1
|
Malumbres M, Villarroya-Beltri C. Mosaic variegated aneuploidy in development, ageing and cancer. Nat Rev Genet 2024; 25:864-878. [PMID: 39169218 DOI: 10.1038/s41576-024-00762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 08/23/2024]
Abstract
Mosaic variegated aneuploidy (MVA) is a rare condition in which abnormal chromosome counts (that is, aneuploidies), affecting different chromosomes in each cell (making it variegated) are found only in a certain number of cells (making it mosaic). MVA is characterized by various developmental defects and, despite its rarity, presents a unique clinical scenario to understand the consequences of chromosomal instability and copy number variation in humans. Research from patients with MVA, genetically engineered mouse models and functional cellular studies have found the genetic causes to be mutations in components of the spindle-assembly checkpoint as well as in related proteins involved in centrosome dynamics during mitosis. MVA is accompanied by tumour susceptibility (depending on the genetic basis) as well as cellular and systemic stress, including chronic immune response and the associated clinical implications.
Collapse
Affiliation(s)
- Marcos Malumbres
- Cancer Cell Cycle Group, Systems Oncology Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA) Barcelona, Barcelona, Spain.
| | | |
Collapse
|
2
|
Purkerson MM, Amend SR, Pienta KJ. Bystanders or active players: the role of extra centrosomes as signaling hubs. Cancer Metastasis Rev 2024; 44:1. [PMID: 39570514 PMCID: PMC11582193 DOI: 10.1007/s10555-024-10224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Centrosomes serve as microtubule-organizing organelles that function in spindle pole organization, cell cycle progression, and cilia formation. A non-canonical role of centrosomes that has gained traction in recent years is the ability to act as signal transduction centers. Centrosome amplification, which includes numerical and structural aberrations of centrosomes, is a candidate hallmark of cancer. The function of centrosomes as signaling centers in cancer cells with centrosome amplification is poorly understood. Establishing a model of how cancer cells utilize centrosomes as signaling platforms will help elucidate the role of extra centrosomes in cancer cell survival and tumorigenesis. Centrosomes act in a diverse array of cellular processes, including cell migration, cell cycle progression, and proteasomal degradation. Given that cancer cells with amplified centrosomes exhibit an increased number and larger area of these signaling platforms, extra centrosomes may be acting to promote tumor development by enhancing signaling kinetics in pathways that are essential for the formation and growth of cancer. In this review, we identify the processes centrosomes are involved in as signal transduction platforms and highlight ways in which cancer cells with centrosome amplification may be taking advantage of these mechanisms.
Collapse
Affiliation(s)
- Madison M Purkerson
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Cancer Ecology Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Pharmacology and Molecular Sciences Program, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Sarah R Amend
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth J Pienta
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Pharmacology and Molecular Sciences Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Sala C, Würtz M, Atorino ES, Neuner A, Partscht P, Hoffmann T, Eustermann S, Schiebel E. An interaction network of inner centriole proteins organised by POC1A-POC1B heterodimer crosslinks ensures centriolar integrity. Nat Commun 2024; 15:9857. [PMID: 39543170 PMCID: PMC11564547 DOI: 10.1038/s41467-024-54247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Centriole integrity, vital for cilia formation and chromosome segregation, is crucial for human health. The inner scaffold within the centriole lumen composed of the proteins POC1B, POC5 and FAM161A is key to this integrity. Here, we provide an understanding of the function of inner scaffold proteins. We demonstrate the importance of an interaction network organised by POC1A-POC1B heterodimers within the centriole lumen, where the WD40 domain of POC1B localises close to the centriole wall, while the POC5-interacting WD40 of POC1A resides in the centriole lumen. The POC1A-POC5 interaction and POC5 tetramerization are essential for inner scaffold formation and centriole stability. The microtubule binding proteins FAM161A and MDM1 by binding to POC1A-POC1B, likely positioning the POC5 tetramer near the centriole wall. Disruption of POC1A or POC1B leads to centriole microtubule defects and deletion of both genes causes centriole disintegration. These findings provide insights into organisation and function of the inner scaffold.
