are relevant to subsequent studies on the function and composition of sperm flagella in PCD patients and non-syndromic infertile males. Our study contributes to a better understanding of the fertility status in PCD-affected males and should help guide genetic and andrological counselling for affected males and their families. Impaired male fertility is a major issue and affects several men worldwide. Patients may present with reduced number or complete absence of sperm in the ejaculate, as well as functional and/or morphological sperm defects compromising sperm motility. Despite several diagnostic efforts, the underlying causes of these defects often remain unknown („idiopathic“). The beating of sperm flagella as well as motile cilia, such as those of the respiratory tract, is driven by dynein-based motor protein complexes, namely outer and inner dynein arms. In motile cilia these protein complexes are known to be first assembled in the cytoplasm and then delivered into the cilium. In sperm, this process is still poorly understood. Here we analyze sperm cells of male individuals with mutations in distinct genes encoding factors involved in the preassembly of these motor protein complexes. Consistent with defects in their respiratory ciliated cells, these individuals also demonstrate defects in sperm flagella that cause male infertility due to immotile sperm, with a reduction of flagellar length. Our results strengthen the assumption that the preassembly process of outer and inner dynein arms is clinically relevant also in sperm and provide knowledge that should guide genetic and andrological counselling for a subgroup of men with idiopathic infertility.
Collapse
Affiliation(s)
- Isabella Aprea
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Johanna Raidt
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Inga Marlena Höben
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Niki Tomas Loges
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Thomas Kaiser
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Luisa Biebach
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Muenster, Muenster, Germany
| | - Judit Horvath
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Maria Schubert
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - Claudia Krallmann
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - Sabine Kliesch
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
22
|
Li B, Li S, Yan Z. Axonemal Dynein DNAH5 is Required for Sound Sensation in Drosophila Larvae. Neurosci Bull 2021; 37:523-534. [PMID: 33570705 DOI: 10.1007/s12264-021-00631-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/09/2020] [Indexed: 11/29/2022] Open
Abstract
Chordotonal neurons are responsible for sound sensation in Drosophila. However, little is known about how they respond to sound with high sensitivity. Using genetic labeling, we found one of the Drosophila axonemal dynein heavy chains, CG9492 (DNAH5), was specifically expressed in larval chordotonal neurons and showed a distribution restricted to proximal cilia. While DNAH5 mutation did not affect the cilium morphology or the trafficking of Inactive, a candidate auditory transduction channel, larvae with DNAH5 mutation had reduced startle responses to sound at low and medium intensities. Calcium imaging confirmed that DNAH5 functioned autonomously in chordotonal neurons for larval sound sensation. Furthermore, disrupting DNAH5 resulted in a decrease of spike firing responses to low-level sound in chordotonal neurons. Intriguingly, DNAH5 mutant larvae displayed an altered frequency tuning curve of the auditory organs. All together, our findings support a critical role of DNAH5 in tuning the frequency selectivity and the sound sensitivity of larval auditory neurons.
Collapse
Affiliation(s)
- Bingxue Li
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Physiology and Biophysics, Institute of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Songling Li
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Physiology and Biophysics, Institute of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhiqiang Yan
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Physiology and Biophysics, Institute of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
23
|
Lee C, Cox RM, Papoulas O, Horani A, Drew K, Devitt CC, Brody SL, Marcotte EM, Wallingford JB. Functional partitioning of a liquid-like organelle during assembly of axonemal dyneins. eLife 2020; 9:e58662. [PMID: 33263282 PMCID: PMC7785291 DOI: 10.7554/elife.58662] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Ciliary motility is driven by axonemal dyneins that are assembled in the cytoplasm before deployment to cilia. Motile ciliopathy can result from defects in the dyneins themselves or from defects in factors required for their cytoplasmic pre-assembly. Recent work demonstrates that axonemal dyneins, their specific assembly factors, and broadly-acting chaperones are concentrated in liquid-like organelles in the cytoplasm called DynAPs (Dynein Axonemal Particles). Here, we use in vivo imaging in Xenopus to show that inner dynein arm (IDA) and outer dynein arm (ODA) subunits are partitioned into non-overlapping sub-regions within DynAPs. Using affinity- purification mass-spectrometry of in vivo interaction partners, we also identify novel partners for inner and outer dynein arms. Among these, we identify C16orf71/Daap1 as a novel axonemal dynein regulator. Daap1 interacts with ODA subunits, localizes specifically to the cytoplasm, is enriched in DynAPs, and is required for the deployment of ODAs to axonemes. Our work reveals a new complexity in the structure and function of a cell-type specific liquid-like organelle that is directly relevant to human genetic disease.
