1
|
Bharathan NK, Mattheyses AL, Kowalczyk AP. The desmosome comes into focus. J Cell Biol 2024; 223:e202404120. [PMID: 39120608 PMCID: PMC11317759 DOI: 10.1083/jcb.202404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
2
|
Differential expression of glycans in the urothelial layers of horse urinary bladder. Ann Anat 2022; 244:151988. [PMID: 35987426 DOI: 10.1016/j.aanat.2022.151988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Urothelium is a multilayer epithelium covering the inner surface of the urinary bladder that acts as a blood-urine barrier and is involved in maintaining the wellbeing of the whole organism. Glycans serve in the maturation and differentiation of cells and thus play a key role in the morphology and function of the multilayered epithelium. The aim of the present study was to examine the glycoprotein pattern of the horse urinary bladder urothelium by lectin histochemistry. METHODS The study involved urinary bladders from four horse stallions. Tissue sections were stained with a panel of eleven lectins, in combination with saponification and sialidase digestion (Ks). RESULTS Basal cells displayed high-mannose N-glycans (Con A), α2,6-linked sialic acid (SNA), and O-linked sialoglycans with sialic acids linked to Galβl,3GalNAc (T antigen) (KsPNA) and terminal N-acetylgalactosamine (Tn antigen) (KsSBA). The young intermediate cells expressed terminal N-acetylglucosamine (GlcNAc) (GSA II), galactose (GSA I-B4), T- and Tn antigens (PNA, SBA). The mature intermediate cells showed additional high-mannose N-glycans, O-linked sialoglycans (sialyl-T antigen, sialyl-Tn antigen), α2,6- and α2,3-linked sialic acid (MAL II), α1,2-linked fucose (UEA I), and GlcNAc (KsWGA). The latter residue marked the boundary with the overlying surface layer. Few Con A positive intermediate cells were seen to cross the entire urothelium thickness. The surface cells showed additional glycans such as T antigen and sialic acids linked to GalNAc binding DBA (KsDBA). Few surface cells contained α1,3-linked fucose (LTA), whereas some other cells displayed intraluminal secretion of mucin-type glycans terminating with GalNAcα1,3(LFucα1,2)Galβ1,3/4GlcNAcβ1 (DBA). The luminal surface expressed the most complex glycan pattern in the urothelium because only α1,3-linked fucose lacked among the demonstrated glycans. CONCLUSIONS This study showed that the glycan pattern becomes more complex from the basal to surface layer of the urothelium and that surface cells could modify the composition of urine via the secretion of glycoproteins.
Collapse
|
3
|
Hansen J, Sealfon R, Menon R, Eadon MT, Lake BB, Steck B, Anjani K, Parikh S, Sigdel TK, Zhang G, Velickovic D, Barwinska D, Alexandrov T, Dobi D, Rashmi P, Otto EA, Rivera M, Rose MP, Anderton CR, Shapiro JP, Pamreddy A, Winfree S, Xiong Y, He Y, de Boer IH, Hodgin JB, Barisoni L, Naik AS, Sharma K, Sarwal MM, Zhang K, Himmelfarb J, Rovin B, El-Achkar TM, Laszik Z, He JC, Dagher PC, Valerius MT, Jain S, Satlin LM, Troyanskaya OG, Kretzler M, Iyengar R, Azeloglu EU. A reference tissue atlas for the human kidney. SCIENCE ADVANCES 2022; 8:eabn4965. [PMID: 35675394 PMCID: PMC9176741 DOI: 10.1126/sciadv.abn4965] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/20/2022] [Indexed: 05/08/2023]
Abstract
Kidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level functional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney disease when multiple molecular mechanisms underlie convergent clinical phenotypes.
Collapse
Affiliation(s)
- Jens Hansen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Sealfon
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
| | - Rajasree Menon
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Blue B. Lake
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Becky Steck
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kavya Anjani
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Samir Parikh
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Tara K. Sigdel
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Guanshi Zhang
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | | | - Daria Barwinska
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Dejan Dobi
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Priyanka Rashmi
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Edgar A. Otto
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Miguel Rivera
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Michael P. Rose
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Christopher R. Anderton
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - John P. Shapiro
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Annapurna Pamreddy
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | - Seth Winfree
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yuguang Xiong
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yongqun He
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ian H. de Boer
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
| | | | | | - Abhijit S. Naik
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kumar Sharma
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | - Minnie M. Sarwal
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jonathan Himmelfarb
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
| | - Brad Rovin
- Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Zoltan Laszik
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | | | | | - M. Todd Valerius
- Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Sanjay Jain
- Washington University in Saint Louis School of Medicine, St. Louis, MS, USA
| | - Lisa M. Satlin
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olga G. Troyanskaya
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
| | | | - Ravi Iyengar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kidney Precision Medicine Project
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
- University of Michigan School of Medicine, Ann Arbor, MI, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- University of California San Francisco School of Medicine, San Francisco, CA, USA
- Ohio State University College of Medicine, Columbus, OH, USA
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
- European Molecular Biology Laboratory, Heidelberg, Germany
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
- Duke University School of Medicine, Durham, NC, USA
- Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- Washington University in Saint Louis School of Medicine, St. Louis, MS, USA
| |
Collapse
|
4
|
Vietri Rudan M, Watt FM. Mammalian Epidermis: A Compendium of Lipid Functionality. Front Physiol 2022; 12:804824. [PMID: 35095565 PMCID: PMC8791442 DOI: 10.3389/fphys.2021.804824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian epidermis is a striking example of the role of lipids in tissue biology. In this stratified epithelium, highly specialized structures are formed that leverage the hydrophobic properties of lipids to form an impermeable barrier and protect the humid internal environment of the body from the dry outside. This is achieved through tightly regulated lipid synthesis that generates the molecular species unique to the tissue. Beyond their fundamental structural role, lipids are involved in the active protection of the body from external insults. Lipid species present on the surface of the body possess antimicrobial activity and directly contribute to shaping the commensal microbiota. Lipids belonging to a variety of classes are also involved in the signaling events that modulate the immune responses to environmental stress as well as differentiation of the epidermal keratinocytes themselves. Recently, high-resolution methods are beginning to provide evidence for the involvement of newly identified specific lipid molecules in the regulation of epidermal homeostasis. In this review we give an overview of the wide range of biological functions of mammalian epidermal lipids.
Collapse
|
5
|
Zimmer SE, Kowalczyk AP. The desmosome as a model for lipid raft driven membrane domain organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183329. [PMID: 32376221 DOI: 10.1016/j.bbamem.2020.183329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 01/14/2023]
Abstract
Desmosomes are cadherin-based adhesion structures that mechanically couple the intermediate filament cytoskeleton of adjacent cells to confer mechanical stress resistance to tissues. We have recently described desmosomes as mesoscale lipid raft membrane domains that depend on raft dynamics for assembly, function, and disassembly. Lipid raft microdomains are regions of the plasma membrane enriched in sphingolipids and cholesterol. These domains participate in membrane domain heterogeneity, signaling and membrane trafficking. Cellular structures known to be dependent on raft dynamics include the post-synaptic density in neurons, the immunological synapse, and intercellular junctions, including desmosomes. In this review, we discuss the current state of the desmosome field and put forward new hypotheses for the role of lipid rafts in desmosome adhesion, signaling and epidermal homeostasis. Furthermore, we propose that differential lipid raft affinity of intercellular junction proteins is a central driving force in the organization of the epithelial apical junctional complex.
Collapse
Affiliation(s)
- Stephanie E Zimmer
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, United States of America; Department of Cell Biology, Emory University, Atlanta, GA 30322, United States of America
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University, Atlanta, GA 30322, United States of America; Department of Dermatology, Emory University, Atlanta, GA 30322, United States of America.
| |
Collapse
|
6
|
Lewis JD, Caldara AL, Zimmer SE, Stahley SN, Seybold A, Strong NL, Frangakis AS, Levental I, Wahl JK, Mattheyses AL, Sasaki T, Nakabayashi K, Hata K, Matsubara Y, Ishida-Yamamoto A, Amagai M, Kubo A, Kowalczyk AP. The desmosome is a mesoscale lipid raft-like membrane domain. Mol Biol Cell 2019; 30:1390-1405. [PMID: 30943110 PMCID: PMC6724694 DOI: 10.1091/mbc.e18-10-0649] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Desmogleins (Dsgs) are cadherin family adhesion molecules essential for epidermal integrity. Previous studies have shown that desmogleins associate with lipid rafts, but the significance of this association was not clear. Here, we report that the desmoglein transmembrane domain (TMD) is the primary determinant of raft association. Further, we identify a novel mutation in the DSG1 TMD (G562R) that causes severe dermatitis, multiple allergies, and metabolic wasting syndrome. Molecular modeling predicts that this G-to-R mutation shortens the DSG1 TMD, and experiments directly demonstrate that this mutation compromises both lipid raft association and desmosome incorporation. Finally, cryo-electron tomography indicates that the lipid bilayer within the desmosome is ∼10% thicker than adjacent regions of the plasma membrane. These findings suggest that differences in bilayer thickness influence the organization of adhesion molecules within the epithelial plasma membrane, with cadherin TMDs recruited to the desmosome via the establishment of a specialized mesoscale lipid raft-like membrane domain.
