1
|
Al Harake SN, Abedin Y, Hatoum F, Nassar NZ, Ali A, Nassar A, Kanaan A, Bazzi S, Azar S, Harb F, Ghadieh HE. Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities. Adipocyte 2024; 13:2403380. [PMID: 39329369 PMCID: PMC11445895 DOI: 10.1080/21623945.2024.2403380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Lipid droplets (LDs) are highly specialized energy storage organelles involved in the maintenance of lipid homoeostasis by regulating lipid flux within white adipose tissue (WAT). The physiological function of adipocytes and LDs can be compromised by mutations in several genes, leading to NEFA-induced lipotoxicity, which ultimately manifests as metabolic complications, predominantly in the form of dyslipidemia, ectopic fat accumulation, and insulin resistance. In this review, we delineate the effects of mutations and deficiencies in genes - CIDEC, PPARG, BSCL2, AGPAT2, PLIN1, LIPE, LMNA, CAV1, CEACAM1, and INSR - involved in lipid droplet metabolism and their associated pathophysiological impairments, highlighting their roles in the development of lipodystrophies and metabolic dysfunction.
Collapse
Affiliation(s)
- Sami N. Al Harake
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Yasamin Abedin
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Fatema Hatoum
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Nour Zahraa Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Ali Ali
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Aline Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Amjad Kanaan
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Samer Bazzi
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Sami Azar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| |
Collapse
|
2
|
Kumar A, Yadav S, Choudhary V. The evolving landscape of ER-LD contact sites. Front Cell Dev Biol 2024; 12:1483902. [PMID: 39421023 PMCID: PMC11484260 DOI: 10.3389/fcell.2024.1483902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Lipid droplets (LDs) are evolutionarily conserved dynamic organelles that play an important role in cellular physiology. Growing evidence suggests that LD biogenesis occurs at discrete endoplasmic reticulum (ER) subdomains demarcated by the lipodystrophy protein, Seipin, lack of which impairs adipogenesis. However, the mechanisms of how these domains are selected is not completely known. These ER sites undergo ordered assembly of proteins and lipids to initiate LD biogenesis and facilitate establishment of ER-LD contact sites, a prerequisite for proper growth and maturation of droplets. LDs retain both physical and functional association with the ER throughout their lifecycle to facilitate bi-directional communication, such as exchange of proteins and lipids between the two organelles at these ER-LD contact sites. In recent years several molecular tethers have been identified that bridge ER and LDs together including few proteins that are found exclusively at these ER-LD contact interface. Here, we discuss recent advances in understanding the role of factors that ensure functionality of ER-LD contact site machinery for LD homeostasis.
Collapse
Affiliation(s)
| | | | - Vineet Choudhary
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
3
|
Klemm RW, Carvalho P. Lipid Droplets Big and Small: Basic Mechanisms That Make Them All. Annu Rev Cell Dev Biol 2024; 40:143-168. [PMID: 39356808 DOI: 10.1146/annurev-cellbio-012624-031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Lipid droplets (LDs) are dynamic storage organelles with central roles in lipid and energy metabolism. They consist of a core of neutral lipids, such as triacylglycerol, which is surrounded by a monolayer of phospholipids and specialized surface proteins. The surface composition determines many of the LD properties, such as size, subcellular distribution, and interaction with partner organelles. Considering the diverse energetic and metabolic demands of various cell types, it is not surprising that LDs are highly heterogeneous within and between cell types. Despite their diversity, all LDs share a common biogenesis mechanism. However, adipocytes have evolved specific adaptations of these basic mechanisms, enabling the regulation of lipid and energy metabolism at both the cellular and organismal levels. Here, we discuss recent advances in the understanding of both the general mechanisms of LD biogenesis and the adipocyte-specific adaptations controlling these fascinating organelles.
