1
|
Daniel L, Counoupas C, Bhattacharyya ND, Triccas JA, Britton WJ, Feng CG. L-selectin-dependent and -independent homing of naïve lymphocytes through the lung draining lymph node support T cell response to pulmonary Mycobacterium tuberculosis infection. PLoS Pathog 2023; 19:e1011460. [PMID: 37405965 DOI: 10.1371/journal.ppat.1011460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Recruiting large numbers of naïve lymphocytes to lymph nodes is critical for mounting an effective adaptive immune response. While most naïve lymphocytes utilize homing molecule L-selectin to enter lymph nodes, some circulating cells can traffic to the lung-draining mediastinal lymph node (mLN) through lymphatics via the intermediate organ, lung. However, whether this alternative trafficking mechanism operates in infection and contributes to T cell priming are unknown. We report that in pulmonary Mycobacterium tuberculosis-infected mice, homing of circulating lymphocytes to the mLN is significantly less efficient than to non-draining lymph node. CD62L blockade only partially reduced the homing of naïve T lymphocytes, consistent with L-selectin-independent routing of naïve lymphocytes to the site. We further demonstrated that lymphatic vessels in infected mLN expanded significantly and inhibiting lymphangiogenesis with a vascular endothelial growth factor receptor 3 kinase inhibitor reduced the recruitment of intravenously injected naïve lymphocytes to the mLN. Finally, mycobacterium-specific T cells entering via the L-selectin-independent route were readily activated in the mLN. Our study suggests that both L-selectin-dependent and -independent pathways contribute to naïve lymphocyte entry into mLN during M. tuberculosis infection and the latter pathway may represent an important mechanism for orchestrating host defence in the lungs.
Collapse
Affiliation(s)
- Lina Daniel
- Immunology and Host Defence Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Claudio Counoupas
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Microbial Pathogenesis and Immunity Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Nayan D Bhattacharyya
- Immunology and Host Defence Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - James A Triccas
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Microbial Pathogenesis and Immunity Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, Sydney, Australia
| | - Carl G Feng
- Immunology and Host Defence Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Abstract
To ensure proper immune function, most leukocytes constantly move within tissues or between them using the blood and lymphatic vessels as transport routes. While afferent lymphatic vessels transfer leukocytes from peripheral tissues to draining lymph nodes (dLNs), efferent lymphatics return lymphocytes from LNs back into the blood vascular circulation. Over the last decades, great progress has been made in our understanding of leukocyte migration into and within the lymphatic compartment, leading to the approval of new drugs targeting this process. In this review, we first introduce the anatomy of the lymphatic vasculature and the main cell types migrating through lymphatics. We primarily focus on dendritic cells (DCs) and T cells, the most prominent lymph-borne cell types, and discuss the functional significance as well as the main molecules and steps involved in their migration. Additionally, we provide an overview of the different techniques used to study lymphatic trafficking.
Collapse
Affiliation(s)
- Aline Bauer
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Hazal Tatliadim
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
3
|
Tatsumi N, Codrington AL, El-Fenej J, Phondge V, Kumamoto Y. Effective CD4 T cell priming requires repertoire scanning by CD301b + migratory cDC2 cells upon lymph node entry. Sci Immunol 2021; 6:eabg0336. [PMID: 34890253 DOI: 10.1126/sciimmunol.abg0336] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Naoya Tatsumi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Alicia L Codrington
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jihad El-Fenej
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Varoon Phondge
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
4
|
Johnson SC, Frattolin J, Edgar LT, Jafarnejad M, Moore Jr JE. Lymph node swelling combined with temporary effector T cell retention aids T cell response in a model of adaptive immunity. J R Soc Interface 2021; 18:20210464. [PMID: 34847790 PMCID: PMC8633806 DOI: 10.1098/rsif.2021.0464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Swelling of lymph nodes (LNs) is commonly observed during the adaptive immune response, yet the impact on T cell (TC) trafficking and subsequent immune response is not well known. To better understand the effect of macro-scale alterations, we developed an agent-based model of the LN paracortex, describing the TC proliferative response to antigen-presenting dendritic cells alongside inflammation-driven and swelling-induced changes in TC recruitment and egress, while also incorporating regulation of the expression of egress-modulating TC receptor sphingosine-1-phosphate receptor-1. Analysis of the effector TC response under varying swelling conditions showed that swelling consistently aided TC activation. However, subsequent effector CD8+ TC production was reduced in scenarios where swelling occurred too early in the TC proliferative phase or when TC cognate frequency was low due to increased opportunity for TC exit. Temporarily extending retention of newly differentiated effector TCs, mediated by sphingosine-1-phosphate receptor-1 expression, mitigated any negative effects of swelling by allowing facilitation of activation to outweigh increased access to exit areas. These results suggest that targeting temporary effector TC retention and egress associated with swelling offers new ways to modulate effector TC responses in, for example, immuno-suppressed patients and to optimize of vaccine design.
Collapse
Affiliation(s)
- Sarah C. Johnson
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Lowell T. Edgar
- Department of Bioengineering, Imperial College London, London, UK
| | - Mohammad Jafarnejad
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
5
|
Poirot J, Medvedovic J, Trichot C, Soumelis V. Compartmentalized multicellular crosstalk in lymph nodes coordinates the generation of potent cellular and humoral immune responses. Eur J Immunol 2021; 51:3146-3160. [PMID: 34606627 PMCID: PMC9298410 DOI: 10.1002/eji.202048977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/13/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Distributed throughout the body, lymph nodes (LNs) constitute an important crossroad where resident and migratory immune cells interact to initiate antigen‐specific immune responses supported by a dynamic 3‐dimensional network of stromal cells, that is, endothelial cells and fibroblastic reticular cells (FRCs). LNs are organized into four major subanatomically separated compartments: the subcapsular sinus (SSC), the paracortex, the cortex, and the medulla. Each compartment is underpinned by particular FRC subsets that physically support LN architecture and delineate functional immune niches by appropriately providing environmental cues, nutrients, and survival factors to the immune cell subsets they interact with. In this review, we discuss how FRCs drive the structural and functional organization of each compartment to give rise to prosperous interactions and coordinate immune cell activities. We also discuss how reciprocal communication makes FRCs and immune cells perfect compatible partners for the generation of potent cellular and humoral immune responses.
Collapse
Affiliation(s)
- Justine Poirot
- Université de Paris, INSERM U976, Paris, France.,Université Paris-Saclay, Saint Aubin, France
| | | | | | - Vassili Soumelis
- Université de Paris, INSERM U976, Paris, France.,AP-HP, Hôpital Saint-Louis, Laboratoire d'Immunologie-Histocompatibilité, Paris, France
| |
Collapse
|
6
|
Vella G, Guelfi S, Bergers G. High Endothelial Venules: A Vascular Perspective on Tertiary Lymphoid Structures in Cancer. Front Immunol 2021; 12:736670. [PMID: 34484246 PMCID: PMC8416033 DOI: 10.3389/fimmu.2021.736670] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
High endothelial venules (HEVs) are specialized postcapillary venules composed of cuboidal blood endothelial cells that express high levels of sulfated sialomucins to bind L-Selectin/CD62L on lymphocytes, thereby facilitating their transmigration from the blood into the lymph nodes (LN) and other secondary lymphoid organs (SLO). HEVs have also been identified in human and murine tumors in predominantly CD3+T cell-enriched areas with fewer CD20+B-cell aggregates that are reminiscent of tertiary lymphoid-like structures (TLS). While HEV/TLS areas in human tumors are predominantly associated with increased survival, tumoral HEVs (TU-HEV) in mice have shown to foster lymphocyte-enriched immune centers and boost an immune response combined with different immunotherapies. Here, we discuss the current insight into TU-HEV formation, function, and regulation in tumors and elaborate on the functional implication, opportunities, and challenges of TU-HEV formation for cancer immunotherapy.
Collapse
Affiliation(s)
- Gerlanda Vella
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Sophie Guelfi
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Neurological Surgery, UCSF Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
7
|
In Sickness and in Health: The Immunological Roles of the Lymphatic System. Int J Mol Sci 2021; 22:ijms22094458. [PMID: 33923289 PMCID: PMC8123157 DOI: 10.3390/ijms22094458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays crucial roles in immunity far beyond those of simply providing conduits for leukocytes and antigens in lymph fluid. Endothelial cells within this vasculature are distinct and highly specialized to perform roles based upon their location. Afferent lymphatic capillaries have unique intercellular junctions for efficient uptake of fluid and macromolecules, while expressing chemotactic and adhesion molecules that permit selective trafficking of specific immune cell subsets. Moreover, in response to events within peripheral tissue such as inflammation or infection, soluble factors from lymphatic endothelial cells exert “remote control” to modulate leukocyte migration across high endothelial venules from the blood to lymph nodes draining the tissue. These immune hubs are highly organized and perfectly arrayed to survey antigens from peripheral tissue while optimizing encounters between antigen-presenting cells and cognate lymphocytes. Furthermore, subsets of lymphatic endothelial cells exhibit differences in gene expression relating to specific functions and locality within the lymph node, facilitating both innate and acquired immune responses through antigen presentation, lymph node remodeling and regulation of leukocyte entry and exit. This review details the immune cell subsets in afferent and efferent lymph, and explores the mechanisms by which endothelial cells of the lymphatic system regulate such trafficking, for immune surveillance and tolerance during steady-state conditions, and in response to infection, acute and chronic inflammation, and subsequent resolution.