Collapse
Affiliation(s)
- Chanjae Lee
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Rachael M Cox
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Amjad Horani
- Department of Pediatrics, Washington University School of MedicineSt. LouisUnited States
| | - Kevin Drew
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Caitlin C Devitt
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Steven L Brody
- Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, University of TexasAustinUnited States
| |
Collapse
|
24
|
Mutations in PIH proteins MOT48, TWI1 and PF13 define common and unique steps for preassembly of each, different ciliary dynein. PLoS Genet 2020; 16:e1009126. [PMID: 33141819 PMCID: PMC7608865 DOI: 10.1371/journal.pgen.1009126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Ciliary dyneins are preassembled in the cytoplasm before being transported into cilia, and a family of proteins containing the PIH1 domain, PIH proteins, are involved in the assembly process. However, the functional differences and relationships between members of this family of proteins remain largely unknown. Using Chlamydomonas reinhardtii as a model, we isolated and characterized two novel Chlamydomonas PIH preassembly mutants, mot48-2 and twi1-1. A new allele of mot48 (ida10), mot48-2, shows large defects in ciliary dynein assembly in the axoneme and altered motility. A second mutant, twi1-1, shows comparatively smaller defects in motility and dynein assembly. A double mutant mot48-2; twi1-1 displays greater reduction in motility and in dynein assembly compared to each single mutant. Similarly, a double mutant twi1-1; pf13 also shows a significantly greater defect in motility and dynein assembly than either parent mutant. Thus, MOT48 (IDA10), TWI1 and PF13 may define different steps, and have partially overlapping functions, in a pathway required for ciliary dynein preassembly. Together, our data suggest the three PIH proteins function in preassembly steps that are both common and unique for different ciliary dyneins. Motile cilia are hair-like organelles that protrude from many eukaryotic cells, and play vital roles in organisms including cell motility, environmental sensing and removal of infectious materials. Motile cilia are driven by gigantic motor protein complexes, called ciliary dyneins, defects in which cause abnormal ciliary motility, ultimately resulting in human diseases collectively called primary ciliary dyskinesia (PCD). Ciliary dyneins are preassembled in the cytoplasm before being transported into cilia, and preassembly requires a family of potential co-chaperones, the PIH proteins. Mutations in the PIH proteins cause defective assembly of ciliary dyneins and can result in PCD. However, despite their importance, the precise functions, and functional relationships, between the PIH proteins are unclear. In this study, using Chlamydomonas reinhardtii, we assessed the functional relationship between three PIH proteins with respect to dynein preassembly and motility. We found that these PIH proteins have complicated and related roles in dynein assembly, possibly with each playing common and unique roles in dynein assembly. Our results provide new information on each conserved PIH protein for dynein assembly and provide a new understanding of PCD caused by PIH mutations.
