1
|
Yu J, Fu Y, Zhang N, Gao J, Zhang Z, Jiang X, Chen C, Wen Z. Extracellular histones promote TWIK2-dependent potassium efflux and associated NLRP3 activation in alveolar macrophages during sepsis-induced lung injury. Inflamm Res 2024; 73:1137-1155. [PMID: 38733398 DOI: 10.1007/s00011-024-01888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND AND AIM Sepsis-induced acute lung injury (ALI) is a complex and life-threatening condition lacking specific and efficient clinical treatments. Extracellular histones, identified as a novel type of damage-associated molecular patterns, have been implicated in the inflammatory process of ALI. However, further elucidation is needed regarding the precise mechanism through which extracellular histones induce inflammation. The aim of this study was to investigate whether extracellular histones can activate NLRP3 inflammasome-mediated inflammation in alveolar macrophages (AMs) by affecting TWIK2-dependent potassium efflux. METHODS AND RESULTS We conducted experiments using cecal ligation and puncture (CLP) C57BL/6 mice and extracellular histone-stimulated LPS-primed MH-S cells. The results demonstrated a significant increase in the levels of extracellular histones in the plasma and bronchoalveolar lavage fluid (BALF) of CLP mice. Furthermore, neutralizing extracellular histone mitigated lung injury and inflammation in CLP-induced ALI mice. In vitro studies confirmed that extracellular histones upregulated the expression of NLRP3 inflammasome activation-related proteins in MH-S cells, and this effect was dependent on increased potassium efflux mediated by the TWIK2 channel on the plasma membrane. Moreover, extracellular histones directly triggered a substantial influx of calcium, leading to increased Rab11 activity and facilitating the trafficking and location of TWIK2 to the plasma membrane. CONCLUSION These findings underscore the critical role of extracellular histone-induced upregulation of TWIK2 expression on the plasma membrane of alveolar macrophages (AMs). This upregulation leads to potassium efflux and subsequent activation of the NLRP3 inflammasome, ultimately exacerbating lung inflammation and injury during sepsis.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Fu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiameng Gao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiyuan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuemei Jiang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Saint-Martin Willer A, Montani D, Capuano V, Antigny F. Orai1/STIMs modulators in pulmonary vascular diseases. Cell Calcium 2024; 121:102892. [PMID: 38735127 DOI: 10.1016/j.ceca.2024.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Calcium (Ca2+) is a secondary messenger that regulates various cellular processes. However, Ca2+ mishandling could lead to pathological conditions. Orai1 is a Ca2+channel contributing to the store-operated calcium entry (SOCE) and plays a critical role in Ca2+ homeostasis in several cell types. Dysregulation of Orai1 contributed to severe combined immune deficiency syndrome, some cancers, pulmonary arterial hypertension (PAH), and other cardiorespiratory diseases. During its activation process, Orai1 is mainly regulated by stromal interacting molecule (STIM) proteins, especially STIM1; however, many other regulatory partners have also been recently described. Increasing knowledge about these regulatory partners provides a better view of the downstream signalling pathways of SOCE and offers an excellent opportunity to decipher Orai1 dysregulation in these diseases. These proteins participate in other cellular functions, making them attractive therapeutic targets. This review mainly focuses on Orai1 regulatory partners in the physiological and pathological conditions of the pulmonary circulation and inflammation.
Collapse
Affiliation(s)
- Anaïs Saint-Martin Willer
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis-Robinson, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
| |
Collapse
|
3
|
Hordijk S, Carter T, Bierings R. A new look at an old body: molecular determinants of Weibel-Palade body composition and von Willebrand factor exocytosis. J Thromb Haemost 2024; 22:1290-1303. [PMID: 38307391 DOI: 10.1016/j.jtha.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Endothelial cells, forming a monolayer along blood vessels, intricately regulate vascular hemostasis, inflammatory responses, and angiogenesis. A key determinant of these functions is the controlled secretion of Weibel-Palade bodies (WPBs), which are specialized endothelial storage organelles housing a presynthesized pool of the hemostatic protein von Willebrand factor and various other hemostatic, inflammatory, angiogenic, and vasoactive mediators. This review delves into recent mechanistic insights into WPB biology, including the biogenesis that results in their unique morphology, the acquisition of intraluminal vesicles and other cargo, and the contribution of proton pumps to organelle acidification. Additionally, in light of a number of proteomic approaches to unravel the regulatory networks that control WPB formation and secretion, we provide a comprehensive overview of the WPB exocytotic machinery, including their molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Sophie Hordijk
- Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands. https://twitter.com/SophieHordijk
| | - Tom Carter
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Ruben Bierings
- Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Erol ÖD, Şenocak Ş, Aerts-Kaya F. The Role of Rab GTPases in the development of genetic and malignant diseases. Mol Cell Biochem 2024; 479:255-281. [PMID: 37060515 DOI: 10.1007/s11010-023-04727-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Small GTPases have been shown to play an important role in several cellular functions, including cytoskeletal remodeling, cell polarity, intracellular trafficking, cell-cycle, progression and lipid transformation. The Ras-associated binding (Rab) family of GTPases constitutes the largest family of GTPases and consists of almost 70 known members of small GTPases in humans, which are known to play an important role in the regulation of intracellular membrane trafficking, membrane identity, vesicle budding, uncoating, motility and fusion of membranes. Mutations in Rab genes can cause a wide range of inherited genetic diseases, ranging from neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD) to immune dysregulation/deficiency syndromes, like Griscelli Syndrome Type II (GS-II) and hemophagocytic lymphohistiocytosis (HLH), as well as a variety of cancers. Here, we provide an extended overview of human Rabs, discussing their function and diseases related to Rabs and Rab effectors, as well as focusing on effects of (aberrant) Rab expression. We aim to underline their importance in health and the development of genetic and malignant diseases by assessing their role in cellular structure, regulation, function and biology and discuss the possible use of stem cell gene therapy, as well as targeting of Rabs in order to treat malignancies, but also to monitor recurrence of cancer and metastasis through the use of Rabs as biomarkers. Future research should shed further light on the roles of Rabs in the development of multifactorial diseases, such as diabetes and assess Rabs as a possible treatment target.
