Grant WF, Salamone MF. Comparative mutagenicity of chemicals selected for test in the International Program on Chemical Safety's collaborative study on plant systems for the detection of environmental mutagens.
Mutat Res 1994;
310:187-209. [PMID:
7523891 DOI:
10.1016/0027-5107(94)90113-9]
[Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A review has been made for the four compounds (maleic hydrazide, methyl nitrosourea, sodium azide, azidoglycerol) tested in the International Program on Chemical Safety's collaborative study on plant systems. Maleic hydrazide (MH) is a weak cytotoxic/mutagenic chemical in mammalian tissues and is classified as a class 4 chemical. In contrast, with few exceptions such as Arabidopsis, MH is a potent mutagen/clastogen in plant systems. The difference in its response between plant and animal tissue is likely due to differences in the way MH is metabolized. MH appears to be noncarcinogenic and has been given a negative NCI/NTP carcinogen rating. Methyl nitrosourea (MNU) is a toxic, mutagenic, radiomimetic, carcinogenic, and teratogenic chemical. It has been shown to be a mutagen in bacteria, fungi, Drosophila, higher plants, and animal cells both in vitro and in vivo. MNU is a clastogen in both animal and human cell cultures, plant root tips and cell cultures inducing both chromosome and chromatid aberrations as well as sister-chromatid exchanges. Carcinogenicity has been confirmed in numerous studies and involves the nervous system, intestine, kidney, stomach, bladder and uterus, in the rat, mouse, and hamster. MNU produces stage-specific teratogenic effects and also interferes with embryonic development. The experimental evidence that strongly indicates the mutagenic effects of MNU underlines the possible hazard of this compound to human beings. The experimental evidence for the stringent handling of this compound is clear. Sodium azide (NaN3) is cytotoxic in several animal and plant systems and functions by inhibiting protein synthesis and replicative DNA synthesis at low dosages. It is mutagenic in bacteria, higher plants and human cells and has been used as a positive control in some systems. In general, tests for clastogenicity have been negative or weakly positive. No evidence of carcinogenicity has been reported in a 2-year study seeking carcinogenic activity in male and female rats. Its advantages in comparison to other efficient mutagens are claimed to be a high production of gene mutations accompanied by a low frequency of chromosomal rearrangements and safer handling because of its nonclastogenic and noncarcinogenic action on humans. Azidoglycerol (AG) is a very potent mutagen in bacteria, yeast and higher plants including Arabidopsis and Tradescantia; however, it only slightly enhances the frequencies of recessive lethals in Drosophila. AG is at best a weak clastogen and is without effect in inducing chromosomal aberrations and SCEs in human peripheral lymphocytes in vitro. In microbial and plant systems, AG is considerably more potent than sodium azide in the maximal frequencies of mutation induced. In particular, in Saccharomyces cerevisae, AG is 3000-fold more mutagenic than sodium azide. Its carcinogenic and teratogenic properties are unknown.
Collapse