Collapse
Affiliation(s)
- Joshua D Lewis
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Amber L Caldara
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Cancer Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Stephanie E Zimmer
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Sara N Stahley
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Anna Seybold
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60323 Frankfurt, Germany.,Institute for Biophysics, Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Nicole L Strong
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60323 Frankfurt, Germany.,Institute for Biophysics, Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - James K Wahl
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | - Kenichiro Hata
- National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoichi Matsubara
- National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akemi Ishida-Yamamoto
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Cancer Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
7
|
Quinlan RA, Schwarz N, Windoffer R, Richardson C, Hawkins T, Broussard JA, Green KJ, Leube RE. A rim-and-spoke hypothesis to explain the biomechanical roles for cytoplasmic intermediate filament networks. J Cell Sci 2018; 130:3437-3445. [PMID: 29032358 DOI: 10.1242/jcs.202168] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022] Open
Abstract
Textbook images of keratin intermediate filament (IF) networks in epithelial cells and the functional compromization of the epidermis by keratin mutations promulgate a mechanical role for this important cytoskeletal component. In stratified epithelia, keratin filaments form prominent radial spokes that are focused onto cell-cell contact sites, i.e. the desmosomes. In this Hypothesis, we draw attention to a subset of keratin filaments that are apposed to the plasma membrane. They form a rim of filaments interconnecting the desmosomes in a circumferential network. We hypothesize that they are part of a rim-and-spoke arrangement of IFs in epithelia. From our review of the literature, we extend this functional role for the subplasmalemmal rim of IFs to any cell, in which plasma membrane support is required, provided these filaments connect directly or indirectly to the plasma membrane. Furthermore, cytoplasmic IF networks physically link the outer nuclear and plasma membranes, but their participation in mechanotransduction processes remain largely unconsidered. Therefore, we also discuss the potential biomechanical and mechanosensory role(s) of the cytoplasmic IF network in terms of such a rim (i.e. subplasmalemmal)-and-spoke arrangement for cytoplasmic IF networks.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK .,Biophysical Sciences Institute, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Nicole Schwarz
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Reinhard Windoffer
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Christine Richardson
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Tim Hawkins
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Joshua A Broussard
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Kathleen J Green
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Rudolf E Leube
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
8
|
Mound A, Lozanova V, Warnon C, Hermant M, Robic J, Guere C, Vie K, Lambert de Rouvroit C, Tyteca D, Debacq-Chainiaux F, Poumay Y. Non-senescent keratinocytes organize in plasma membrane submicrometric lipid domains enriched in sphingomyelin and involved in re-epithelialization. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:958-971. [DOI: 10.1016/j.bbalip.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/26/2017] [Accepted: 06/03/2017] [Indexed: 12/22/2022]
|
9
|
Abstract
Advances in cell biology have often been driven by studies in diverse organisms and cell types. Although there are technical reasons for why different cell types are used, there are also important physiological reasons. For example, ultrastructural studies of vesicle transport were aided by the use of professional secretory cell types. The use of tissues/primary cells has the advantage not only of using cells that are adapted to the use of certain cell biological machinery, but also of highlighting the physiological roles of this machinery. Here we discuss advantages of the skin as a model system. We discuss both advances in cell biology that used the skin as a driving force and future prospects for use of the skin to understand basic cell biology. A unique combination of characteristics and tools makes the skin a useful in vivo model system for many cell biologists.
Collapse
Affiliation(s)
- Angel Morrow
- Department of Dermatology and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Terry Lechler
- Department of Dermatology and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
10
|
Stahley SN, Saito M, Faundez V, Koval M, Mattheyses AL, Kowalczyk AP. Desmosome assembly and disassembly are membrane raft-dependent. PLoS One 2014; 9:e87809. [PMID: 24498201 PMCID: PMC3907498 DOI: 10.1371/journal.pone.0087809] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 01/01/2014] [Indexed: 11/20/2022] Open
Abstract
Strong intercellular adhesion is critical for tissues that experience mechanical stress, such as the skin and heart. Desmosomes provide adhesive strength to tissues by anchoring desmosomal cadherins of neighboring cells to the intermediate filament cytoskeleton. Alterations in assembly and disassembly compromise desmosome function and may contribute to human diseases, such as the autoimmune skin blistering disease pemphigus vulgaris (PV). We previously demonstrated that PV auto-antibodies directed against the desmosomal cadherin desmoglein 3 (Dsg3) cause loss of adhesion by triggering membrane raft-mediated Dsg3 endocytosis. We hypothesized that raft membrane microdomains play a broader role in desmosome homeostasis by regulating the dynamics of desmosome assembly and disassembly. In human keratinocytes, Dsg3 is raft associated as determined by biochemical and super resolution immunofluorescence microscopy methods. Cholesterol depletion, which disrupts rafts, prevented desmosome assembly and adhesion, thus functionally linking rafts to desmosome formation. Interestingly, Dsg3 did not associate with rafts in cells lacking desmosomal proteins. Additionally, PV IgG-induced desmosome disassembly occurred by redistribution of Dsg3 into raft-containing endocytic membrane domains, resulting in cholesterol-dependent loss of adhesion. These findings demonstrate that membrane rafts are required for desmosome assembly and disassembly dynamics, suggesting therapeutic potential for raft targeting agents in desmosomal diseases such as PV.
Collapse
Affiliation(s)
- Sara N. Stahley
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Masataka Saito
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Michael Koval
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Alexa L. Mattheyses
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Andrew P. Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Desmosomes anchor intermediate filaments at sites of cell contact established by the interaction of cadherins extending from opposing cells. The incorporation of cadherins, catenin adaptors, and cytoskeletal elements resembles the closely related adherens junction. However, the recruitment of intermediate filaments distinguishes desmosomes and imparts a unique function. By linking the load-bearing intermediate filaments of neighboring cells, desmosomes create mechanically contiguous cell sheets and, in so doing, confer structural integrity to the tissues they populate. This trait and a well-established role in human disease have long captured the attention of cell biologists, as evidenced by a publication record dating back to the mid-1860s. Likewise, emerging data implicating the desmosome in signaling events pertinent to organismal development, carcinogenesis, and genetic disorders will secure a prominent role for desmosomes in future biological and biomedical investigations.
Collapse
Affiliation(s)
- Robert M Harmon
- Department of Pathology, Northwestern University Feinberg, School of Medicine , Chicago, IL , USA
| | | |
Collapse
|
12
|
Transmembrane protein PERP is a component of tessellate junctions and of other junctional and non-junctional plasma membrane regions in diverse epithelial and epithelium-derived cells. Cell Tissue Res 2013; 353:99-115. [PMID: 23689684 PMCID: PMC3691483 DOI: 10.1007/s00441-013-1645-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/22/2013] [Indexed: 12/16/2022]
Abstract
Protein PERP (p53 apoptosis effector related to PMP-22) is a small (21.4 kDa) transmembrane polypeptide with an amino acid sequence indicative of a tetraspanin character. It is enriched in the plasma membrane and apparently contributes to cell-cell contacts. Hitherto, it has been reported to be exclusively a component of desmosomes of some stratified epithelia. However, by using a series of newly generated mono- and polyclonal antibodies, we show that protein PERP is not only present in all kinds of stratified epithelia but also occurs in simple, columnar, complex and transitional epithelia, in various types of squamous metaplasia and epithelium-derived tumors, in diverse epithelium-derived cell cultures and in myocardial tissue. Immunofluorescence and immunoelectron microscopy allow us to localize PERP predominantly in small intradesmosomal locations and in variously sized, junction-like peri- and interdesmosomal regions ("tessellate junctions"), mostly in mosaic or amalgamated combinations with other molecules believed, to date, to be exclusive components of tight and adherens junctions. In the heart, PERP is a major component of the composite junctions of the intercalated disks connecting cardiomyocytes. Finally, protein PERP is a cobblestone-like general component of special plasma membrane regions such as the bile canaliculi of liver and subapical-to-lateral zones of diverse columnar epithelia and upper urothelial cell layers. We discuss possible organizational and architectonic functions of protein PERP and its potential value as an immunohistochemical diagnostic marker.