Collapse
|
25
|
Esteve-Bruna D, Carrasco-López C, Blanco-Touriñán N, Iserte J, Calleja-Cabrera J, Perea-Resa C, Úrbez C, Carrasco P, Yanovsky MJ, Blázquez MA, Salinas J, Alabadí D. Prefoldins contribute to maintaining the levels of the spliceosome LSM2-8 complex through Hsp90 in Arabidopsis. Nucleic Acids Res 2020; 48:6280-6293. [PMID: 32396196 PMCID: PMC7293050 DOI: 10.1093/nar/gkaa354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Although originally identified as the components of the complex aiding the cytosolic chaperonin CCT in the folding of actins and tubulins in the cytosol, prefoldins (PFDs) are emerging as novel regulators influencing gene expression in the nucleus. Work conducted mainly in yeast and animals showed that PFDs act as transcriptional regulators and participate in the nuclear proteostasis. To investigate new functions of PFDs, we performed a co-expression analysis in Arabidopsis thaliana. Results revealed co-expression between PFD and the Sm-like (LSM) genes, which encode the LSM2–8 spliceosome core complex, in this model organism. Here, we show that PFDs interact with and are required to maintain adequate levels of the LSM2–8 complex. Our data indicate that levels of the LSM8 protein, which defines and confers the functional specificity of the complex, are reduced in pfd mutants and in response to the Hsp90 inhibitor geldanamycin. We provide biochemical evidence showing that LSM8 is a client of Hsp90 and that PFD4 mediates the interaction between both proteins. Consistent with our results and with the role of the LSM2–8 complex in splicing through the stabilization of the U6 snRNA, pfd mutants showed reduced levels of this snRNA and altered pre-mRNA splicing patterns.
Collapse
Affiliation(s)
- David Esteve-Bruna
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Cristian Carrasco-López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas "Margarita Salas" (CSIC), 28040 Madrid, Spain
| | - Noel Blanco-Touriñán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Javier Iserte
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWAE Buenos Aires, Argentina
| | - Julián Calleja-Cabrera
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Carlos Perea-Resa
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas "Margarita Salas" (CSIC), 28040 Madrid, Spain
| | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Pedro Carrasco
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWAE Buenos Aires, Argentina
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas "Margarita Salas" (CSIC), 28040 Madrid, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| |
Collapse
|
26
|
Fingerhut JM, Yamashita YM. mRNA localization mediates maturation of cytoplasmic cilia in Drosophila spermatogenesis. J Cell Biol 2020; 219:e202003084. [PMID: 32706373 PMCID: PMC7480094 DOI: 10.1083/jcb.202003084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/26/2023] Open
Abstract
Cytoplasmic cilia, a specialized type of cilia in which the axoneme resides within the cytoplasm rather than within the ciliary compartment, are proposed to allow for the efficient assembly of very long cilia. Despite being found diversely in male gametes (e.g., Plasmodium falciparum microgametocytes and human and Drosophila melanogaster sperm), very little is known about cytoplasmic cilia assembly. Here, we show that a novel RNP granule containing the mRNAs for axonemal dynein motor proteins becomes highly polarized to the distal end of the cilia during cytoplasmic ciliogenesis in Drosophila sperm. This allows for the incorporation of these axonemal dyneins into the axoneme directly from the cytoplasm, possibly by localizing translation. We found that this RNP granule contains the proteins Reptin and Pontin, loss of which perturbs granule formation and prevents incorporation of the axonemal dyneins, leading to sterility. We propose that cytoplasmic cilia assembly requires the precise localization of mRNAs encoding key axonemal constituents, allowing these proteins to incorporate efficiently into the axoneme.
Collapse
Affiliation(s)
- Jaclyn M. Fingerhut
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Yukiko M. Yamashita
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
27
|
Bauerly E, Yi K, Gibson MC. Wampa is a dynein subunit required for axonemal assembly and male fertility in Drosophila. Dev Biol 2020; 463:158-168. [PMID: 32387369 PMCID: PMC8451153 DOI: 10.1016/j.ydbio.2020.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023]
Abstract
In cilia and flagella, dyneins form complexes which give rise to the inner and outer axonemal arms. Defects in the dynein arms are the leading cause of primary ciliary dyskinesia (PCD), which is characterized by chronic respiratory infections, situs inversus, and sterility. While the pathological features associated with PCD are increasingly well characterized, many of the causative genetic lesions remain elusive. Using Drosophila, here we analyze genetic requirements for wampa (wam), a previously uncharacterized component of the outer dynein arm. While homozygous mutant animals are viable and display no morphological defects, loss of wam results in complete male sterility. Ultrastructural analysis further reveals that wam mutant spermatids lack the axonemal outer dynein arms, which leads to a complete loss of flagellar motility. In addition to a role in outer dynein arm formation, we also uncover other novel microtubule-associated requirements for wam during spermatogenesis, including the regulation of mitochondrial localization and the shaping of the nuclear head. Due to the conserved nature of dyneins, this study advances our understanding of the pathology of PCD and the functional role of dyneins in axoneme formation and other aspects of spermatogenesis.