Collapse
Affiliation(s)
- Özgür Doğuş Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Şimal Şenocak
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey.
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey.
| |
Collapse
|
5
|
Goretzko J, Pauels I, Heitzig N, Thomas K, Kardell M, Naß J, Krogsaeter EK, Schloer S, Spix B, Linard Matos AL, Leser C, Wegner T, Glorius F, Bracher F, Gerke V, Rossaint J, Grimm C, Rescher U. P-selectin-dependent leukocyte adhesion is governed by endolysosomal two-pore channel 2. Cell Rep 2023; 42:113501. [PMID: 38039128 DOI: 10.1016/j.celrep.2023.113501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/18/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Upon proinflammatory challenges, endothelial cell surface presentation of the leukocyte receptor P-selectin, together with the stabilizing co-factor CD63, is needed for leukocyte capture and is mediated via demand-driven exocytosis from the Weibel-Palade bodies that fuse with the plasma membrane. We report that neutrophil recruitment to activated endothelium is significantly reduced in mice deficient for the endolysosomal cation channel TPC2 and in human primary endothelial cells with pharmacological TPC2 block. We observe less CD63 signal in whole-mount stainings of proinflammatory-activated cremaster muscles from TPC2 knockout mice. We find that TPC2 is activated and needed to ensure the transfer of CD63 from endolysosomes via Weibel-Palade bodies to the plasma membrane to retain P-selectin on the cell surface of human primary endothelial cells. Our findings establish TPC2 as a key element to leukocyte interaction with the endothelium and a potential pharmacological target in the control of inflammatory leukocyte recruitment.
Collapse
Affiliation(s)
- Jonas Goretzko
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center for Molecular Biology of Inflammation, University of Muenster (formerly Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster), von-Esmarch-Strasse 56, 48149 Muenster, Germany
| | - Inga Pauels
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center for Molecular Biology of Inflammation, University of Muenster (formerly Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster), von-Esmarch-Strasse 56, 48149 Muenster, Germany
| | - Nicole Heitzig
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center for Molecular Biology of Inflammation, University of Muenster (formerly Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster), von-Esmarch-Strasse 56, 48149 Muenster, Germany
| | - Katharina Thomas
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert Schweitzer Campus 1, A1, 48149 Muenster, Germany
| | - Marina Kardell
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert Schweitzer Campus 1, A1, 48149 Muenster, Germany
| | - Johannes Naß
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, von-Esmarch-Strasse 56, 48149 Muenster, Germany
| | - Einar Kleinhans Krogsaeter
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Nussbaumstrasse 26, 80336 Munich, Germany
| | - Sebastian Schloer
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center for Molecular Biology of Inflammation, University of Muenster (formerly Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster), von-Esmarch-Strasse 56, 48149 Muenster, Germany
| | - Barbara Spix
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Nussbaumstrasse 26, 80336 Munich, Germany
| | - Anna Lívia Linard Matos
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, von-Esmarch-Strasse 56, 48149 Muenster, Germany
| | - Charlotte Leser
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Tristan Wegner
- Institute of Organic Chemistry, University of Muenster, Corrensstrasse 40, 48149 Muenster, Germany
| | - Frank Glorius
- Institute of Organic Chemistry, University of Muenster, Corrensstrasse 40, 48149 Muenster, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, von-Esmarch-Strasse 56, 48149 Muenster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert Schweitzer Campus 1, A1, 48149 Muenster, Germany
| | - Christian Grimm
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Nussbaumstrasse 26, 80336 Munich, Germany; Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany
| | - Ursula Rescher
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center for Molecular Biology of Inflammation, University of Muenster (formerly Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster), von-Esmarch-Strasse 56, 48149 Muenster, Germany.
