1
|
Spudich JA. One must reconstitute the functions of interest from purified proteins. Front Physiol 2024; 15:1390186. [PMID: 38827995 PMCID: PMC11140241 DOI: 10.3389/fphys.2024.1390186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 06/05/2024] Open
Abstract
I am often asked by students and younger colleagues and now by the editors of this issue to tell the history of the development of the in vitro motility assay and the dual-beam single-molecule laser trap assay for myosin-driven actin filament movement, used widely as key assays for understanding how both muscle and nonmuscle myosin molecular motors work. As for all discoveries, the history of the development of the myosin assays involves many people who are not authors of the final publications, but without whom the assays would not have been developed as they are. Also, early experiences shape how one develops ideas and experiments, and influence future discoveries in major ways. I am pleased here to trace my own path and acknowledge the many individuals involved and my early science experiences that led to the work I and my students, postdoctoral fellows, and sabbatical visitors did to develop these assays. Mentors are too often overlooked in historical descriptions of discoveries, and my story starts with those who mentored me.
Collapse
Affiliation(s)
- James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
2
|
Das S, Banerjee A, Roy S, Mallick T, Maiti S, De P. Zwitterionic Polysulfobetaine Inhibits Cancer Cell Migration Owing to Actin Cytoskeleton Dynamics. ACS APPLIED BIO MATERIALS 2024; 7:144-153. [PMID: 38150303 DOI: 10.1021/acsabm.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell migration is an essential dynamic process for most living cells, mainly driven by the reorganization of actin cytoskeleton. To control actin dynamics, a molecular architecture that can serve as a nucleator has been designed by polymerizing sulfobetaine methacrylate. The synthesized zwitterionic polymer, poly(sulfobetaine methacrylate) (PZI), effectively nucleates the polymerization process of G-actin and substantially accelerates the rate of polymerization. Isothermal titration calorimetry (ITC) and bioinformatics analysis indicated binding between PZI and monomeric G-actin. Thus, in vitro actin dynamics was studied by dynamic light scattering (DLS), pyrene-actin polymerization assay, and total internal reflection fluorescence microscopy (TIRFM). Furthermore, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophore-containing monomeric unit was incorporated into the sulfobetaine zwitterionic architecture to visualize the effect of polymer in the cellular environment. The BODIPY-containing zwitterionic sulfobetaine polymer (PZI-F) successfully penetrated the cell and remained in the lysosome with minimal cytotoxicity. Confocal microscopy revealed the influence of this polymer on the cellular actin cytoskeleton dynamics. The PZI-F polymer was successfully able to inhibit the collective migration of the human cervical cancer cell line (HeLa cell) and breast cancer cell line (MDA-MB-231 cell), as confirmed by a wound healing assay. Therefore, polyzwitterionic sulfobetaine could be explored as an inhibitor of cancer cell migration.
Collapse
Affiliation(s)
- Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Subhadip Roy
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Tamanna Mallick
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
3
|
McCall PM, Srivastava S, Perry SL, Kovar DR, Gardel ML, Tirrell MV. Partitioning and Enhanced Self-Assembly of Actin in Polypeptide Coacervates. Biophys J 2019; 114:1636-1645. [PMID: 29642033 DOI: 10.1016/j.bpj.2018.02.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 01/17/2018] [Accepted: 02/20/2018] [Indexed: 01/25/2023] Open
Abstract
Biomolecules exist and function in cellular microenvironments that control their spatial organization, local concentration, and biochemical reactivity. Due to the complexity of native cytoplasm, the development of artificial bioreactors and cellular mimics to compartmentalize, concentrate, and control the local physico-chemical properties is of great interest. Here, we employ self-assembling polypeptide coacervates to explore the partitioning of the ubiquitous cytoskeletal protein actin into liquid polymer-rich droplets. We find that actin spontaneously partitions into coacervate droplets and is enriched by up to ∼30-fold. Actin polymerizes into micrometer-long filaments and, in contrast to the globular protein BSA, these filaments localize predominately to the droplet periphery. We observe up to a 50-fold enhancement in the actin filament assembly rate inside coacervate droplets, consistent with the enrichment of actin within the coacervate phase. Together these results suggest that coacervates can serve as a versatile platform in which to localize and enrich biomolecules to study their reactivity in physiological environments.
Collapse
Affiliation(s)
- Patrick M McCall
- Department of Physics, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Samanvaya Srivastava
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois; Argonne National Laboratory, Argonne, Illinois
| | - Sarah L Perry
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Margaret L Gardel
- Department of Physics, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois; Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.
| | - Matthew V Tirrell
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois; Argonne National Laboratory, Argonne, Illinois.
| |
Collapse
|
4
|
Maiti B, Dutta P, Seal S, Pal S, De P, Maiti S. Side-chain amino acid based cationic polymer induced actin polymerization. J Mater Chem B 2017; 5:1218-1226. [PMID: 32263591 DOI: 10.1039/c6tb02814d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Actin filament dynamics is important for proper cellular functions and is controlled by hundreds of actin binding proteins inside the cells. There are several natural and synthetic compounds that are able to bind actin and alter the actin filament dynamics. Since the actin dynamics changes due to nonspecific electrostatic interactions between negatively charged actin and positively charged proteins, and natural or synthetic compounds, herein we report the synthesis of poly(tert-butyl carbamate (Boc)-l-alanine methacryloyloxyethyl ester) (P(Boc-Ala-HEMA)) homopolymer in a controlled fashion by the reversible addition-fragmentation chain transfer (RAFT) polymerization. Subsequent deprotection of the Boc groups in the homopolymer under acidic conditions resulted in a positively charged polymer with primary amine moieties at the side chains. This cationic polymer (P(NH3 +-Ala-HEMA)), is able to nucleate actin in vitro. The cationic polymer and corresponding partially fluorescence tagged polymer are able to nucleate actin filament in vivo. These polymers are nontoxic to the cultured cells and also stabilize the filamentous actin in vitro.