Collapse
|
8
|
Nakawesi J, Konjit GM, Dasoveanu DC, Johansson-Lindbom B, Lahl K. Rotavirus infection causes mesenteric lymph node hypertrophy independently of type I interferon or TNF-α in mice. Eur J Immunol 2021; 51:1143-1152. [PMID: 33354817 PMCID: PMC8247885 DOI: 10.1002/eji.202048990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
Lymphoid organ hypertrophy is a characteristic feature of acute infection and is considered to enable efficient induction of adaptive immune responses. Accordingly, oral infection with rotavirus induced a robust increase in cellularity in the mesenteric LNs, whose kinetics correlated with viral load and was caused by halted lymphocyte egress and increased recruitment of cells without altered cellular proliferation. Lymphocyte sequestration and mesenteric LN hypertrophy were independent of type 1 IFN receptor signaling or the continuous presence of TNF-α. Our results support previous findings that adaptive immunity toward rotavirus is initiated primarily in the mesenteric LNs and show that type I IFN or TNF-α are not required to coordinate the events involved in the LN response.
Collapse
Affiliation(s)
- Joy Nakawesi
- Immunology Section, Lund University, Lund, Sweden
| | | | | | - Bengt Johansson-Lindbom
- Immunology Section, Lund University, Lund, Sweden.,Division of Biopharma, Institute for Health Technology, Technical University of Denmark (DTU), Kongens, Denmark
| | - Katharina Lahl
- Immunology Section, Lund University, Lund, Sweden.,Division of Biopharma, Institute for Health Technology, Technical University of Denmark (DTU), Kongens, Denmark
| |
Collapse
|
9
|
Jagarapu A, Piovoso MJ, Zurakowski R. An Integrated Spatial Dynamics-Pharmacokinetic Model Explaining Poor Penetration of Anti-retroviral Drugs in Lymph Nodes. Front Bioeng Biotechnol 2020; 8:667. [PMID: 32676500 PMCID: PMC7333380 DOI: 10.3389/fbioe.2020.00667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Although combined anti-retroviral therapy (cART) suppresses plasma HIV viremia below the limit of detection in a majority of HIV patients, evidence is emerging that the distribution of the anti-retroviral drugs is heterogeneous in tissue. Clinical studies measuring antiretroviral drug concentrations in lymph nodes (LNs) revealed lower concentrations compared to peripheral blood levels suggesting poor drug penetration properties. Our current study is an attempt to understand this poor anti-retroviral drug penetration inside lymph node lobules through integrating known pharmacokinetic and pharmacodynamic (PK/PD) parameters of the anti-retroviral drugs into a spatial model of reaction and transport dynamics within a solid lymph node lobule. Simulated drug penetration values were compared against experimental results whenever available or matched with data that is available for other drugs in a similar class. Our integrated spatial dynamics pharmacokinetic model reproduced the experimentally observed exclusion of antivirals from lymphoid sites. The strongest predictor of drug exclusion from the lymphoid lobule, independent of drug class, was lobule size; large lobules (high inflammation) exhibited high levels of drug exclusion. PK/PD characteristics associated with poor lymphoid penetration include high cellular uptake rates and low intracellular half-lives. To determine whether this exclusion might lead to ongoing replication, target CD4+ T cell, infected CD4+ T cell, free virus, and intracellular IC50 values of anti-retroviral drugs were incorporated into the model. Notably, for median estimates of PK/PD parameters and lobule diameters consistent with low to moderate inflammation, the model predicts no ongoing viral replication, despite substantial exclusion of the drugs from the lymphoid site. Monte-Carlo studies drawn from the prior distributions of the PK/PD parameters predicts increases in site-specific HIV replication in a small fraction of the patient population for lobule diameters greater than 0.2 mm; this fraction increases as the site diameter/ inflammation level increases. The model shows that cART consisting of two nRTIs and one PI is the most likely treatment combination to support formation of a sanctuary site, a finding that is consistent with clinical observations.
Collapse
Affiliation(s)
- Aditya Jagarapu
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Michael J Piovoso
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, United States
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
10
|
Thierry GR, Gentek R, Bajenoff M. Remodeling of reactive lymph nodes: Dynamics of stromal cells and underlying chemokine signaling. Immunol Rev 2020; 289:42-61. [PMID: 30977194 DOI: 10.1111/imr.12750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/19/2022]
Abstract
Lymph nodes (LNs) are secondary immune organs dispersed throughout the body. They are primarily composed of lymphocytes, "transient passengers" that are only present for a few hours. During this time, they extensively interact with a meshwork of stromal cells. Although these cells constitute less than 5% of all LN cells, they are integral to LN function: Stromal cells create a three-dimensional network that provides a rigid backbone for the transport of lymph and generates "roads" for lymphocyte migration. Beyond structural support, the LN stroma also produces survival signals for lymphocytes and provides nutrients, soluble factors, antigens, and immune cells collectively required for immune surveillance and the generation of adaptive immune responses. A unique feature of LNs is their ability to considerably and rapidly change size: the volume and cellularity of inflamed LNs can increase up to 20-fold before returning to homeostatic levels. This cycle will be repeated many times during life and is accommodated by stromal cells. The dynamics underlying this dramatic remodeling are subject of this review. We will first introduce the main types of LN stromal cells and explain their known functions. We will then discuss how these cells enable LN growth during immune responses, with a particular focus on underlying cellular mechanisms and molecular cues. Similarly, we will elaborate on stromal dynamics mediating the return to LN homeostasis, a process that is mechanistically much less understood than LN expansion.
Collapse
Affiliation(s)
- Guilhem R Thierry
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| | - Rebecca Gentek
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| | - Marc Bajenoff
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| |
Collapse
|
11
|
McDaniel MM, Ganusov VV. Estimating Residence Times of Lymphocytes in Ovine Lymph Nodes. Front Immunol 2019; 10:1492. [PMID: 31379805 PMCID: PMC6646577 DOI: 10.3389/fimmu.2019.01492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
The ability of lymphocytes to recirculate between blood and secondary lymphoid tissues such as lymph nodes (LNs) and spleen is well established. Sheep have been used as an experimental system to study lymphocyte recirculation for decades and multiple studies document accumulation and loss of intravenously (i.v.) transferred lymphocytes in efferent lymph of various ovine LNs. Yet, surprisingly little work has been done to accurately quantify the dynamics of lymphocyte exit from the LNs and to estimate the average residence times of lymphocytes in ovine LNs. In this work we developed a series of mathematical models based on fundamental principles of lymphocyte recirculation in the body under non-inflammatory (resting) conditions. Our analysis suggested that in sheep, recirculating lymphocytes spend on average 3 h in the spleen and 20 h in skin or gut-draining LNs with a distribution of residence times in LNs following a skewed gamma (lognormal-like) distribution. Our mathematical models also suggested an explanation for a puzzling observation of the long-term persistence of i.v. transferred lymphocytes in the efferent lymph of the prescapular LN (pLN); the model predicted that this is a natural consequence of long-term persistence of the transferred lymphocytes in circulation. We also found that lymphocytes isolated from the skin-draining pLN have a 2-fold increased entry rate into the pLN as opposed to the mesenteric (gut-draining) LN (mLN). Likewise, lymphocytes from mLN had a 3-fold increased entry rate into the mLN as opposed to entry rate into pLN. In contrast, these cannulation data could not be explained by preferential retention of cells in LNs of their origin. Taken together, our work illustrates the power of mathematical modeling in describing the kinetics of lymphocyte migration in sheep and provides quantitative estimates of lymphocyte residence times in ovine LNs.
Collapse
Affiliation(s)
- Margaret M. McDaniel
- Department of Immunology, University of Texas Southwestern, Dallas, TX, United States
| | - Vitaly V. Ganusov
- Department of Mathematics, University of Tennessee, Knoxville, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
12
|
Abstract
Lymphatic vessels collect interstitial fluid that has extravasated from blood vessels and return it to the circulatory system. Another important function of the lymphatic network is to facilitate immune cell migration and antigen transport from the periphery to draining lymph nodes. This migration plays a crucial role in immune surveillance, initiation of immune responses and tolerance. Here we discuss the significance and mechanisms of lymphatic migration of innate and adaptive immune cells in homeostasis, inflammation and cancer.
Collapse
Affiliation(s)
| | - Tatyana Chtanova
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales Sydney, Kensington, NSW, Australia
| |
Collapse
|
13
|
Tay MHD, Lim SYJ, Leong YFI, Thiam CH, Tan KW, Torta FT, Narayanaswamy P, Wenk M, Angeli V. Halted Lymphocyte Egress via Efferent Lymph Contributes to Lymph Node Hypertrophy During Hypercholesterolemia. Front Immunol 2019; 10:575. [PMID: 30972070 PMCID: PMC6446103 DOI: 10.3389/fimmu.2019.00575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/04/2019] [Indexed: 11/13/2022] Open
Abstract
Dyslipidemia is a central component of atherosclerosis and metabolic syndrome linked to chronic inflammation and immune dysfunction. Previously, we showed that hypercholesterolemic apolipoprotein E knock out (apoE−/−) mice exhibit systemic effects including skin inflammation and hypertrophic lymph nodes (LNs). However, the mechanisms accounting for LN hypertrophy in these mice remain unknown. Here, we show that hypercholesterolemia led to the accumulation of lymphocytes in LNs. We excluded that the increased number of lymphocytes in expanded LNs resulted from increased lymphocyte proliferation or entry into those LNs. Instead, we demonstrated that the egress of lymphocytes from the enlarged LN of apoE−/− mice was markedly decreased. Impairment in efferent lymphatic emigration of lymphocytes from LNs resulted from an aberrant expansion of cortical and medullary sinuses that became hyperplastic. Moreover, CCL21 was more abundant on these enlarged sinuses whereas lymph levels of sphingosine 1 phosphate (S1P) were decreased in apoE−/− mice. Normal LN size, lymphatic density and S1P levels were restored by reversing hypercholesterolemia. Thus, systemic changes in cholesterol can sequester lymphocytes in tissue draining LNs through the extensive remodeling of lymphatic sinuses and alteration of the balance between retention/egress signals leading to LN hypertrophy which subsequently may contribute to poor immunity. This study further illustrates the role of lymphatic vessels in immunity through the regulation of immune cell trafficking.