Collapse
Affiliation(s)
- Cornelia Sala
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Allianz, Universität Heidelberg, Heidelberg, Germany
| | - Martin Würtz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Allianz, Universität Heidelberg, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, Germany
| | | | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Allianz, Universität Heidelberg, Heidelberg, Germany
| | | | - Thomas Hoffmann
- European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, Germany
| | | | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Allianz, Universität Heidelberg, Heidelberg, Germany.
| |
Collapse
|
4
|
Holder J, Miles JA, Batchelor M, Popple H, Walko M, Yeung W, Kannan N, Wilson AJ, Bayliss R, Gergely F. CEP192 localises mitotic Aurora-A activity by priming its interaction with TPX2. EMBO J 2024; 43:5381-5420. [PMID: 39327527 PMCID: PMC11574021 DOI: 10.1038/s44318-024-00240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Aurora-A is an essential cell-cycle kinase with critical roles in mitotic entry and spindle dynamics. These functions require binding partners such as CEP192 and TPX2, which modulate both kinase activity and localisation of Aurora-A. Here we investigate the structure and role of the centrosomal Aurora-A:CEP192 complex in the wider molecular network. We find that CEP192 wraps around Aurora-A, occupies the binding sites for mitotic spindle-associated partners, and thus competes with them. Comparison of two different Aurora-A conformations reveals how CEP192 modifies kinase activity through the site used for TPX2-mediated activation. Deleting the Aurora-A-binding interface in CEP192 prevents centrosomal accumulation of Aurora-A, curtails its activation-loop phosphorylation, and reduces spindle-bound TPX2:Aurora-A complexes, resulting in error-prone mitosis. Thus, by supplying the pool of phosphorylated Aurora-A necessary for TPX2 binding, CEP192:Aurora-A complexes regulate spindle function. We propose an evolutionarily conserved spatial hierarchy, which protects genome integrity through fine-tuning and correctly localising Aurora-A activity.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jennifer A Miles
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Matthew Batchelor
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Harrison Popple
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Wayland Yeung
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Andrew J Wilson
- School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| | - Fanni Gergely
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
5
|
Farrell KC, Wang JT, Stearns T. Spindle assembly checkpoint-dependent mitotic delay is required for cell division in absence of centrosomes. eLife 2024; 12:RP84875. [PMID: 39092485 PMCID: PMC11296703 DOI: 10.7554/elife.84875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The spindle assembly checkpoint (SAC) temporally regulates mitosis by preventing progression from metaphase to anaphase until all chromosomes are correctly attached to the mitotic spindle. Centrosomes refine the spatial organization of the mitotic spindle at the spindle poles. However, centrosome loss leads to elongated mitosis, suggesting that centrosomes also inform the temporal organization of mitosis in mammalian cells. Here, we find that the mitotic delay in acentrosomal cells is enforced by the SAC in a MPS1-dependent manner, and that a SAC-dependent mitotic delay is required for bipolar cell division to occur in acentrosomal cells. Although acentrosomal cells become polyploid, polyploidy is not sufficient to cause dependency on a SAC-mediated delay to complete cell division. Rather, the division failure in absence of MPS1 activity results from mitotic exit occurring before acentrosomal spindles can become bipolar. Furthermore, prevention of centrosome separation suffices to make cell division reliant on a SAC-dependent mitotic delay. Thus, centrosomes and their definition of two spindle poles early in mitosis provide a 'timely two-ness' that allows cell division to occur in absence of a SAC-dependent mitotic delay.
Collapse
Affiliation(s)
- KC Farrell
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Jennifer T Wang
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Tim Stearns
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Genetics, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
6
|
Becker IC, Wilkie AR, Nikols E, Carminita E, Roweth HG, Tilburg J, Sciaudone AR, Noetzli LJ, Fatima F, Couldwell G, Ray A, Mogilner A, Machlus KR, Italiano JE. Cell cycle-dependent centrosome clustering precedes proplatelet formation. SCIENCE ADVANCES 2024; 10:eadl6153. [PMID: 38896608 PMCID: PMC11186502 DOI: 10.1126/sciadv.adl6153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Platelet-producing megakaryocytes (MKs) primarily reside in the bone marrow, where they duplicate their DNA content with each cell cycle resulting in polyploid cells with an intricate demarcation membrane system. While key elements of the cytoskeletal reorganizations during proplatelet formation have been identified, what initiates the release of platelets into vessel sinusoids remains largely elusive. Using a cell cycle indicator, we observed a unique phenomenon, during which amplified centrosomes in MKs underwent clustering following mitosis, closely followed by proplatelet formation, which exclusively occurred in G1 of interphase. Forced cell cycle arrest in G1 increased proplatelet formation not only in vitro but also in vivo following short-term starvation of mice. We identified that inhibition of the centrosomal protein kinesin family member C1 (KIFC1) impaired clustering and subsequent proplatelet formation, while KIFC1-deficient mice exhibited reduced platelet counts. In summary, we identified KIFC1- and cell cycle-mediated centrosome clustering as an important initiator of proplatelet formation from MKs.