| |
Collapse
|
6
|
Hurley ME, Shah SS, Sheard TMD, Kirton HM, Steele DS, Gamper N, Jayasinghe I. Super-Resolution Analysis of the Origins of the Elementary Events of ER Calcium Release in Dorsal Root Ganglion Neurons. Cells 2023; 13:38. [PMID: 38201242 PMCID: PMC10778190 DOI: 10.3390/cells13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Coordinated events of calcium (Ca2+) released from the endoplasmic reticulum (ER) are key second messengers in excitable cells. In pain-sensing dorsal root ganglion (DRG) neurons, these events can be observed as Ca2+ sparks, produced by a combination of ryanodine receptors (RyR) and inositol 1,4,5-triphosphate receptors (IP3R1). These microscopic signals offer the neuronal cells with a possible means of modulating the subplasmalemmal Ca2+ handling, initiating vesicular exocytosis. With super-resolution dSTORM and expansion microscopies, we visualised the nanoscale distributions of both RyR and IP3R1 that featured loosely organised clusters in the subplasmalemmal regions of cultured rat DRG somata. We adapted a novel correlative microscopy protocol to examine the nanoscale patterns of RyR and IP3R1 in the locality of each Ca2+ spark. We found that most subplasmalemmal sparks correlated with relatively small groups of RyR whilst larger sparks were often associated with larger groups of IP3R1. These data also showed spontaneous Ca2+ sparks in <30% of the subplasmalemmal cell area but consisted of both these channel species at a 3.8-5 times higher density than in nonactive regions of the cell. Taken together, these observations reveal distinct patterns and length scales of RyR and IP3R1 co-clustering at contact sites between the ER and the surface plasmalemma that encode the positions and the quantity of Ca2+ released at each Ca2+ spark.
Collapse
Affiliation(s)
- Miriam E. Hurley
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Shihab S. Shah
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas M. D. Sheard
- School of Biosciences, Faculty of Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Hannah M. Kirton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Derek S. Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nikita Gamper
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Izzy Jayasinghe
- School of Biosciences, Faculty of Science, The University of Sheffield, Sheffield S10 2TN, UK
- EMBL Australia Node in Single Molecule Science, School of Biomedical Science, University of New South Wales, Kensington, Sydney 2052, Australia
| |
Collapse
|
7
|
Pedicini L, Smith J, Savic S, McKeown L. Rab46: a novel player in mast cell function. DISCOVERY IMMUNOLOGY 2023; 3:kyad028. [PMID: 38567292 PMCID: PMC10917158 DOI: 10.1093/discim/kyad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/01/2023] [Accepted: 12/18/2023] [Indexed: 04/04/2024]
Abstract
Mast cells are infamous for mediating allergic and inflammatory diseases due to their capacity of rapidly releasing a wide range of inflammatory mediators stored in cytoplasmic granules. However, mast cells also have several important physiological roles that involve selective and agonist-specific release of these active mediators. While a filtering mechanism at the plasma membrane could regulate the selective release of some cargo, the plethora of stored cargo and the diversity of mast cell functions suggests the existence of granule subtypes with distinct trafficking pathways. The molecular mechanisms underlying differential trafficking and exocytosis of these granules are not known, neither is it clear how granule trafficking is coupled to the stimulus. In endothelial cells, a Rab GTPase, Rab46, responds to histamine but not thrombin signals, and this regulates the trafficking of a subpopulation of endothelial-specific granules. Here, we sought to explore, for the first time, if Rab46 plays a role in mast cell function. We demonstrate that Rab46 is highly expressed in human and murine mast cells, and Rab46 genetic deletion has an effect on mast cell degranulation that depends on both stimuli and mast cell subtype. This initial insight into the contribution of Rab46 to mast cell function and the understanding of the role of Rab46 in stimuli-dependent trafficking in other cell types necessitates further investigations of Rab46 in mast cell granular trafficking so that novel and specific therapeutic targets for treatment of the diverse pathologies mediated by mast cells can be developed.