Collapse
Affiliation(s)
- Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom;
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
4
|
Kim S. All-Atom Membrane Builder via Multiscale Simulation. J Chem Inf Model 2024. [PMID: 39250520 DOI: 10.1021/acs.jcim.4c01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
I present an automated and flexible tool designed for constructing bilayer membranes at all-atom (AA) resolution. The builder initiates the construction and equilibration of bilayer membranes at Martini coarse-grained (CG) resolution, followed by resolution enhancement to the atomic level using the accompanying backmapping tool. Notably, this tool enables users to create bilayer membranes with user-defined lipid compositions and protein structures, while also offering the flexibility to accommodate new lipid types. To assess the simplicity and robustness of the tool, I demonstrate the construction of several membranes incorporating protein structures. The tool is freely available at github.com/ksy141/mstool.
Collapse
Affiliation(s)
- Siyoung Kim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Borges-Araújo L, Pereira GP, Valério M, Souza PCT. Assessing the Martini 3 protein model: A review of its path and potential. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141014. [PMID: 38670324 DOI: 10.1016/j.bbapap.2024.141014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Coarse-grained (CG) protein models have become indispensable tools for studying many biological protein details, from conformational dynamics to the organization of protein macro-complexes, and even the interaction of proteins with other molecules. The Martini force field is one of the most widely used CG models for bio-molecular simulations, partly because of the enormous success of its protein model. With the recent release of a new and improved version of the Martini force field - Martini 3 - a new iteration of its protein model was also made available. The Martini 3 protein force field is an evolution of its Martini 2 counterpart, aimed at improving many of the shortcomings that had been previously identified. In this mini-review, we first provide a general overview of the model and then focus on the successful advances made in the short time since its release, many of which would not have been possible before. Furthermore, we discuss reported limitations, potential directions for model improvement and comment on what the likely future development and application avenues are.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
| | - Gilberto P Pereira
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
| | - Mariana Valério
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
| | - Paulo C T Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France.
| |
Collapse
|
6
|
Koenig AB, Tan A, Abdelaal H, Monge F, Younossi ZM, Goodman ZD. Review article: Hepatic steatosis and its associations with acute and chronic liver diseases. Aliment Pharmacol Ther 2024; 60:167-200. [PMID: 38845486 DOI: 10.1111/apt.18059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Hepatic steatosis is a common finding in liver histopathology and the hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), whose global prevalence is rising. AIMS To review the histopathology of hepatic steatosis and its mechanisms of development and to identify common and rare disease associations. METHODS We reviewed literature on the basic science of lipid droplet (LD) biology and clinical research on acute and chronic liver diseases associated with hepatic steatosis using the PubMed database. RESULTS A variety of genetic and environmental factors contribute to the development of chronic hepatic steatosis or steatotic liver disease, which typically appears macrovesicular. Microvesicular steatosis is associated with acute mitochondrial dysfunction and liver failure. Fat metabolic processes in hepatocytes whose dysregulation leads to the development of steatosis include secretion of lipoprotein particles, uptake of remnant lipoprotein particles or free fatty acids from blood, de novo lipogenesis, oxidation of fatty acids, lipolysis and lipophagy. Hepatic insulin resistance is a key feature of MASLD. Seipin is a polyfunctional protein that facilitates LD biogenesis. Assembly of hepatitis C virus takes place on LD surfaces. LDs make important, functional contact with the endoplasmic reticulum and other organelles. CONCLUSIONS Diverse liver pathologies are associated with hepatic steatosis, with MASLD being the most important contributor. The biogenesis and dynamics of LDs in hepatocytes are complex and warrant further investigation. Organellar interfaces permit co-regulation of lipid metabolism to match generation of potentially toxic lipid species with their LD depot storage.