Collapse
Affiliation(s)
- Isabelle C. Becker
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Adrian R. Wilkie
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Emma Nikols
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
| | - Estelle Carminita
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Harvey G. Roweth
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Julia Tilburg
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | | | - Leila J. Noetzli
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Farheen Fatima
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
| | | | - Anjana Ray
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Joseph E. Italiano
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
7
|
Sladky VC, Strong MA, Tapias-Gomez D, Jewett CE, Drown CG, Scott PM, Holland AJ. The AID2 system offers a potent tool for rapid, reversible, or sustained degradation of essential proteins in live mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597287. [PMID: 38895390 PMCID: PMC11185741 DOI: 10.1101/2024.06.04.597287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Studying essential genes required for dynamic processes in live mice is challenging as genetic perturbations are irreversible and limited by slow protein depletion kinetics. The first-generation auxin-inducible-degron (AID) system is a powerful tool for analyzing inducible protein loss in cultured cells. However, auxin administration is toxic to mice, preventing its long-term use in animals. Here, we use an optimized second-generation AID system to achieve the conditional and reversible loss of the essential centrosomal protein CEP192 in live mice. We show that the auxin derivative 5-Ph-IAA is well tolerated over two weeks and drives near-complete CEP192-mAID degradation in less than one hour in vivo. Prolonged CEP192 loss led to cell division failure and cell death in proliferative tissues. Thus, the second-generation AID system is well suited for rapid and/or sustained protein depletion in live mice, offering a valuable new tool for interrogating protein function in vivo.
Collapse
Affiliation(s)
- Valentina C Sladky
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 21205, MD, Baltimore, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 21205, MD, Baltimore, USA
| | - Daniel Tapias-Gomez
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 21205, MD, Baltimore, USA
| | - Cayla E Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 21205, MD, Baltimore, USA
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 21205, MD, Baltimore, USA
| | - Phillip M Scott
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 21205, MD, Baltimore, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 21205, MD, Baltimore, USA
| |
Collapse
|
8
|
Chen M, Xiao Z, Yan C, Tang X, Fang M, Wang Z, Zhang D. Centrosomal protein of 192 kDa (Cep192) fragment possesses bactericidal and parasiticidal activities in Larimichthys crocea. Int J Biol Macromol 2024; 254:127744. [PMID: 38287570 DOI: 10.1016/j.ijbiomac.2023.127744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
A novel AMP Lc1773, derived from centrosomal protein of 192 kDa (Cep192), was isolated from Larimichthys crocea using a Bacillus subtilis system. After cDNA libraries construction, repeating selection of B. subtilis system, extraction of extracellular protein, and expression of recombinant protein, we found that B. subtilis 1773, extracellular protein, and rLc1773 had a strong potential to kill Vibrio. parahaemolyticus and V. vulnificus. Further analysis of the antibacterial mechanism revealed that rLc1773 not only disrupted the integrity of bacterial membrane (as confirmed by SEM, TEM, and confocal microscopy observation, and flow cytometry assays), resulting in bacterial cell membrane pore conformation, bacterial rupture, and leakage of cellular contents, but also targeted to block protein synthesis rather than damage nucleic acids (as confirmed by SDS-PAGE, enzyme expression, and gel retardation assays). In addition, rLc1773 had the ability to kill parasite Scuticociliatida in a high rate and low concentration. Critically, the antibacterial activity of rLc1773 had good thermal stability and UV radiation tolerance, but it was affected by pH 9-11 and diverse enzyme to some extent. Lc1773 had neither hemolysis on fish, shrimp, and rabbit erythrocytes,nor significant cytotoxicity. To our knowledge, Cep192 fragment was first demonstrated to possess bactericidal and parasiticidal activities.
Collapse
Affiliation(s)
- Meiling Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Zhiqun Xiao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Chunmei Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Xin Tang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Ming Fang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dongling Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China.