Collapse
Affiliation(s)
- Meng Hwee Daniel Tay
- Immunology Programme, Department of Microbiology and Immunology, Life Science Institute, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Swee Yeng Jason Lim
- Immunology Programme, Department of Microbiology and Immunology, Life Science Institute, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yew Fai Ivan Leong
- Immunology Programme, Department of Microbiology and Immunology, Life Science Institute, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chung Hwee Thiam
- Immunology Programme, Department of Microbiology and Immunology, Life Science Institute, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kar Wai Tan
- Immunology Programme, Department of Microbiology and Immunology, Life Science Institute, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Federico Tesio Torta
- Department of Biochemistry, Life Science Institute, SLING-Singapore Lipidomics Incubator, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pradeep Narayanaswamy
- Department of Biochemistry, Life Science Institute, SLING-Singapore Lipidomics Incubator, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Markus Wenk
- Department of Biochemistry, Life Science Institute, SLING-Singapore Lipidomics Incubator, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Véronique Angeli
- Department of Biochemistry, Life Science Institute, SLING-Singapore Lipidomics Incubator, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Jackson DG. Leucocyte Trafficking via the Lymphatic Vasculature- Mechanisms and Consequences. Front Immunol 2019; 10:471. [PMID: 30923528 PMCID: PMC6426755 DOI: 10.3389/fimmu.2019.00471] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/21/2019] [Indexed: 01/15/2023] Open
Abstract
The lymphatics fulfill a vital physiological function as the conduits through which leucocytes traffic between the tissues and draining lymph nodes for the initiation and modulation of immune responses. However, until recently many of the molecular mechanisms controlling such migration have been unclear. As a result of careful research, it is now apparent that the process is regulated at multiple stages from initial leucocyte entry and intraluminal crawling in peripheral tissue lymphatics, through to leucocyte exit in draining lymph nodes where the migrating cells either participate in immune responses or return to the circulation via efferent lymph. Furthermore, it is increasingly evident that most if not all leucocyte populations migrate in lymph and that such migration is not only important for immune modulation, but also for the timely repair and resolution of tissue inflammation. In this article, I review the latest research findings in these areas, arising from new insights into the distinctive ultrastructure of lymphatic capillaries and lymph node sinuses. Accordingly, I highlight the emerging importance of the leucocyte glycocalyx and its novel interactions with the endothelial receptor LYVE-1, the intricacies of endothelial chemokine secretion and sequestration that direct leucocyte trafficking and the significance of the process for normal immune function and pathology.
Collapse
Affiliation(s)
- David G Jackson
- MRC Human Immunology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Schineis P, Runge P, Halin C. Cellular traffic through afferent lymphatic vessels. Vascul Pharmacol 2018; 112:31-41. [PMID: 30092362 DOI: 10.1016/j.vph.2018.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/26/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
The lymphatic system has long been known to serve as a highway for migrating leukocytes from peripheral tissue to draining lymph nodes (dLNs) and back to circulation, thereby contributing to the induction of adaptive immunity and immunesurveillance. Lymphatic vessels (LVs) present in peripheral tissues upstream of a first dLN are generally referred to as afferent LVs. In contrast to migration through blood vessels (BVs), the detailed molecular and cellular requirements of cellular traffic through afferent LVs have only recently started to be unraveled. Progress in our ability to track the migration of lymph-borne cell populations, in combination with cutting-edge imaging technologies, nowadays allows the investigation and visualization of lymphatic migration of endogenous leukocytes, both at the population and at the single-cell level. These studies have revealed that leukocyte trafficking through afferent LVs generally follows a step-wise migration pattern, relying on the active interplay of numerous molecules. In this review, we will summarize and discuss current knowledge of cellular traffic through afferent LVs. We will first outline how the structure of the afferent LV network supports leukocyte migration and highlight important molecules involved in the migration of dendritic cells (DCs), T cells and neutrophils, i.e. the most prominent cell types trafficking through afferent LVs. Additionally, we will describe how tumor cells hijack the lymphatic system for their dissemination to draining LNs. Finally, we will summarize and discuss our current understanding of the functional significance as well as the therapeutic implications of cell traffic through afferent LVs.
Collapse
Affiliation(s)
| | - Peter Runge
- Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland.
| |
Collapse
|
16
|
Motwani MP, Newson J, Kwong S, Richard-Loendt A, Colas R, Dalli J, Gilroy DW. Prolonged immune alteration following resolution of acute inflammation in humans. PLoS One 2017; 12:e0186964. [PMID: 29073216 PMCID: PMC5658111 DOI: 10.1371/journal.pone.0186964] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/10/2017] [Indexed: 12/02/2022] Open
Abstract
Acute inflammation is an immediate response to infection and injury characterised by the influx of granulocytes followed by phagocytosing mononuclear phagocytes. Provided the antigen is cleared and the immune system of the host is fully functional, the acute inflammatory response will resolve. Until now it is considered that resolution then leads back to homeostasis, the physiological state tissues experienced before inflammation occurred. Using a human model of acute inflammation driven by intradermal UV killed Escherichia coli, we found that bacteria and granulocyte clearance as well as pro-inflammatory cytokine catabolism occurred by 72h. However, following a lag phase of about 4 days there was an increase in numbers of memory T cells and CD163+ macrophage at the post-resolution site up to day 17 as well as increased biosynthesis of cyclooxygenase-derived prostanoids and DHA-derived D series resolvins. Inhibiting post-resolution prostanoids using naproxen showed that numbers of tissue memory CD4 cells were under the endogenous control of PGE2, which exerts its suppressive effects on T cell proliferation via the EP4 receptor. In addition, we re-challenged the post-resolution site with a second injection of E. coli, which when compared to saline controls resulted in primarily a macrophage-driven response with comparatively fewer PMNs; the macrophage-dominated response was reversed by cyclooxygenase inhibition. Re-challenge experiments were also carried out in mice where we obtained similar results as in humans. Therefore, we report that acute inflammatory responses in both humans and rodents do not revert back to homeostasis, but trigger a hitherto unappreciated sequence of immunological events that dictate subsequent immune response to infection.
Collapse
Affiliation(s)
- Madhur P. Motwani
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, United Kingdom
| | - Justine Newson
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, United Kingdom
| | - Simon Kwong
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, United Kingdom
| | - Angela Richard-Loendt
- Division of Neuropathology and, Dept. of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, United Kingdom
| | - Romain Colas
- Lipid Mediator Unit, William Harvey Research Institute, Bart’s and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Jesmond Dalli
- Lipid Mediator Unit, William Harvey Research Institute, Bart’s and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Derek W. Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Barinov A, Galgano A, Krenn G, Tanchot C, Vasseur F, Rocha B. CD4/CD8/Dendritic cell complexes in the spleen: CD8+ T cells can directly bind CD4+ T cells and modulate their response. PLoS One 2017; 12:e0180644. [PMID: 28686740 PMCID: PMC5501581 DOI: 10.1371/journal.pone.0180644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/19/2017] [Indexed: 01/16/2023] Open
Abstract
CD4+ T cell help to CD8+ T cell responses requires that CD4+ and CD8+ T cells interact with the same antigen presenting dendritic cell (Ag+DC), but it remains controversial whether helper signals are delivered indirectly through a licensed DC and/or involve direct CD4+/CD8+ T cell contacts and/or the formation of ternary complexes. We here describe the first in vivo imaging of the intact spleen, aiming to evaluate the first interactions between antigen-specific CD4+, CD8+ T cells and Ag+DCs. We show that in contrast to CD4+ T cells which form transient contacts with Ag+DC, CD8+ T cells form immediate stable contacts and activate the Ag+DC, acquire fragments of the DC membranes by trogocytosis, leading to their acquisition of some of the DC properties. They express MHC class II, and become able to present the specific Marilyn peptide to naïve Marilyn CD4+ T cells, inducing their extensive division. In vivo, these CD8+ T cells form direct stable contacts with motile naïve CD4+ T cells, recruiting them to Ag+DC binding and to the formation of ternary complexes, where CD4+ and CD8+ T cells interact with the DC and with one another. The presence of CD8+ T cells during in vivo immune responses leads to the early activation and up-regulation of multiple functions by CD4+ T lymphocytes. Thus, while CD4+ T cell help is important to CD8+ T cell responses, CD8+ T cells can interact directly with naïve CD4+ T cells impacting their recruitment and differentiation.
