1
|
Azimifar MA, Hashemi M, Babaei N, Salmasi Z, Doosti A. Interleukin gene delivery for cancer gene therapy: In vitro and in vivo studies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:128-136. [PMID: 36742134 PMCID: PMC9869882 DOI: 10.22038/ijbms.2022.66890.14668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023]
Abstract
Cytokine-mediated cancer therapy has the potential to enhance immunotherapeutic approaches and cancer elimination plans through the endowing of the immune system by providing improved anticancer immunity. Despite the encouraging pioneer studies on interleukins (ILs), the influence of ILs-originated therapeutics is still restricted by a class of potent immunoregulatory cytokines, systemic dose-limiting toxicities, ILs pleiotropy, and administration issues. During previous years, the area of transferring genes encoding immunostimulatory ILs was fundamentally widened to overcome these challenges and expedite ILs-based tumor regression. Numerous viral and non-viral delivery systems are currently available to act as crucial elements of the gene therapy toolbox. Moreover, cell-based cancer therapies are recruiting MSCs in the role of versatile gene delivery platforms to design one of the promising therapeutic approaches. These formulated gene carrier systems can provide possible alternatives to diminish dose-limiting adverse effects, promote administration, and enhance the therapeutic activity of ILs-derived treatment modalities in cancer treatment. This review provides a discussion on the advances of ILs gene delivery systems while focusing on the developing platforms in preclinical cancer immunogene therapy studies.
Collapse
Affiliation(s)
- Mohammad Amin Azimifar
- Department of Cell Molecular Biology, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nahid Babaei
- Department of Cell Molecular Biology, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
2
|
Norville K, Skrombolas D, Ferry SL, Kearns N, Frelinger JG. A Protease Activatable Interleukin-2 Fusion Protein Engenders Antitumor Immune Responses by Interferon Gamma-Dependent and Interferon Gamma-Independent Mechanisms. J Interferon Cytokine Res 2022; 42:316-328. [PMID: 35834651 DOI: 10.1089/jir.2022.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytokines are powerful mediators of immune responses and some, such as interleukin-2 (IL-2), have achieved dramatic responses as cancer immunotherapies. Unfortunately, systemic administration often results in deleterious side effects, prompting exploration of strategies to localize cytokine activity to the tumor microenvironment (TME). To this end, we constructed an IL-2/IL2Ra fusion protein (IL-2FP) with an MMP2/9-specific cleavage site, designed to exploit the dysregulated protease activity in the TME to selectively activate IL-2 in the tumor. To determine if TME protease activity is sufficient to cleave the FP and if FP activity is due to specific cleavage, we created Colon 38 tumor cell lines expressing similar levels of IL-2FPs with either a functional cleavage site [H11(cs-1FP)] or a scrambled, noncleavable sequence [H2(scramFP)]. H11(cs-1FP) tumors demonstrated reduced tumor growth, characterized by regressions not observed in H2(scramFP) tumors. Analysis through qRT-PCR, flow cytometry, and immunohistochemistry indicate robust CD8 responses in the H11(cs-1FP) tumors. Interferon gamma (IFNg) knockout mice revealed that the immune effects of the cleavable FP are mediated through both IFNg-dependent and IFNg-independent mechanisms. Collectively, these data suggest that matrix metalloproteinases (MMPs) in the TME can cleave the IL-2FP specifically, thus enhancing an antitumor response, and provide a rationale for further developing this approach.
Collapse
Affiliation(s)
- Karli Norville
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Denise Skrombolas
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Shannon L Ferry
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Nolan Kearns
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - John G Frelinger
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
3
|
Genetically engineered mesenchymal stem cells: targeted delivery of immunomodulatory agents for tumor eradication. Cancer Gene Ther 2020; 27:854-868. [PMID: 32418986 DOI: 10.1038/s41417-020-0179-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
Abstract
Cancer immunotherapy emerged as a novel therapeutic option that employs enhanced or amended native immune system to create a robust response against malignant cells. The systemic therapies with immune-stimulating cytokines have resulted in substantial dose-limiting toxicities. Targeted cytokine immunotherapy is being explored to overcome the heterogeneity of malignant cells and tumor cell defense with a remarkable reduction of systemic side effects. Cell-based strategies, such as dendritic cells (DCs), fibroblasts or mesenchymal stem cells (MSCs) seek to minimize the numerous toxic side effects of systemic administration of cytokines for extended periods of time. The usual toxicities comprised of a vascular leak, hypotension, and respiratory insufficiency. Natural and strong tropism of MSCs toward malignant cells made them an ideal systemic delivery vehicle to direct the proposed therapeutic genes to the vicinity of a tumor where their expression could evoke an immune reaction against the tumor. Compared with other methods, the delivery of cytokines via engineered MSCs is safer and renders a more practical, and promising strategy. Large numbers of genes code for cytokines have been utilized to reengineer MSCs as therapeutic cells. This review highlights the recent findings on the cytokine gene therapy for human malignancies by focusing on MSCs application in cancer immunotherapy.