Collapse
Affiliation(s)
- Lucia Pedicini
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Jessica Smith
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James’s University Hospital, Leeds, UK
- National Institute for Health Research-Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds, UK
| | - Lynn McKeown
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
Goncharov NV, Avdonin PP, Voitenko NG, Voronina PA, Popova PI, Novozhilov AV, Blinova MS, Popkova VS, Belinskaia DA, Avdonin PV. Searching for New Biomarkers to Assess COVID-19 Patients: A Pilot Study. Metabolites 2023; 13:1194. [PMID: 38132876 PMCID: PMC10745512 DOI: 10.3390/metabo13121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
During the initial diagnosis of urgent medical conditions, which include acute infectious diseases, it is important to assess the severity of the patient's clinical state as quickly as possible. Unlike individual biochemical or physiological indicators, derived indices make it possible to better characterize a complex syndrome as a set of symptoms, and therefore quickly take a set of adequate measures. Recently, we reported on novel diagnostic indices containing butyrylcholinesterase (BChE) activity, which is decreased in COVID-19 patients. Also, in these patients, the secretion of von Willebrand factor (vWF) increases, which leads to thrombosis in the microvascular bed. The objective of this study was the determination of the concentration and activity of vWF in patients with COVID-19, and the search for new diagnostic indices. One of the main objectives was to compare the prognostic values of some individual and newly derived indices. Patients with COVID-19 were retrospectively divided into two groups: survivors (n = 77) and deceased (n = 24). According to clinical symptoms and computed tomography (CT) results, the course of disease was predominantly moderate in severity. The first blood sample (first point) was taken upon admission to the hospital, the second sample (second point)-within 4-6 days after admission. Along with the standard spectrum of biochemical indicators, BChE activity (BChEa or BChEb for acetylthiocholin or butyrylthiocholin, respectively), malondialdehyde (MDA), and vWF analysis (its antigen level, AGFW, and its activity, ActWF) were determined and new diagnostic indices were derived. The pooled sensitivity, specificity, and area under the receiver operating curve (AUC), as well as Likelihood ratio (LR) and Odds ratio (OR) were calculated. The level of vWF antigen in the deceased group was 1.5-fold higher than the level in the group of survivors. Indices that include vWF antigen levels are superior to indices using vWF activity. It was found that the index [Urea] × [AGWF] × 1000/(BChEb × [ALB]) had the best discriminatory power to predict COVID-19 mortality (AUC = 0.91 [0.83, 1.00], p < 0.0001; OR = 72.0 [7.5, 689], p = 0.0002). In addition, [Urea] × 1000/(BChEb × [ALB]) was a good predictor of mortality (AUC = 0.95 [0.89, 1.00], p < 0.0001; OR = 31.5 [3.4, 293], p = 0.0024). The index [Urea] × [AGWF] × 1000/(BChEb × [ALB]) was the best predictor of mortality associated with COVID-19 infection, followed by [Urea] × 1000/(BChEb × [ALB]). After validation in a subsequent cohort, these two indices could be recommended for diagnostic laboratories.
Collapse
Affiliation(s)
- Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | - Piotr P. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (P.P.A.); (M.S.B.); (V.S.P.); (P.V.A.)
| | - Natalia G. Voitenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | - Polina A. Voronina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | | | - Artemy V. Novozhilov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | - Maria S. Blinova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (P.P.A.); (M.S.B.); (V.S.P.); (P.V.A.)
| | - Victoria S. Popkova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (P.P.A.); (M.S.B.); (V.S.P.); (P.V.A.)
| | - Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia; (N.G.V.); (P.A.V.); (A.V.N.); (D.A.B.)
| | - Pavel V. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (P.P.A.); (M.S.B.); (V.S.P.); (P.V.A.)
| |
Collapse
|
9
|
Wilson B, Flett C, Gemperle J, Lawless C, Hartshorn M, Hinde E, Harrison T, Chastney M, Taylor S, Allen J, Norman JC, Zacharchenko T, Caswell PT. Proximity labelling identifies pro-migratory endocytic recycling cargo and machinery of the Rab4 and Rab11 families. J Cell Sci 2023; 136:jcs260468. [PMID: 37232246 PMCID: PMC10323252 DOI: 10.1242/jcs.260468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
Endocytic recycling controls the return of internalised cargoes to the plasma membrane to coordinate their positioning, availability and downstream signalling. The Rab4 and Rab11 small GTPase families regulate distinct recycling routes, broadly classified as fast recycling from early endosomes (Rab4) and slow recycling from perinuclear recycling endosomes (Rab11), and both routes handle a broad range of overlapping cargoes to regulate cell behaviour. We adopted a proximity labelling approach, BioID, to identify and compare the protein complexes recruited by Rab4a, Rab11a and Rab25 (a Rab11 family member implicated in cancer aggressiveness), revealing statistically robust protein-protein interaction networks of both new and well-characterised cargoes and trafficking machinery in migratory cancer cells. Gene ontological analysis of these interconnected networks revealed that these endocytic recycling pathways are intrinsically connected to cell motility and cell adhesion. Using a knock-sideways relocalisation approach, we were further able to confirm novel links between Rab11, Rab25 and the ESCPE-1 and retromer multiprotein sorting complexes, and identify new endocytic recycling machinery associated with Rab4, Rab11 and Rab25 that regulates cancer cell migration in the 3D matrix.
Collapse
Affiliation(s)
- Beverley Wilson
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Chloe Flett
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Jakub Gemperle
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Matthew Hartshorn
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Eleanor Hinde
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Tess Harrison
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Megan Chastney
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Sarah Taylor
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Jennifer Allen
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Jim C. Norman
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Thomas Zacharchenko
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Patrick T. Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
10
|
Redpath GMI, Ananthanarayanan V. Endosomal sorting sorted - motors, adaptors and lessons from in vitro and cellular studies. J Cell Sci 2023; 136:292583. [PMID: 36861885 DOI: 10.1242/jcs.260749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Motor proteins are key players in exerting spatiotemporal control over the intracellular location of membrane-bound compartments, including endosomes containing cargo. In this Review, we focus on how motors and their cargo adaptors regulate positioning of cargoes from the earliest stages of endocytosis and through the two main intracellular itineraries: (1) degradation at the lysosome or (2) recycling back to the plasma membrane. In vitro and cellular (in vivo) studies on cargo transport thus far have typically focussed independently on either the motor proteins and adaptors, or membrane trafficking. Here, we will discuss recent studies to highlight what is known about the regulation of endosomal vesicle positioning and transport by motors and cargo adaptors. We also emphasise that in vitro and cellular studies are often performed at different scales, from single molecules to whole organelles, with the aim to provide a perspective on the unified principles of motor-driven cargo trafficking in living cells that can be learned from these differing scales.