Collapse
Affiliation(s)
- Binoy Maiti
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Actin exists as a monomer (G-actin) which can be polymerized to filaments) F-actin) that under the influence of actin-binding proteins and polycations bundle and contribute to the formation of the cytoskeleton. Bundled actin from lysed cells increases the viscosity of sputum in lungs of cystic fibrosis patients. The human host defense peptide LL-37 was previously shown to induce actin bundling and was thus hypothesized to contribute to the pathogenicity of this disease. In this work, interactions between actin and the cationic LL-37 were studied by optical, proteolytic and surface plasmon resonance methods and compared to those obtained with scrambled LL-37 and with the cationic protein lysozyme. We show that LL-37 binds strongly to CaATP-G-actin while scrambled LL-37 does not. While LL-37, at superstoichiometric LL-37/actin concentrations polymerizes MgATP-G-actin, at lower non-polymerizing concentrations LL-37 inhibits actin polymerization by MgCl2 or NaCl. LL-37 bundles Mg-F-actin filaments both at low and physiological ionic strength when in equimolar or higher concentrations than those of actin. The LL-37 induced bundles are significantly less sensitive to increase in ionic strength than those induced by scrambled LL-37 and lysozyme. LL-37 in concentrations lower than those needed for actin polymerization or bundling, accelerates cleavage of both monomer and polymer actin by subtilisin. Our results indicate that the LL-37-actin interaction is partially electrostatic and partially hydrophobic and that a specific actin binding sequence in the peptide is responsible for the hydrophobic interaction. LL-37-induced bundles, which may contribute to the accumulation of sputum in cystic fibrosis, are dissociated very efficiently by DNase-1 and also by cofilin.
Collapse
|
6
|
Abstract
A mere forty years ago it was unclear what motor molecules exist in cells that could be responsible for the variety of nonmuscle cell movements, including the "saltatory cytoplasmic particle movements" apparent by light microscopy. One wondered whether nonmuscle cells might have a myosin-like molecule, well known to investigators of muscle. Now we know that there are more than a hundred different molecular motors in eukaryotic cells that drive numerous biological processes and organize the cell's dynamic city plan. Furthermore, in vitro motility assays, taken to the single-molecule level using techniques of physics, have allowed detailed characterization of the processes by which motor molecules transduce the chemical energy of ATP hydrolysis into mechanical movement. Molecular motor research is now at an exciting threshold of being able to enter into the realm of clinical applications.
Collapse
|
7
|
Kabir AMR, Kakugo A, Gong JP, Osada Y. How to integrate biological motors towards bio-actuators fueled by ATP. Macromol Biosci 2011; 11:1314-24. [PMID: 21793211 DOI: 10.1002/mabi.201100060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/11/2011] [Indexed: 11/07/2022]
Abstract
Biological motors, driven by the conversion of chemical energy into mechanical energy, are much more efficient than man-made machines. The development of such efficient biomimetic motor systems in vitro is currently a vital need. However, great difficulty lies in how to integrate the sophisticated functions of the constituent components to obtain a performance as in the case of natural living systems. Based on 'active' and 'passive' self-organization principles, it has been demonstrated that the functions of motor protein systems can be integrated to obtain complex hierarchical structures that can work as actuators. Most of the works discussed here concern two-dimensional behavior, and recent works aim to explore the three-dimensional features of such artificial bio-mechanical systems.
Collapse
Affiliation(s)
- Arif Md Rashedul Kabir
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
8
|
Muhlrad A, Grintsevich EE, Reisler E. Polycation induced actin bundles. Biophys Chem 2011; 155:45-51. [PMID: 21411219 DOI: 10.1016/j.bpc.2011.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/18/2011] [Accepted: 02/19/2011] [Indexed: 01/17/2023]
Abstract
Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder.
Collapse
Affiliation(s)
- Andras Muhlrad
- Institute of Dental Sciences, School of Dental Medicine, The Hebrew University, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
9
|
Grintsevich EE, Phillips M, Pavlov D, Phan M, Reisler E, Muhlrad A. Antiparallel dimer and actin assembly. Biochemistry 2010; 49:3919-27. [PMID: 20361759 DOI: 10.1021/bi1002663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antiparallel dimer (APD) is a unique actin species, which can be detected in the early stages of actin polymerization. In this work, we introduce novel tools for examination of the effects of the APD on actin polymerization. We document that bifunctional methanothiosulfonate (MTS) reagents are an attractive alternative to the routinely used p-phenylene maleimide (pPDM) for APD detection, allowing for fast and efficient cross-linking under conditions of actin polymerization at neutral pH. We report also that pyrene-labeled yeast actin mutant A167C/C374A (C167PM) forms significant amounts of stable APD in solution, without chemical cross-linking or polymerization-affecting compounds, and that the kinetics of APD transformation and decay upon actin polymerization can be easily monitored. The dimerization of C167PM has been characterized in sedimentation equilibrium experiments (K(d) approximately 0.3 microM). This new system offers the advantage of assessing the effects of the APD under physiological conditions (pH, ionic strength, and Mg(2+) concentration) and testing for conformational transitions in the APD during nucleation-polymerization reactions or/and in the presence of actin-interacting factors. The results obtained using two different systems (C167PM actin and polylysine-induced polymerization of alpha-actin) show that the APD decays at a rate slower than that at which the filaments elongate, revealing its transient incorporation into filaments, and confirm that it inhibits the nucleation and elongation of actin filaments.
Collapse
Affiliation(s)
- Elena E Grintsevich
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
10
|
Delaroche D, Cantrelle FX, Subra F, Van Heijenoort C, Guittet E, Jiao CY, Blanchoin L, Chassaing G, Lavielle S, Auclair C, Sagan S. Cell-penetrating peptides with intracellular actin-remodeling activity in malignant fibroblasts. J Biol Chem 2009; 285:7712-21. [PMID: 20037163 DOI: 10.1074/jbc.m109.045872] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cell-penetrating peptides can cross cell membranes and are commonly seen as biologically inert molecules. However, we found that some cell-penetrating peptides could remodel actin cytoskeleton in oncogene-transformed NIH3T3/EWS-Fli cells. These cells have profound actin disorganization related to their tumoral transformation. These arginine- and/or tryptophan-rich peptides could cross cell membrane and induce stress fiber formation in these malignant cells, whereas they had no perceptible effect in non-tumoral fibroblasts. In addition, motility (migration speed, random motility coefficient, wound healing) of the tumor cells could be decreased by the cell-permeant peptides. Although the peptides differently influenced actin polymerization in vitro, they could directly bind monomeric actin as determined by NMR and calorimetry studies. Therefore, cell-penetrating peptides might interact with intracellular protein partners, such as actin. In addition, the fact that they could reverse the tumoral phenotype is of interest for therapeutic purposes.