Collapse
Affiliation(s)
| | - Alessia Galgano
- INSERM, U1020, Faculté de Médecine René Descartes, Paris, France
| | - Gerald Krenn
- INSERM, U1020, Faculté de Médecine René Descartes, Paris, France
| | - Corinne Tanchot
- INSERM, U970, Université Paris Descartes, Centre de recherche Cardiovasculaire à l’HEGP, Paris, France
| | - Florence Vasseur
- INSERM, U1020, Faculté de Médecine René Descartes, Paris, France
| | - Benedita Rocha
- INSERM, U1020, Faculté de Médecine René Descartes, Paris, France
- * E-mail:
| |
Collapse
|
18
|
Yeo KP, Angeli V. Bidirectional Crosstalk between Lymphatic Endothelial Cell and T Cell and Its Implications in Tumor Immunity. Front Immunol 2017; 8:83. [PMID: 28220121 PMCID: PMC5292621 DOI: 10.3389/fimmu.2017.00083] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/18/2017] [Indexed: 12/17/2022] Open
Abstract
Lymphatic vessels have been traditionally considered as passive transporters of fluid and lipids. However, it is apparent from recent literature that the function of lymphatic vessels is not only restricted to fluid balance homeostasis but also extends to regulation of immune cell trafficking, antigen presentation, tolerance, and immunity, all which may impact the progression of inflammatory responses and diseases such as cancer. The lymphatic system and the immune system are intimately connected, and there is emergent evidence for a crosstalk between T cell and lymphatic endothelial cell (LEC). This review describes how LECs in lymph nodes can affect multiple functional properties of T cells and the impact of these LEC-driven effects on adaptive immunity and, conversely, how T cells can modulate LEC growth. The significance of such crosstalk between T cells and LECs in cancer will also be discussed.
Collapse
Affiliation(s)
- Kim Pin Yeo
- Immunology Programme, Department of Microbiology and Immunology, Yoon Loo Lin School of Medicine, Life Science Institute, National University of Singapore , Singapore , Singapore
| | - Veronique Angeli
- Immunology Programme, Department of Microbiology and Immunology, Yoon Loo Lin School of Medicine, Life Science Institute, National University of Singapore , Singapore , Singapore
| |
Collapse
|
19
|
Hunter MC, Teijeira A, Halin C. T Cell Trafficking through Lymphatic Vessels. Front Immunol 2016; 7:613. [PMID: 28066423 PMCID: PMC5174098 DOI: 10.3389/fimmu.2016.00613] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/05/2016] [Indexed: 01/06/2023] Open
Abstract
T cell migration within and between peripheral tissues and secondary lymphoid organs is essential for proper functioning of adaptive immunity. While active T cell migration within a tissue is fairly slow, blood vessels and lymphatic vessels (LVs) serve as speedy highways that enable T cells to travel rapidly over long distances. The molecular and cellular mechanisms of T cell migration out of blood vessels have been intensively studied over the past 30 years. By contrast, less is known about T cell trafficking through the lymphatic vasculature. This migratory process occurs in one manner within lymph nodes (LNs), where recirculating T cells continuously exit into efferent lymphatics to return to the blood circulation. In another manner, T cell trafficking through lymphatics also occurs in peripheral tissues, where T cells exit the tissue by means of afferent lymphatics, to migrate to draining LNs and back into blood. In this review, we highlight how the anatomy of the lymphatic vasculature supports T cell trafficking and review current knowledge regarding the molecular and cellular requirements of T cell migration through LVs. Finally, we summarize and discuss recent insights regarding the presumed relevance of T cell trafficking through afferent lymphatics.
Collapse
Affiliation(s)
- Morgan C. Hunter
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alvaro Teijeira
- Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Habenicht LM, Albershardt TC, Iritani BM, Ruddell A. Distinct mechanisms of B and T lymphocyte accumulation generate tumor-draining lymph node hypertrophy. Oncoimmunology 2016; 5:e1204505. [PMID: 27622075 PMCID: PMC5007965 DOI: 10.1080/2162402x.2016.1204505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/26/2022] Open
Abstract
Tumor-draining lymph nodes (TDLNs) often enlarge in human cancer patients and in murine tumor models, due to lymphocyte accumulation and lymphatic sinus growth. B lymphocytes within TDLNs can drive lymph node hypertrophy in response to tumor growth, however little is known about the mechanisms directing the preferential accumulation of B lymphocytes relative to T cells in enlarging TDLNs. To define why B and T lymphocytes accumulate in TDLNs, we quantified lymphocyte proliferation, apoptosis, entry, and exit in TDLNs versus contralateral non-TDLNs (NTDLNs) in a footpad B16-F10 melanoma mouse model. B and T lymphocyte proliferation and apoptosis were increased as the TDLNs enlarged, although relative rates were similar to those of NTDLNs. TDLN entry of B and T lymphocytes via high endothelial venules was also modestly increased in enlarged TDLNs. Strikingly, the egress of B cells was strongly reduced in TDLNs versus NTDLNs, while T cell egress was modestly decreased, indicating that regulation of lymphocyte exit from TDLNs is a major mechanism of preferential B lymphocyte accumulation. Surface sphingosine-1-phosphate receptor 1 (S1PR1) which binds S1P and signals lymphocyte egress, exhibited greater downregulation in B relative to T lymphocytes, consistent with preferential retention of B lymphocytes in TDLNs. TDLN lymphocytes did not activate surface CD69 expression, indicating a CD69-independent mechanism of downregulation of S1PR1. B and T cell trafficking via afferent lymphatics to enter TDLNs also increased, suggesting a pathway for accumulation of tumor-educated lymphocytes in TDLNs. These mechanisms regulating TDLN hypertrophy could provide new targets to manipulate lymphocyte responses to cancer.
Collapse
Affiliation(s)
- Lauren M Habenicht
- Department of Comparative Medicine, University of Washington , Seattle, WA, USA
| | | | - Brian M Iritani
- Department of Comparative Medicine, University of Washington , Seattle, WA, USA
| | - Alanna Ruddell
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA; Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
21
|
Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 2016; 15:551-67. [PMID: 27020098 DOI: 10.1038/nrd.2016.39] [Citation(s) in RCA: 618] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes - a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field.
Collapse
Affiliation(s)
- James N Fullerton
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, UK
| | - Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, UK
| |
Collapse
|
22
|
Harris N, Koppel J, Zsila F, Juhas S, Il’kova G, Kogan FY, Lahmy O, Wildbaum G, Karin N, Zhuk R, Gregor P. Mechanism of action and efficacy of RX-111, a thieno[2,3-c]pyridine derivative and small molecule inhibitor of protein interaction with glycosaminoglycans (SMIGs), in delayed-type hypersensitivity, TNBS-induced colitis and experimental autoimmune encephalomyelitis. Inflamm Res 2016; 65:285-94. [DOI: 10.1007/s00011-016-0915-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
|
23
|
Brummelman J, Helm K, Hamstra HJ, van der Ley P, Boog CJP, Han WGH, van Els CACM. Modulation of the CD4(+) T cell response after acellular pertussis vaccination in the presence of TLR4 ligation. Vaccine 2015; 33:1483-91. [PMID: 25659267 DOI: 10.1016/j.vaccine.2015.01.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 12/16/2014] [Accepted: 01/24/2015] [Indexed: 01/06/2023]
Abstract
Whole cell pertussis (wP) vaccines are gradually being replaced by aluminum salt-adjuvanted acellular pertussis (aP) vaccines. These promote CD4(+) T cell responses with a non-protective Th2 component, while protective immune mechanisms to B. pertussis may rather involve long-lived Th1/Th17 type CD4(+) T cells. Here we asked whether addition of a non-toxic meningococcal LPS derivative, LpxL1, as adjuvant can favorably modulate the aP-induced pertussis-specific CD4(+) T cell response in mice. To assess the effect of TLR4 ligation, Th type, quantity, and memory potential of pertussis-specific CD4(+) T cells were determined at the single-cell level after aP and aP+LpxL1 vaccination using intracellular cytokine staining and MHC class II tetramers. Adding LpxL1 to the aP vaccine weakened the Th2 component and strengthened the Th1/Th17 component of the specific CD4(+) T cell response. Notably, LpxL1 addition also induced higher frequencies of tetramer positive CD4(+) T cells in draining lymph nodes or blood, depending on the phase after vaccination. Moreover, there was a net profit in the number of CD4(+) T cells with a central memory phenotype, preferred for long-term immunity. Thus, adding a TLR4 ligand as adjuvant to a current aP vaccine was associated with a more favorable pertussis-specific CD4(+) T cell response.
Collapse
Affiliation(s)
- Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | - Kina Helm
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Hendrik-Jan Hamstra
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Peter van der Ley
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Claire J P Boog
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Wanda G H Han
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
24
|
Mahakapuge TA, Every AL, Scheerlinck JPY. Exploring local immune responses to vaccines using efferent lymphatic cannulation. Expert Rev Vaccines 2015; 14:579-88. [PMID: 25591728 DOI: 10.1586/14760584.2015.1002475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The early stages of the induction of a primary immune response to a vaccine can shape the overall quality of the immune memory generated and hence affect the success of the vaccine. This early interaction between a vaccine and the immune system occurs first at the site of vaccination and can be explored using afferent cannulation. Subsequently, the vaccine and adjuvant activates the local draining lymph node. These interactions can be studied in real time in vivo using efferent lymphatic duct cannulation in large animal models and are the subject of this review. Depending on how the vaccine is delivered, the draining lymph nodes of different organs can be accessed, facilitating the testing of tissue-specific vaccinations. The efferent lymphatic cannulation model provides an avenue to study the effect of both adjuvants and antigen on the local immune system, and hence opens a pathway toward developing more effective ways of inducing immunity.
