1
|
Miceli RT, Chen T, Nose Y, Tichkule S, Brown B, Fullard JF, Saulsbury MD, Heyliger SO, Gnjatic S, Kyprianou N, Cordon‐Cardo C, Sahoo S, Taioli E, Roussos P, Stolovitzky G, Gonzalez‐Kozlova E, Dogra N. Extracellular vesicles, RNA sequencing, and bioinformatic analyses: Challenges, solutions, and recommendations. J Extracell Vesicles 2024; 13:e70005. [PMID: 39625409 PMCID: PMC11613500 DOI: 10.1002/jev2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 12/06/2024] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous entities secreted by cells into their microenvironment and systemic circulation. Circulating EVs carry functional small RNAs and other molecular footprints from their cell of origin, and thus have evident applications in liquid biopsy, therapeutics, and intercellular communication. Yet, the complete transcriptomic landscape of EVs is poorly characterized due to critical limitations including variable protocols used for EV-RNA extraction, quality control, cDNA library preparation, sequencing technologies, and bioinformatic analyses. Consequently, there is a gap in knowledge and the need for a standardized approach in delineating EV-RNAs. Here, we address these gaps by describing the following points by (1) focusing on the large canopy of the EVs and particles (EVPs), which includes, but not limited to - exosomes and other large and small EVs, lipoproteins, exomeres/supermeres, mitochondrial-derived vesicles, RNA binding proteins, and cell-free DNA/RNA/proteins; (2) examining the potential functional roles and biogenesis of EVPs; (3) discussing various transcriptomic methods and technologies used in uncovering the cargoes of EVPs; (4) presenting a comprehensive list of RNA subtypes reported in EVPs; (5) describing different EV-RNA databases and resources specific to EV-RNA species; (6) reviewing established bioinformatics pipelines and novel strategies for reproducible EV transcriptomics analyses; (7) emphasizing the significant need for a gold standard approach in identifying EV-RNAs across studies; (8) and finally, we highlight current challenges, discuss possible solutions, and present recommendations for robust and reproducible analyses of EVP-associated small RNAs. Overall, we seek to provide clarity on the transcriptomics landscape, sequencing technologies, and bioinformatic analyses of EVP-RNAs. Detailed portrayal of the current state of EVP transcriptomics will lead to a better understanding of how the RNA cargo of EVPs can be used in modern and targeted diagnostics and therapeutics. For the inclusion of different particles discussed in this article, we use the terms large/small EVs, non-vesicular extracellular particles (NVEPs), EPs and EVPs as defined in MISEV guidelines by the International Society of Extracellular Vesicles (ISEV).
Collapse
Affiliation(s)
- Rebecca T. Miceli
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Tzu‐Yi Chen
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yohei Nose
- Department of ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Swapnil Tichkule
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Briana Brown
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - John F. Fullard
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Disease Neurogenetics, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Marilyn D. Saulsbury
- Department of Pharmaceutical Sciences, School of PharmacyHampton UniversityHamptonVirginiaUSA
| | - Simon O. Heyliger
- Department of Pharmaceutical Sciences, School of PharmacyHampton UniversityHamptonVirginiaUSA
| | - Sacha Gnjatic
- Department of ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Natasha Kyprianou
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Carlos Cordon‐Cardo
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Susmita Sahoo
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Emanuela Taioli
- Department of Population Health and ScienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Thoracic SurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Panos Roussos
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Disease Neurogenetics, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Precision Medicine and Translational TherapeuticsJames J. Peters VA Medicinal CenterBronxNew YorkUSA
- Mental Illness Research Education and Clinical Center (MIRECC)James J. Peters VA Medicinal CenterBronxNew YorkUSA
| | - Gustavo Stolovitzky
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Biomedical Data Sciences Hub (Bio‐DaSH), Department of Pathology, NYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Edgar Gonzalez‐Kozlova
- Department of ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Navneet Dogra
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Icahn Genomics Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- AI and Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
2
|
Xu X, Huang Y, Yang F, Sun X, Lin R, Feng J, Yang M, Shao J, Liu X, Zhou T, Xie S, Yang Y. NudCL2 is required for cytokinesis by stabilizing RCC2 with Hsp90 at the midbody. Protein Cell 2024; 15:766-782. [PMID: 38801297 PMCID: PMC11443449 DOI: 10.1093/procel/pwae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/21/2024] [Indexed: 05/29/2024] Open
Abstract