Collapse
Affiliation(s)
- Diane Delaroche
- Laboratoire des Biomolécules, Université Pierre et Marie Curie, CNRS, 4 place Jussieu, F-75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kaur H, Das T, Kumar R, Ajore R, Bharadwaj LM. Covalent attachment of actin filaments to Tween 80 coated polystyrene beads for cargo transportation. Biosystems 2008; 92:69-75. [DOI: 10.1016/j.biosystems.2007.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 12/03/2007] [Accepted: 12/14/2007] [Indexed: 11/24/2022]
|
12
|
Ziegler A. Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Adv Drug Deliv Rev 2008; 60:580-97. [PMID: 18045730 DOI: 10.1016/j.addr.2007.10.005] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 10/06/2007] [Indexed: 10/22/2022]
Abstract
Cell-penetrating peptides (CPPs) traverse the membrane of biological cells at low micromolar concentrations and are able to take various cargo molecules along with. Despite large differences in their chemical structure, CPPs share the structural similarity of a high cationic charge density. This property confers to them the ability to bind electrostatically membrane constituents such as anionic lipids and glycosaminoglycans (GAGs). Controversies exist, however, about the biological response after the interaction of CPPs with such membrane constituents. Present review compares thermodynamic binding studies with conditions of the biological CPP uptake. It becomes evident that CPPs enter biological cells by different and probably competing mechanisms. For example, some amphipathic CPPs traverse pure lipid model membranes at low micromolar concentrations--at least in the absence of cargos. In contrast, no direct translocation at these conditions is observed for non-amphipathic CPPs. Finally, CPPs bind GAGs at low micromolar concentrations with potential consequences for endocytotic pathways.
Collapse
|
13
|
Moseley JB, Bartolini F, Okada K, Wen Y, Gundersen GG, Goode BL. Regulated binding of adenomatous polyposis coli protein to actin. J Biol Chem 2007; 282:12661-8. [PMID: 17293347 DOI: 10.1074/jbc.m610615200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenomatous polyposis coli (APC) protein is a large tumor suppressor that is truncated in most colorectal cancers. The carboxyl-terminal third of APC protein mediates direct interactions with microtubules and the microtubule plus-end tracking protein EB1. In addition, APC has been localized to actin-rich regions of cells, but the mechanism and functional significance of this localization have remained unclear. Here we show that purified carboxyl-terminal basic domain of human APC protein (APC-basic) bound directly to and bundled actin filaments and associated with actin stress fibers in microinjected cells. Actin filaments and microtubules competed for binding to APC-basic, but APC-basic also could cross-link actin filaments and microtubules at specific concentrations, suggesting a possible role in cytoskeletal cross-talk. APC interactions with actin in vitro were inhibited by its ligand EB1, and co-microinjection of EB1 prevented APC association with stress fibers. Point mutations in EB1 that disrupted APC binding relieved the inhibition in vitro and restored APC localization to stress fibers in vivo, demonstrating that EB1-APC regulation is direct. Because tumor formation and metastasis involve coordinated changes in the actin and microtubule cytoskeletons, this novel function for APC and its regulation by EB1 may have direct implications for understanding the molecular basis of tumor suppression.
Collapse
Affiliation(s)
- James B Moseley
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | |
Collapse
|
14
|
Kakugo A, Shikinaka K, Takekawa N, Sugimoto S, Osada Y, Gong JP. Polarity and motility of large polymer-actin complexes. Biomacromolecules 2005; 6:845-9. [PMID: 15762650 DOI: 10.1021/bm0494038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The polarity of polymer-actin complexes obtained by mixing F-actin with synthetic polymers carrying positive charges such as poly(L-lysine), x,y-ionene bromide polymers, and poly(N-[3-(dimethylamino)propyl]acrylamide) (PDMAPAA-Q) have been investigated. Actin complexes formed with poly(L-lysine) and PDMAPAA-Q, which carry charges on their side chains, show a higher polarity than those formed with x,y-ionene bromide polymers, which have charges on their chain backbones. All these polymer-actin complex gels show motility on the surfaces coated with myosin by coupling to adenosine 5'-triphosphate hydrolysis. A linear correlation between the polarity of polymer-actin complex gels and the motility is observed.
Collapse
Affiliation(s)
- Akira Kakugo
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Kakugo A, Shikinaka K, Gong JP, Osada Y. Gel machines constructed from chemically cross-linked actins and myosins. POLYMER 2005. [DOI: 10.1016/j.polymer.2005.02.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Abstract
Actin, through its various forms of assembly, provides the basic framework for cell motility, cell shape and intracellular organization in all eukaryotic cells. Many other cellular processes, for example endocytosis and cytokinesis, are also associated with dynamic changes of the actin cytoskeleton. Important prerequisites for actin's functional diversity are its intrinsic ability to rapidly assemble and disassemble filaments and its spatially and temporally well-controlled supramolecular organization. A large number of proteins that interact with actin, collectively referred to as actin-binding proteins (ABPs), carefully orchestrate different scenarios. Since its isolation in 1994 [Machesky, L.M. et al. (1994) J. Cell Biol. 127, 107-115], the Arp2/3 complex containing the actin-related proteins Arp2 and Arp3 has evolved to be one of the main players in the assembly and maintenance of many actin-based structures in the cell (for review see [Borths, E.L. and Welch, M.D. (2002) Structure 10, 131-135; May, R.C. (2001) Cell Mol. Life Sci. 58, 1607-1626; Pollard, T.D. et al. (2000) Rev. Biophys. Biomol. Struct. 29, 545-576; Welch, M.D. (1999) Trends Cell Biol. 11, 423-427]). In particular, when it comes to the assembly of the intricate branched actin network at the leading edge of lamellipodia, the Arp2/3 complex seems to have received all the attention in recent years. In parallel, but not so much in the spotlight, several reports showed that actin on its own can assume different conformations [Bubb, M.R. et al. (2002) J. Biol. Chem. 277, 20999-21006; Schoenenberger, C.-A. et al. (1999) Microsc. Res. Tech. 47, 38-50; Steinmetz, M.O. et al. (1998) J. Mol. Biol. 278, 793-811; Steinmetz, M.O. et al. (1997) J. Cell Biol. 138, 559-574; Millonig, R., Salvo, H. and Aebi, U. (1988) J. Cell Biol. 106, 785-796] through which it drives its supramolecular patterning, and which ultimately generate its functional diversity.