Collapse
Affiliation(s)
- Thilini An Mahakapuge
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
25
|
Ladinig A, Gerner W, Saalmüller A, Lunney JK, Ashley C, Harding JCS. Changes in leukocyte subsets of pregnant gilts experimentally infected with porcine reproductive and respiratory syndrome virus and relationships with viral load and fetal outcome. Vet Res 2014; 45:128. [PMID: 25497114 PMCID: PMC4265508 DOI: 10.1186/s13567-014-0128-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 12/02/2014] [Indexed: 02/02/2023] Open
Abstract
In spite of more than two decades of extensive research, the understanding of porcine reproductive and respiratory syndrome virus (PRRSv) immunity is still incomplete. A PRRSv infection of the late term pregnant female can result in abortions, early farrowings, fetal death, and the birth of weak, congenitally infected piglets. The objectives of the present study were to investigate changes in peripheral blood mononuclear cell populations in third trimester pregnant females infected with type 2 PRRSv (NVSL 97–7895) and to analyze potential relationships with viral load and fetal mortality rate. PRRSv infection caused a massive, acute drop in total leukocyte counts affecting all PBMC populations by two days post infection. Except for B cells, cell counts started to rebound by day six post infection. Our data also show a greater decrease of naïve B cells, T-helper cells and cytolytic T cells than their respective effector or memory counterparts. Absolute numbers of T cells and γδ T cells were negatively associated with PRRSv RNA concentration in gilt serum over time. Additionally, absolute numbers of T helper cells may be predictive of fetal mortality rate. The preceding three leukocyte populations may therefore be predictive of PRRSv-related pathological outcomes in pregnant gilts. Although many questions regarding the immune responses remain unanswered, these findings provide insight and clues that may help reduce the impact of PRRSv in pregnant gilts.
Collapse
Affiliation(s)
- Andrea Ladinig
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | | | | | | | | |
Collapse
|
26
|
Textor J, Henrickson SE, Mandl JN, von Andrian UH, Westermann J, de Boer RJ, Beltman JB. Random migration and signal integration promote rapid and robust T cell recruitment. PLoS Comput Biol 2014; 10:e1003752. [PMID: 25102014 PMCID: PMC4125054 DOI: 10.1371/journal.pcbi.1003752] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/13/2014] [Indexed: 01/27/2023] Open
Abstract
To fight infections, rare T cells must quickly home to appropriate lymph nodes (LNs), and reliably localize the antigen (Ag) within them. The first challenge calls for rapid trafficking between LNs, whereas the second may require extensive search within each LN. Here we combine simulations and experimental data to investigate which features of random T cell migration within and between LNs allow meeting these two conflicting demands. Our model indicates that integrating signals from multiple random encounters with Ag-presenting cells permits reliable detection of even low-dose Ag, and predicts a kinetic feature of cognate T cell arrest in LNs that we confirm using intravital two-photon data. Furthermore, we obtain the most reliable retention if T cells transit through LNs stochastically, which may explain the long and widely distributed LN dwell times observed in vivo. Finally, we demonstrate that random migration, both between and within LNs, allows recruiting the majority of cognate precursors within a few days for various realistic infection scenarios. Thus, the combination of two-scale stochastic migration and signal integration is an efficient and robust strategy for T cell immune surveillance.
Collapse
Affiliation(s)
- Johannes Textor
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Sarah E. Henrickson
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Judith N. Mandl
- Lymphocyte Biology Section, National Insitutes of Health, Bethesda, Maryland, United States of America
| | - Ulrich H. von Andrian
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Rob J. de Boer
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Joost B. Beltman
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, The Netherlands
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Ganusov VV, Auerbach J. Mathematical modeling reveals kinetics of lymphocyte recirculation in the whole organism. PLoS Comput Biol 2014; 10:e1003586. [PMID: 24830705 PMCID: PMC4022467 DOI: 10.1371/journal.pcbi.1003586] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 03/12/2014] [Indexed: 12/20/2022] Open
Abstract
The kinetics of recirculation of naive lymphocytes in the body has important implications for the speed at which local infections are detected and controlled by immune responses. With a help of a novel mathematical model, we analyze experimental data on migration of 51Cr-labeled thoracic duct lymphocytes (TDLs) via major lymphoid and nonlymphoid tissues of rats in the absence of systemic antigenic stimulation. We show that at any point of time, 95% of lymphocytes in the blood travel via capillaries in the lung or sinusoids of the liver and only 5% migrate to secondary lymphoid tissues such as lymph nodes, Peyer's patches, or the spleen. Interestingly, our analysis suggests that lymphocytes travel via lung capillaries and liver sinusoids at an extremely rapid rate with the average residence time in these tissues being less than 1 minute. The model also predicts a relatively short average residence time of TDLs in the spleen (2.5 hours) and a longer average residence time of TDLs in major lymph nodes and Peyer's patches (10 hours). Surprisingly, we find that the average residence time of lymphocytes is similar in lymph nodes draining the skin (subcutaneous LNs) or the gut (mesenteric LNs) or in Peyer's patches. Applying our model to an additional dataset on lymphocyte migration via resting and antigen-stimulated lymph nodes we find that enlargement of antigen-stimulated lymph nodes occurs mainly due to increased entrance rate of TDLs into the nodes and not due to decreased exit rate as has been suggested in some studies. Taken together, our analysis for the first time provides a comprehensive, systems view of recirculation kinetics of thoracic duct lymphocytes in the whole organism.
Collapse
Affiliation(s)
- Vitaly V. Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- Department of Mathematics, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jeremy Auerbach
- Department of Mathematics, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
28
|
Visualization and dynamic analysis of host-pathogen interactions. Curr Opin Immunol 2014; 29:8-15. [PMID: 24705104 DOI: 10.1016/j.coi.2014.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 12/15/2022]
Abstract
To contain invading microbes, the immune system must efficiently recognize the presence of the invader, mobilize cells to the site of infection, and deploy effector function. Rare antigen-specific T cells must find small numbers of antigen-presenting cells, proliferate and differentiate in secondary lymphoid tissues, then traffic to the infected site and be activated by antigen again to contribute to host defense. Our understanding of the dynamic processes involved has benefited enormously from tools that enable the visualization of cell location and behavior in complex tissue environments. Here we summarize recent insights into T cell trafficking and migration through secondary lymphoid organs and at peripheral infection sites, highlighting cell-intrinsic and extrinsic factors optimizing antigen surveillance at steady-state and delivery of an effector response during infection.
Collapse
|
29
|
Bengtsson KL, Karlsson KH, Magnusson SE, Reimer JM, Stertman L. Matrix-M™ adjuvant: enhancing immune responses by ‘setting the stage’ for the antigen. Expert Rev Vaccines 2014; 12:821-3. [DOI: 10.1586/14760584.2013.814822] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Sung HC, Lemos S, Ribeiro-Santos P, Kozyrytska K, Vasseur F, Legrand A, Charbit A, Rocha B, Evaristo C. Cognate antigen stimulation generates potent CD8(+) inflammatory effector T cells. Front Immunol 2013; 4:452. [PMID: 24379814 PMCID: PMC3863990 DOI: 10.3389/fimmu.2013.00452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/28/2013] [Indexed: 11/13/2022] Open
Abstract
Inflammatory reactions are believed to be triggered by innate signals and have a major protective role by recruiting innate immunity cells, favoring lymphocyte activation and differentiation, and thus contributing to the sequestration and elimination of the injurious stimuli. Although certain lymphocyte types such as TH17 cells co-participate in inflammatory reactions, their generation from the naïve pool requires the pre-existence of an inflammatory milieu. In this context, inflammation is always regarded as beginning with an innate response that may be eventually perpetuated and amplified by certain lymphocyte types. In contrast, we here show that even in sterile immunizations or in MyD88-deficient mice, CD8 T cells produce a burst of pro-inflammatory cytokines and chemokines. These functions follow opposite rules to the classic CD8 effector functions since they are generated prior to cell expansion and decline before antigen elimination. As few as 56 CD8(+) inflammatory effector cells in a lymph node can mobilize 10(7) cells in 24 h, including lymphocytes, natural killer cells, and several accessory cell types involved in inflammatory reactions. Thus, although inflammation modulates cognate responses, CD8 cognate responses also initiate local inflammatory reactions.
Collapse
Affiliation(s)
- Hsueh-Cheng Sung
- Faculté de Médecine, U1020, Université Paris-Descartes, INSERM , Paris , France
| | - Sara Lemos
- Faculté de Médecine, U1020, Université Paris-Descartes, INSERM , Paris , France
| | | | - Kateryna Kozyrytska
- Faculté de Médecine, U1020, Université Paris-Descartes, INSERM , Paris , France
| | - Florence Vasseur
- Faculté de Médecine, U1020, Université Paris-Descartes, INSERM , Paris , France
| | - Agnès Legrand
- Faculté de Médecine, U1020, Université Paris-Descartes, INSERM , Paris , France
| | - Alain Charbit
- Faculté de Médecine, U1002, Université Paris-Descartes, INSERM , Paris , France
| | - Benedita Rocha
- Faculté de Médecine, U1020, Université Paris-Descartes, INSERM , Paris , France
| | - César Evaristo
- Faculté de Médecine, U1020, Université Paris-Descartes, INSERM , Paris , France
| |
Collapse
|
31
|
Ferguson PM, Slocombe A, Tilley RD, Hermans IF. Using magnetic resonance imaging to evaluate dendritic cell-based vaccination. PLoS One 2013; 8:e65318. [PMID: 23734246 PMCID: PMC3667033 DOI: 10.1371/journal.pone.0065318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 04/28/2013] [Indexed: 01/19/2023] Open
Abstract
Cancer immunotherapy with antigen-loaded dendritic cell-based vaccines can induce clinical responses in some patients, but further optimization is required to unlock the full potential of this strategy in the clinic. Optimization is dependent on being able to monitor the cellular events that take place once the dendritic cells have been injected in vivo, and to establish whether antigen-specific immune responses to the tumour have been induced. Here we describe the use of magnetic resonance imaging (MRI) as a simple, non-invasive approach to evaluate vaccine success. By loading the dendritic cells with highly magnetic iron nanoparticles it is possible to assess whether the injected cells drain to the lymph nodes. It is also possible to establish whether an antigen-specific response is initiated by assessing migration of successive rounds of antigen-loaded dendritic cells; in the face of a successfully primed cytotoxic response, the bulk of antigen-loaded cells are eradicated on-route to the node, whereas cells without antigen can reach the node unchecked. It is also possible to verify the induction of a vaccine-induced response by simply monitoring increases in draining lymph node size as a consequence of vaccine-induced lymphocyte trapping, which is an antigen-specific response that becomes more pronounced with repeated vaccination. Overall, these MRI techniques can provide useful early feedback on vaccination strategies, and could also be used in decision making to select responders from non-responders early in therapy.