Collapse
Affiliation(s)
- Gregory M I Redpath
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, The University of New South Wales, Sydney 2052, Australia
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
11
|
Longé C, Bratti M, Kurowska M, Vibhushan S, David P, Desmeure V, Huang JD, Fischer A, de Saint Basile G, Sepulveda FE, Blank U, Ménasché G. Rab44 regulates murine mast cell-driven anaphylaxis through kinesin-1-dependent secretory granule translocation. J Allergy Clin Immunol 2022; 150:676-689. [PMID: 35469841 DOI: 10.1016/j.jaci.2022.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mast cells (MCs) are key effectors of the allergic response. Following the cross-linking of IgE receptors (FcεRIs), they release crucial inflammatory mediators through degranulation. Although degranulation depends critically on secretory granule (SG) trafficking towards the plasma membrane, the molecular machinery underlying this transport has not been fully characterized. OBJECTIVE Here, we analyzed the function of Rab44, a large atypical Rab GTPase highly expressed in MC, in MC degranulation process. METHODS Murine KO mouse models (KORab44 and DKOKif5b/Rab44) were used to perform passive cutaneous anaphylaxis (PCA) experiments and analyze granule translocation in derived bone-marrow-derived MCs (BMMCs) during degranulation. RESULTS We demonstrate that mice lacking Rab44 (KORab44) in their BMMCs are impaired in their ability to translocate and degranulate SGs at the plasma membrane upon FcεRI stimulation. Accordingly, KORab44 mice were less sensitive to IgE-mediated passive cutaneous anaphylaxis in vivo. A lack of Rab44 did not impair early FcεRI-stimulated signaling pathways, microtubule reorganization, lipid mediator or cytokine secretion. Mechanistically, Rab44 appears to interact with and function as part of the previously described kinesin-1-dependent transport pathway. CONCLUSIONS Our results highlight a novel role of Rab44 as a regulator of SG transport during degranulation and anaphylaxis acting through the kinesin-1-dependent microtubule transport machinery. Rab44 can thus be considered as a potential target for modulating MC degranulation and inhibiting IgE-mediated allergic reactions.
Collapse
Affiliation(s)
- Cyril Longé
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| | - Manuela Bratti
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Mathieu Kurowska
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| | - Shamila Vibhushan
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Pierre David
- Transgenesis Facility, Laboratoire d'Expérimentation Animale et Transgénèse (LEAT), Imagine Institute, Structure Fédérative de Recherche Necker INSERM US24/CNRS UMS3633, F-75015, Paris, France
| | - Valère Desmeure
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Alain Fischer
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France; Immunology and Pediatric Hematology Department, Necker Children's Hospital, AP-HP, F-75015 Paris, France; Collège de France, F-75005 Paris, France
| | - Geneviève de Saint Basile
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France; Centre d'Etude des Déficits Immunitaires, AP-HP, Hôpital Necker-Enfants Malades, F-75015, Paris, France
| | - Fernando E Sepulveda
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France; Centre National de la Recherche Scientifique, F-75015, Paris. France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Gaël Ménasché
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| |
Collapse
|
12
|
Naß J, Terglane J, Gerke V. Weibel Palade Bodies: Unique Secretory Organelles of Endothelial Cells that Control Blood Vessel Homeostasis. Front Cell Dev Biol 2022; 9:813995. [PMID: 34977047 PMCID: PMC8717947 DOI: 10.3389/fcell.2021.813995] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial cells produce and release compounds regulating vascular tone, blood vessel growth and differentiation, plasma composition, coagulation and fibrinolysis, and also engage in interactions with blood cells thereby controlling hemostasis and acute inflammatory reactions. These interactions have to be tightly regulated to guarantee smooth blood flow in normal physiology, but also allow specific and often local responses to blood vessel injury and infectious or inflammatory insults. To cope with these challenges, endothelial cells have the remarkable capability of rapidly changing their surface properties from non-adhesive (supporting unrestricted blood flow) to adhesive (capturing circulating blood cells). This is brought about by the evoked secretion of major adhesion receptors for platelets (von-Willebrand factor, VWF) and leukocytes (P-selectin) which are stored in a ready-to-be-used form in specialized secretory granules, the Weibel-Palade bodies (WPB). WPB are unique, lysosome related organelles that form at the trans-Golgi network and further mature by receiving material from the endolysosomal system. Failure to produce correctly matured VWF and release it through regulated WPB exocytosis results in pathologies, most importantly von-Willebrand disease, the most common inherited blood clotting disorder. The biogenesis of WPB, their intracellular motility and their fusion with the plasma membrane are regulated by a complex interplay of proteins and lipids, involving Rab proteins and their effectors, cytoskeletal components as well as membrane tethering and fusion machineries. This review will discuss aspects of WPB biogenesis, trafficking and exocytosis focussing on recent findings describing factors contributing to WPB maturation, WPB-actin interactions and WPB-plasma membrane tethering and fusion.