Collapse
Affiliation(s)
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
28
|
Rodríguez CF, Llorca O. RPAP3 C-Terminal Domain: A Conserved Domain for the Assembly of R2TP Co-Chaperone Complexes. Cells 2020; 9:cells9051139. [PMID: 32384603 PMCID: PMC7290369 DOI: 10.3390/cells9051139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022] Open
Abstract
The Rvb1-Rvb2-Tah1-Pih1 (R2TP) complex is a co-chaperone complex that works together with HSP90 in the activation and assembly of several macromolecular complexes, including RNA polymerase II (Pol II) and complexes of the phosphatidylinositol-3-kinase-like family of kinases (PIKKs), such as mTORC1 and ATR/ATRIP. R2TP is made of four subunits: RuvB-like protein 1 (RUVBL1) and RuvB-like 2 (RUVBL2) AAA-type ATPases, RNA polymerase II-associated protein 3 (RPAP3), and the Protein interacting with Hsp90 1 (PIH1) domain-containing protein 1 (PIH1D1). R2TP associates with other proteins as part of a complex co-chaperone machinery involved in the assembly and maturation of a growing list of macromolecular complexes. Recent progress in the structural characterization of R2TP has revealed an alpha-helical domain at the C-terminus of RPAP3 that is essential to bring the RUVBL1 and RUVBL2 ATPases to R2TP. The RPAP3 C-terminal domain interacts directly with RUVBL2 and it is also known as RUVBL2-binding domain (RBD). Several human proteins contain a region homologous to the RPAP3 C-terminal domain, and some are capable of assembling R2TP-like complexes, which could have specialized functions. Only the RUVBL1-RUVBL2 ATPase complex and a protein containing an RPAP3 C-terminal-like domain are found in all R2TP and R2TP-like complexes. Therefore, the RPAP3 C-terminal domain is one of few components essential for the formation of all R2TP and R2TP-like co-chaperone complexes.
Collapse
Affiliation(s)
| | - Oscar Llorca
- Correspondence: ; Tel.: +34-91-732-8000 (ext. 3000/3033)
| |
Collapse
|
29
|
Kakihara Y, Kiguchi T, Ohazama A, Saeki M. R2TP/PAQosome as a promising chemotherapeutic target in cancer. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:38-42. [PMID: 31890057 PMCID: PMC6926247 DOI: 10.1016/j.jdsr.2019.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/27/2019] [Accepted: 08/21/2019] [Indexed: 11/30/2022] Open
Abstract
R2TP/PAQosome (particle for arrangement of quaternary structure) is a novel multisubunit chaperone specialized in the assembly/maturation of protein complexes that are involved in essential cellular processes such as PIKKs (phosphatidylinositol 3-kinase-like kinases) signaling, snoRNP (small nucleolar ribonucleoprotein) biogenesis, and RNAP II (RNA polymerase II) complex formation. In this review article, we describe the current understanding of R2TP/PAQosome functions and characteristics as well as how the chaperone complex is involved in oncogenesis, highlighting DNA damage response, mTOR (mammalian target of rapamycin) pathway as well as snoRNP biogenesis. Also, we discuss its possible involvement in HNSCC (head and neck squamous cell carcinoma) including OSCC (oral squamous cell carcinoma). Finally, we provide an overview of current anti-cancer drug development efforts targeting R2TP/PAQosome.