Collapse
Affiliation(s)
- Aaron B Koenig
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Albert Tan
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Hala Abdelaal
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Fanny Monge
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- The Global NASH Council, Center for Outcomes Research in Liver Diseases, Washington, DC, USA
| | - Zachary D Goodman
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| |
Collapse
|
7
|
Graff J, Schneiter R. FIT2 proteins and lipid droplet emergence, an interplay between phospholipid synthesis, surface tension, and membrane curvature. Front Cell Dev Biol 2024; 12:1422032. [PMID: 38872930 PMCID: PMC11169642 DOI: 10.3389/fcell.2024.1422032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Lipid droplets (LDs) serve as intracellular compartments primarily dedicated to the storage of metabolic energy in the form of neutral lipids. The processes that regulate and control LD biogenesis are being studied extensively and are gaining significance due to their implications in major metabolic disorders, including type 2 diabetes and obesity. A protein of particular interest is Fat storage-Inducing Transmembrane 2 (FIT2), which affects the emergence step of LD biogenesis. Instead of properly emerging towards the cytosol, LDs in FIT2-deficient cells remain embedded within the membrane of the endoplasmic reticulum (ER). In vitro studies revealed the ability of FIT2 to bind both di- and triacylglycerol (DAG/TAG), key players in lipid storage, and its activity to cleave acyl-CoA. However, the translation of these in vitro functions to the observed embedding of LDs in FIT2 deficient cells remains to be established. To understand the role of FIT2 in vivo, we discuss the parameters that affect LD emergence. Our focus centers on the role that membrane curvature and surface tension play in LD emergence, as well as the impact that the lipid composition exerts on these key parameters. In addition, we discuss hypotheses on how FIT2 could function locally to modulate lipids at sites of LD emergence.
Collapse
Affiliation(s)
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
8
|
Dhiman R, Perera RS, Poojari CS, Wiedemann HTA, Kappl R, Kay CWM, Hub JS, Schrul B. Hairpin protein partitioning from the ER to lipid droplets involves major structural rearrangements. Nat Commun 2024; 15:4504. [PMID: 38802378 PMCID: PMC11130287 DOI: 10.1038/s41467-024-48843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Lipid droplet (LD) function relies on proteins partitioning between the endoplasmic reticulum (ER) phospholipid bilayer and the LD monolayer membrane to control cellular adaptation to metabolic changes. It has been proposed that these hairpin proteins integrate into both membranes in a similar monotopic topology, enabling their passive lateral diffusion during LD emergence at the ER. Here, we combine biochemical solvent-accessibility assays, electron paramagnetic resonance spectroscopy and intra-molecular crosslinking experiments with molecular dynamics simulations, and determine distinct intramembrane positionings of the ER/LD protein UBXD8 in ER bilayer and LD monolayer membranes. UBXD8 is deeply inserted into the ER bilayer with a V-shaped topology and adopts an open-shallow conformation in the LD monolayer. Major structural rearrangements are required to enable ER-to-LD partitioning. Free energy calculations suggest that such structural transition is unlikely spontaneous, indicating that ER-to-LD protein partitioning relies on more complex mechanisms than anticipated and providing regulatory means for this trans-organelle protein trafficking.
Collapse
Affiliation(s)
- Ravi Dhiman
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421, Homburg/Saar, Germany
| | - Rehani S Perera
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421, Homburg/Saar, Germany
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Haakon T A Wiedemann
- Physical Chemistry and Chemistry Education, Saarland University, 66123, Saarbrücken, Germany
| | - Reinhard Kappl
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), Faculty of Medicine, Saarland University, 66421, Homburg/Saar, Germany
| | - Christopher W M Kay
- Physical Chemistry and Chemistry Education, Saarland University, 66123, Saarbrücken, Germany
- London Centre for Nanotechnology, University College London, WC1H 0AH, London, UK
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Bianca Schrul
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421, Homburg/Saar, Germany.
| |
Collapse
|
9
|
Cui W, Yang J, Tu C, Zhang Z, Zhao H, Qiao Y, Li Y, Yang W, Lim KL, Ma Q, Zhang C, Lu L. Seipin deficiency-induced lipid dysregulation leads to hypomyelination-associated cognitive deficits via compromising oligodendrocyte precursor cell differentiation. Cell Death Dis 2024; 15:350. [PMID: 38773070 PMCID: PMC11109229 DOI: 10.1038/s41419-024-06737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
Seipin is one key mediator of lipid metabolism that is highly expressed in adipose tissues as well as in the brain. Lack of Seipin gene, Bscl2, leads to not only severe lipid metabolic disorders but also cognitive impairments and motor disabilities. Myelin, composed mainly of lipids, facilitates nerve transmission and is important for motor coordination and learning. Whether Seipin deficiency-leaded defects in learning and motor coordination is underlined by lipid dysregulation and its consequent myelin abnormalities remains to be elucidated. In the present study, we verified the expression of Seipin in oligodendrocytes (OLs) and their precursors, oligodendrocyte precursor cells (OPCs), and demonstrated that Seipin deficiency compromised OPC differentiation, which led to decreased OL numbers, myelin protein, myelinated fiber proportion and thickness of myelin. Deficiency of Seipin resulted in impaired spatial cognition and motor coordination in mice. Mechanistically, Seipin deficiency suppressed sphingolipid metabolism-related genes in OPCs and caused morphological abnormalities in lipid droplets (LDs), which markedly impeded OPC differentiation. Importantly, rosiglitazone, one agonist of PPAR-gamma, substantially restored phenotypes resulting from Seipin deficiency, such as aberrant LDs, reduced sphingolipids, obstructed OPC differentiation, and neurobehavioral defects. Collectively, the present study elucidated how Seipin deficiency-induced lipid dysregulation leads to neurobehavioral deficits via impairing myelination, which may pave the way for developing novel intervention strategy for treating metabolism-involved neurological disorders.