Collapse
Affiliation(s)
- Johannes Naß
- Centre for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany
| | - Julian Terglane
- Centre for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany
| | - Volker Gerke
- Centre for Molecular Biology of Inflammation, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany
| |
Collapse
|
13
|
GDP/GTP exchange factor MADD drives activation and recruitment of secretory Rab GTPases to Weibel-Palade bodies. Blood Adv 2021; 5:5116-5127. [PMID: 34551092 PMCID: PMC9153003 DOI: 10.1182/bloodadvances.2021004827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/19/2021] [Indexed: 02/02/2023] Open
Abstract
von Willebrand factor (VWF) is an essential hemostatic protein that is synthesized and secreted by endothelial cells and stored in Weibel-Palade bodies (WPBs). The secretory Rab GTPases Rab27A, Rab3B, and Rab3D have been linked with WPB trafficking and secretion. How these Rabs are activated and recruited to WPBs remains elusive. In this study, we identified MAP kinase-activating death domain (MADD) as the guanine nucleotide exchange factor for Rab27A and both Rab3 isoforms in primary human endothelial cells. Rab activity assays revealed a reduction in Rab27A, Rab3B, and Rab3D activation upon MADD silencing. Rab activation, but not binding, was dependent on the differentially expressed in normal and neoplastic cells (DENN) domain of MADD, indicating the potential existence of 2 Rab interaction modules. Furthermore, immunofluorescent analysis showed that Rab27A, Rab3B, and Rab3D recruitment to WPBs was dramatically decreased upon MADD knockdown, revealing that MADD drives Rab membrane targeting. Artificial mistargeting of MADD using a TOMM70 tag abolished Rab27A localization to WPB membranes in a DENN domain-dependent manner, indicating that normal MADD localization in the cytosol is crucial. Activation of Rab3B and Rab3D was reduced upon Rab27A silencing, suggesting that activation of these Rabs is enhanced through previous activation of Rab27A by MADD. MADD silencing did not affect WPB morphology, but it did reduce VWF intracellular content. Furthermore, MADD-depleted cells exhibited decreased histamine-evoked VWF release, similar to Rab27A-depleted cells. In conclusion, MADD acts as a master regulator of VWF secretion by coordinating the activation and membrane targeting of secretory Rabs to WPBs.
Collapse
|
14
|
Large Rab GTPases: Novel Membrane Trafficking Regulators with a Calcium Sensor and Functional Domains. Int J Mol Sci 2021; 22:ijms22147691. [PMID: 34299309 PMCID: PMC8303950 DOI: 10.3390/ijms22147691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022] Open
Abstract
Rab GTPases are major coordinators of intracellular membrane trafficking, including vesicle transport, membrane fission, tethering, docking, and fusion events. Rab GTPases are roughly divided into two groups: conventional “small” Rab GTPases and atypical “large” Rab GTPases that have been recently reported. Some members of large Rab GTPases in mammals include Rab44, Rab45/RASEF, and Rab46. The genes of these large Rab GTPases commonly encode an amino-terminal EF-hand domain, coiled-coil domain, and the carboxyl-terminal Rab GTPase domain. A common feature of large Rab GTPases is that they express several isoforms in cells. For instance, Rab44’s two isoforms have similar functions, but exhibit differential localization. The long form of Rab45 (Rab45-L) is abundantly distributed in epithelial cells. The short form of Rab45 (Rab45-S) is predominantly present in the testes. Both Rab46 (CRACR2A-L) and the short isoform lacking the Rab domain (CRACR2A-S) are expressed in T cells, whereas Rab46 is only distributed in endothelial cells. Although evidence regarding the function of large Rab GTPases has been accumulating recently, there are only a limited number of studies. Here, we report the recent findings on the large Rab GTPase family concerning their function in membrane trafficking, cell differentiation, related diseases, and knockout mouse phenotypes.
Collapse
|
15
|
Affinity-based proteomics reveals novel binding partners for Rab46 in endothelial cells. Sci Rep 2021; 11:4054. [PMID: 33603063 PMCID: PMC7893075 DOI: 10.1038/s41598-021-83560-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Rab46 is a novel Ca2+-sensing Rab GTPase shown to have important functions in endothelial and immune cells. The presence of functional Ca2+-binding, coiled-coil and Rab domains suggest that Rab46 will be important for coupling rapid responses to signalling in many cell types. The molecular mechanisms underlying Rab46 function are currently unknown. Here we provide the first resource for studying Rab46 interacting proteins. Using liquid chromatography tandem mass spectrometry (LC–MS/MS) to identify affinity purified proteins that bind to constitutively active GFP-Rab46 or inactive GFP-Rab46 expressed in endothelial cells, we have revealed 922 peptides that interact with either the GTP-bound Rab46 or GDP-bound Rab46. To identify proteins that could be potential Rab46 effectors we performed further comparative analyses between nucleotide-locked Rab46 proteins and identified 29 candidate effector proteins. Importantly, through biochemical and imaging approaches we have validated two potential effector proteins; dynein and the Na2+/ K+ ATPase subunit alpha 1 (ATP1α1). Hence, our use of affinity purification and LC–MS/MS to identify Rab46 neighbouring proteins provides a valuable resource for detecting Rab46 effector proteins and analysing Rab46 functions.