Collapse
Affiliation(s)
- Yoshito Kakihara
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tetsuo Kiguchi
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
30
|
Role of the Novel Hsp90 Co-Chaperones in Dynein Arms' Preassembly. Int J Mol Sci 2019; 20:ijms20246174. [PMID: 31817850 PMCID: PMC6940843 DOI: 10.3390/ijms20246174] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
The outer and inner dynein arms (ODAs and IDAs) are composed of multiple subunits including dynein heavy chains possessing a motor domain. These complex structures are preassembled in the cytoplasm before being transported to the cilia. The molecular mechanism(s) controlling dynein arms’ preassembly is poorly understood. Recent evidence suggests that canonical R2TP complex, an Hsp-90 co-chaperone, in cooperation with dynein axonemal assembly factors (DNAAFs), plays a crucial role in the preassembly of ODAs and IDAs. Here, we have summarized recent data concerning the identification of novel chaperone complexes and their role in dynein arms’ preassembly and their association with primary cilia dyskinesia (PCD), a human genetic disorder.
Collapse
|
31
|
Plasmodium falciparum R2TP complex: driver of parasite Hsp90 function. Biophys Rev 2019; 11:1007-1015. [PMID: 31734827 DOI: 10.1007/s12551-019-00605-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/30/2019] [Indexed: 02/04/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is essential for the development of the main malaria agent, Plasmodium falciparum. Inhibitors that target Hsp90 function are known to not only kill the parasite, but also reverse resistance of the parasite to traditional antimalarials such as chloroquine. For this reason, Hsp90 has been tagged as a promising antimalarial drug target. As a molecular chaperone, Hsp90 facilitates folding of proteins such as steroid hormone receptors and kinases implicated in cell cycle and development. Central to Hsp90 function is its regulation by several co-chaperones. Various co-chaperones interact with Hsp90 to modulate its co-operation with other molecular chaperones such as Hsp70 and to regulate its interaction with substrates. The role of Hsp90 in the development of malaria parasites continues to receive research attention, and several Hsp90 co-chaperones have been mapped out. Recently, focus has shifted to P. falciparum R2TP proteins, which are thought to couple Hsp90 to a diverse set of client proteins. R2TP proteins are generally known to form a complex with Hsp90, and this complex drives multiple cellular processes central to signal transduction and cell division. Given the central role that the R2TP complex may play, the current review highlights the structure-function features of Hsp90 relative to R2TPs of P. falciparum.
Collapse
|
32
|
Liu G, Wang L, Pan J. Chlamydomonas WDR92 in association with R2TP-like complex and multiple DNAAFs to regulate ciliary dynein preassembly. J Mol Cell Biol 2019; 11:770-780. [PMID: 30428028 PMCID: PMC6821370 DOI: 10.1093/jmcb/mjy067] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 11/17/2022] Open
Abstract
The motility of cilia or eukaryotic flagella is powered by the axonemal dyneins, which are preassembled in the cytoplasm by proteins termed dynein arm assembly factors (DNAAFs) before being transported to and assembled on the ciliary axoneme. Here, we characterize the function of WDR92 in Chlamydomonas. Loss of WDR92, a cytoplasmic protein, in a mutant wdr92 generated by DNA insertional mutagenesis resulted in aflagellate cells or cells with stumpy or short flagella, disappearance of axonemal dynein arms, and diminishment of dynein arm heavy chains in the cytoplasm, suggesting that WDR92 is a DNAAF. Immunoprecipitation of WDR92 followed by mass spectrometry identified inner dynein arm heavy chains and multiple DNAAFs including RuvBL1, RPAP3, MOT48, ODA7, and DYX1C. The PIH1 domain-containing protein MOT48 formed a R2TP-like complex with RuvBL1/2 and RPAP3, while PF13, another PIH1 domain-containing protein with function in dynein preassembly, did not. Interestingly, the third PIH1 domain-containing protein TWI1 was not related to flagellar motility. WDR92 physically interacted with the R2TP-like complex and the other identified DNNAFs. Our data suggest that WDR92 functions in association with the HSP90 co-chaperone R2TP-like complex as well as linking other DNAAFs in dynein preassembly.