Collapse
|
13
|
Baldwin TJ, Rood KA, Kelly EJ, Hall JO. Dermatopathy in juvenile Angus cattle due to vitamin A deficiency. J Vet Diagn Invest 2012; 24:763-6. [PMID: 22585959 DOI: 10.1177/1040638712445767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In juvenile cattle, vitamin A deficiency is reported most commonly as a neurological condition; only rarely are there dermatologic manifestations. In the current study, alopecia, severe epidermal and follicular orthokeratosis, and acanthosis due to hypovitaminosis A are reported in 2 of 32 Angus calves, with a third animal suspected. Affected animals responded to vitamin A supplementation, and no additional calves displayed signs. Vitamin A acts on skin by regulating DNA transcription in keratinocytes, reducing the number of tonofilaments and desmosomes, both involved in cell-to-cell adhesion. Hence, adequate levels of dietary vitamin A are necessary for normal keratinocyte turnover, and deficiencies result in retention of keratinized cells (orthokeratosis). The present report reminds diagnosticians to consider vitamin A deficiency in cases of orthokeratotic dermatopathy in cattle.
Collapse
Affiliation(s)
- Thomas J Baldwin
- Utah Veterinary Diagnostic Laboratory, 950 East 1400 North, Logan, UT 84341, USA.
| | | | | | | |
Collapse
|
14
|
Pieperhoff S, Barth M, Rickelt S, Franke WW. Desmosomal molecules in and out of adhering junctions: normal and diseased States of epidermal, cardiac and mesenchymally derived cells. Dermatol Res Pract 2010; 2010:139167. [PMID: 20671973 PMCID: PMC2909724 DOI: 10.1155/2010/139167] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/23/2010] [Indexed: 11/18/2022] Open
Abstract
Current cell biology textbooks mention only two kinds of cell-to-cell adhering junctions coated with the cytoplasmic plaques: the desmosomes (maculae adhaerentes), anchoring intermediate-sized filaments (IFs), and the actin microfilament-anchoring adherens junctions (AJs), including both punctate (puncta adhaerentia) and elongate (fasciae adhaerentes) structures. In addition, however, a series of other junction types has been identified and characterized which contain desmosomal molecules but do not fit the definition of desmosomes. Of these special cell-cell junctions containing desmosomal glycoproteins or proteins we review the composite junctions (areae compositae) connecting the cardiomyocytes of mature mammalian hearts and their importance in relation to human arrhythmogenic cardiomyopathies. We also emphasize the various plakophilin-2-positive plaques in AJs (coniunctiones adhaerentes) connecting proliferatively active mesenchymally-derived cells, including interstitial cells of the heart and several soft tissue tumor cell types. Moreover, desmoplakin has also been recognized as a constituent of the plaques of the complexus adhaerentes connecting certain lymphatic endothelial cells. Finally, we emphasize the occurrence of the desmosomal transmembrane glycoprotein, desmoglein Dsg2, out of the context of any junction as dispersed cell surface molecules in certain types of melanoma cells and melanocytes. This broadening of our knowledge on the diversity of AJ structures indicates that it may still be too premature to close the textbook chapters on cell-cell junctions.
Collapse
Affiliation(s)
- Sebastian Pieperhoff
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, Canada V6T 1Z4
| | - Mareike Barth
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Steffen Rickelt
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Werner W. Franke
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Progen Biotechnik GmbH, Maaßstraße 30, 69123 Heidelberg, Germany
| |
Collapse
|
15
|
Exploring the Nature of Desmosomal Cadherin Associations in 3D. Dermatol Res Pract 2010; 2010:930401. [PMID: 20672011 PMCID: PMC2905946 DOI: 10.1155/2010/930401] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/17/2010] [Accepted: 04/16/2010] [Indexed: 12/01/2022] Open
Abstract
Desmosomes are a complex assembly of protein molecules that mediate adhesion between adjacent cells. Desmosome composition is well established and spatial relationships between components have been identified. Intercellular cell-cell adhesion is created by the interaction of extracellular domains of desmosomal cadherins, namely, desmocollins and desmogleins. High-resolution methods have provided insight into the structural interactions between cadherins. However, there is a lack of understanding about the architecture of the intact desmosomes and the physical principles behind their adhesive strength are unclear. Electron Tomography (ET) studies have offered three-dimensional visual data of desmosomal cadherin associations at molecular resolution. This review discusses the merits of two cadherin association models represented using ET. We discuss the possible role of sample preparation on the structural differences seen between models and the possibility of adaptive changes in the structure as a direct consequence of mechanical stress and stratification.
Collapse
|
16
|
The area composita of adhering junctions connecting heart muscle cells of vertebrates. VII. The different types of lateral junctions between the special cardiomyocytes of the conduction system of ovine and bovine hearts. Eur J Cell Biol 2010; 89:365-78. [DOI: 10.1016/j.ejcb.2009.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/29/2009] [Accepted: 11/09/2009] [Indexed: 11/19/2022] Open
|
17
|
Franke WW. Discovering the molecular components of intercellular junctions--a historical view. Cold Spring Harb Perspect Biol 2009; 1:a003061. [PMID: 20066111 PMCID: PMC2773636 DOI: 10.1101/cshperspect.a003061] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The organization of metazoa is based on the formation of tissues and on tissue-typical functions and these in turn are based on cell-cell connecting structures. In vertebrates, four major forms of cell junctions have been classified and the molecular composition of which has been elucidated in the past three decades: Desmosomes, which connect epithelial and some other cell types, and the almost ubiquitous adherens junctions are based on closely cis-packed glycoproteins, cadherins, which are associated head-to-head with those of the hemi-junction domain of an adjacent cell, whereas their cytoplasmic regions assemble sizable plaques of special proteins anchoring cytoskeletal filaments. In contrast, the tight junctions (TJs) and gap junctions (GJs) are formed by tetraspan proteins (claudins and occludins, or connexins) arranged head-to-head as TJ seal bands or as paracrystalline connexin channels, allowing intercellular exchange of small molecules. The by and large parallel discoveries of the junction protein families are reported.
Collapse
Affiliation(s)
- Werner W Franke
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Studer D, Humbel BM, Chiquet M. Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution. Histochem Cell Biol 2008; 130:877-89. [PMID: 18795316 DOI: 10.1007/s00418-008-0500-1] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2008] [Indexed: 12/17/2022]
Abstract
Transmission electron microscopy has provided most of what is known about the ultrastructural organization of tissues, cells, and organelles. Due to tremendous advances in crystallography and magnetic resonance imaging, almost any protein can now be modeled at atomic resolution. To fully understand the workings of biological "nanomachines" it is necessary to obtain images of intact macromolecular assemblies in situ. Although the resolution power of electron microscopes is on the atomic scale, in biological samples artifacts introduced by aldehyde fixation, dehydration and staining, but also section thickness reduces it to some nanometers. Cryofixation by high pressure freezing circumvents many of the artifacts since it allows vitrifying biological samples of about 200 mum in thickness and immobilizes complex macromolecular assemblies in their native state in situ. To exploit the perfect structural preservation of frozen hydrated sections, sophisticated instruments are needed, e.g., high voltage electron microscopes equipped with precise goniometers that work at low temperature and digital cameras of high sensitivity and pixel number. With them, it is possible to generate high resolution tomograms, i.e., 3D views of subcellular structures. This review describes theory and applications of the high pressure cryofixation methodology and compares its results with those of conventional procedures. Moreover, recent findings will be discussed showing that molecular models of proteins can be fitted into depicted organellar ultrastructure of images of frozen hydrated sections. High pressure freezing of tissue is the base which may lead to precise models of macromolecular assemblies in situ, and thus to a better understanding of the function of complex cellular structures.
Collapse
Affiliation(s)
- Daniel Studer
- Institute for Anatomy, University of Bern, Baltzerstr. 2, 3000, Bern 9, Switzerland.
| | | | | |
Collapse
|
19
|
Abstract
In vascular endothelium, adherens junctions between endothelial cells are composed of VE-cadherin (vascular endothelial cadherin), an adhesive receptor that is crucial for the proper assembly of vascular structures and the maintenance of vascular integrity. As a classical cadherin, VE-cadherin links endothelial cells together by homophilic interactions mediated by its extracellular part and associates intracellularly with the actin cytoskeleton via catenins. Although, from structural crystallographic data, a dimeric structure arranged in a trans orientation has emerged as a potential mechanism of cell-cell adhesion, the cadherin organization within adherens junctions remains controversial. Concerning VE-cadherin, its extracellular part possesses the capacity to self-associate in solution as hexamers consisting of three antiparallel cadherin dimers. VE-cadherin-based adherens junctions were reconstituted in vitro by assembly of a VE-cadherin EC (extracellular repeat) 1-EC4 hexamer at the surfaces of liposomes. The artificial adherens junctions revealed by cryoelectron microscopy appear as a two-dimensional self-assembly of hexameric structures. This cadherin organization is reminiscent of that found in native desmosomal junctions. Further structural studies performed on native VE-cadherin junctions would provide a better understanding of the cadherin organization within adherens junctions. Homophilic interactions between cadherins are strengthened intracellularly by connection to the actin cytoskeleton. Recently, we have discovered that annexin 2, an actin-binding protein connects the VE-cadherin-catenin complex to the actin cytoskeleton. This novel link is labile and promotes the endothelial cell switch from a quiescent to an angiogenic state.