Collapse
Affiliation(s)
- Cora-Ann Schoenenberger
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland.
| | | | | | | |
Collapse
|
17
|
Bubb MR, Govindasamy L, Yarmola EG, Vorobiev SM, Almo SC, Somasundaram T, Chapman MS, Agbandje-McKenna M, McKenna R. Polylysine induces an antiparallel actin dimer that nucleates filament assembly: crystal structure at 3.5-A resolution. J Biol Chem 2002; 277:20999-1006. [PMID: 11932258 DOI: 10.1074/jbc.m201371200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An antiparallel actin dimer has been proposed to be an intermediate species during actin filament nucleation. We now show that latrunculin A, a marine natural product that inhibits actin polymerization, arrests polylysine-induced nucleation at the level of an antiparallel dimer, resulting in its accumulation. These dimers, when composed of pyrene-labeled actin subunits, give rise to a fluorescent excimer, permitting detection during polymerization in vitro. We report the crystallographic structure of the polylysine-actin-latrunculin A complex at 3.5-A resolution. The non-crystallographic contact is consistent with a dimeric structure and confirms the antiparallel orientation of its subunits. The crystallographic contacts reveal that the mobile DNase I binding loop of one subunit of a symmetry-related antiparallel actin dimer is partially stabilized in the interface between the two subunits of a second antiparallel dimer. These results provide a potential explanation for the paradoxical nucleation of actin filaments that have exclusively parallel subunits by a dimer containing antiparallel subunits.
Collapse
Affiliation(s)
- Michael R Bubb
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center and the University of Florida College of Medicine, Gainesville, Florida 32608, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ, Strasser GA, Maly IV, Chaga OY, Cooper JA, Borisy GG, Gertler FB. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 2002; 109:509-21. [PMID: 12086607 DOI: 10.1016/s0092-8674(02)00731-6] [Citation(s) in RCA: 648] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell motility requires lamellipodial protrusion, a process driven by actin polymerization. Ena/VASP proteins accumulate in protruding lamellipodia and promote the rapid actin-driven motility of the pathogen Listeria. In contrast, Ena/VASP negatively regulate cell translocation. To resolve this paradox, we analyzed the function of Ena/VASP during lamellipodial protrusion. Ena/VASP-deficient lamellipodia protruded slower but more persistently, consistent with their increased cell translocation rates. Actin networks in Ena/VASP-deficient lamellipodia contained shorter, more highly branched filaments compared to controls. Lamellipodia with excess Ena/VASP contained longer, less branched filaments. In vitro, Ena/VASP promoted actin filament elongation by interacting with barbed ends, shielding them from capping protein. We conclude that Ena/VASP regulates cell motility by controlling the geometry of actin filament networks within lamellipodia.
Collapse
Affiliation(s)
- James E Bear
- Massachusetts Institute of Technology, Department of Biology, Cambridge 02139, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Xu J, Cheung T, Chan ST, Ho P, Yeung WS. The incidence of cytoplasmic fragmentation in mouse embryos in vitro is not affected by inhibition of caspase activity. Fertil Steril 2001; 75:986-91. [PMID: 11334913 DOI: 10.1016/s0015-0282(01)01687-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the relationship between cytoplasmic fragmentation and caspase activity in the mouse embryo. DESIGN Experimental laboratory study. SETTING University gynacology unit. ANIMAL(S) One-cell zygote of mouse (MF1 x BALB/c). INTERVENTION(S) Mouse embryos were treated with caspase inhibitors: benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (z-VAD-fmk) and benzyloxycarbonyl-Asp-glu-Val-Asp-fluoromethyl ketone (Z-DEVD-fmk). MAIN OUTCOME MEASURE(S) Morphological development of the embryo, proportion of fragmented embryos, caspase-3-like activity, DNA breakage, and phosphatidylserine exposure in blastomeres. RESULT(S) The proportion of embryo reaching two-cell, three- to four-cell, and morula stage at 48, 72, and 96 hours after hCG administration, respectively, were comparable between the control embryos and those treated with either z-VAD-fmk or z-DEVD-fmk, at three concentrations (10 microM, 50 microM, and 200 microM). Although the inhibitors suppressed the caspase-3-like activity in the embryo fragment before compaction and decreased DNA breakages, there was no statistically significant difference in the percentage of fragmented embryo between the control and those treated with caspase inhibitors. The inhibitors did not affect the incidence of phosphatidylserine exposure in the blastomere of the treated embryos. CONCLUSION(S) Cytoplasmic fragmentation in precompaction mouse embryos is not a consequence of caspase-related apoptosis.
Collapse
Affiliation(s)
- J Xu
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | | | | | | | |
Collapse
|
20
|
McGrath JL, Hartwig JH, Kuo SC. The mechanics of F-actin microenvironments depend on the chemistry of probing surfaces. Biophys J 2000; 79:3258-66. [PMID: 11106629 PMCID: PMC1301200 DOI: 10.1016/s0006-3495(00)76558-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To understand the microscopic mechanical properties of actin networks, we monitor the motion of embedded particles with controlled surface properties. The highly resolved Brownian motions of these particles reveal the viscoelastic character of the microenvironments around them. In both non-cross-linked and highly cross-linked actin networks, particles that bind F-actin report viscoelastic moduli comparable to those determined by macroscopic rheology experiments. By contrast, particles modified to prevent actin binding have weak microenvironments that are surprisingly insensitive to the introduction of filament cross-links. Even when adjacent in the same cross-linked gel, actin-binding and nonbinding particles report viscoelastic moduli that differ by two orders of magnitude at low frequencies (0.5-1.5 rad/s) but converge at high frequencies (> 10(4) rad/s). For all particle chemistries, electron and light microscopies show no F-actin recruitment or depletion, so F-actin microheterogeneities cannot explain the deep penetration (approximately 100 nm) of nonbinding particles. Instead, we hypothesize that a local depletion of cross-linking around nonbinding particles explains the phenomena. With implications for organelle mobility in cells, our results show that actin binding is required for microenvironments to reflect macroscopic properties, and conversely, releasing actin enhances particle mobility beyond the effects of mere biochemical untethering.