Collapse
Affiliation(s)
- Guang Liu
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Limei Wang
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
33
|
Osinka A, Poprzeczko M, Zielinska MM, Fabczak H, Joachimiak E, Wloga D. Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes. Cells 2019; 8:cells8070730. [PMID: 31319499 PMCID: PMC6678824 DOI: 10.3390/cells8070730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Cilia are highly evolutionarily conserved, microtubule-based cell protrusions present in eukaryotic organisms from protists to humans, with the exception of fungi and higher plants. Cilia can be broadly divided into non-motile sensory cilia, called primary cilia, and motile cilia, which are locomotory organelles. The skeleton (axoneme) of primary cilia is formed by nine outer doublet microtubules distributed on the cilium circumference. In contrast, the skeleton of motile cilia is more complex: in addition to outer doublets, it is composed of two central microtubules and several diverse multi-protein complexes that are distributed periodically along both types of microtubules. For many years, researchers have endeavored to fully characterize the protein composition of ciliary macro-complexes and the molecular basis of signal transduction between these complexes. Genetic and biochemical analyses have suggested that several hundreds of proteins could be involved in the assembly and function of motile cilia. Within the last several years, the combined efforts of researchers using cryo-electron tomography, genetic and biochemical approaches, and diverse model organisms have significantly advanced our knowledge of the ciliary structure and protein composition. Here, we summarize the recent progress in the identification of the subunits of ciliary complexes, their precise intraciliary localization determined by cryo-electron tomography data, and the role of newly identified proteins in cilia.
Collapse
Affiliation(s)
- Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Magdalena M Zielinska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
34
|
Patel-King RS, Sakato-Antoku M, Yankova M, King SM. WDR92 is required for axonemal dynein heavy chain stability in cytoplasm. Mol Biol Cell 2019; 30:1834-1845. [PMID: 31116681 PMCID: PMC6727741 DOI: 10.1091/mbc.e19-03-0139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
WDR92 associates with a prefoldin-like cochaperone complex and known dynein assembly factors. WDR92 has been very highly conserved and has a phylogenetic signature consistent with it playing a role in motile ciliary assembly or activity. Knockdown of WDR92 expression in planaria resulted in ciliary loss, reduced beat frequency and dyskinetic motion of the remaining ventral cilia. We have now identified a Chlamydomonas wdr92 mutant that encodes a protein missing the last four WD repeats. The wdr92-1 mutant builds only ∼0.7-μm cilia lacking both inner and outer dynein arms, but with intact doublet microtubules and central pair. When cytoplasmic extracts prepared by freeze/thaw from a control strain were fractionated by gel filtration, outer arm dynein components were present in several distinct high molecular weight complexes. In contrast, wdr92-1 extracts almost completely lacked all three outer arm heavy chains, while the IFT dynein heavy chain was present in normal amounts. A wdr92-1 tpg1-2 double mutant builds ∼7-μm immotile flaccid cilia that completely lack dynein arms. These data indicate that WDR92 is a key assembly factor specifically required for the stability of axonemal dynein heavy chains in cytoplasm and suggest that cytoplasmic/IFT dynein heavy chains use a distinct folding pathway.