Cytokinesis is required for faithful division of cytoplasmic components and duplicated nuclei into two daughter cells. Midbody, a protein-dense organelle that forms at the intercellular bridge, is indispensable for successful cytokinesis. However, the regulatory mechanism of cytokinesis at the midbody still remains elusive. Here, we unveil a critical role for NudC-like protein 2 (NudCL2), a co-chaperone of heat shock protein 90 (Hsp90), in cytokinesis regulation by stabilizing regulator of chromosome condensation 2 (RCC2) at the midbody in mammalian cells. NudCL2 localizes at the midbody, and its downregulation results in cytokinesis failure, multinucleation, and midbody disorganization. Using iTRAQ-based quantitative proteomic analysis, we find that RCC2 levels are decreased in NudCL2 knockout (KO) cells. Moreover, Hsp90 forms a complex with NudCL2 to stabilize RCC2, which is essential for cytokinesis. RCC2 depletion mirrors phenotypes observed in NudCL2-downregulated cells. Importantly, ectopic expression of RCC2 rescues the cytokinesis defects induced by NudCL2 deletion, but not vice versa. Together, our data reveal the significance of the NudCL2/Hsp90/RCC2 pathway in cytokinesis at the midbody.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yuliang Huang
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Feng Yang
- Research Center for Children’s Health and Innovation, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Xiaoxia Sun
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rijin Lin
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiaxing Feng
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Mingyang Yang
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiaqi Shao
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Tianhua Zhou
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Center for RNA Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Shanshan Xie
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yuehong Yang
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Remsburg CM, Konrad KD, Testa MD, Stepicheva N, Lee K, Choe LH, Polson S, Bhavsar J, Huang H, Song JL. miR-31-mediated local translation at the mitotic spindle is important for early development. Development 2024; 151:dev202619. [PMID: 39250531 PMCID: PMC11423917 DOI: 10.1242/dev.202619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/17/2024] [Indexed: 09/11/2024]
Abstract
miR-31 is a highly conserved microRNA that plays crucial roles in cell proliferation, migration and differentiation. We discovered that miR-31 and some of its validated targets are enriched on the mitotic spindle of the dividing sea urchin embryo and mammalian cells. Using the sea urchin embryo, we found that miR-31 inhibition led to developmental delay correlated with increased cytoskeletal and chromosomal defects. We identified miR-31 to directly suppress several actin remodeling transcripts, including β-actin, Gelsolin, Rab35 and Fascin. De novo translation of Fascin occurs at the mitotic spindle of sea urchin embryos and mammalian cells. Importantly, miR-31 inhibition leads to a significant a increase of newly translated Fascin at the spindle of dividing sea urchin embryos. Forced ectopic localization of Fascin transcripts to the cell membrane and translation led to significant developmental and chromosomal segregation defects, highlighting the importance of the regulation of local translation by miR-31 at the mitotic spindle to ensure proper cell division. Furthermore, miR-31-mediated post-transcriptional regulation at the mitotic spindle may be an evolutionarily conserved regulatory paradigm of mitosis.
Collapse
Affiliation(s)
- Carolyn M. Remsburg
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Kalin D. Konrad
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Michael D. Testa
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nadezda Stepicheva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Kelvin Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, DE 19716, USA
| | - Leila H. Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, DE 19716, USA
| | - Shawn Polson
- Department of Computer and Informational Sciences; Plant & Soil Sciences; Biological Sciences, CBCB Bioinformatics Core Facility; Bioinformatics, Healthcare Informatics, and Data Science Network of Delaware, University of Delaware, Newark, DE 19716, USA
| | - Jaysheel Bhavsar
- Department of Computer and Informational Sciences, University of Delaware, DE 19716, USA
| | - Hongzhan Huang
- Department of Computer and Informational Sciences, University of Delaware, DE 19716, USA
| | - Jia L. Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
4
|