Collapse
Affiliation(s)
- Wenli Cui
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chuanyun Tu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ziting Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huifang Zhao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yan Qiao
- Analytical Instrumentation Center & State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, Shanxi, China
| | - Yanqiu Li
- Analytical Instrumentation Center & State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, Shanxi, China
| | - Wulin Yang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Quanhong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
10
|
Xu L, Li L, Wu L, Li P, Chen FJ. CIDE proteins and their regulatory mechanisms in lipid droplet fusion and growth. FEBS Lett 2024; 598:1154-1169. [PMID: 38355218 DOI: 10.1002/1873-3468.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
The cell death-inducing DFF45-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec/Fsp27, regulate various aspects of lipid homeostasis, including lipid storage, lipolysis, and lipid secretion. This review focuses on the physiological roles of CIDE proteins based on studies on knockout mouse models and human patients bearing CIDE mutations. The primary cellular function of CIDE proteins is to localize to lipid droplets (LDs) and to control LD fusion and growth across different cell types. We propose a four-step process of LD fusion, characterized by (a) the recruitment of CIDE proteins to the LD surface and CIDE movement, (b) the enrichment and condensate formation of CIDE proteins to form LD fusion plates at LD-LD contact sites, (c) lipid transfer through lipid-permeable passageways within the fusion plates, and (d) the completion of LD fusion. Lastly, we outline CIDE-interacting proteins as regulatory factors, as well as their contribution in LD fusion.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lizhen Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lingzhi Wu
- College of Future Technology, Peking University, Beijing, China
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, China
| | - Feng-Jung Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Sapia J, Vanni S. Molecular dynamics simulations of intracellular lipid droplets: a new tool in the toolbox. FEBS Lett 2024; 598:1143-1153. [PMID: 38627196 DOI: 10.1002/1873-3468.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024]
Abstract
Lipid droplets (LDs) are ubiquitous intracellular organelles with a central role in multiple lipid metabolic pathways. However, identifying correlations between their structural properties and their biological activity has proved challenging, owing to their unique physicochemical properties as compared with other cellular membranes. In recent years, molecular dynamics (MD) simulations, a computational methodology allowing the accurate description of molecular assemblies down to their individual components, have been demonstrated to be a useful and powerful approach for studying LD structural and dynamical properties. In this short review, we attempt to highlight, as comprehensively as possible, how MD simulations have contributed to our current understanding of multiple molecular mechanisms involved in LD biology.