| |
Collapse
|
9
|
Zeber-Lubecka N, Suchta K, Kulecka M, Kluska A, Piątkowska M, Dabrowski MJ, Jankowska K, Grymowicz M, Smolarczyk R, Hennig EE. Exome sequencing to explore the possibility of predicting genetic susceptibility to the joint occurrence of polycystic ovary syndrome and Hashimoto's thyroiditis. Front Immunol 2023; 14:1193293. [PMID: 37545519 PMCID: PMC10397507 DOI: 10.3389/fimmu.2023.1193293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
A large body of evidence indicates that women with polycystic ovary syndrome (PCOS) have a higher risk of developing Hashimoto's thyroiditis (HT) than healthy individuals. Given the strong genetic impact on both diseases, common predisposing genetic factors are possibly involved but are not fully understood. Here, we performed whole-exome sequencing (WES) for 250 women with sporadic PCOS, HT, combined PCOS and HT (PCOS+HT), and healthy controls to explore the genetic background of the joint occurrence of PCOS and HT. Based on relevant comparative analyses, multivariate logistic regression prediction modeling, and the most informative feature selection using the Monte Carlo feature selection and interdependency discovery algorithm, 77 variants were selected for further validation by TaqMan genotyping in a group of 533 patients. In the allele frequency test, variants in RAB6A, GBP3, and FNDC7 genes were found to significantly (padjusted < 0.05) differentiated the PCOS+HT and PCOS groups, variant in HIF3A differentiated the PCOS+HT and HT groups, whereas variants in CDK20 and CCDC71 differentiated the PCOS+HT and both single disorder groups. TaqMan genotyping data were used to create final prediction models, which differentiated between PCOS+HT and PCOS or HT with a prediction accuracy of AUC = 0.78. Using a 70% cutoff of the prediction score improved the model parameters, increasing the AUC value to 0.87. In summary, we demonstrated the polygenic burden of both PCOS and HT, and many common and intersecting signaling pathways and biological processes whose disorders mutually predispose patients to the development of both diseases.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Katarzyna Suchta
- Department of Gynaecological Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Katarzyna Jankowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Monika Grymowicz
- Department of Gynaecological Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Roman Smolarczyk
- Department of Gynaecological Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Ewa E. Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
10
|
Meghini F, Martins T, Zhang Q, Loyer N, Trickey M, Abula Y, Yamano H, Januschke J, Kimata Y. APC/C-dependent degradation of Spd2 regulates centrosome asymmetry in Drosophila neural stem cells. EMBO Rep 2023; 24:e55607. [PMID: 36852890 PMCID: PMC10074082 DOI: 10.15252/embr.202255607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 03/01/2023] Open
Abstract
A functional centrosome is vital for the development and physiology of animals. Among numerous regulatory mechanisms of the centrosome, ubiquitin-mediated proteolysis is known to be critical for the precise regulation of centriole duplication. However, its significance beyond centrosome copy number control remains unclear. Using an in vitro screen for centrosomal substrates of the APC/C ubiquitin ligase in Drosophila, we identify several conserved pericentriolar material (PCM) components, including the inner PCM protein Spd2. We show that Spd2 levels are controlled by the interphase-specific form of APC/C, APC/CFzr , in cultured cells and developing brains. Increased Spd2 levels compromise neural stem cell-specific asymmetric PCM recruitment and microtubule nucleation at interphase centrosomes, resulting in partial randomisation of the division axis and segregation patterns of the daughter centrosome in the following mitosis. We further provide evidence that APC/CFzr -dependent Spd2 degradation restricts the amount and mobility of Spd2 at the daughter centrosome, thereby facilitating the accumulation of Polo-dependent Spd2 phosphorylation for PCM recruitment. Our study underpins the critical role of cell cycle-dependent proteolytic regulation of the PCM in stem cells.
Collapse
Affiliation(s)
| | - Torcato Martins
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Qian Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Nicolas Loyer
- School of Life Science, University of Dundee, Dundee, UK
| | | | - Yusanjiang Abula
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Jens Januschke
- School of Life Science, University of Dundee, Dundee, UK
| | - Yuu Kimata
- Department of Genetics, University of Cambridge, Cambridge, UK
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
11
|
Tian H, Wang Y, Yang Z, Chen P, Xu J, Tian Y, Fan T, Xiao C, Bai G, Li L, Zheng B, Li C, He J. Genetic trajectory and clonal evolution of multiple primary lung cancer with lymph node metastasis. Cancer Gene Ther 2023; 30:507-520. [PMID: 36653483 PMCID: PMC10014582 DOI: 10.1038/s41417-022-00572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 01/20/2023]
Abstract
Multiple primary lung cancer (MPLC) with lymph node metastasis (LNM) is a rare phenomenon of multifocal lung cancer. The genomic landscapes of MPLC and the clonal evolution pattern between primary lung lesions and lymph node metastasis haven't been fully illustrated. We performed whole-exome sequencing (WES) on 52 FFPE (Formalin-fixed Paraffin-Embedded) samples from 11 patients diagnosed with MPLC with LNM. Genomic profiling and phylogenetic analysis were conducted to infer the evolutional trajectory within each patient. The top 5 most frequently mutated genes in our study were TTN (76.74%), MUC16 (62.79%), MUC19 (55.81%), FRG1 (46.51%), and NBPF20 (46.51%). For most patients in our study, a substantial of genetic alterations were mutually exclusive among the multiple pulmonary tumors of the same patient, suggesting their heterogenous origins. Individually, the genetic profile of lymph node metastatic lesions overlapped with that of multiple lung cancers in different degrees but are more genetically related to specific pulmonary lesions. SETD2 was a potential metastasis biomarker of MPLC. The mean putative neo-antigen number of the primary tumor (646.5) is higher than that of lymph node metastases (300, p = 0.2416). Primary lung tumors and lymph node metastases are highly heterogenous in immune repertoires. Our findings portrayed the comprehensive genomic landscape of MPLC with LNM. We characterized the genomic heterogeneity among different tumors. We offered novel clues to the clonal evolution between MPLC and their lymphatic metastases, thus advancing the treatment strategies and preventions of MPLC with LNM.