Collapse
Affiliation(s)
| | - Angela Slocombe
- Department of Radiology, Wellington Hospital, Wellington, New Zealand
| | - Richard D. Tilley
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Ian F. Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
- * E-mail:
| |
Collapse
|
32
|
Masopust D, Schenkel JM. The integration of T cell migration, differentiation and function. Nat Rev Immunol 2013; 13:309-20. [PMID: 23598650 DOI: 10.1038/nri3442] [Citation(s) in RCA: 441] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
T cells function locally. Accordingly, T cells' recognition of antigen, their subsequent activation and differentiation, and their role in the processes of infection control, tumour eradication, autoimmunity, allergy and alloreactivity are intrinsically coupled with migration. Recent discoveries revise our understanding of the regulation and patterns of T cell trafficking and reveal limitations in current paradigms. Here, we review classic and emerging concepts, highlight the challenge of integrating new observations with existing T cell classification schemes and summarize the heuristic framework provided by viewing T cell differentiation and function first through the prism of migration.
Collapse
Affiliation(s)
- David Masopust
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
33
|
Yang CW, Unanue ER. Neutrophils control the magnitude and spread of the immune response in a thromboxane A2-mediated process. ACTA ACUST UNITED AC 2013; 210:375-87. [PMID: 23337807 PMCID: PMC3570104 DOI: 10.1084/jem.20122183] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neutrophil-produced thromboxane A2 controls the magnitude and spread of T cell responses to distal lymph nodes. Neutrophils are obligate cells entering lymph nodes shortly after immunization with protein antigens in adjuvants, starting during the first hour and continuing for several days in two distinct waves. Previously, we demonstrated the strong suppressive effects of neutrophils on CD4 T cell and B cell responses, using either neutrophil-depleting antibodies or genetically neutropenic mice. In this study, we find that neutrophils are the major cells controlling the spread of T cell responses to distal lymph nodes. Although in the presence of neutrophils, ∼75% of the response was restricted to the draining node, in their absence, most of the response was found in distal nodes. Prostanoids were responsible for the rapid entry of neutrophils into the draining nodes, as well as for the two distinct neutrophil effects: the modulation of the magnitude of the cellular response, and in its spread outside the draining nodes. Neutrophil-produced thromboxane A2 was the key eicosanoid controlling both effects. Adoptive transfer of neutrophils into mice genetically deficient in neutrophils indicated their role in both. These functions of neutrophils are important in infections and vaccinations with adjuvants where neutrophils are abundant in the initial stages.
Collapse
Affiliation(s)
- Chiao-Wen Yang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
34
|
Mueller SN, Gebhardt T, Carbone FR, Heath WR. Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 2012; 31:137-61. [PMID: 23215646 DOI: 10.1146/annurev-immunol-032712-095954] [Citation(s) in RCA: 606] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissues such as the skin and mucosae are frequently exposed to microbial pathogens. Infectious agents must be quickly and efficiently controlled by our immune system, but the low frequency of naive T cells specific for any one pathogen means dependence on primary responses initiated in draining lymph nodes, often allowing time for serious infection to develop. These responses imprint effectors with the capacity to home to infected tissues; this process, combined with inflammatory signals, ensures the effective targeting of primary immunity. Upon vaccination or previous pathogen exposure, increased pathogen-specific T cell numbers together with altered migratory patterns of memory T cells can greatly improve immune efficacy, ensuring infections are prevented or at least remain subclinical. Until recently, memory T cell populations were considered to comprise central memory T cells (TCM), which are restricted to the secondary lymphoid tissues and blood, and effector memory T cells (TEM), which broadly migrate between peripheral tissues, the blood, and the spleen. Here we review evidence for these two memory populations, highlight a relatively new player, the tissue-resident memory T cell (TRM), and emphasize the potential differences between the migratory patterns of CD4(+) and CD8(+) T cells. This new understanding raises important considerations for vaccine design and for the measurement of immune parameters critical to the control of infectious disease, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
35
|
Liersch R, Hirakawa S, Berdel WE, Mesters RM, Detmar M. Induced lymphatic sinus hyperplasia in sentinel lymph nodes by VEGF-C as the earliest premetastatic indicator. Int J Oncol 2012; 41:2073-8. [PMID: 23076721 PMCID: PMC3583645 DOI: 10.3892/ijo.2012.1665] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/17/2012] [Indexed: 12/12/2022] Open
Abstract
Research on tumor-induced lymphangiogenesis has predominantly focused on alterations and abnormal growth of peritumoral and intratumoral lymphatic vessels. However, recent evidence indicates that lymphangiogenesis of sentinel lymph nodes might also contribute to cancer progression. In clinical oncology, the sentinel lymph nodes play an important role in diagnosis, staging and management of disease. The prognostic value that may be placed in the analysis of various parameters in tumor-free lymph nodes is still under debate. We, therefore, chose to investigate genetically fluorescent MDA-MB-435/green fluorescent protein human cancer cells transfected to overexpress VEGF-C in a nude mouse model and investigated metastasis, lymph node lymphangiogenesis, lymph node angiogenesis and size of sentinel lymph nodes. The nature of MDA-MB-435, identified as a breast cancer cell line for several decades, has recently been reidentified as being from melanoma origin. Vascular endothelial growth factor-C overexpression induced early metastasis and significantly increased the lymphatic vessel area in sentinel lymph nodes even before the tumor metastasis. At early time-points, expansion of the lymphatic network was observed even though no difference of blood vessel area and lymph node size was detected. These results suggest that primary tumors -via secretion of VEGF-C- can induce hyperplasia of the sentinel lymph node lymphatic vessel network and thereby promote their further spread. In cases of tumor-free lymph nodes the increased lymphatic network of sentinel lymph nodes is a very early premetastatic sign and may provide a new prognostic indicator and target for aggressive diseases.
Collapse
Affiliation(s)
- Ruediger Liersch
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | | | | | |
Collapse
|
36
|
Bogle G, Dunbar PR. On-lattice simulation of T cell motility, chemotaxis, and trafficking in the lymph node paracortex. PLoS One 2012; 7:e45258. [PMID: 23028887 PMCID: PMC3447002 DOI: 10.1371/journal.pone.0045258] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/15/2012] [Indexed: 01/02/2023] Open
Abstract
Agent-based simulation is a powerful method for investigating the complex interplay of the processes occurring in a lymph node during an adaptive immune response. We have previously established an agent-based modeling framework for the interactions between T cells and dendritic cells within the paracortex of lymph nodes. This model simulates in three dimensions the “random-walk” T cell motility observed in vivo, so that cells interact in space and time as they process signals and commit to action such as proliferation. On-lattice treatment of cell motility allows large numbers of densely packed cells to be simulated, so that the low frequency of T cells capable of responding to a single antigen can be dealt with realistically. In this paper we build on this model by incorporating new numerical methods to address the crucial processes of T cell ingress and egress, and chemotaxis, within the lymph node. These methods enable simulation of the dramatic expansion and contraction of the T cell population in the lymph node paracortex during an immune response. They also provide a novel probabilistic method to simulate chemotaxis that will be generally useful in simulating other biological processes in which chemotaxis is an important feature.
Collapse
Affiliation(s)
- Gib Bogle
- Maurice Wilkins Centre, University of Auckland, Aukland, New Zealand.
| | | |
Collapse
|
37
|
Liersch R, Shin JW, Bayer M, Schwöppe C, Schliemann C, Berdel WE, Mesters R, Detmar M. Analysis of a novel highly metastatic melanoma cell line identifies osteopontin as a new lymphangiogenic factor. Int J Oncol 2012; 41:1455-63. [PMID: 22797548 PMCID: PMC3583651 DOI: 10.3892/ijo.2012.1548] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/30/2012] [Indexed: 12/15/2022] Open
Abstract
Tumor cell invasion and metastasis are hallmarks of malignancy. Despite recent advances in the understanding of lymphatic spread, the mechanisms by which tumors metastasize to sentinel/distant lymph nodes and beyond are poorly understood. To gain new insights into this complex process, we established highly metastatic melanoma cell lines by in vivo passaging the B16 parental cell line through the lymphatic system. In this study we characterized morphology, rate of cell proliferation, colony formation, migration, tumorigenicity, lymph flow, and capacities to induce tumor- and sentinel lymph node-lymphangiogenesis. Furthermore, microarray-based comparative analysis between parental and passaged cell lines was performed to identify specific gene expression profiles. The most differentially expressed gene was SPP (osteopontin), a secreted glycophosphoprotein which is known to be involved in cancer metastasis. Overexpression of osteopontin in B16 F1-variant was confirmed by western blot analysis and quantitative RT-PCR. Treatment of cultured lymphatic endothelial cells (LECs) with osteopontin promoted cell migration mediated by the integrin α9 pathway. Our results identify osteopontin as a novel lymphangiogenic factor.