Collapse
Affiliation(s)
- Jennifer Sapia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
12
|
Coates HW, Nguyen TB, Du X, Olzomer EM, Farrell R, Byrne FL, Yang H, Brown AJ. The constitutively active form of a key cholesterol synthesis enzyme is lipid droplet-localized and upregulated in endometrial cancer tissues. J Biol Chem 2024; 300:107232. [PMID: 38537696 PMCID: PMC11061744 DOI: 10.1016/j.jbc.2024.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Cholesterol is essential for both normal cell viability and cancer cell proliferation. Aberrant activity of squalene monooxygenase (SM, also known as squalene epoxidase), the rate-limiting enzyme of the committed cholesterol synthesis pathway, is accordingly implicated in a growing list of cancers. We previously reported that hypoxia triggers the truncation of SM to a constitutively active form, thus preserving sterol synthesis during oxygen shortfalls. Here, we show SM truncation is upregulated and correlates with the magnitude of hypoxia in endometrial cancer tissues, supporting the in vivo relevance of our earlier work. To further investigate the pathophysiological consequences of SM truncation, we examined its lipid droplet-localized pool using complementary immunofluorescence and cell fractionation approaches and found that it exclusively comprises the truncated enzyme. This partitioning is facilitated by the loss of an endoplasmic reticulum-embedded region at the SM N terminus, whereas the catalytic domain containing membrane-associated C-terminal helices is spared. Moreover, we determined multiple amphipathic helices contribute to the lipid droplet localization of truncated SM. Taken together, our results expand on the striking differences between the two forms of SM and suggest upregulated truncation may contribute to SM-related oncogenesis.
Collapse
Affiliation(s)
- Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Tina B Nguyen
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Ellen M Olzomer
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Rhonda Farrell
- Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia; Prince of Wales Private Hospital, Randwick, New South Wales, Australia
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia.
| |
Collapse
|
13
|
Klug YA, Ferreira JV, Carvalho P. A unifying mechanism for seipin-mediated lipid droplet formation. FEBS Lett 2024; 598:1116-1126. [PMID: 38785192 PMCID: PMC11421547 DOI: 10.1002/1873-3468.14825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 05/25/2024]
Abstract
Lipid droplets (LDs) are dynamic organelles essential for cellular lipid homeostasis. Assembly of LDs occurs in the endoplasmic reticulum (ER), and the conserved ER membrane protein seipin emerged as a key player in this process. Here, we review recent advances provided by structural, biochemical, and in silico analysis that revealed mechanistic insights into the molecular role of the seipin complexes and led to an updated model for LD biogenesis. We further discuss how other ER components cooperate with seipin during LD biogenesis. Understanding the molecular mechanisms underlying seipin-mediated LD assembly is important to uncover the fundamental aspects of lipid homeostasis and organelle biogenesis and to provide hints on the pathogenesis of lipid storage disorders.
Collapse
Affiliation(s)
- Yoel A Klug
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
14
|
Diep DTV, Collado J, Hugenroth M, Fausten RM, Percifull L, Wälte M, Schuberth C, Schmidt O, Fernández-Busnadiego R, Bohnert M. A metabolically controlled contact site between vacuoles and lipid droplets in yeast. Dev Cell 2024; 59:740-758.e10. [PMID: 38367622 DOI: 10.1016/j.devcel.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/17/2023] [Accepted: 01/18/2024] [Indexed: 02/19/2024]
Abstract
The lipid droplet (LD) organization proteins Ldo16 and Ldo45 affect multiple aspects of LD biology in yeast. They are linked to the LD biogenesis machinery seipin, and their loss causes defects in LD positioning, protein targeting, and breakdown. However, their molecular roles remained enigmatic. Here, we report that Ldo16/45 form a tether complex with Vac8 to create vacuole lipid droplet (vCLIP) contact sites, which can form in the absence of seipin. The phosphatidylinositol transfer protein (PITP) Pdr16 is a further vCLIP-resident recruited specifically by Ldo45. While only an LD subpopulation is engaged in vCLIPs at glucose-replete conditions, nutrient deprivation results in vCLIP expansion, and vCLIP defects impair lipophagy upon prolonged starvation. In summary, Ldo16/45 are multifunctional proteins that control the formation of a metabolically regulated contact site. Our studies suggest a link between LD biogenesis and breakdown and contribute to a deeper understanding of how lipid homeostasis is maintained during metabolic challenges.