Collapse
Affiliation(s)
- J L McGrath
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore Maryland 21205, USA
| | | | | |
Collapse
|
21
|
Wohnsland F, Schmitz AA, Steinmetz MO, Aebi U, Vergéres G. Interaction between actin and the effector peptide of MARCKS-related protein. Identification of functional amino acid segments. J Biol Chem 2000; 275:20873-9. [PMID: 10748210 DOI: 10.1074/jbc.m910298199] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is widely assumed that the members of the MARCKS protein family, MARCKS (an acronym for myristoylated alanine-rich C kinase substrate) and MARCKS-related protein (MRP), interact with actin via their effector domain, a highly basic segment composed of 24-25 amino acid residues. To clarify the mechanisms by which this interaction takes place, we have examined the effect of a peptide corresponding to the effector domain of MRP, the so-called effector peptide, on both the dynamic and the structural properties of actin. We show that in the absence of cations the effector peptide polymerizes monomeric actin and causes the alignment of the formed filaments into bundle-like structures. Moreover, we document that binding of calmodulin or phosphorylation by protein kinase C both inhibit the actin polymerizing activity of the MRP effector peptide. Finally, several effector peptides were synthesized in which positively charged or hydrophobic segments were deleted or replaced by alanines. Our data suggest that a group of six positively charged amino acid residues at the N-terminus of the peptide is crucial for its interaction with actin. While its actin polymerizing activity critically depends on the presence of all three positively charged segments of the peptide, hydrophobic amino acid residues rather modulate the polymerization velocity.
Collapse
Affiliation(s)
- F Wohnsland
- Department of Biophysical Chemistry and M.-E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Noireaux V, Golsteyn RM, Friederich E, Prost J, Antony C, Louvard D, Sykes C. Growing an actin gel on spherical surfaces. Biophys J 2000; 78:1643-54. [PMID: 10692348 PMCID: PMC1300761 DOI: 10.1016/s0006-3495(00)76716-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inspired by the motility of the bacteria Listeria monocytogenes, we have experimentally studied the growth of an actin gel around spherical beads grafted with ActA, a protein known to be the promoter of bacteria movement. On ActA-grafted beads F-actin is formed in a spherical manner, whereas on the bacteria a "comet-like" tail of F-actin is produced. We show experimentally that the stationary thickness of the gel depends on the radius of the beads. Moreover, the actin gel is not formed if the ActA surface density is too low. To interpret our results, we propose a theoretical model to explain how the mechanical stress (due to spherical geometry) limits the growth of the actin gel. Our model also takes into account treadmilling of actin. We deduce from our work that the force exerted by the actin gel on the bacteria is of the order of 10 pN. Finally, we estimate from our theoretical model possible conditions for developing actin comet tails.
Collapse
Affiliation(s)
- V Noireaux
- Laboratoire Physico-Chimie "Curie," Unité Mixte de Recherche CNRS/Institut Curie (UMR 168), 75231 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Defacque H, Egeberg M, Antzberger A, Ansorge W, Way M, Griffiths G. Actin assembly induced by polylysine beads or purified phagosomes: Quantitation by a new flow cytometry assay. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1097-0320(20000901)41:1<46::aid-cyto7>3.0.co;2-f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
|
25
|
Suzuki N, Miyata H, Ishiwata S, Kinosita K. Preparation of bead-tailed actin filaments: estimation of the torque produced by the sliding force in an in vitro motility assay. Biophys J 1996; 70:401-8. [PMID: 8770216 PMCID: PMC1224938 DOI: 10.1016/s0006-3495(96)79583-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
By coating covalently the surface of a polystyrene bead (diameter = 1 micron) with gelsolin, we have succeeded in attaching the bead selectively at the barbed end of an actin filament and forming a 1:1 bead-actin filament complex. On a layer of heavy meromyosin on a nitrocellulose-coated coverglass, this bead-actin filament complex slid smoothly, trailing the bead at its end. Therefore we called this preparation "bead-tailed" actin filaments. The sliding velocity was indistinguishable from that of nonbeaded filaments. With use of this system, we tried to detect the axial rotation (rotation around the filament axis) in a sliding actin filament. Although a single bead at the tail end did not serve as the marker for the axial rotation, we occasionally found another bead bound to the tail bead. In this case, the orientation of the bead-aggregate could be followed continuously with a video monitor while the filament was sliding over heavy meromyosin. We observed that actin filaments slid over distances of many tens of micrometers without showing a complete turn of the bead-aggregates. On the basis of the calculation of rotational friction drag on the bead-aggregate, we estimate that the rotational component of the sliding force and the torque produced on a sliding actin filament (length < or = 10 microns) did not accumulate > 1 pN and 5 pN.nm, respectively. In the present system of randomly oriented heavy meromyosin lying on a nitrocellulose film without an external load.