Suwakulsiri W, Xu R, Rai A, Chen M, Shafiq A, Greening DW, Simpson RJ. Transcriptomic analysis and fusion gene identifications of midbody remnants released from colorectal cancer cells reveals they are molecularly distinct from exosomes and microparticles. Proteomics 2024; 24:e2300058. [PMID: 38470197 DOI: 10.1002/pmic.202300058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Previously, we reported that human primary (SW480) and metastatic (SW620) colorectal (CRC) cells release three classes of membrane-encapsulated extracellular vesicles (EVs); midbody remnants (MBRs), exosomes (Exos), and microparticles (MPs). We reported that MBRs were molecularly distinct at the protein level. To gain further biochemical insights into MBRs, Exos, and MPs and their emerging role in CRC, we performed, and report here, for the first time, a comprehensive transcriptome and long noncoding RNA sequencing analysis and fusion gene identification of these three EV classes using the next-generation RNA sequencing technique. Differential transcript expression analysis revealed that MBRs have a distinct transcriptomic profile compared to Exos and MPs with a high enrichment of mitochondrial transcripts lncRNA/pseudogene transcripts that are predicted to bind to ribonucleoprotein complexes, spliceosome, and RNA/stress granule proteins. A salient finding from this study is a high enrichment of several fusion genes in MBRs compared to Exos, MPs, and cell lysates from their parental cells such as MSH2 (gene encoded DNA mismatch repair protein MSH2). This suggests potential EV-liquid biopsy targets for cancer detection. Importantly, the expression of cancer progression-related transcripts found in EV classes derived from SW480 (EGFR) and SW620 (MET and MACCA1) cell lines reflects their parental cell types. Our study is the report of RNA and fusion gene compositions within MBRs (including Exos and MPs) that could have an impact on EV functionality in cancer progression and detection using EV-based RNA/ fusion gene candidates for cancer biomarkers.
Collapse
Affiliation(s)
- Wittaya Suwakulsiri
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, New South Wales, Australia
| | - Rong Xu
- Nanobiotechnology Laboratory, Australia Centre for Blood Diseases, Centre Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Maoshan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Adnan Shafiq
- Department of Cell & Developmental Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard J Simpson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Sule KC, Nakamura M, Parkhurst SM. Nuclear envelope budding: Getting large macromolecular complexes out of the nucleus. Bioessays 2024; 46:e2300182. [PMID: 38044581 PMCID: PMC10843589 DOI: 10.1002/bies.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Transport of macromolecules from the nucleus to the cytoplasm is essential for nearly all cellular and developmental events, and when mis-regulated, is associated with diseases, tumor formation/growth, and cancer progression. Nuclear Envelope (NE)-budding is a newly appreciated nuclear export pathway for large macromolecular machineries, including those assembled to allow co-regulation of functionally related components, that bypasses canonical nuclear export through nuclear pores. In this pathway, large macromolecular complexes are enveloped by the inner nuclear membrane, transverse the perinuclear space, and then exit through the outer nuclear membrane to release its contents into the cytoplasm. NE-budding is a conserved process and shares many features with nuclear egress mechanisms used by herpesviruses. Despite its biological importance and clinical relevance, little is yet known about the regulatory and structural machineries that allow NE-budding to occur in any system. Here we summarize what is currently known or proposed for this intriguing nuclear export process.
Collapse
Affiliation(s)
- Kevin C. Sule
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| |
Collapse
|
6
|
Heinke L. Translating the midbody for cytokinesis. Nat Rev Mol Cell Biol 2024; 25:85. [PMID: 38195736 DOI: 10.1038/s41580-024-00699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
|
7
|
Jung GI, Londoño-Vásquez D, Park S, Skop AR, Balboula AZ, Schindler K. An oocyte meiotic midbody cap is required for developmental competence in mice. Nat Commun 2023; 14:7419. [PMID: 37973997 PMCID: PMC10654508 DOI: 10.1038/s41467-023-43288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Embryo development depends upon maternally derived materials. Mammalian oocytes undergo extreme asymmetric cytokinesis events, producing one large egg and two small polar bodies. During cytokinesis in somatic cells, the midbody and subsequent assembly of the midbody remnant, a signaling organelle containing RNAs, transcription factors and translation machinery, is thought to influence cellular function or fate. The role of the midbody and midbody remnant in gametes, in particular, oocytes, remains unclear. Here, we examined the formation and function of meiotic midbodies (mMB) and mMB remnants using mouse oocytes and demonstrate that mMBs have a specialized cap structure that is orientated toward polar bodies. We show that that mMBs are translationally active, and that mMB caps are required to retain nascent proteins in eggs. We propose that this specialized mMB cap maintains genetic factors in eggs allowing for full developmental competency.
Collapse
Affiliation(s)
- Gyu Ik Jung
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | | | - Sungjin Park
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ahna R Skop
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ahmed Z Balboula
- Animal Sciences Research Center, University of Missouri, Columbia, MO, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|