Collapse
Affiliation(s)
- Ramila S. Patel-King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Miho Sakato-Antoku
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Maya Yankova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
- Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
- Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT 06030-3305
| |
Collapse
|
35
|
Binding properties of the quaternary assembly protein SPAG1. Biochem J 2019; 476:1679-1694. [PMID: 31118266 DOI: 10.1042/bcj20190198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
In cells, many constituents are able to assemble resulting in large macromolecular machineries possessing very specific biological and physiological functions, e.g. ribosome, spliceosome and proteasome. Assembly of such entities is commonly mediated by transient protein factors. SPAG1 is a multidomain protein, known to participate in the assembly of both the inner and outer dynein arms. These arms are required for the function of sensitive and motile cells. Together with RUVBL1, RUVBL2 and PIH1D2, SPAG1 is a key element of R2SP, a protein complex assisting the quaternary assembly of specific protein clients in a tissue-specific manner and associating with heat shock proteins (HSPs) and regulators. In this study, we have investigated the role of TPR domains of SPAG1 in the recruitment of HSP chaperones by combining biochemical assays, ITC, NMR spectroscopy and molecular dynamics (MD) simulations. First, we propose that only two, out of the three TPR domains, are able to recruit the protein chaperones HSP70 and HSP90. We then focused on one of these TPR domains and elucidated its 3D structure using NMR spectroscopy. Relying on an NMR-driven docking approach and MD simulations, we deciphered its binding interface with the C-terminal tails of both HSP70 and HSP90. Finally, we addressed the biological function of SPAG1 and specifically demonstrated that a SPAG1 sub-fragment, containing a putative P-loop motif, cannot efficiently bind and hydrolyze GTP in vitro Our data challenge the interpretation of SPAG1 possessing GTPase activity. We propose instead that SPAG1 regulates nucleotide hydrolysis activity of the HSP and RUVBL1/2 partners.
Collapse
|
36
|
Zur Lage P, Newton FG, Jarman AP. Survey of the Ciliary Motility Machinery of Drosophila Sperm and Ciliated Mechanosensory Neurons Reveals Unexpected Cell-Type Specific Variations: A Model for Motile Ciliopathies. Front Genet 2019; 10:24. [PMID: 30774648 PMCID: PMC6367277 DOI: 10.3389/fgene.2019.00024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
The motile cilium/flagellum is an ancient eukaryotic organelle. The molecular machinery of ciliary motility comprises a variety of cilium-specific dynein motor complexes along with other complexes that regulate their activity. Assembling the motors requires the function of dedicated “assembly factors” and transport processes. In humans, mutation of any one of at least 40 different genes encoding components of the motility apparatus causes Primary Ciliary Dyskinesia (PCD), a disease of defective ciliary motility. Recently, Drosophila has emerged as a model for motile cilia biology and motile ciliopathies. This is somewhat surprising as most Drosophila cells lack cilia, and motile cilia are confined to just two specialized cell types: the sperm flagellum with a 9+2 axoneme and the ciliated dendrite of auditory/proprioceptive (chordotonal, Ch) neurons with a 9+0 axoneme. To determine the utility of Drosophila as a model for motile cilia, we survey the Drosophila genome for ciliary motility gene homologs, and assess their expression and function. We find that the molecules of cilium motility are well conserved in Drosophila. Most are readily characterized by their restricted cell-type specific expression patterns and phenotypes. There are also striking differences between the two motile ciliated cell types. Notably, sperm and Ch neuron cilia express and require entirely different outer dynein arm variants—the first time this has been clearly established in any organism. These differences might reflect the specialized functions for motility in the two cilium types. Moreover, the Ch neuron cilia lack the critical two-headed inner arm dynein (I1/f) but surprisingly retain key regulatory proteins previously associated with it. This may have implications for other motile 9+0 cilia, including vertebrate embryonic nodal cilia required for left-right axis asymmetry. We discuss the possibility that cell-type specificity in ciliary motility machinery might occur in humans, and therefore underlie some of the phenotypic variation observed in PCD caused by different gene mutations. Our work lays the foundation for the increasing use of Drosophila as an excellent model for new motile ciliary gene discovery and validation, for understanding motile cilium function and assembly, as well as understanding the nature of genetic defects underlying human motile ciliopathies.