Collapse
Affiliation(s)
- Ruediger Liersch
- Department of Medicine, Hematology and Oncology, University Hospital Muenster, D-48129 Muenster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The initiation of T-cell responses requires rare precursors to locate a draining lymph node (dLN) and encounter dendritic cells (DCs) presenting peptide-major histocompatibility complexes (pMHCs). To locate this needle in the haystack rapidly, T cells face an optimization problem-what is the most efficient trafficking strategy for surveillance and recirculation through blood? Two extremes are scanning low numbers of DCs per node with frequent recirculation, or meticulous surveillance with infrequent recirculation. Naive T cells also require stimulation by self-pMHCs. To enable efficient location of both foreign and self, has evolution settled on an optimum time for T cells to spend surveying each lymph node? Using a data-driven mathematical model, we show the most efficient strategy for detecting antigen in a dLN depends on its abundance. Detection of low-density antigen is optimized with systemically slow transit. In contrast, at high densities or if dLN egress is restricted, rapid transit through other nodes is optimal. We argue that blood-lymph recirculation dynamics facilitate a trade-off, and are consistent with dominant roles for the very early detection of rare foreign antigens in a dLN, and the efficient accumulation of signals from systemically distributed self-antigens.
Collapse
|
39
|
Tan KW, Yeo KP, Wong FHS, Lim HY, Khoo KL, Abastado JP, Angeli V. Expansion of cortical and medullary sinuses restrains lymph node hypertrophy during prolonged inflammation. THE JOURNAL OF IMMUNOLOGY 2012; 188:4065-80. [PMID: 22430738 DOI: 10.4049/jimmunol.1101854] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During inflammation, accumulation of immune cells in activated lymph nodes (LNs), coupled with a transient shutdown in lymphocyte exit, results in dramatic cellular expansion. Counter-regulatory measures to restrain LN expansion must exist and may include re-establishment of lymphocyte egress to steady-state levels. Indeed, we show in a murine model that egress of lymphocytes from LNs was returned to steady-state levels during prolonged inflammation following initial retention. This restoration in lymphocyte egress was supported by a preferential expansion of cortical and medullary sinuses during late inflammation. Cortical and medullary sinus remodeling during late inflammation was dependent on temporal and spatial changes in vascular endothelial growth factor-A distribution. Specifically, its expression was restricted to the subcapsular space of the LN during early inflammation, whereas its expression was concentrated in the paracortical and medullary regions of the LN at later stages. We next showed that this process was mostly driven by the synergistic cross-talk between fibroblastic reticular cells and interstitial flow. Our data shed new light on the biological significance of LN lymphangiogenesis during prolonged inflammation and further underscore the collaborative roles of stromal cells, immune cells, and interstitial flow in modulating LN plasticity and function.
Collapse
Affiliation(s)
- Kar Wai Tan
- Department of Microbiology, Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
40
|
Systems biology approaches for understanding cellular mechanisms of immunity in lymph nodes during infection. J Theor Biol 2011; 287:160-70. [PMID: 21798267 DOI: 10.1016/j.jtbi.2011.06.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 12/20/2022]
Abstract
Adaptive immunity is initiated in secondary lymphoid tissues when naive T cells recognize foreign antigen presented as MHC-bound peptide on the surface of dendritic cells. Only a small fraction of T cells in the naive repertoire will express T cell receptors specific for a given epitope, but antigen recognition triggers T cell activation and proliferation, thus greatly expanding antigen-specific clones. Expanded T cells can serve a helper function for B cell responses or traffic to sites of infection to secrete cytokines or kill infected cells. Over the past decade, two-photon microscopy of lymphoid tissues has shed important light on T cell development, antigen recognition, cell trafficking and effector functions. These data have enabled the development of sophisticated quantitative and computational models that, in turn, have been used to test hypotheses in silico that would otherwise be impossible or difficult to explore experimentally. Here, we review these models and their principal findings and highlight remaining questions where modeling approaches are poised to advance our understanding of complex immunological systems.
Collapse
|
41
|
Wee JLK, Greenwood DLV, Han X, Scheerlinck JPY. Inflammatory cytokines IL-6 and TNF-α regulate lymphocyte trafficking through the local lymph node. Vet Immunol Immunopathol 2011; 144:95-103. [PMID: 21839522 DOI: 10.1016/j.vetimm.2011.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/10/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
Abstract
Lymphocyte trafficking from blood to lymph and back is a tightly regulated process. Given appropriate stimuli, trafficking of cells through the lymph node changes from a 'steady-state' to a bimodal flow. Initially, a 'shutdown' phase occurs, leading to a dramatic reduction in efferent cell output. This is followed by a 'recruitment' phase whereby the efferent cell output becomes greatly elevated before returning to baseline levels. The shutdown/recruitment process is hypothesised to promote encounters between Ag-specific lymphocytes and APCs in an environment conducive to immune response induction. Cytokines, such as TNF-α have been shown to play an important role in regulating lymphocyte trafficking. Here, we unravel the role of cytokines in the regulation of cell trafficking using an in vivo sheep lymphatic cannulation model whereby the prefemoral lymph nodes were cannulated and recombinant cytokines were injected subcutaneously into the draining area of the cannulated node. We demonstrate that local injection of purified IL-6 or TNF-α stimulates shutdown/recruitment in the draining lymph node. While the effect of IL-6 appears to be direct, TNF-α may mediate shutdown/recruitment through IL-6.
Collapse
Affiliation(s)
- Janet L-K Wee
- Centre for Animal Biotechnology, Faculty of Veterinary Science, The University of Melbourne, Parkville, 3010 Victoria, Australia
| | | | | | | |
Collapse
|
42
|
Marino S, El-Kebir M, Kirschner D. A hybrid multi-compartment model of granuloma formation and T cell priming in tuberculosis. J Theor Biol 2011; 280:50-62. [PMID: 21443879 PMCID: PMC3740747 DOI: 10.1016/j.jtbi.2011.03.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 12/11/2022]
Abstract
Tuberculosis is a worldwide health problem with 2 billion people infected with Mycobacterium tuberculosis (Mtb, the bacteria causing TB). The hallmark of infection is the emergence of organized structures of immune cells forming primarily in the lung in response to infection. Granulomas physically contain and immunologically restrain bacteria that cannot be cleared. We have developed several models that spatially characterize the dynamics of the host-mycobacterial interaction, and identified mechanisms that control granuloma formation and development. In particular, we published several agent-based models (ABMs) of granuloma formation in TB that include many subtypes of T cell populations, macrophages as well as key cytokine and chemokine effector molecules. These ABM studies emphasize the important role of T-cell related mechanisms in infection progression, such as magnitude and timing of T cell recruitment, and macrophage activation. In these models, the priming and recruitment of T cells from the lung draining lymph node (LN) was captured phenomenologically. In addition to these ABM studies, we have also developed several multi-organ models using ODEs to examine trafficking of cells between, for example, the lung and LN. While we can predict temporal dynamic behaviors, those models are not coupled to the spatial aspects of granuloma. To this end, we have developed a multi-organ model that is hybrid: an ABM for the lung compartment and a non-linear system of ODE representing the lymph node compartment. This hybrid multi-organ approach to study TB granuloma formation in the lung and immune priming in the LN allows us to dissect protective mechanisms that cannot be achieved using the single compartment or multi-compartment ODE system. The main finding of this work is that trafficking of important cells known as antigen presenting cells from the lung to the lymph node is a key control mechanism for protective immunity: the entire spectrum of infection outcomes can be regulated by key immune cell migration rates. Our hybrid multi-organ implementation suggests that effector CD4+ T cells can rescue the system from a persistent infection and lead to clearance once a granuloma is fully formed. This could be effective as an immunotherapy strategy for latently infected individuals.
Collapse
Affiliation(s)
- Simeone Marino
- University of Michigan Medical School, Department of Microbiology and Immunology, 1150 West Medical Ctr Dr, 6730 MSB2, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
43
|
Bogle G, Dunbar PR. T cell responses in lymph nodes. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:107-116. [PMID: 20836014 DOI: 10.1002/wsbm.47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Activation of T cells by antigen-presenting cells (APCs) in lymph nodes (LNs) is a key initiating event in many immune responses. Our understanding of this process has been both improved and complicated in recent years by evidence from techniques such as intravital microscopy that has revealed new levels of dynamism in the interaction of T cells and APCs. In particular, the complex motility of T cells within LNs, and their serial interactions with many APCs, imply that earlier static models of T cell activation need to be updated. Here we review the first attempts to model T cell interactions with APCs in LNs that incorporate simulations of T cell motility, based on experimental observations. We show that lattice-based modeling approaches are the dominant trend in these models, and then chart a possible course for development of these models toward spatially-resolved models of immune responses within LNs.
Collapse
Affiliation(s)
- Gib Bogle
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
44
|
Brakenhoff LKPM, van der Heijde DM, Hommes DW, Huizinga TWJ, Fidder HH. The joint-gut axis in inflammatory bowel diseases. J Crohns Colitis 2010; 4:257-68. [PMID: 21122514 DOI: 10.1016/j.crohns.2009.11.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/12/2009] [Accepted: 11/12/2009] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases, Crohn's disease and ulcerative colitis, are associated with a variety of extraintestinal manifestations. The most common extraintestinal manifestation, articular involvement, occurs in 16% to 33% of inflammatory bowel disease patients. These arthropathies may increase morbidity, resulting in a worse quality of life compared with inflammatory bowel disease patients without arthropathies. Thus, arthropathies in inflammatory bowel diseases represent a major medical problem in these patients. Arthritis associated with inflammatory bowel diseases is one of the diseases captured under the umbrella of spondyloarthritis. Spondyloarthritis is a group of inflammatory diseases with overlapping features and is linked to Human Leukocyte Antigen-B27. Arthropathy in inflammatory bowel diseases is clinically divided into peripheral and axial involvement. Peripheral arthritis often flares with relapses of bowel disease resulting in a different treatment approach than axial arthritis in which the course is independent of inflammatory bowel disease activity. Definitions, prevalence, pathophysiology and treatment of the arthropathies commonly seen in inflammatory bowel diseases such as peripheral arthritis, dactylitis, enthesitis, arthralgia, sacroiliitis, inflammatory back pain and ankylosing spondylitis are summarized.