Collapse
|
16
|
Sharda AV, Barr AM, Harrison JA, Wilkie AR, Fang C, Mendez LM, Ghiran IC, Italiano JE, Flaumenhaft R. VWF maturation and release are controlled by 2 regulators of Weibel-Palade body biogenesis: exocyst and BLOC-2. Blood 2020; 136:2824-2837. [PMID: 32614949 PMCID: PMC7731791 DOI: 10.1182/blood.2020005300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023] Open
Abstract
von Willebrand factor (VWF) is an essential hemostatic protein that is synthesized in endothelial cells and stored in Weibel-Palade bodies (WPBs). Understanding the mechanisms underlying WPB biogenesis and exocytosis could enable therapeutic modulation of endogenous VWF, yet optimal targets for modulating VWF release have not been established. Because biogenesis of lysosomal related organelle-2 (BLOC-2) functions in the biogenesis of platelet dense granules and melanosomes, which like WPBs are lysosome-related organelles, we hypothesized that BLOC-2-dependent endolysosomal trafficking is essential for WPB biogenesis and sought to identify BLOC-2-interacting proteins. Depletion of BLOC-2 caused misdirection of cargo-carrying transport tubules from endosomes, resulting in immature WPBs that lack endosomal input. Immunoprecipitation of BLOC-2 identified the exocyst complex as a binding partner. Depletion of the exocyst complex phenocopied BLOC-2 depletion, resulting in immature WPBs. Furthermore, releasates of immature WPBs from either BLOC-2 or exocyst-depleted endothelial cells lacked high-molecular weight (HMW) forms of VWF, demonstrating the importance of BLOC-2/exocyst-mediated endosomal input during VWF maturation. However, BLOC-2 and exocyst showed very different effects on VWF release. Although BLOC-2 depletion impaired exocytosis, exocyst depletion augmented WPB exocytosis, indicating that it acts as a clamp. Exposure of endothelial cells to a small molecule inhibitor of exocyst, Endosidin2, reversibly augmented secretion of mature WPBs containing HMW forms of VWF. These studies show that, although BLOC-2 and exocyst cooperate in WPB formation, only exocyst serves to clamp WPB release. Exocyst function in VWF maturation and release are separable, a feature that can be exploited to enhance VWF release.
Collapse
Affiliation(s)
- Anish V Sharda
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| | - Alexandra M Barr
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| | - Joshua A Harrison
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| | | | - Chao Fang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| | | | - Ionita C Ghiran
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, and
| | - Joseph E Italiano
- Division of Hematology, Brigham and Women's Hospital
- Vascular Biology Program, Department of Surgery, Children's Hospital, Harvard Medical School, Boston, MA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| |
Collapse
|
17
|
Emerging mechanisms to modulate VWF release from endothelial cells. Int J Biochem Cell Biol 2020; 131:105900. [PMID: 33301925 DOI: 10.1016/j.biocel.2020.105900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Agonist-mediated exocytosis of Weibel-Palade bodies underpins the endothelium's ability to respond to injury or infection. Much of this important response is mediated by the major constituent of Weibel-Palade bodies: the ultra-large glycoprotein von Willebrand factor. Upon regulated WPB exocytosis, von Willebrand factor multimers unfurl into long, platelet-catching 'strings' which instigate the pro-haemostatic response. Accordingly, excessive levels of VWF are associated with thrombotic pathologies, including myocardial infarction and ischaemic stroke. Failure to appropriately cleave von Willebrand Factor strings results in thrombotic thrombocytopenic purpura, a life-threatening pathology characterised by tissue ischaemia and multiple microvascular occlusions. Historically, treatment of thrombotic thrombocytopenic purpura has relied heavily on plasma exchange therapy. However, the demonstrated efficacy of Rituximab and Caplacizumab in the treatment of acquired thrombotic thrombocytopenic purpura highlights how insights into pathophysiology can improve treatment options for von Willebrand factor-related disease. Directly limiting von Willebrand factor release from Weibel-Palade bodies has the potential as a therapeutic for cardiovascular disease. Cell biologists aim to map the WPB biogenesis and secretory pathways in order to find novel ways to control von Willebrand factor release. Emerging paradigms include the modulation of Weibel-Palade body size, trafficking and mechanism of fusion. This review focuses on the promise, progress and challenges of targeting Weibel-Palade bodies as a means to inhibit von Willebrand factor release from endothelial cells.