Collapse
Affiliation(s)
- Petra Zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Fay G Newton
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Huizar RL, Lee C, Boulgakov AA, Horani A, Tu F, Marcotte EM, Brody SL, Wallingford JB. A liquid-like organelle at the root of motile ciliopathy. eLife 2018; 7:38497. [PMID: 30561330 PMCID: PMC6349401 DOI: 10.7554/elife.38497] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
Motile ciliopathies are characterized by specific defects in cilia beating that result in chronic airway disease, subfertility, ectopic pregnancy, and hydrocephalus. While many patients harbor mutations in the dynein motors that drive cilia beating, the disease also results from mutations in so-called dynein axonemal assembly factors (DNAAFs) that act in the cytoplasm. The mechanisms of DNAAF action remain poorly defined. Here, we show that DNAAFs concentrate together with axonemal dyneins and chaperones into organelles that form specifically in multiciliated cells, which we term DynAPs, for dynein axonemal particles. These organelles display hallmarks of biomolecular condensates, and remarkably, DynAPs are enriched for the stress granule protein G3bp1, but not for other stress granule proteins or P-body proteins. Finally, we show that both the formation and the liquid-like behaviors of DynAPs are disrupted in a model of motile ciliopathy. These findings provide a unifying cell biological framework for a poorly understood class of human disease genes and add motile ciliopathy to the growing roster of human diseases associated with disrupted biological phase separation.
Collapse
Affiliation(s)
- Ryan L Huizar
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | | | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St Louis, United States
| | - Fan Tu
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, United States
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St Louis, United States
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, United States
| |
Collapse
|
38
|
Lynham J, Houry WA. The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:37-72. [DOI: 10.1007/978-3-030-00737-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Mali GR, Yeyati PL, Mizuno S, Dodd DO, Tennant PA, Keighren MA, Zur Lage P, Shoemark A, Garcia-Munoz A, Shimada A, Takeda H, Edlich F, Takahashi S, von Kreigsheim A, Jarman AP, Mill P. ZMYND10 functions in a chaperone relay during axonemal dynein assembly. eLife 2018; 7:34389. [PMID: 29916806 PMCID: PMC6044906 DOI: 10.7554/elife.34389] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones promote the folding and macromolecular assembly of a diverse set of 'client' proteins. How ubiquitous chaperone machineries direct their activities towards specific sets of substrates is unclear. Through the use of mouse genetics, imaging and quantitative proteomics we uncover that ZMYND10 is a novel co-chaperone that confers specificity for the FKBP8-HSP90 chaperone complex towards axonemal dynein clients required for cilia motility. Loss of ZMYND10 perturbs the chaperoning of axonemal dynein heavy chains, triggering broader degradation of dynein motor subunits. We show that pharmacological inhibition of FKBP8 phenocopies dynein motor instability associated with the loss of ZMYND10 in airway cells and that human disease-causing variants of ZMYND10 disrupt its ability to act as an FKBP8-HSP90 co-chaperone. Our study indicates that primary ciliary dyskinesia (PCD), caused by mutations in dynein assembly factors disrupting cytoplasmic pre-assembly of axonemal dynein motors, should be considered a cell-type specific protein-misfolding disease.
Collapse
Affiliation(s)
- Girish R Mali
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Patricia L Yeyati
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Seiya Mizuno
- Laboratory Animal Resource Centre, University of Tsukuba, Tsukuba, Japan
| | - Daniel O Dodd
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter A Tennant
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret A Keighren
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Petra Zur Lage
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | | | - Atsuko Shimada
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Frank Edlich
- Institute for Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany.,BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Satoru Takahashi
- Laboratory Animal Resource Centre, University of Tsukuba, Tsukuba, Japan.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Alex von Kreigsheim
- Systems Biology Ireland, University College Dublin, Dublin, Ireland.,Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
40
|
Muñoz-Hernández H, Pal M, Rodríguez CF, Prodromou C, Pearl LH, Llorca O. Advances on the Structure of the R2TP/Prefoldin-like Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:73-83. [DOI: 10.1007/978-3-030-00737-9_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|