Collapse
Affiliation(s)
- He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Yalong Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Ping Chen
- Department of Medical Oncology, Yancheng No. 1 People's Hospital, Yancheng, Jiangsu, 224000, China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Guangdong Provincial People's Hospital/Guangdong Provincial Academy of Medical Sciences, Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer, Guangzhou, China
| | - Yanhua Tian
- Department of Thoracic Surgery/Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
12
|
Ali A, Vineethakumari C, Lacasa C, Lüders J. Microtubule nucleation and γTuRC centrosome localization in interphase cells require ch-TOG. Nat Commun 2023; 14:289. [PMID: 36702836 PMCID: PMC9879976 DOI: 10.1038/s41467-023-35955-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Organization of microtubule arrays requires spatio-temporal regulation of the microtubule nucleator γ-tubulin ring complex (γTuRC) at microtubule organizing centers (MTOCs). MTOC-localized adapter proteins are thought to recruit and activate γTuRC, but the molecular underpinnings remain obscure. Here we show that at interphase centrosomes, rather than adapters, the microtubule polymerase ch-TOG (also named chTOG or CKAP5) ultimately controls γTuRC recruitment and activation. ch-TOG co-assembles with γTuRC to stimulate nucleation around centrioles. In the absence of ch-TOG, γTuRC fails to localize to these sites, but not the centriole lumen. However, whereas some ch-TOG is stably bound at subdistal appendages, it only transiently associates with PCM. ch-TOG's dynamic behavior requires its tubulin-binding TOG domains and a C-terminal region involved in localization. In addition, ch-TOG also promotes nucleation from the Golgi. Thus, at interphase centrosomes stimulation of nucleation and γTuRC attachment are mechanistically coupled through transient recruitment of ch-TOG, and ch-TOG's nucleation-promoting activity is not restricted to centrosomes.
Collapse
Affiliation(s)
- Aamir Ali
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Chithran Vineethakumari
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Cristina Lacasa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain.
| |
Collapse
|
13
|
Kulka M, Wagner A, Cho JY, Alam SB, Santos JR, Jovel J, Karamchand L, Marcet-Palacios M. Agarose/crystalline nanocellulose (CNC) composites promote bone marrow-derived mast cell integrity, degranulation and receptor expression but inhibit production of de novo synthesized mediators. Front Bioeng Biotechnol 2023; 11:1160460. [PMID: 37113661 PMCID: PMC10126518 DOI: 10.3389/fbioe.2023.1160460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction: Mast cells are highly granulated tissue-resident leukocytes that require a three-dimensional matrix to differentiate and mediate immune responses. However, almost all cultured mast cells rely on two-dimensional suspension or adherent cell culture systems, which do not adequately reflect the complex structure that these cells require for optimal function. Methods: Crystalline nanocellulose (CNC), consisting of rod-like crystals 4-15 nm in diameter and 0.2-1 µm in length, were dispersed in an agarose matrix (12.5% w/v), and bone marrow derived mouse mast cells (BMMC) were cultured on the agarose/CNC composite. BMMC were activated with the calcium ionophore A23187 or immunoglobulin E (IgE) and antigen (Ag) to crosslink high affinity IgE receptors (FcεRI). Results: BMMC cultured on a CNC/agarose matrix remained viable and metabolically active as measured by reduction of sodium 3'-[1-[(phenylamino)-carbony]-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzene-sulfonic acid hydrate (XTT), and the cells maintained their membrane integrity as analyzed by measuring the release of lactate dehydrogenase (LDH) and propidium iodide exclusion by flow cytometry. Culture on CNC/agarose matrix had no effect on BMMC degranulation in response to IgE/Ag or A23187. However, culture of BMMC on a CNC/agarose matrix inhibited A23187-and IgE/Ag-activated production of tumor necrosis factor (TNF) and other mediators such as IL-1β, IL-4, IL-6, IL-13, MCP-1/CCL2, MMP-9 and RANTES by as much as 95%. RNAseq analysis indicated that BMMC expressed a unique and balanced transcriptome when cultured on CNC/agarose. Discussion: These data demonstrate that culture of BMMCs on a CNC/agarose matrix promotes cell integrity, maintains expression of surface biomarkers such as FcεRI and KIT and preserves the ability of BMMC to release pre-stored mediators in response to IgE/Ag and A23187. However, culture of BMMC on CNC/agarose matrix inhibits BMMC production of de novo synthesized mediators, suggesting that CNC may be altering specific phenotypic characteristics of these cells that are associated with late phase inflammatory responses.