Collapse
|
20
|
Abstract
Desmosomes are patch-like intercellular adhering junctions ("maculae adherentes"), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca(2+)-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required.
Collapse
Affiliation(s)
- Jens Waschke
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr. 6, 97070, Würzburg, Germany.
| |
Collapse
|
21
|
Jetten AM, Smits H. Regulation of differentiation of tracheal epithelial cells by retinoids. CIBA FOUNDATION SYMPOSIUM 2008; 113:61-76. [PMID: 2411482 DOI: 10.1002/9780470720943.ch5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An in vitro culture system of rabbit tracheal epithelial cells has been developed to study the regulation of differentiation of the respiratory epithelium on the molecular level. At high density in the absence of retinoids these cells become squamous, stratify, and ultimately form cross-linked envelopes. Several factors influence this terminal differentiation: high Ca2+ concentrations and serum factors promote, whereas retinoids and medium conditioned by fibroblasts inhibit this process. Terminal squamous cell differentiation is accompanied by several biochemical changes: the synthesis of proteoglycans is dramatically reduced and the expression of keratin intermediate filaments is altered. Besides the eight major keratins expressed in undifferentiated cells, terminally differentiated cells also express a 48 kDa keratin. The expression of this keratin correlates well with squamous cell differentiation and appears to be under the control of retinoic acid. The level at which these biochemical changes are regulated has yet to be established. Specific retinol- and retinoic acid-binding proteins have been identified in these cells; the correlation between binding and biological activity of retinoids in this system is in agreement with a role for these binding proteins in mediating the action of these agents.
Collapse
|
22
|
Identification of adherens junction-associated GTPase activating proteins by the fluorescence localization-based expression cloning. Exp Cell Res 2008; 314:939-49. [DOI: 10.1016/j.yexcr.2007.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 10/19/2007] [Accepted: 11/12/2007] [Indexed: 11/22/2022]
|
23
|
Steinberg MS, Shida H, Giudice GJ, Shida M, Patel NH, Blaschuk OW. On the molecular organization, diversity and functions of desmosomal proteins. CIBA FOUNDATION SYMPOSIUM 2007; 125:3-25. [PMID: 2435471 DOI: 10.1002/9780470513408.ch2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
After a brief review of epithelial cell junctions, the authors describe a series of observations and experiments directed toward elucidating the molecular organization and functions of the proteins of desmosomes (maculae adherentes). Their immunofluorescence observations reveal differences between the proteins of junctional complex and other desmosomes of the same cells. Quantitative immuno-localization studies are described using protein A-colloidal gold markers and a series of monospecific, polyclonal antibodies directed against cytokeratins and four desmosomal protein families. It is shown that desmoplakin III (about 81 kDa) is restricted to the desmosomal cytoplasmic plaque, which possesses outer and inner dense zones. Desmoplakins I/II (about 240 kDa and 210 kDa) extend across the same range and beyond into the intermediate filament-rich cytoplasm. Two glycoprotein families, desmoglein I (DGI; about 150 kDa) and desmoglein II (DGII; about 97-118 kDa), extend from the desmosomal midline (or beyond) across the desmoglea (intercellular space), through the plasma membrane and across both layers of the plaque, terminating near its cytoplasmic border. Cytokeratins do not extend into the desmosome. With new procedures utilizing guanidine HCl for preparing and fractionating desmosomal proteins, DGII has been purified to homogeneity. DGII, DGI and a third protein are all shown to bind Ca2+, which is known to promote desmosome assembly.
Collapse
|
24
|
Franke WW, Cowin P, Schmelz M, Kapprell HP. The desmosomal plaque and the cytoskeleton. CIBA FOUNDATION SYMPOSIUM 2007; 125:26-48. [PMID: 3103993 DOI: 10.1002/9780470513408.ch3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two major plasma membrane domains are involved in the architectural organization of the cytoskeleton. Both are junctions of the adherens category characterized by the presence of dense plaques associated with the cytoplasmic surface of their membranes. The plaques serve as specific anchorage structures for two different types of cytoplasmic filaments. Intermediate-sized filaments (IF) of several types, i.e. cytokeratin IF in epithelial cells, desmin IF in cardiac myocytes and vimentin IF in arachnoidal cells of meninges, meningiomas and several other cells, attach to the desmosomal plaques, whereas actin-containing microfilaments associate with non-desmosomal adhering junctions such as the zonula adherens, fascia adherens and punctum adherens. The plaques of both kinds of adhering junctions contain a common acidic polypeptide of Mr 83,000 identical to 'band 5 protein' of bovine snout epidermal desmosomes. However, other plaque components are mutually exclusive to one of the two subclasses of adhering junctions. The desmosomal plaque structure, which does not contain vinculin and alpha-actinin, comprises representatives of cytoplasmic, non-membrane-integrated proteins such as desmoplakin(s) and the cytoplasmic portions of transmembrane glycoproteins such as 'band 3 glycoprotein'. The analysis of both categories of junction-associated plaques should provide a basis for understanding the establishment and the dynamics of junction-cytoskeleton interaction.
Collapse
|
25
|
|
26
|
Franke WW, Borrmann CM, Grund C, Pieperhoff S. The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol 2006; 85:69-82. [PMID: 16406610 DOI: 10.1016/j.ejcb.2005.11.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 11/18/2005] [Accepted: 11/21/2005] [Indexed: 12/17/2022] Open
Abstract
Among sarcomeric muscles the cardiac muscle cells are unique by, inter alia, a systemic and extended cell-cell contact structure, the intercalated disk (ID), comprising frequent and closely spaced arrays of plaque-coated cell-cell adhering junctions (AJs). As some of these junctions may look somewhat like desmosomes and others like fasciae adhaerentes, the dogma has emerged in the literature that IDs contain - like epithelial cells - both kinds of AJs formed by - for the most - mutually exclusive molecular ensembles. This, however, is not the case. In comprehensive immunoelectron microscopic studies of mammalian (human, bovine, rat, mouse) and non-mammalian (chicken, amphibia, fishes) heart muscle tissues, we have localized major constituents of the desmosomal plaques of polar epithelia, desmoplakin, plakophilin-2 and plakoglobin, as well as the desmosomal cadherins, desmoglein Dsg2 and desmocollin Dsc2, in both kinds of ID AJs, independent of the specific morphological appearance. The desmosomal molecules are not restricted to the desmosome-like-looking junctions but can also be detected in junctions appearing similar to the zonula or fascia adhaerens structures. These AJs of cardiac ID are therefore subsumed under the collective term area composita. We discuss our results with respect to the importance of ID junction molecules for the formation, maintenance and function of the heart, particularly in relation to recent findings that deletions of - or mutations in - genes encoding such proteins can cause severe, sometimes lethal damages.
Collapse
Affiliation(s)
- Werner W Franke
- Division of Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
27
|
Rafik ME, Briki F, Burghammer M, Doucet J. In vivo formation steps of the hard alpha-keratin intermediate filament along a hair follicle: evidence for structural polymorphism. J Struct Biol 2006; 154:79-88. [PMID: 16458019 DOI: 10.1016/j.jsb.2005.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 11/18/2005] [Accepted: 11/22/2005] [Indexed: 10/25/2022]
Abstract
Several aspects of the intermediate filaments' molecular architecture remain mysterious despite decades of study. The growth process and the final architecture may depend on the physical, chemical, and biochemical environment. Aiming at clarifying this issue, we have revisited the structure of the human hair follicle by means of X-ray microdiffraction. We conclude that the histology-based growth zones along the follicle are correlated to the fine architecture of the filaments deduced from X-ray microdiffraction. Our analysis reveals the existence of two major polymorph intermediate filament architectures. Just above the bulb, the filaments are characterized by a diameter of 100 Angstroms and a low-density core. The following zone upwards is characterized by the lateral aggregation of the filaments into a compact network of filaments, by a contraction of their diameter (to 75 Angstroms) and by the setting up of a long-range longitudinal ordering. In the upper zone, the small structural change associated with the tissue hardening likely concerns the terminal domains. The architecture of the intermediate filament in the upper zones could be specific to hard alpha-keratin whilst the other architecture found in the lower zone could be representative for intermediate filaments in a different environment.