Collapse
Affiliation(s)
- N Suzuki
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | | | | | | |
Collapse
|
26
|
Cartoux L, Chen T, DasGupta G, Chase PB, Kushmerick MJ, Reisler E. Antibody and peptide probes of interactions between the SH1-SH2 region of myosin subfragment 1 and actin's N-terminus. Biochemistry 1992; 31:10929-35. [PMID: 1420204 DOI: 10.1021/bi00159a037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The negatively charged residues in the N-terminus of actin and the 697-707 region on myosin subfragment 1 (S-1), containing the reactive cysteines SH1 and SH2, are known to be important for actin-activated myosin ATPase activity. The relationship between these two sites was first examined by monitoring the rates of SH1 and SH2 modification with N-ethylmaleimide in the presence of actin and, secondly, by testing for direct binding of SH1 peptides to the N-terminal segment on actin. While actin alone protected SH1 from N-ethylmaleimide modification, this effect was abolished by an antibody against the seven N-terminal amino acids on actin, F(ab)(1-7), and was greatly reduced when the charge of acidic residues at actin's N-terminus was altered by carbodiimide coupling of ethylenediamine. Neither F(ab)(1-7) nor ethylenediamine treatment reversed the effect of F-actin on SH2 reactivity in SH1-modified S-1. These results show a communication between the SH1 region on S-1 and actin's N-terminus in the acto-S-1 complex. To test whether such a communication involves the binding of the SH1 site on S-1 to the N-terminal segment of actin, the SH1 peptide IRICRKG-NH2(4+) was used. Cosedimentation experiments revealed the binding of three to six peptides per actin monomer. Peptide binding to actin was affected slightly, if at all, by F(ab)(1-7). The antibody also did not change the polymerization of G-actin by the peptides. The peptides caused a small reduction in the binding of S-1 to actin and did not change the binding of F(ab)(1-7).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Cartoux
- Department of Chemistry, University of California, Los Angeles 90024
| | | | | | | | | | | |
Collapse
|
27
|
Friederich E, Vancompernolle K, Huet C, Goethals M, Finidori J, Vandekerckhove J, Louvard D. An actin-binding site containing a conserved motif of charged amino acid residues is essential for the morphogenic effect of villin. Cell 1992; 70:81-92. [PMID: 1623524 DOI: 10.1016/0092-8674(92)90535-k] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The actin-binding protein villin induces microvillus growth and reorganization of the cytoskeleton in cells that do not normally produce this protein. Transfection of mutagenized villin cDNAs into CV-1 cells was used to show that a conserved, COOH-terminally located cluster of charged amino acid residues (KKEK) is crucial for the morphogenic activity of villin in vivo. In vitro experiments with a 22 amino acid synthetic peptide corresponding to this region of villin provide evidence that this motif is part of an F-actin-binding site that induces G-actin to polymerize. Chemical cross-linking of actin to this peptide, the effects of amino acid substitutions in peptides, and the behavior of villin variants further corroborate the participation of the KKEK sequence in actin contacts.
Collapse
Affiliation(s)
- E Friederich
- Institut Pasteur URA 1149 CNRS, Département de Biologie Moléculaire, Paris, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Taylor KA, Taylor DW. Formation of 2-D paracrystals of F-actin on phospholipid layers mixed with quaternary ammonium surfactants. J Struct Biol 1992; 108:140-7. [PMID: 1486004 DOI: 10.1016/1047-8477(92)90013-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two-dimensional paracrystalline arrays of F-actin have been formed on positively charged lipid layers composed of phosphatidylcholine (PC) and quaternary ammonium surfactants. These quaternary ammonium surfactants were found to be better promoters of two-dimensional order than PC lipid layers mixed with stearylamine. In addition, the length of the hydrocarbon chain was found to influence the achievement of 2-D order. Lipid layers composed of dilauryl-PC and didodecyldimethylammonium bromide, which are saturated C12 lipids, promoted 2-D crystallization better than mixtures of dipalmitoyl-PC, a saturated C16 lipid, and dioctadecyldimethylammonium bromide, a saturated C18 lipid. Thus, the hydrocarbon chain length, which influences lipid layer fluidity, had a significant effect on paracrystal formation. We suggest that quaternary ammonium surfactants may have advantages in some cases for forming ordered arrays on lipid layers. In addition to investigating the effect of lipid layer composition on paracrystal formation, we found that the injection of G-actin rather than F-actin under a fluid lipid layer into a polymerizing solution produced better ordered paracrystals.
Collapse
Affiliation(s)
- K A Taylor
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
29
|
DasGupta G, White J, Phillips M, Bulinski JC, Reisler E. Immunochemical probing of the N-terminal segment on actin: the polymerization reaction. Biochemistry 1990; 29:3319-24. [PMID: 2334693 DOI: 10.1021/bi00465a024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The N-terminal segment of actin contains a cluster of acidic residues which are implicated in macromolecular interactions of this protein. In this work, the interrelationship between the N-terminal segment and the polymerization of actin was studied by using affinity-purified antibodies directed against the first seven N-terminal residues on alpha-skeletal actin (S alpha N). The Fab fragments of these antibodies showed equal affinities for G- and F-actin while the bivalent IgG bound preferentially to the polymerized actin. As monitored by pyrene fluorescence measurements, the binding of Fab to G-actin did not alter the kinetics of the MgCl2-induced polymerization; IgG accelerated this reaction considerably. Consistent with these observations, the binding of Fab to F-actin did not change its morphological appearance in electron micrographs and had no effect on the stability and the rate of dissociation of actin filaments. These results are discussed in terms of their implications to the spatial relationship between the N-terminal segment and the rest of the molecule and the context of the polymerization reaction of actin in vitro and in vivo.
Collapse
Affiliation(s)
- G DasGupta
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024
| | | | | | | | | |
Collapse
|
30
|
Abstract
Models relating to the gelation and elasticity of complex cytoskeletal networks are formulated and investigated. Kinetic equations for reversible elongation of nucleated actin filaments are analyzed when the filaments are acted upon by capping proteins and cross-linking factors. Analytical expressions are obtained that relate the low frequency elastic shear modulus of a network, G, to chain growth kinetics, the number of nucleation sites, monomer concentration, and the amount of capping and cross-linking protein. Elasticity curves that relate G to such factors as the association constant for cross-linking are derived and then used to determine solation-gelation phase contours.
Collapse
Affiliation(s)
- R Nossal
- Division of Computer Research and Technology, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
31
|
Papadopulos-Eleopulos E. Reappraisal of AIDS--is the oxidation induced by the risk factors the primary cause? Med Hypotheses 1988; 25:151-62. [PMID: 3285143 DOI: 10.1016/0306-9877(88)90053-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The emergence of AIDS as a recognizable disease, its epidemiology, the clinical and laboratory data and the way in which they have been interpreted to deduce the currently acceptable hypothesis of its aetiology and mechanism of transmission are critically examined. There is no compelling reason for preferring the viral hypothesis of AIDS to one based on the activity of oxidizing agents. In fact, the latter is to be preferred, since unlike the viral hypothesis it leads to possible methods of prevention and treatment using currently available therapeutic substances.