Collapse
Affiliation(s)
- Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology 6-020 Katz Group Centre, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Marianna Kulka,
| | - Ashley Wagner
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | - Jae-Young Cho
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | - Syed Benazir Alam
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | | | - Juan Jovel
- The Metabolomics Innovation Centre (TMIC), 7-12 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Leshern Karamchand
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | | |
Collapse
|
14
|
Tátrai P, Gergely F. Centrosome function is critical during terminal erythroid differentiation. EMBO J 2022; 41:e108739. [PMID: 35678476 PMCID: PMC9289712 DOI: 10.15252/embj.2021108739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
Red blood cells are produced by terminal erythroid differentiation, which involves the dramatic morphological transformation of erythroblasts into enucleated reticulocytes. Microtubules are important for enucleation, but it is not known if the centrosome, a key microtubule-organizing center, is required as well. Mice lacking the conserved centrosome component, CDK5RAP2, are likely to have defective erythroid differentiation because they develop macrocytic anemia. Here, we show that fetal liver-derived, CDK5RAP2-deficient erythroid progenitors generate fewer and larger reticulocytes, hence recapitulating features of macrocytic anemia. In erythroblasts, but not in embryonic fibroblasts, loss of CDK5RAP2 or pharmacological depletion of centrosomes leads to highly aberrant spindle morphologies. Consistent with such cells exiting mitosis without chromosome segregation, tetraploidy is frequent in late-stage erythroblasts, thereby giving rise to fewer but larger reticulocytes than normal. Our results define a critical role for CDK5RAP2 and centrosomes in spindle formation specifically during blood production. We propose that disruption of centrosome and spindle function could contribute to the emergence of macrocytic anemias, for instance, due to nutritional deficiency or exposure to chemotherapy.
Collapse
Affiliation(s)
- Péter Tátrai
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
- Present address:
Solvo BiotechnologyBudapestHungary
| | - Fanni Gergely
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of OxfordOxfordUK
| |
Collapse
|
15
|
Chen F, Wu J, Iwanski MK, Jurriens D, Sandron A, Pasolli M, Puma G, Kromhout JZ, Yang C, Nijenhuis W, Kapitein LC, Berger F, Akhmanova A. Self-assembly of pericentriolar material in interphase cells lacking centrioles. eLife 2022; 11:77892. [PMID: 35787744 PMCID: PMC9307276 DOI: 10.7554/elife.77892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
The major microtubule-organizing center (MTOC) in animal cells, the centrosome, comprises a pair of centrioles surrounded by pericentriolar material (PCM), which nucleates and anchors microtubules. Centrosome assembly depends on PCM binding to centrioles, PCM self-association and dynein-mediated PCM transport, but the self-assembly properties of PCM components in interphase cells are poorly understood. Here, we used experiments and modeling to study centriole-independent features of interphase PCM assembly. We showed that when centrioles are lost due to PLK4 depletion or inhibition, dynein-based transport and self-clustering of PCM proteins are sufficient to form a single compact MTOC, which generates a dense radial microtubule array. Interphase self-assembly of PCM components depends on γ-tubulin, pericentrin, CDK5RAP2 and ninein, but not NEDD1, CEP152, or CEP192. Formation of a compact acentriolar MTOC is inhibited by AKAP450-dependent PCM recruitment to the Golgi or by randomly organized CAMSAP2-stabilized microtubules, which keep PCM mobile and prevent its coalescence. Linking of CAMSAP2 to a minus-end-directed motor leads to the formation of an MTOC, but MTOC compaction requires cooperation with pericentrin-containing self-clustering PCM. Our data reveal that interphase PCM contains a set of components that can self-assemble into a compact structure and organize microtubules, but PCM self-organization is sensitive to motor- and microtubule-based rearrangement.