Collapse
|
18
|
Nguyen TTN, Koerdt SN, Gerke V. Plasma membrane phosphatidylinositol (4,5)-bisphosphate promotes Weibel-Palade body exocytosis. Life Sci Alliance 2020; 3:3/11/e202000788. [PMID: 32826291 PMCID: PMC7442956 DOI: 10.26508/lsa.202000788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 01/26/2023] Open
Abstract
Phosphatidylinositol (4,5)-bisphosphate transiently accumulates at sites of Weibel–Palade body–plasma membrane fusion and promotes agonist-evoked exocytosis of endothelial von-Willebrand factor. Weibel–Palade bodies (WPB) are specialized secretory organelles of endothelial cells that control vascular hemostasis by regulated, Ca2+-dependent exocytosis of the coagulation-promoting von-Willebrand factor. Some proteins of the WPB docking and fusion machinery have been identified but a role of membrane lipids in regulated WPB exocytosis has so far remained elusive. We show here that the plasma membrane phospholipid composition affects Ca2+-dependent WPB exocytosis and von-Willebrand factor release. Phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] becomes enriched at WPB–plasma membrane contact sites at the time of fusion, most likely downstream of phospholipase D1-mediated production of phosphatidic acid (PA) that activates phosphatidylinositol 4-phosphate (PI4P) 5-kinase γ. Depletion of plasma membrane PI(4,5)P2 or down-regulation of PI4P 5-kinase γ interferes with histamine-evoked and Ca2+-dependent WPB exocytosis and a mutant PI4P 5-kinase γ incapable of binding PA affects WPB exocytosis in a dominant-negative manner. This indicates that a unique PI(4,5)P2-rich environment in the plasma membrane governs WPB fusion possibly by providing interaction sites for WPB-associated docking factors.
Collapse
Affiliation(s)
- Tu Thi Ngoc Nguyen
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Sophia N Koerdt
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| |
Collapse
|
19
|
Masgrau-Alsina S, Sperandio M, Rohwedder I. Neutrophil recruitment and intracellular vesicle transport: A short overview. Eur J Clin Invest 2020; 50:e13237. [PMID: 32289185 DOI: 10.1111/eci.13237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/22/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Recruitment of neutrophils from the intravascular compartment into injured tissue is an essential component of the inflammatory response. It involves intracellular trafficking of vesicles within neutrophils and endothelial cells, both containing numerous proteins that have to be distributed in a tightly controlled and precise spatiotemporal fashion during the recruitment process. Rab proteins, a family of small GTPases, together with their effectors, are the key players in guiding and regulating the intracellular vesicle trafficking machinery during neutrophil recruitment. This review will provide a short overview on this process and highlight new findings as well as current controversies in the field.
Collapse
Affiliation(s)
- Sergi Masgrau-Alsina
- Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ina Rohwedder
- Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
20
|
Nassari S, Del Olmo T, Jean S. Rabs in Signaling and Embryonic Development. Int J Mol Sci 2020; 21:E1064. [PMID: 32033485 PMCID: PMC7037298 DOI: 10.3390/ijms21031064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Rab GTPases play key roles in various cellular processes. They are essential, among other roles, to membrane trafficking and intracellular signaling events. Both trafficking and signaling events are crucial for proper embryonic development. Indeed, embryogenesis is a complex process in which cells respond to various signals and undergo dramatic changes in their shape, position, and function. Over the last few decades, cellular studies have highlighted the novel signaling roles played by Rab GTPases, while numerous studies have shed light on the important requirements of Rab proteins at various steps of embryonic development. In this review, we aimed to generate an overview of Rab contributions during animal embryogenesis. We first briefly summarize the involvement of Rabs in signaling events. We then extensively highlight the contribution of Rabs in shaping metazoan development and conclude with new approaches that will allow investigation of Rab functions in vivo.
Collapse
Affiliation(s)
| | | | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada; (S.N.); (T.D.O.)
| |
Collapse
|
21
|
Proximity proteomics of endothelial Weibel-Palade bodies identifies novel regulator of von Willebrand factor secretion. Blood 2019; 134:979-982. [PMID: 31262780 PMCID: PMC8270391 DOI: 10.1182/blood.2019000786] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
Weibel-Palade bodies (WPB) are unique secretory organelles of endothelial cells that store factors regulating vascular hemostasis and local inflammation. Endothelial activation triggers rapid exocytosis of WPB, leading to the surface presentation of adhesion molecules relevant for leukocyte rolling (P-selectin) and platelet capture (von Willebrand factor [VWF]). Despite its role as an important secretory organelle, a comprehensive compilation of factors associated with WPB has not been carried out. We addressed this via a proximity proteomics approach employing the peroxidase APEX2 coupled with 2 known WPB-associated proteins: the Rab GTPases Rab3b and Rab27a. We show that APEX2-Rab3b/27a fusion constructs are correctly targeted to WPB of primary endothelial cells, and that proteins in their close proximity can be biotinylated through the WPB-recruited APEX2. Mass spectrometry analysis of the biotinylated proteins identified 183 WPB-associated proteins. Whereas these include factors reported before to localize to WPB, the majority comprises proteins not previously associated with WPB biology. Among them, the SNARE-interacting protein Munc13-2 was shown here to specifically localize to WPB and to serve as a novel factor promoting histamine-evoked WPB exocytosis and VWF secretion. Thus, APEX2-based proximity proteomics can be used to specifically identify novel organelle-associated factors in primary endothelial cells.
Collapse
|