Collapse
|
32
|
Bohn W, Rutter G, Hohenberg H, Mannweiler K, Nobis P. Involvement of actin filaments in budding of measles virus: studies on cytoskeletons of infected cells. Virology 1986; 149:91-106. [PMID: 3946081 DOI: 10.1016/0042-6822(86)90090-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cytoskeletons were prepared from measles virus infected HeLa cells to investigate the involvement of cytoskeletal filaments in virus budding at the plasma membrane. The cytoskeletons retained nearly 80% of measles virus hemagglutinin, the major viral polypeptides, including P, NP, and M, and 2 to 12% of the total cell bound infectivity. As demonstrated with platinum- and carbon-shadowed cytoskeletons, all stages of budding, i.e., virus specific strands, stub-like protrusions, and completely rounded virus particles, are associated with actin filaments composing the outer part of the cytoskeletal network. As shown with ultrathin sections of flat embedded extracted cells, actin filaments identified with heavy meromyosin almost exclusively protrude into virus particles with their barbed ends and are in close association with viral nucleocapsids. The data support previous suggestions that actin is involved in virus budding and show that budding itself is possibly the result of a vectorial growth of actin filaments.
Collapse
|
33
|
Abstract
Knowledge of the mechanism of contraction has been obtained from studies of the interaction of actin and myosin in solution, from an elucidation of the structure of muscle fibers, and from measurements of the mechanics and energetics of fiber contraction. Many of the states and the transition rates between them have been established for the hydrolysis of ATP by actin and myosin subfragments in solution. A major goal is to now understand how the kinetics of this interaction are altered when it occurs in the organized array of the myofibril. Early work on the structure of muscle suggested that changes in the orientation of myosin cross-bridges were responsible for the generation of force. More recently, fluorescent and paramagnetic probes attached to the cross-bridges have suggested that at least some domains of the cross-bridges do not change orientation during force generation. A number of properties of active cross-bridges have been defined by measurements of steady state contractions of fibers and by the transients which follow step changes in fiber length or tension. Taken together these studies have provided firm evidence that force is generated by a cyclic interaction in which a myosin cross-bridge attaches to actin, exerts force through a "powerstroke" of 12 nm, and is then released by the binding of ATP. The mechanism of this interaction at the molecular level remains unknown.
Collapse
|
34
|
Abstract
I would like to report some results obtained by Yano , Yamamoto and myself on a novel system ( Yano et al., 1982) we have named the actomyosin motor in which a rotor with attached F-actin rotates in a specific direction, driven by the ATP-splitting interaction with active fragments of myosin, heavy meromyosin or subfragment-1, in a solution containing MgATP. The actomyosin motor is not only interesting as a new kind of motor made of biological material but also, as a stream cell ( Yano , 1978; Yano et al., 1978; Yano & Shimizu, 1978; Shimizu & Yano , 1978; Shimizu, 1979), is suitable for the study of chemo-mechanical coupling by actin and active fragments of myosin. Active motion of the motor was observed in almost 100% of the experiments, when carefully performed.
Collapse
|
35
|
Abstract
The rapid transport of optically detectable organelles in axons has been well documented, although its molecular mechanism remains unknown. Here we report that synthetic particles microinjected into the giant axons of the shore crab, Carcinus maenas, are also transported, moving as though they were endogenous organelles. Polystyrene beads, polyacrolein beads, paraffin droplets and glass fragments, of sizes up to 0.5 micron in diameter, have been tested. Many of these foreign particles move rapidly and for long distances along the axon in the anterograde direction, travelling in a saltatory fashion, within a well defined velocity range. In many respects the movements are indistinguishable from those of anterogradely moving endogenous organelles seen by phase-contrast in these axons. Our results indicate that there is a transport system in axons capable of carrying almost any particle of suitable physical properties in an anterograde direction.
Collapse
|
36
|
Bonder EM, Mooseker MS. Direct electron microscopic visualization of barbed end capping and filament cutting by intestinal microvillar 95-kdalton protein (villin): a new actin assembly assay using the Limulus acrosomal process. J Biophys Biochem Cytol 1983; 96:1097-107. [PMID: 6682116 PMCID: PMC2112331 DOI: 10.1083/jcb.96.4.1097] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have re-examined the Ca(++)-dependent interaction of an intestinal microvillar 95- kdalton protein (MV-95K) and actin using the isolated acrosomal process bundles from limulus sperm. Making use of the processes as nuclei for assembling actin filaments, we quantitatively and qualitatively examined MV-95K's effect on filament assembly and on F- actin, both in the presence and in the absence of Ca(++). The acrosomal processes are particularly advantageous for this approach because they nucleate large numbers of filaments, they are extremely stable, and their morphology can be used to determine the polarity of any nucleated filaments. When filament nucleation was initiated in the presence of MV-95K and the absence of Ca(++), there was biased filament assembly from the bundle ends. The calculated elongation rates from both the barbed and pointed filament ends were virtually indistinguishable from control preparations. In the presence of Ca(++), MV-95K completely inhibited filament assembly from the barbed filament end without affecting the initial rate of assembly from the pointed filament end. The inhibition of assembly results from MV-95K binding to and capping the barbed filament end, thereby preventing monomer addition. This indicates that, while MV-95K is a potent nucleator of actin assembly, it is also a potent inhibitor of actin filament elongation. To examine the effects of MV-95K on F-actin in the presence of Ca(++), we developed an assay where MV-95K is added to filaments previously assembled from acrosomal processes without causing filament breakage during mixing. These results clearly demonstrated that rapid filament shortening by MV-95K results through a mechanism of disrupting intrafilament monomer-monomer interactions. Finally, we show that tropomyosin-containing actin filaments are insensitive to cutting, but not to capping, by MV-95K in the presence of Ca(++).
Collapse
|
37
|
Bader MF, Garcia AG, Ciesielski-Treska J, Thierse D, Aunis D. Contractile proteins in chromaffin cells. PROGRESS IN BRAIN RESEARCH 1983; 58:21-9. [PMID: 6356223 DOI: 10.1016/s0079-6123(08)60003-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
|
39
|
|
40
|
|
41
|
Markey F, Larsson H, Weber K, Lindberg U. Nucleation of actin polymerization from profilactin. Opposite effects of different nuclei. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 704:43-51. [PMID: 7201325 DOI: 10.1016/0167-4838(82)90130-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The lag in polymerization of calf spleen profilactin in response to addition of MgCl2 can be overcome by small amounts of spectrin-actin-band 4.1 complex, covalently crosslinked actin oligomers or sonicated F-actin. All of these factors also nucleate polymerization of pure actin. Another nucleator of actin polymerization, villin, delays filaments formation from profilactin. A simple model of the interaction of profilin with actin can explain these apparently conflicting results in terms of the polarity with which actin filaments elongate from the different nuclei.