Collapse
Affiliation(s)
- Fangrui Chen
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Jingchao Wu
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | | | - Daphne Jurriens
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Arianna Sandron
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Milena Pasolli
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Gianmarco Puma
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | | | - Chao Yang
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Wilco Nijenhuis
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | | | - Florian Berger
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Anna Akhmanova
- Department of Biology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
16
|
Hoffmann I. Role of Polo-like Kinases Plk1 and Plk4 in the Initiation of Centriole Duplication-Impact on Cancer. Cells 2022; 11:786. [PMID: 35269408 PMCID: PMC8908989 DOI: 10.3390/cells11050786] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Centrosomes nucleate and anchor microtubules and therefore play major roles in spindle formation and chromosome segregation during mitosis. Duplication of the centrosome occurs, similar to DNA, only once during the cell cycle. Aberration of the centrosome number is common in human tumors. At the core of centriole duplication is the conserved polo-like kinase 4, Plk4, and two structural proteins, STIL and Sas-6. In this review, I summarize and discuss developments in our understanding of the first steps of centriole duplication and their regulation.
Collapse
Affiliation(s)
- Ingrid Hoffmann
- F045, Cell Cycle Control and Carcinogenesis, Im Neuenheimer Feld 242, 69115 Heidelberg, Germany
| |
Collapse
|
17
|
Abstract
In this review, Phan et al. discuss the different models that have been proposed to explain how centrosome dysfunction impairs cortical development, and review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Last, they also extend their discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair Primary microcephaly is a brain growth disorder characterized by a severe reduction of brain size and thinning of the cerebral cortex. Many primary microcephaly mutations occur in genes that encode centrosome proteins, highlighting an important role for centrosomes in cortical development. Centrosomes are microtubule organizing centers that participate in several processes, including controlling polarity, catalyzing spindle assembly in mitosis, and building primary cilia. Understanding which of these processes are altered and how these disruptions contribute to microcephaly pathogenesis is a central unresolved question. In this review, we revisit the different models that have been proposed to explain how centrosome dysfunction impairs cortical development. We review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Finally, we also extend our discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair.
Collapse
|
18
|
Abstract
As one of four filament types, microtubules are a core component of the cytoskeleton and are essential for cell function. Yet how microtubules are nucleated from their building blocks, the αβ-tubulin heterodimer, has remained a fundamental open question since the discovery of tubulin 50 years ago. Recent structural studies have shed light on how γ-tubulin and the γ-tubulin complex proteins (GCPs) GCP2 to GCP6 form the γ-tubulin ring complex (γ-TuRC). In parallel, functional and single-molecule studies have informed on how the γ-TuRC nucleates microtubules in real time, how this process is regulated in the cell and how it compares to other modes of nucleation. Another recent surprise has been the identification of a second essential nucleation factor, which turns out to be the well-characterized microtubule polymerase XMAP215 (also known as CKAP5, a homolog of chTOG, Stu2 and Alp14). This discovery helps to explain why the observed nucleation activity of the γ-TuRC in vitro is relatively low. Taken together, research in recent years has afforded important insight into how microtubules are made in the cell and provides a basis for an exciting era in the cytoskeleton field.
Collapse
Affiliation(s)
- Akanksha Thawani
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
19
|
Abstract
Centrioles are microtubule-based cylindrical structures that assemble the centrosome and template the formation of cilia. The proximal part of centrioles is associated with the pericentriolar material, a protein scaffold from which microtubules are nucleated. This activity is mediated by the γ-tubulin ring complex (γTuRC) whose central role in centrosomal microtubule organization has been recognized for decades. However, accumulating evidence suggests that γTuRC activity at this organelle is neither restricted to the pericentriolar material nor limited to microtubule nucleation. Instead, γTuRC is found along the entire centriole cylinder, at subdistal appendages, and inside the centriole lumen, where its canonical function as a microtubule nucleator might be supplemented or replaced by a function in microtubule anchoring and centriole stabilization, respectively. In this Opinion, we discuss recent insights into the expanded repertoire of γTuRC activities at centrioles and how distinct subpopulations of γTuRC might act in concert to ensure centrosome and cilia biogenesis and function, ultimately supporting cell proliferation, differentiation and homeostasis. We propose that the classical view of centrosomal γTuRC as a pericentriolar material-associated microtubule nucleator needs to be revised.