Collapse
Affiliation(s)
- Mériem Er Rafik
- Laboratoire de Physique des Solides, Bât 510, Université Paris-11, F-91405 Orsay, France
| | | | | | | |
Collapse
|
28
|
Langbein L, Grund C, Kuhn C, Praetzel S, Kartenbeck J, Brandner JM, Moll I, Franke WW. Tight junctions and compositionally related junctional structures in mammalian stratified epithelia and cell cultures derived therefrom. Eur J Cell Biol 2002; 81:419-35. [PMID: 12234014 DOI: 10.1078/0171-9335-00270] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The occurrence of extended tight junction (TJ) structures, including zonulae occludentes (ZO), and the spatial arrangement of TJ proteins in stratified mammalian epithelia has long been controversially discussed. Therefore, we have systematically examined the localization of TJ proteins in diverse stratified epithelial tissues (e.g., epidermis, heel pad, snout, gingiva, tongue, esophagus, exocervix, vagina, urothelium, cornea) of various species (human, bovine, rodents) as well as in human cell culture lines derived from stratified epithelia, by electron microscopy as well as by immunocytochemistry at both the light and the electron microscopic level, using antibodies to TJ proteins such as occludin, claudins 1 and 4, protein ZO-1, cingulin and symplekin. We have found an unexpected diversity of TJ-related structures of which only those showing colocalization with the most restricted transmembrane TJ marker protein, occludin, are presented here. While in epidermis and urothelium occludin is restricted to the uppermost living cell layer, TJ-related junctions are abundant in the upper third or even in the majority of the suprabasal cell layers in other stratified epithelia. Interfollicular epidermis contains, in the stratum granulosum, extended, probably continuous ZO-like structures which can also be traced at least through the Henle cell layer of hair follicles. Similar apical ZO-like structures have been seen in the upper living cell layers of all other stratified epithelia and cell cultures examined, but in most of them we have noticed, in addition, junctional regions showing relatively broad, ribbon-like membrane contacts which in cross-section often appear pentalaminar, with an electron-dense middle lamella ("lamellated TJs", coniunctiones laminosae). In suprabasal layers of several stratified epithelia we have further observed TJ protein-containing junctions of variable sizes which are characterized by a 10-30-nm dense lamina interposed between the two membranes ("sandwich junctions"; iuncturae structae). Moreover, we have often observed variously sized regions in which the intermembrane distance is rather regularly bridged by short rod-like elements ("cross-bridged cell walls"; parietes transtillati), often in close vicinity of TJ-related structures or desmosomes. The significance of these structures and their possible biological importance are discussed.
Collapse
Affiliation(s)
- Lutz Langbein
- Division of Cell Biology, German Cancer Research Center, Heidelberg
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kowalczyk AP, Bornslaeger EA, Norvell SM, Palka HL, Green KJ. Desmosomes: intercellular adhesive junctions specialized for attachment of intermediate filaments. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 185:237-302. [PMID: 9750269 DOI: 10.1016/s0074-7696(08)60153-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell-cell adhesion is thought to play important roles in development, in tissue morphogenesis, and in the regulation of cell migration and proliferation. Desmosomes are adhesive intercellular junctions that anchor the intermediate filament network to the plasma membrane. By functioning both as an adhesive complex and as a cell-surface attachment site for intermediate filaments, desmosomes integrate the intermediate filament cytoskeleton between cells and play an important role in maintaining tissue integrity. Recent observations indicate that tissue integrity is severely compromised in autoimmune and genetic diseases in which the function of desmosomal molecules is impaired. In addition, the structure and function of many of the desmosomal molecules have been determined, and a number of the molecular interactions between desmosomal proteins have now been elucidated. Finally, the molecular constituents of desmosomes and other adhesive complexes are now known to function not only in cell adhesion, but also in the transduction of intracellular signals that regulate cell behavior.
Collapse
Affiliation(s)
- A P Kowalczyk
- Department of Pathology, R.H. Lurie Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
30
|
Mertens C, Kuhn C, Franke WW. Plakophilins 2a and 2b: constitutive proteins of dual location in the karyoplasm and the desmosomal plaque. J Cell Biol 1996; 135:1009-25. [PMID: 8922383 PMCID: PMC2133394 DOI: 10.1083/jcb.135.4.1009] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Using antibodies and recombinant DNA techniques, we have identified plakophilin 2, a novel desmosomal plaque protein of M(r) 100,000 (estimated from SDS-PAGE), which is a member of the arm-repeat family of proteins and can occur in two splice forms (2a and 2b) because of the insertion of a 44 amino acid (aa)-encoding exon. In its aa sequence (837 and 881 aa, calculated pIs: 9.33 and 9.38, mol wts 92,750 and 97,410 kD), it is conspicuously related to the 80-kD plakophilin 1, with which it shares a central region of 9 repeats of the arm-motif, preceeded by a long head region and followed by a very short (11 aa) carboxy-terminal sequence. Plakophilin 2 and its mRNA have been detected in a wide range of tissues and cell types, including cells devoid of desmosomes. By light and electron microscopical immunolocalization, plakophilin 2 has been localized to plaques of desmosomes of one-layered ("simple") and complex epithelia, carcinomas, diverse epithelium-derived cell culture lines, as well as cardiac tissue and the dendritic reticulum cells of lymphatic germinal centers, i.e., desmosomes in which plakophilin 1 is not detected. However, plakophilin 2 has also been localized in the desmosomes of certain but not all stratified epithelia where it coexists with plakophilin 1. Remarkably, plakophilin 2 is also enriched in the karyoplasm of a wide range of cell types, including many that lack desmosomes and in which, therefore, the nuclear state is the only locally enriched form of plakophilin 2 present. We conclude that plakophilins 2a and 2b are basic nuclear proteins that in certain cell types additionally assemble with other proteins to form the desmosomal plaque and serve general nuclear functions as well as a function specific to many but not all desmosomes.
Collapse
Affiliation(s)
- C Mertens
- Division of Cell Biology, German Cancer Research Center, Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
31
|
Cluzeaud F, Bens M, Wu MS, Li Z, Vicart P, Paulin D, Vandewalle A. Relationships between intermediate filaments and cell-specific functions in renal cell lines derived from transgenic mice harboring the temperature-sensitive T antigen. J Cell Physiol 1996; 167:22-35. [PMID: 8698837 DOI: 10.1002/(sici)1097-4652(199604)167:1<22::aid-jcp3>3.0.co;2-e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Four renal cell lines were derived from glomeruli, proximal, distal, and cortical collecting tubules microdissected from the kidneys of transgenic mice carrying the temperature-sensitive mutant of the simian virus 40 large T antigen under the control of the vimentin promoter. All four cell lines contained large T antigen in their nuclei, grew rapidly, and contained vimentin filaments when grown in serum-enriched medium at the permissive temperature of 33 degrees C. The glomerular cell line formed multiple layers of cells and contained smooth muscle actin and desmin filaments, features of mesangial cells. The three tubule cell lines formed monolayers of polarized cuboid cells separated by tight junctions and having a patchy distribution of cytokeratins K8-K18. A shift from 33 degrees C to the restrictive temperature (39.5 degrees C) stopped cell growth in all cell lines and caused profound changes in the content of intermediate filaments. Vimentin was still present in mesangial-like cells, but the proximal, distal, and collecting tubule cells contained uniform networks of cytokeratins K8-K18 and desmoplakin I and II around the cell peripheries. Potassium transport, mediated by Na+-K+ ATPase pumps and specific cAMP hormonal sensitivities, significantly increased in proximal, distal, and collecting tubule cells when shifted from 33 degrees C to 39.5 degrees C. Thus, the temperature-dependent inactivation of large T antigen, responsible for the arrest of cell growth, did not affect the phenotype of mesangial-like glomerular cells but induced some changes in the expression of intermediate filaments and restored, at least partially, the main parental cell-specific functions in proximal, distal, and collecting tubule cultured cells.
Collapse
Affiliation(s)
- F Cluzeaud
- Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Georgatos SD, Maison C. Integration of intermediate filaments into cellular organelles. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 164:91-138. [PMID: 8575894 DOI: 10.1016/s0074-7696(08)62385-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intermediate filaments represent core components of the cytoskeleton and are known to interact with several membranous organelles. Classic examples of this are the attachment of keratin filaments to the desmosomes and the association of the lamin filament meshwork with the inner nuclear membrane. At this point, the molecular mechanisms by which the filaments link to membranes are not clearly understood. However, since a substantial body of information has been amassed, the time is now ripe for comparing notes and formulating working hypotheses. With this objective in mind, we review here pioneering studies on this subject, together with work that has appeared more recently in the literature.