Collapse
|
42
|
Abstract
We describe a method for the induction of different polymorphic forms of actin filament paracrystals. This polymorphism is probably based on differences in the stagger and/or polarity of adjacent filaments in single-layered paracrystals and by superposition of different layers in multilayered paracrystals. The helical parameters defining the filament geometry are indistinguishable for the different polymorphic forms observed and for the four different actins used. Analysis of these paracrystals, some of which are ordered to better than 2.5 nm, should provide a reference structure suitable for alignment and orientation within the actin filament of high resolution models of the actin monomer obtained from crystal data.
Collapse
|
43
|
|
44
|
Wang YL, Taylor DL. Probing the dynamic equilibrium of actin polymerization by fluorescence energy transfer. Cell 1981; 27:429-36. [PMID: 6101197 DOI: 10.1016/0092-8674(81)90384-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fluorescence resonance energy transfer was used to follow the dynamic equilibrium of actin polymerization. We prepared fluorescent analogs of actin by labeling actin covalently with fluorescein (as the donor) and with eosin (as the acceptor). The copolymer of donor- and acceptor-labeled actin exhibits a 60%-70% efficiency of energy transfer. We followed the subunit exchange among filaments both by mixing the donor-acceptor copolymer with unlabeled F actin, and by mixing donor-labeled F actin with acceptor-labeled F actin. The extent of subunit exchange is dependent on ionic conditions. In addition, different kinetics are observed in the two approaches in the presence of excess magnesium ions. The effects of cytochalasin B as a model actin-binding factor were also investigated. One micromolar cytochalasin B reduces the rates of subunit exchange, monomer incorporation and filament depolymerization. At 10 microM cytochalasin B, we detected destabilization of filaments using a morphological assay. The results are discussed in relation to existing models of actin subunit exchange, and to proposed mechanisms of actin-cytochalasin interactions.
Collapse
Affiliation(s)
- Y L Wang
- Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
45
|
Ca2+ control of actin filament length. Effects of macrophage gelsolin on actin polymerization. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)68818-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
46
|
Wilkins JA, Lin S. Association of actin with chromaffin granule membranes and the effect of cytochalasin B on the polarity of actin filament elongation. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 642:55-66. [PMID: 6894389 DOI: 10.1016/0005-2736(81)90137-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Membranes of chromaffin granules isolated from bovine adrenal medulla are shown to bind dihydrocytochalasin B with high affinity. These membranes also bound [3H]actin in a time- and Mg2+-dependent manner and electron microscopy showed the presence of membrane-attached actin filaments following addition of exogenous actin. Binding of [3H]actin was partially inhibited by cytochalasin B. Electron microscopic analysis of heavy meromyosin-decorated, membrane-attached filaments showed terminally (end-on) attached filaments with both possible polarities (i.e., filaments with arrowheads pointing both towards and away from the membranes). Treatment of samples with cytochalasin B preferentially inhibited growth of filaments with their 'barbed' ends pointing away from membranes. These results are discussed with respect to the role of actin in secretory granule function and the mechanism of cytochalasin action.
Collapse
|
47
|
Brown SS, Spudich JA. Mechanism of action of cytochalasin: evidence that it binds to actin filament ends. J Cell Biol 1981; 88:487-91. [PMID: 6894300 PMCID: PMC2112756 DOI: 10.1083/jcb.88.3.487] [Citation(s) in RCA: 193] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To test the idea that cytochalasin retards actin assembly by binding to filament ends, we have designed a new assay for cytochalasin binding in which the number of filament ends can be varied independently of the total actin concentration. Actin is reacted with polylysine-coated polystyrene beads to make filament ends (Brown and Spudich, 1979, J. Cell Biol. 80:499-504) and then reacted with [3H]cytochalasin B. We have found that cytochalasin B binds to beads in the presence of actin, and that the number of cytochalasin B binding sites can be varied as a function of the number of filament ends independent of the total actin concentration by varying the bead concentration.
Collapse
|
48
|
Loor F, Angman L. Capping revisited. III. Differential inhibitory characteristics of the various cytochalasins. Exp Cell Res 1980; 129:289-95. [PMID: 7428822 DOI: 10.1016/0014-4827(80)90495-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
49
|
Lin DC, Tobin KD, Grumet M, Lin S. Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation. J Biophys Biochem Cytol 1980; 84:455-60. [PMID: 6892916 PMCID: PMC2110542 DOI: 10.1083/jcb.84.2.455] [Citation(s) in RCA: 222] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Polylysine was found to induce polymerization of muscle actin in a low ionic strength buffer containing 0.4 mM MgCl2. The rate of induced polymerization was dependent on the amount and on the molecular size of the polylysine added. A similar effect was obtained by adding actin nuclei (containing about 2-4 actin subunits) cross-linked by p-N,N'-phenylenebismaleimide to G-actin under the same conditions, suggesting that the effect of polylysine is due to promotion of the formation of actin nuclei. Polymerization induced by polylysine and by cross-linked actin nuclei was inhibited by low concentrations (10(-8)-10(-6)M) of cytochalasins. Binding experiments showed that actin filaments, but not actin monomers, contained high-affinity binding sites for [3H]cytochalasin B (one site per 600 actin monomers). The relative affinity of several cytochalasins for these sites (determined by competitive displacement of [3H]dihydrocytochalasin B) was: cytochalasin D greater than cytochalasin E approximately equal to dihydrocytochalasin B. The results of this study suggest that cytochalasins inhibit nuclei-induced actin polymerization by binding to highly specific sites at the point of monomer addition, i.e., the elongation site, in actin nuclei and filaments.
Collapse
|
50
|
Brenner S, Korn E. Substoichiometric concentrations of cytochalasin D inhibit actin polymerization. Additional evidence for an F-actin treadmill. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(19)86660-7] [Citation(s) in RCA: 181] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|