Collapse
Affiliation(s)
- Nina Schweizer
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
20
|
Jiang X, Ho DBT, Mahe K, Mia J, Sepulveda G, Antkowiak M, Jiang L, Yamada S, Jao LE. Condensation of pericentrin proteins in human cells illuminates phase separation in centrosome assembly. J Cell Sci 2021; 134:jcs258897. [PMID: 34308971 PMCID: PMC8349556 DOI: 10.1242/jcs.258897] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
At the onset of mitosis, centrosomes expand the pericentriolar material (PCM) to maximize their microtubule-organizing activity. This step, termed centrosome maturation, ensures proper spindle organization and faithful chromosome segregation. However, as the centrosome expands, how PCM proteins are recruited and held together without membrane enclosure remains elusive. We found that endogenously expressed pericentrin (PCNT), a conserved PCM scaffold protein, condenses into dynamic granules during late G2/early mitosis before incorporating into mitotic centrosomes. Furthermore, the N-terminal portion of PCNT, enriched with conserved coiled-coils (CCs) and low-complexity regions (LCRs), phase separates into dynamic condensates that selectively recruit PCM proteins and nucleate microtubules in cells. We propose that CCs and LCRs, two prevalent sequence features in the centrosomal proteome, are preserved under evolutionary pressure in part to mediate liquid-liquid phase separation, a process that bestows upon the centrosome distinct properties critical for its assembly and functions.
Collapse
Affiliation(s)
- Xueer Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Dac Bang Tam Ho
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Karan Mahe
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Jennielee Mia
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Guadalupe Sepulveda
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Mark Antkowiak
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Linhao Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
21
|
Jung GI, Rhee K. Triple deletion of TP53, PCNT, and CEP215 promotes centriole amplification in the M phase. Cell Cycle 2021; 20:1500-1517. [PMID: 34233584 DOI: 10.1080/15384101.2021.1950386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Supernumerary centrioles are frequently observed in diverse types of cancer cells. In this study, we investigated the mechanism underlying the generation of supernumerary centrioles during the M phase. We generated the TP53;PCNT;CEP215 triple knockout (KO) cells and determined the configurations of the centriole during the cell cycle. The triple KO cells exhibited a precocious separation of centrioles and unscheduled centriole assembly in the M phase. Supernumerary centrioles in the triple KO cells were present throughout the cell cycle; however, among all the centrioles, only two maintained an intact composition, including CEP135, CEP192, CEP295 and CEP152. Intact centrioles were formed during the S phase and the rest of the centrioles may be generated during the M phase. M-phase-assembled centrioles lacked the ability to organize microtubules in the interphase; however, a fraction of them may acquire pericentriolar material to organize microtubules during the M phase. Taken together, our work reveals the heterogeneity of the supernumerary centrioles in the triple KO cells. .
Collapse
Affiliation(s)
- Gee In Jung
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
22
|
O'Connell KF. Centrosomes: An acentriolar MTOC at the ciliary base. Curr Biol 2021; 31:R730-R733. [PMID: 34102124 DOI: 10.1016/j.cub.2021.03.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Centrioles are microtubule-based organelles that are embedded within pericentriolar material (PCM). Together, they comprise the centrosome, a microtubule-organizing center. PCM can sometimes exist in the absence of centrioles, but a new example of acentriolar PCM in neurons offers deeper insight into the relationship between these two entities.
Collapse
Affiliation(s)
- Kevin F O'Connell
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0380, USA.
| |
Collapse
|
23
|
Siskos N, Stylianopoulou E, Skavdis G, Grigoriou ME. Molecular Genetics of Microcephaly Primary Hereditary: An Overview. Brain Sci 2021; 11:brainsci11050581. [PMID: 33946187 PMCID: PMC8145766 DOI: 10.3390/brainsci11050581] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate.
Collapse
|
24
|
Vasquez-Limeta A, Loncarek J. Human centrosome organization and function in interphase and mitosis. Semin Cell Dev Biol 2021; 117:30-41. [PMID: 33836946 DOI: 10.1016/j.semcdb.2021.03.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/15/2023]
Abstract
Centrosomes were first described by Edouard Van Beneden and named and linked to chromosome segregation by Theodor Boveri around 1870. In the 1960-1980s, electron microscopy studies have revealed the remarkable ultrastructure of a centriole -- a nine-fold symmetrical microtubular assembly that resides within a centrosome and organizes it. Less than two decades ago, proteomics and genomic screens conducted in multiple species identified hundreds of centriole and centrosome core proteins and revealed the evolutionarily conserved nature of the centriole assembly pathway. And now, super resolution microscopy approaches and improvements in cryo-tomography are bringing an unparalleled nanoscale-detailed picture of the centriole and centrosome architecture. In this chapter, we summarize the current knowledge about the architecture of human centrioles. We discuss the structured organization of centrosome components in interphase, focusing on localization/function relationship. We discuss the process of centrosome maturation and mitotic spindle pole assembly in centriolar and acentriolar cells, emphasizing recent literature.
Collapse
Affiliation(s)
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, NIH/NCI, Frederick 21702, MD, USA.
| |
Collapse
|