Collapse
Affiliation(s)
- S D Georgatos
- Program of Cell Biology, European Molecular Biology Laboratory, Germany
| | | |
Collapse
|
33
|
Heid HW, Schmidt A, Zimbelmann R, Schäfer S, Winter-Simanowski S, Stumpp S, Keith M, Figge U, Schnölzer M, Franke WW. Cell type-specific desmosomal plaque proteins of the plakoglobin family: plakophilin 1 (band 6 protein). Differentiation 1994; 58:113-31. [PMID: 7890138 DOI: 10.1046/j.1432-0436.1995.5820113.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Desmosomes represent a special type of the plaque-bearing adhering junctions, characteristic of certain pathways of cell differentiation, which compositionally are not identical in the various kinds of desmosome-forming cells. While all desmosomes contain the cytoplasmic plaque proteins desmoplakin I and plakoglobin, they can vary in their specific complement of desmosomal cadherins and by the presence of additional plaque proteins. We have raised monoclonal antibodies recognizing one such 'accessory' plaque protein, the cytokeratin-binding, basic protein plakophilin 1, originally introduced as 'band 6 protein' or 'polypeptide D6', which is an abundant desmosomal component in certain epithelia. Using such antibodies, we have isolated cDNA clones encoding the bovine and the human protein and determined their complete amino acid sequences. The mRNAs, which on Northern blot tests appear as two bands corresponding to approximately 4 and 2.4 kb (bovine) or 5 and 2.6 kb (human), code for 727 amino acids (calculated mol. wt. 80,180; IEP 9.25) in bovine and 726 amino acids (mol. wt. 80,496; IEP 9.34) in human plakophilin. Sequence analyses have revealed the presence of 9.2 repeated units of the arm-motif sequence, confirming our previous conclusion that this protein is a member of a larger family of proteins including, inter alia, several membrane-associated plaque proteins such as vertebrate plakoglobin and beta-catenin as well as the product of the armadillo gene of Drosophila. The plakophilin antibodies and cDNA probes have also allowed us to examine its synthesis in various tissues and cell cultures. While we confirm the occurrence of the protein in cytoskeletal fractions from various stratified squamous, complex, glandular duct and bladder epithelia, where it can be localized to desmosomes, we have, surprisingly, also identified the protein, although at lower amounts, in cytoskeletal fractions from several cultured cell lines in which the protein has not been consistently localized to desmosomes by immunofluorescence microscopy. Examples include cultured cells derived from certain simple epithelia such as the kidney-derived line MDBK and cultured calf lens cells. We have also found that, in all plakophilin 1-positive cells examined, a pool of diffusible ('soluble') cytoplasmic plakophilin exists, including cell lines such as human mammary carcinoma MCF-7 cells in which this soluble plakophilin seems to be the only detectable form. In addition, we have identified some soluble proteins conspicuously cross-reacting with plakophilin 1. Possible functions of plakophilin and its potential value as a marker for specific states of cell differentiation are discussed, particularly with respect to tumor diagnosis.
Collapse
Affiliation(s)
- H W Heid
- Division of Cell Biology, German Cancer Research Center, Heidelberg
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ouyang P, Sugrue SP. Identification of an epithelial protein related to the desmosome and intermediate filament network. J Cell Biol 1992; 118:1477-88. [PMID: 1522118 PMCID: PMC2289612 DOI: 10.1083/jcb.118.6.1477] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Using a mAb, referred to as 08L, we have identified a protein, of M(r) approximately 140,000, associated with desmosomes of epithelial cells. The 08L antibody stained the intracellular side of lateral cell margins of monolayer epithelial cells but did not stain cell margins free of cell contact. Immunoelectron microscopy revealed that the 08L antigen was localized to the cytosolic surface of the desmosomal plaque near points of intermediate filament convergence with apparently little staining of the desmosomal plaque proper. Western blots revealed the 08L antigen to be a protein, of M(r) approximately 140,000, found in the Triton-X 100 insoluble pellet. High salt-containing buffers extracted the 08L antigen from the insoluble material. Examination of the assembly of 08L to the desmosome complex, in cells grown in low confluent culture or in calcium-switch assays, by double immunofluorescence with 08L and anti-desmoplakin antibody, revealed that 08L was recruited to morphologically identifiable desmosomes. 08L antigen may exist in a cytosolic pool prior to assembly to the cell surface. The solubility of 08L in low calcium and normal calcium conditions, however, was similar. 08L association to the desmosome was correlated with increased organization of the intermediate filament network. We suggest that the 08L antigen may be involved in the organization and stabilization of the desmosome-IF complexes of epithelia.
Collapse
Affiliation(s)
- P Ouyang
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
35
|
Paller AS, Arnsmeier SL, Robinson JK, Bremer EG. Alteration in keratinocyte ganglioside content in basal cell carcinomas. J Invest Dermatol 1992; 98:226-32. [PMID: 1732387 DOI: 10.1111/1523-1747.ep12555896] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We examined the ganglioside content of normal human keratinocytes and basal cell carcinomas (BCC). The total ganglioside content of the epidermis was 0.098 +/- 0.01 microgram lipid-bound sialic acid/mg dry weight. GM3 was the predominant ganglioside of epidermis. GM2 and GD3 were also found in significant amounts. Polysialylated gangliosides were identified in only small amounts. In contrast to all other body locations, breast epidermis showed large amounts of GM1. The total ganglioside content of nodular and sclerosing facial BCC was approximately 3.5 times that of normal facial epidermis. This marked elevation of total ganglioside was not affected by dermal ganglioside contamination, because the total ganglioside content of the dermis was similar to that of the epidermis. The relative percentage of GM2 was significantly decreased, whereas the relative percentage of GM3 was slightly decreased in BCC. 9-O-acetyl-GD3 was present in the BCC, but not in normal epidermis or dermis. 9-O-acetyl-GD3 may be a surface marker for BCC. Furthermore, the alterations in amount and composition of individual gangliosides on neoplastic membranes may lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- A S Paller
- Department of Pediatrics, Northwestern University Medical School, Chicago, Illinois
| | | | | | | |
Collapse
|
36
|
Owaribe K, Nishizawa Y, Franke WW. Isolation and characterization of hemidesmosomes from bovine corneal epithelial cells. Exp Cell Res 1991; 192:622-30. [PMID: 1988297 DOI: 10.1016/0014-4827(91)90084-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hemidesmosome (HD) is a specialized cell-to-substratum junction of stratified and complex epithelia which is characterized by a cytoplasmic plaque to which intermediate filaments (IFs) are anchored. To identify and characterize HD constituents systematically, we have developed a procedure to isolate and fractionate HDs. When bovine corneal epithelium is peeled off from the extracellular matrix stroma, HDs attached to the basal lamina are left behind, together with tufts of cytokeratin IFs attached to the cytoplasmic HD plaques. After rinsing these residual basal cell elements with EDTA, the HDs could be mechanically detached from the stroma and collected by centrifugation. The fraction obtained was examined biochemically and electron microscopically, showing enrichment of HD structures as well as of a prominent 230-kDa polypeptide, the "pemphigoid antigen" known to be located in the HD plaque. In addition, the HD fraction revealed, besides residual amounts of corneal cytokeratins, major polypeptides of Mr 120, 180, 200, 230, and 480 kDa, of which the first three appeared to be glycoproteins. Using the isolated HDs for immunization, we prepared monoclonal antibodies specific for the 230- and 180-kDa polypeptides, respectively, and showed that both were exclusively located in HDs. This method for isolating HDs and the availability of antibodies to HD proteins will be useful in studies of the molecular organization of HDs and make HD research independent from human autoimmune antibodies.
Collapse
Affiliation(s)
- K Owaribe
- Department of Molecular Biology, School of Science, Nagoya University, Japan
| | | | | |
Collapse
|
37
|
Cartaud A, Ludosky MA, Courvalin JC, Cartaud J. A protein antigenically related to nuclear lamin B mediates the association of intermediate filaments with desmosomes. J Biophys Biochem Cytol 1990; 111:581-8. [PMID: 2199461 PMCID: PMC2116206 DOI: 10.1083/jcb.111.2.581] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Desmosomes are specialized domains of epithelial cell plasma membranes engaged in the anchoring of intermediate filaments (IF). So far, the desmosomal component(s) responsible for this binding has not been unambiguously identified. In the present work, we have examined bovine muzzle epidermis desmosomes for the presence of protein(s) structurally and functionally related to lamin B, the major receptor for IF in the nuclear envelope (Georgatos, S. D., and G. Blobel. 1987. J. Cell Biol. 105:105-115). By using polyclonal antibodies to lamin B in immunoblotting experiments, we find that a desmosomal protein of 140-kD shares epitope(s) with lamin B. Immunoelectron microscopic and urea extraction experiments show that this protein is a peripheral protein localized at the cytoplasmic side of the desmosomes (desmosomal plaques). Furthermore, this protein binds vimentin in an in vitro assay. Since this binding is inhibited by lamin B antibodies, the epitopes common to the 140-kD protein and to lamin B may be responsible for anchoring of intermediate filaments to desmosomes. These data suggest that lamin B-related proteins (see also Cartaud, A., J. C. Courvalin, M. A. Ludosky, and J. Cartaud. 1989. J. Cell Biol. 109:1745-1752) together with lamin B, provide cells with several nucleation sites, which can account for the multiplicity of IF organization in tissues.