Collapse
Affiliation(s)
- Lianne K P M Brakenhoff
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
45
|
Liersch R, Biermann C, Mesters RM, Berdel WE. Lymphangiogenesis in cancer: current perspectives. Recent Results Cancer Res 2010; 180:115-35. [PMID: 20033381 DOI: 10.1007/978-3-540-78281-0_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although the lymphatic system has been initially described in the sixteenth century, basic research has been limited. Despite its importance for the maintenance of tissue fluid homeostasis and for the afferent immune response, research of the molecular mechanisms of lymphatic vessel formation and function has for a long time been hampered. One reason could be because of the difficulties of visibility due to the lack of lymphatic markers. But since the discovery of several molecules specifically expressed in lymphatic endothelial cells, a rediscovery of the lymphatic vasculature has taken place. New scientific insights has facilitated detailed analysis of the nature and organization of the lymphatic system in physiological and pathophysiological conditions, such as in chronic inflammation and metastatic cancer spread. Knowledge about the molecules that control lymphangiogenesis and tumor-associated lymphangiogenesis is now expanding, allowing better opportunities for the development of drugs interfering with the relevant signaling pathways. Advances in our understanding of the mechanisms have translated into a number of novel therapeutic studies.
Collapse
Affiliation(s)
- Rüediger Liersch
- Department of Medicine, Hematology/Oncology, University Hospital Münster, Albert-Schweitzer-str. 33, 48129, Münster, Germany.
| | | | | | | |
Collapse
|
46
|
Rush CM, Mitchell TJ, Garside P. A detailed characterisation of the distribution and presentation of DNA vaccine encoded antigen. Vaccine 2009; 28:1620-34. [PMID: 20035828 PMCID: PMC2824851 DOI: 10.1016/j.vaccine.2009.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 11/25/2022]
Abstract
The association between plasmid DNA distribution, the amount of Ag produced, Ag persistence and the identity and localisation of cells presenting DNA-encoded Ag all have important consequences for both quantitative and qualitative aspects of T cell responses induced by DNA vaccines. Using a variety of approaches to detect and quantify the uptake of injected DNA, and the production and presentation of DNA-encoded antigen, we report that injected DNA vaccines rapidly enter the peripheral blood from the injection site and also reach muscle-draining lymph nodes directly as free DNA. 24 h after plasmid injection, MHCII+CD11b+B220−CD11clow/− cells in the draining and distal LNs and spleen contain pDNA. Interestingly, we also observed pDNA+MHCIIlow/−CD11b+ within the bone marrow. Concomitantly, we detected Ag-containing/expressing cells at both the injection site and in draining lymph nodes. Three days after plasmid injection we detected rare pMHC+CD11c+ cells within secondary lymphoid tissue and simultaneously observed Ag-specific CD4+ T cell accumulation and blastogenesis in these tissues. Our results show that the events that determine the induction of DNA vaccine immune responses occur within days of DNA injection and that the response becomes systemic very rapidly, possibly with involvement from resident BM cells.
Collapse
Affiliation(s)
- Catherine M Rush
- Centre for Biophotonics, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor St, Glasgow G4 0NR, UK.
| | | | | |
Collapse
|
47
|
Agent-based simulation of T-cell activation and proliferation within a lymph node. Immunol Cell Biol 2009; 88:172-9. [PMID: 19884904 DOI: 10.1038/icb.2009.78] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent intravital microscopy experiments have revealed the complex behavior of T cells within lymph nodes. Modeling T-cell responses in lymph nodes now requires integration of cell trafficking and motility with the molecular processes involved in T-cell activation. We describe an agent-based model that allows such integration, in which T cells undertake a random walk through a three-dimensional representation of the lymph node paracortex, integrating signals from dendritic cells (DCs), and proliferating in response. The model accommodates simulation of a large number of T cells packed at realistic densities, and includes dynamic cell trafficking that allows the lymph nodes to swell and shrink as the immune response progresses. The results from the model, including the kinetics of cognate T-cell proliferation and release, and the changes in their avidity profile, are similar to those observed in vivo. We therefore propose that this modeling framework is capable of successfully simulating T-cell activation while also accounting for new spatiotemporal knowledge of how T cells and DCs interact. Although some of the parameters used to drive the model are not yet experimentally validated, the model is capable of testing the effects of alternative values for any parameter on the T-cell response. We intend to refine each aspect of the model in collaboration with both theoreticians and experimentalists.
Collapse
|
48
|
Investigating the immunologic effects of CoCr nanoparticles. Clin Orthop Relat Res 2009; 467:3010-6. [PMID: 19565304 PMCID: PMC2758989 DOI: 10.1007/s11999-009-0949-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 06/10/2009] [Indexed: 01/31/2023]
Abstract
The increase in metal-on-metal hip arthroplasties has led to concern regarding the effect of raised serum and tissue metal ion levels. Our aim was to determine changes in the integrity and function of cells of the immune system after exposure to CoCr nanoparticles in specific cell culture experiments. Nanometer-sized particles of CoCr were made from a manufacturer's forged CoCr used for metal-on-metal articulations. Primary, murine dendritic cells and T and B lymphocytes then were exposed to these CoCr particles under cell culture conditions and then assayed for viability and proliferation/activation. CoCr nanoparticles did not directly activate dendritic cells or regulate B cells. Although nanoparticles were not directly toxic to resting T cells, Signals 1- and 2-dependent T cell proliferation were reduced. This may explain the observed reduction in CD8+ T cells observed in patients with metal-on-metal implants.
Collapse
|
49
|
Chen Q, Appenheimer MM, Muhitch JB, Fisher DT, Clancy KA, Miecznikowski JC, Wang WC, Evans SS. Thermal facilitation of lymphocyte trafficking involves temporal induction of intravascular ICAM-1. Microcirculation 2008; 16:143-158. [PMID: 19031292 DOI: 10.1080/10739680802353850] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Fever is associated with improved survival, although its beneficial mechanisms are poorly understood. Previous studies indicate that the thermal element of fever augments lymphocyte migration across high endothelial venules (HEVs) of lymphoid organs by increasing the intravascular display of a gatekeeper trafficking molecule, intercellular adhesion molecule-1 (ICAM-1). Here, we evaluated the spatio-temporal relationship between the thermal induction of intravascular ICAM-1 and lymphocyte trafficking. METHODS Intravascular ICAM-1 density was quantified by immunofluorescence staining in mice exposed to fever-range whole-body hyperthermia (39.5+/-0.5 degrees C). ICAM-1-dependent lymphocyte trafficking was measured in short-term homing assays. RESULTS A linear relationship was observed between the duration of heat treatment and intravascular ICAM-1 density in HEVs with maximal responses requiring sustained (i.e., five hours) thermal stress. Circulating lymphocytes were found to sense incremental changes in ICAM-1 on HEVs, such that trafficking is proportional to the intravascular density of ICAM-1. We further identified a hydroxamate-sensitive shedding mechanism that restores ICAM-1 expression to homeostatic levels following the cessation of thermal stress. CONCLUSIONS The time-dependent response to thermal stress indicates that ICAM-1 density governs the efficiency of lymphocyte interactions with HEVs in vivo. These studies highlight the dynamic role of the microcirculation in promoting immune surveillance during febrile inflammatory responses.
Collapse
Affiliation(s)
- Qing Chen
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | - Jason B Muhitch
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Daniel T Fisher
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kristen A Clancy
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | - Wan-Chao Wang
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Sharon S Evans
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
50
|
Allenspach EJ, Lemos MP, Porrett PM, Turka LA, Laufer TM. Migratory and lymphoid-resident dendritic cells cooperate to efficiently prime naive CD4 T cells. Immunity 2008; 29:795-806. [PMID: 18951047 DOI: 10.1016/j.immuni.2008.08.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/31/2008] [Accepted: 08/19/2008] [Indexed: 01/01/2023]
Abstract
To initiate an adaptive immune response, rare antigen-specific naive CD4(+) T cells must interact with equally rare dendritic cells (DCs) bearing cognate peptide-major histocompatibility complex (MHC) complexes. Lymph nodes (LNs) draining the site of antigen entry are populated by lymphoid-resident DCs as well as DCs that have immigrated from tissues, although the requirement for each population in initiating the T cell response remains unclear. Here, we show that antigen processing and presentation by both lymphoid-resident and migratory DCs was required for clonal selection and expansion of CD4(+) T cells after subcutaneous immunization. Early antigen presentation by lymphoid-resident DCs initiated activation and trapping of antigen-specific T cells in the draining LN, without sufficing for clonal expansion. Migratory DCs, however, interacted with the CD4(+) T cells retained in the LN to induce proliferation. Therefore, distinct DC subsets cooperate to alert and trap the appropriate cell and then license its expansion and differentiation.
Collapse
Affiliation(s)
- Eric J Allenspach
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|