Collapse
Affiliation(s)
- Duy Trong Vien Diep
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Javier Collado
- Institute of Neuropathology, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Marie Hugenroth
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Rebecca Martina Fausten
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Louis Percifull
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Mike Wälte
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany
| | - Christian Schuberth
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Oliver Schmidt
- Institute of Cell Biology, Biocenter Innsbruck, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, 37099 Göttingen, Germany; Cluster of Excellence "Multiscale Imaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Faculty of Physics, University of Göttingen, Göttingen 37077, Germany
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany.
| |
Collapse
|
15
|
Mathiowetz AJ, Olzmann JA. Lipid droplets and cellular lipid flux. Nat Cell Biol 2024; 26:331-345. [PMID: 38454048 PMCID: PMC11228001 DOI: 10.1038/s41556-024-01364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Lipid droplets are dynamic organelles that store neutral lipids, serve the metabolic needs of cells, and sequester lipids to prevent lipotoxicity and membrane damage. Here we review the current understanding of the mechanisms of lipid droplet biogenesis and turnover, the transfer of lipids and metabolites at membrane contact sites, and the role of lipid droplets in regulating fatty acid flux in lipotoxicity and cell death.
Collapse
Affiliation(s)
- Alyssa J Mathiowetz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
16
|
Kumari RM, Khatri A, Chaudhary R, Choudhary V. Concept of lipid droplet biogenesis. Eur J Cell Biol 2023; 102:151362. [PMID: 37742390 PMCID: PMC7615795 DOI: 10.1016/j.ejcb.2023.151362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Lipid droplets (LD) are functionally conserved fat storage organelles found in all cell types. LDs have a unique structure comprising of a hydrophobic core of neutral lipids (fat), triacylglycerol (TAG) and cholesterol esters (CE) surrounded by a phospholipid monolayer. LD surface is decorated by a multitude of proteins and enzymes rendering this compartment functional. Accumulating evidence suggests that LDs originate from discrete ER-subdomains, demarcated by the lipodystrophy protein seipin, however, the mechanisms of which are not well understood. LD biogenesis factors together with biophysical properties of the ER membrane orchestrate spatiotemporal regulation of LD nucleation and growth at specific ER subdomains in response to metabolic cues. Defects in LD formation manifests in several human pathologies, including obesity, lipodystrophy, ectopic fat accumulation, and insulin resistance. Here, we review recent advances in understanding the molecular events during initial stages of eukaryotic LD assembly and discuss the critical role of factors that ensure fidelity of this process.
Collapse
Affiliation(s)
- R Mankamna Kumari
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Amit Khatri
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Ritika Chaudhary
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Vineet Choudhary
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
17
|
Henne WM. The (social) lives, deaths, and biophysical phases of lipid droplets. Curr Opin Cell Biol 2023; 82:102178. [PMID: 37295067 PMCID: PMC10782554 DOI: 10.1016/j.ceb.2023.102178] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Lipid droplets (LDs) are major lipid storage organelles, sequestering energy-rich triglycerides and serving as nutrient sinks for cellular homeostasis. Observed for over a century but generally ignored, LDs are now appreciated to play key roles in organismal physiology and disease. They also form numerous functional contacts with other organelles. Here, we highlight recent studies examining LDs from distinct perspectives of their life cycle: their biogenesis, "social" life as they interact with other organelles, and deaths via lipolysis or lipophagy. We also discuss recent work showing how changes in LD lipid content alter the biophysical phases of LD lipids, and how this may fine-tune the LD protein landscape and ultimately LD function.
Collapse
Affiliation(s)
- W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
18
|
Choudhary V, Goodman JM. Editorial: The evolving role of lipid droplets: Advancements and future directions. Front Cell Dev Biol 2023; 11:1175083. [PMID: 37025181 PMCID: PMC10070960 DOI: 10.3389/fcell.2023.1175083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Affiliation(s)
- Vineet Choudhary
- All India Institute of Medical Sciences (AIIMS), Department of Biotechnology, New Delhi, India
| | - Joel M. Goodman
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX, United States
| |
Collapse
|
19
|
Abstract
Cells store excess energy in the form of lipid droplets (LDs), a specialized sub-compartment of the endoplasmic reticulum (ER) network. The lipodystrophy protein seipin is a key player in LD biogenesis and ER-LD contact site maintenance. Recent structural and in silico studies have started to shed light on the molecular function of seipin as a LD nucleator in early LD biogenesis, whilst new cell biological work implies a role for seipin in ER-mitochondria contact sites and calcium metabolism. In this minireview, I discuss recent insights into the molecular function of seipin.
Collapse
Affiliation(s)
- Veijo T. Salo
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|