Collapse
Affiliation(s)
- A Cartaud
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Université Paris VII, France
| | | | | | | |
Collapse
|
38
|
Zatloukal K, Spurej G, Rainer I, Lackinger E, Denk H. Fate of Mallory body-containing hepatocytes: disappearance of Mallory bodies and restoration of the hepatocytic intermediate filament cytoskeleton after drug withdrawal in the griseofulvin-treated mouse. Hepatology 1990; 11:652-61. [PMID: 1691733 DOI: 10.1002/hep.1840110419] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mallory bodies are characteristic morphological features of alcoholic hepatitis in man and can be produced in the mouse by chronic griseofulvin intoxication. The appearance of Mallory bodies in hepatocytes is associated with derangement of the cytokeratin intermediate filament cytoskeleton, at least as revealed by immunofluorescence and suggested by immunoelectron microscopy. Immunohistochemical studies were performed to answer the question whether Mallory body formation and cytoskeleton alterations finally lead to cell death or are reversible phenomena. Chronically griseofulvin-intoxicated mice killed at different stages of recovery on a normal diet served as experimental animals. It could be shown that (a) Mallory bodies are very durable structures and are found for up to 6 mo after griseofulvin withdrawal as a result of persistence and neoformation; (b) new Mallory bodies can appear even several months after cessation of griseofulvin feeding; (c) Mallory body formation and cytoskeletal changes by themselves do not lead to irreversible cell damage; (d) the cytoskeletal changes are reversible within 7 mo after griseofulvin withdrawal; (e) a dissociation between disappearance of Mallory bodies and restoration of a regularly immunostained cytoplasmic cytokeratin meshwork is observed.
Collapse
Affiliation(s)
- K Zatloukal
- Institute of Pathology, University of Graz School of Medicine, Austria
| | | | | | | | | |
Collapse
|
39
|
Carmo-Fonseca M, David-Ferreira JF. Interactions of intermediate filaments with cell structures. ELECTRON MICROSCOPY REVIEWS 1990; 3:115-41. [PMID: 2103336 DOI: 10.1016/0892-0354(90)90017-m] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intermediate filaments (IF) are unique components of the cytoskeleton of most eukaryotic cells. Also the nuclear lamins are now recognized to be IF-like proteins, providing the nucleus with a putative skeleton for chromatin attachment. Immunofluorescence and whole-mount electron microscopic studies reveal that IF form a cytoplasmic network that surrounds the nucleus and extends to cell surface, as 'mechanical integrators of cellular space'. It seems however unlikely that IF in the cell accomplish a merely structural role, considering the diversity of IF proteins and the complex regulation of their gene expression. In this work we primarily present electron microscopic data that points to the presence of interactions between IF and several cellular components, namely the nucleus, plasma membrane, other cytoskeletal elements, cytoplasmic organelles and ribonucleoproteins. Although the functional significance of such interactions remains to be demonstrated, assumptions like involvement of IF in information transfer or cytoskeleton-dependent control of gene expression represent attractive hypothesis for future research.
Collapse
Affiliation(s)
- M Carmo-Fonseca
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | |
Collapse
|
40
|
Hieda Y, Tsukita S, Tsukita S. A new high molecular mass protein showing unique localization in desmosomal plaque. J Biophys Biochem Cytol 1989; 109:1511-8. [PMID: 2677021 PMCID: PMC2115823 DOI: 10.1083/jcb.109.4.1511] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A high molecular mass protein of 680 kD was identified and purified from the isolated desmosomes in bovine muzzle epidermal cells. This protein, called "desmoyokin" (from the English, yoke) here, showed no binding ability with keratin filaments in vitro, and its molecule had a characteristic dumbell shape approximately 170 nm in length. We have succeeded in obtaining one monoclonal antibody specific to desmoyokin. By the use of this monoclonal antibody and antidesmoplakin monoclonal antibody, desmoyokin was shown to be colocalized with desmoplakin at the immunofluorescence microscopic level; desmoyokin occurred only in the stratified epithelium, not in the simple epithelium nor in the other tissues. At the electron microscopic level, these two proteins were clearly seen to be sorted out in the plaque of desmosomes with desmoyokin at the periphery and desmoplakin at the center of the disk-shaped desmosomal plaque, suggesting that these two plaque proteins play distinct roles in forming and maintaining the desmosomes in stratified epithelium.
Collapse
Affiliation(s)
- Y Hieda
- Department of Ultrastructural Research, Tokyo Metropolitan Institute of Medical Science, Japan
| | | | | |
Collapse
|
41
|
Pasdar M, Nelson WJ. Regulation of desmosome assembly in epithelial cells: kinetics of synthesis, transport, and stabilization of desmoglein I, a major protein of the membrane core domain. J Biophys Biochem Cytol 1989; 109:163-77. [PMID: 2501314 PMCID: PMC2115471 DOI: 10.1083/jcb.109.1.163] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Desmosomes are composed of two morphologically and biochemically distinct domains, a cytoplasmic plaque and membrane core. We have initiated a study of the synthesis and assembly of these domains in Madin-Darby canine kidney (MDCK) epithelial cells to understand the mechanisms involved in the formation of desmosomes. Previously, we reported the kinetics of assembly of two components of the cytoplasmic plaque domain, Desmoplakin I/II (Pasdar, M., and W. J. Nelson. 1988. J. Cell Biol. 106:677-685 and 106:687-699. We have now extended this analysis to include a major glycoprotein component of the membrane core domain, Desmoglein I (DGI; Mr = 150,000). Using metabolic labeling and inhibitors of glycoprotein processing and intracellular transport, we show that DGI biosynthesis is a sequential process with defined stages. In the absence of cell-cell contact, DGI enters a Triton X-100 soluble pool and is core glycosylated. The soluble DGI is then transported to the Golgi complex where it is first complex glycosylated and then titrated into an insoluble pool. The insoluble pool of DGI is subsequently transported to the plasma membrane and is degraded rapidly (t1/2 less than 4 h). Although this biosynthetic pathway occurs independently of cell-cell contact, induction of cell-cell contact results in dramatic increases in the efficiency and rate of titration of DGI from the soluble to the insoluble pool, and its transport to the plasma membrane where DGI becomes metabolically stable (t1/2 greater than 24 h). Taken together with our previous study of DPI/II, we conclude that newly synthesized components of the cytoplasmic plaque and membrane core domains are processed and assembled with different kinetics indicating that, at least initially, each domain is assembled separately in the cell. However, upon induction of cell-cell contact there is a rapid titration of both components into an insoluble and metabolically stable pool at the plasma membrane that is concurrent with desmosome assembly.
Collapse
Affiliation(s)
- M Pasdar
- Institute for Cancer Research, Philadelphia, Pennsylvania 19111
| | | |
Collapse
|
42
|
Franke WW, Goldschmidt MD, Zimbelmann R, Mueller HM, Schiller DL, Cowin P. Molecular cloning and amino acid sequence of human plakoglobin, the common junctional plaque protein. Proc Natl Acad Sci U S A 1989; 86:4027-31. [PMID: 2726765 PMCID: PMC287381 DOI: 10.1073/pnas.86.11.4027] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Plakoglobin is a major cytoplasmic protein that occurs in a soluble and a membrane-associated form and is the only known constituent common to the submembranous plaques of both kinds of adhering junctions, the desmosomes and the intermediate junctions. Using a partial cDNA clone for bovine plakoglobin, we isolated cDNAs encoding human plakoglobin, determined its nucleotide sequence, and deduced the complete amino acid sequence. The polypeptide encoded by the cDNA was synthesized by in vitro transcription and translation and identified by its comigration with authentic plakoglobin in two-dimensional gel electrophoresis. The identity was further confirmed by comparison of the deduced sequence with the directly determined amino acid sequence of two fragments from bovine plakoglobin. Analysis of the plakoglobin sequence showed the protein (744 amino acids; 81,750 Da) to be unrelated to any other known proteins, highly conserved between human and bovine tissues, and characterized by numerous changes between hydrophilic and hydrophobic sections. Only one kind of plakoglobin mRNA (3.4 kilobases) was found in most tissues, but an additional mRNA (3.7 kilobases) was detected in certain human tumor cell lines. This longer mRNA may be represented by a second type of plakoglobin cDNA, which contains an insertion of 297 nucleotides in the 3' non-coding region.
Collapse
Affiliation(s)
- W W Franke
- Division of Membrane Biology and Biochemistry, German Cancer Research Center, Heidelberg
| | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Albers K, Fuchs E. Expression of mutant keratin cDNAs in epithelial cells reveals possible mechanisms for initiation and assembly of intermediate filaments. J Biophys Biochem Cytol 1989; 108:1477-93. [PMID: 2466849 PMCID: PMC2115518 DOI: 10.1083/jcb.108.4.1477] [Citation(s) in RCA: 176] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have deleted cDNA sequences encoding portions of the amino- and carboxy-terminal end of a human type I epidermal keratin K14, and examined the molecular consequences of forcing the expression of these mutants in simple epithelial and squamous cell carcinoma lines. To follow the expression of our mutant products in transfected cells, we have tagged the 3' end of the K14 coding sequence with a sequence encoding an antigenic domain of the neuropeptide substance P. Using DNA transfection and immunohistochemistry (with an antibody against substance P), we have defined the limits of K14 sequence necessary to incorporate into a keratin filament network in vivo without disrupting its architecture. We have also uncovered major differences in the behavior of carboxy- and amino-terminal alpha-helical mutants which do perturb the cytoskeletal network of IFs: whereas carboxy terminal mutants give rise to aggregates of keratin in the cytoplasm, amino-terminal mutants tend to produce aggregates of keratins which seem to localize at the nuclear surface. An examination of the phenotypes generated by the carboxy and amino-terminal mutants and the behavior of cells at late times after transfection suggests a model whereby initiation of filament assembly occurs at discrete sites on the nuclear envelope and filaments grow from the nucleus toward the cytoplasm.
Collapse
Affiliation(s)
- K Albers
- Howard Hughes Medical Institute, University of Chicago, Illinois 60637
| | | |
Collapse
|
45
|
Paller AS, Siegel JN, Spalding DE, Bremer EG. Absence of a stratum corneum antigen in disorders of epidermal cell proliferation: detection with an anti-ganglioside GM3 antibody. J Invest Dermatol 1989; 92:240-6. [PMID: 2645370 DOI: 10.1111/1523-1747.ep12276782] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have investigated the distribution of ganglioside GM3 in normal skin with 8G9D8, a monoclonal antibody against GM3, and found binding to the stratum corneum. By electron microscopy, strong deposition of antibody was seen at the corneocyte envelope/"plasma membrane" region. Significantly decreased to absent binding to the stratum corneum was shown in a variety of disorders of excessive keratinocyte proliferation, including squamous cell carcinomas, psoriasis, and bullous and non-bullous forms of congenital ichthyosiform erythrodermas, as well as in the hyperplastic cornoid lamellae of porokeratosis. The 8G9D8 antibody recognizes the carbohydrate sequence N-acetylneuraminic acid alpha 2----3 galactose beta 1----4 glucose (or N-acetylglucosamine). Thus, in addition to ganglioside GM3, 8G9D8 may bind to glycoproteins or another glycolipid of the stratum corneum with a shared carbohydrate sequence. The carbohydrate sequence recognized by 8G9D8, whether attached to an epidermal glycoprotein or glycolipid, may prove to be important in keratinocyte proliferation and differentiation.
Collapse
Affiliation(s)
- A S Paller
- Department of Dermatology, Rush University, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois
| | | | | | | |
Collapse
|
46
|
Abstract
A new isolation procedure for cell-to-cell adherens junctions has been developed using rat liver. From the bile canaliculi-enriched fraction obtained by homogenization of the liver and sucrose gradient centrifugation, the fraction rich in adherens junction was recovered by detergent treatment followed by sucrose gradient centrifugation. Light and electron microscopy revealed that this final fraction was mainly composed of the belt-like adherens junctions with their associated short actin filaments. Biochemical and immunological analyses have shown that vinculin is highly enriched in this fraction. Considering that vinculin is known to be localized in the cell-to-cell adherens junctions, we can conclude that we have succeeded in isolating the cell-to-cell adherens junctions. Furthermore, the constituents of the undercoat (dense layer underlying the membrane) of adherens junctions were selectively extracted from the fraction rich in junctions. Upon SDS electrophoresis of this extract, 10 polypeptides including vinculin, alpha-actinin, and actin were dominant. The results obtained are discussed with special reference to the molecular organization of the undercoats of cell-to-cell adherens junctions.
Collapse
Affiliation(s)
- S Tsukita
- Department of Ultrastructural Research, Tokyo Metropolitan Institute of Medical Science, Japan
| | | |
Collapse
|
47
|
Price MG, Gomer RH. Mitoskelin: a mitochondrial protein found in cytoskeletal preparations. CELL MOTILITY AND THE CYTOSKELETON 1989; 13:274-87. [PMID: 2673550 DOI: 10.1002/cm.970130406] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A 70 kD protein, which we have named mitoskelin, is highly enriched in cytoskeletal preparations from bovine cardiac muscle. Mitoskelin has three main variants with isoelectric points between 5.6 and 5.8. Immunoblotting with polyclonal antibodies directed against mitoskelin shows that, like intermediate filament proteins, the majority of mitoskelin resists solubilization from a myocardial homogenate by a series of extraction solutions ranging from very low salt to 0.6 M KI buffers and by 0.1-1% Nonidet P-40 detergent. By double-label immunofluorescence on cells and tissues, mitoskelin is colocalized with the mitochondrial marker cytochrome c oxidase. Mitoskelin is associated with the inner membranes of mitochondria as shown by immunoelectron microscopy and immunoblotting. Immunological cross-reactivity and similarities of molecular weight, pI, distribution, and chromatographic properties indicate that mitoskelin is the 70 kD component of complex I (NADH: ubiquinone oxidoreductase), a portion of the mitochondrial oxidative phosphorylation system. No function or activity has yet been demonstrated for the 70 kD component of the 25-polypeptide complex I. Dialysis against physiological buffers allows purified, urea-solubilized mitoskelin to form 10 nm wide filamentous structures that do not closely resemble intermediate filaments. These results suggest the exciting possibility that mitochondria may contain a membrane-associated filamentous skeleton.
Collapse
Affiliation(s)
- M G Price
- Department of Molecular Biology, Rice University, Houston 77251
| | | |
Collapse
|
48
|
|
49
|
Abstract
Cultured human epithelial cells stained with antibody to desmosomal proteins by indirect immunofluorescence showed linear arrays of desmosomes en face between stratified cells. To confirm that an extensive linear pattern existed on the cell surface, subconfluent cultures were viewed using scanning electron microscopy. Aligned arrays of blunt protrusions lying parallel to each other and extending in the direction of the long axis of the cell were observed on the surface of groups of superficial cells in intact cultures. That this pattern was indeed related to desmosomal distribution was verified by transmission microscopy of thin sections cut in a plane between the upper and lower surfaces of flattened stratified cells to view desmosomes directly. A similar arrangement of desmosomes was seen in intact tissue, using epidermal sheets separated from newborn foreskin. The same pattern found in flattened cells was sometimes apparent in more rounded basal cells where the cytoplasm was beginning to extend. Since desmosomal plaques are associated with keratin filaments, the alignment of desmosomes must occur in association with cytoskeletal changes as cells become flattened toward the distal epithelial surface. The primary initiation of desmosomal alignment remains to be investigated. However, the present findings demonstrate an increasingly regular membrane-cytoskeletal spatial interaction as stratified epithelial cells of skin mature.
Collapse
Affiliation(s)
- A S Ma
- Department of Medicine, University of Chicago, IL 60637
| | | | | |
Collapse
|
50
|
Stevenson BR, Anderson JM, Bullivant S. The epithelial tight junction: structure, function and preliminary biochemical characterization. Mol Cell Biochem 1988; 83:129-45. [PMID: 3059173 DOI: 10.1007/bf00226141] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The tight junction, or zonula occludens (ZO), forms a semi-permeable barrier in the paracellular pathway in most vertebrate epithelia. The ZO is the apical-most member of a series of intercellular junctions, collectively known as the junctional complex, found at the interface of the apical and lateral cell surface. This structure not only restricts movement of substances around the cells, but may also serve as a 'fence' acting to maintain the cell surface compositional polarity characteristic of epithelial cells. The morphology and physiology of the ZO have been well documented and are briefly reviewed here. The biochemistry of this important intercellular junction remains largely unknown, although a tight junction-specific polypeptide called 'ZO-1' has recently been identified. Preliminary observations regarding the role of this peripheral phosphoprotein in the biology of the ZO are presented.
Collapse
Affiliation(s)
- B R Stevenson
- Department of Biology, Yale University, New Haven, CT 06511
| | | | | |
Collapse
|