Collapse
|
4
|
Skrombolas D, Sullivan M, Frelinger JG. Development of an Interleukin-12 Fusion Protein That Is Activated by Cleavage with Matrix Metalloproteinase 9. J Interferon Cytokine Res 2019; 39:233-245. [PMID: 30848689 DOI: 10.1089/jir.2018.0129] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interleukin-12 (IL-12) is a pleiotropic cytokine that has profound effects on many aspects of cell-mediated responses and can enhance antitumor responses in experimental models. IL-12 has been tested clinically, however, side-effects have limited its use. We are developing an attenuated form of IL-12 whose biological activity could be restricted to sites of tumors by taking advantage of overexpressed tumor proteases that can activate the cytokine. We constructed a panel of fusion proteins (FPs) consisting of IL-12 joined to a specific inhibitor connected by a protease cleavage sequence (cs). We first identified a panel of single-chain Fragment variable (scFv) that bind to 3 independent epitopes on IL-12 and then incorporated them into separate IL-12 FPs containing either a matrix metalloproteinase (MMP) cs or a scrambled (scram) control cs. The intact IL-12 FPs showed attenuation in IL-12 activity compared to free IL-12 in 2 separate in vitro functional assays; proliferation of CTLL-2 and interferon-gamma (IFN-γ) induction by spleen cells. Furthermore, the FP containing the MMPcs showed an increase in biological activity of IL-12 in vitro when cleaved by MMP9. This FP strategy could be applied to other immunomodulators and potentially reduce unwanted side-effects observed with systemic delivery thus improving cytokine immunotherapy strategies.
Collapse
Affiliation(s)
- Denise Skrombolas
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Mark Sullivan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - John G Frelinger
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
5
|
Wen Z, Liu F, Chen Q, Xu Y, Li H, Sun S. Recent development in biodegradable nanovehicle delivery system-assisted immunotherapy. Biomater Sci 2019; 7:4414-4443. [DOI: 10.1039/c9bm00961b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A schematic illustration of BNDS biodegradation and release antigen delivery for assisting immunotherapy.
Collapse
Affiliation(s)
- Zhenfu Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Ganjingzi District
- P. R. China
| | | | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| |
Collapse
|
6
|
|
7
|
Abstract
The identification of critical genes that encode for regulatory proteins has helped elucidate the molecular mechanisms that govern cell proliferation and malignant transformation. Several approaches to gene therapy for cancer have been described. These include the use of fibroblasts expressing suicide genes, restoration of expression of tumor suppressor genes, cytokine gene therapy, genetic modification of T lymphocytes, and protection of normal hemopoiesis in cancer patients. Clinical trials are underway in all these areas.
Collapse
Affiliation(s)
- Julie Y. Djeu
- Immunology Program at H. Lee Moffitt Cancer Center & Research Institute, Tampa, Fla
| |
Collapse
|
8
|
Lotze MT. Transplantation and Adoptive Cellular Therapy of Cancer: The Role of T-Cell Growth Factors. Cell Transplant 2017. [DOI: 10.1177/096368979300200106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ability to transfer cultured lymphocytes required the availability and the understanding of the use of the T-cell growth factors IL-2, IL-4, IL-7, and IL-12. Application of these cytokines in vitro and in vivo has allowed the modern development of adoptive transfer of tumor reactive lymphocytes to the modern immunotherapy of patients with cancer. In a randomized prospective study of IL-2 administration compared with IL-2 and lymphokine-activated killer (LAK) cells, no increase in response rate was observed. In a total of 90 patients randomized to receive LAK and IL-2 and 91 patients randomized to receive IL-2 alone, there were a total of 24 responses in patients receiving cells and IL-2 and 16 responses in those receiving IL-2 alone (no significant difference). There was some suggestion that complete responses were observed more often in melanoma patients treated with LAK and IL-2. The most interesting aspect of this study is the prolonged duration of responses, lasting for many months or years. Unfortunately, given the large numbers of variables that were examined, it became very difficult to demonstrate a clear-cut association between clinical outcome (response) and any variable that was routinely measured. Significant antitumor responses have been observed greater than expected with IL-2 alone, with the administration of tumor-infiltrating lymphocytes to patients with melanoma. We currently use hollow fiber devices (Cellco, Germantown, MD) to expand cells up through the many doublings required to generate approximately 1-2 × 1011 cells over a period of 6 wk in culture. In a recent review of the results in patients with melanoma treated on such regimens in combination with high-dose IL-2, an approximately 20-50% response rate has been observed. The factors associated with response are still unclear. Although we initially felt that it was associated with specific lysis, subsequent studies from our group suggest that the relevant factor is specific cytokine (INF-γ, GM-CSF, TNF) production upon tumor stimulation. Additional studies will need to be done to clarify these issues.
Collapse
Affiliation(s)
- Michael T. Lotze
- Department of Surgery, University of Pittsburgh Medical Center and the Pittsburgh Cancer Institute, Pittsburgh, PA 15261, USA
| |
Collapse
|
9
|
Skrombolas D, Frelinger JG. Challenges and developing solutions for increasing the benefits of IL-2 treatment in tumor therapy. Expert Rev Clin Immunol 2014; 10:207-17. [PMID: 24410537 DOI: 10.1586/1744666x.2014.875856] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Interleukin-2 (IL-2) is a cytokine with pleiotropic effects on the immune system. Systemic IL-2 treatment has produced durable responses in melanoma and renal cancer patients, but unfortunately this is effective only in a fraction of patients. Moreover, IL-2 treatment also engenders serious side effects, which limit its clinical utility. It is now appreciated that IL-2 not only stimulates NK and effector T cells but also has a critical role in the generation and maintenance of regulatory T cells, which act to dampen immune responses. Thus, successful immunotherapy of cancers using IL-2 has to address two fundamentally important issues: (1) how to limit side effects yet be active where it is needed, and (2) how to preferentially activate effector T cells while limiting the stimulation of Tregs. Strategies are now being developed to address these critical obstacles that may lead to a renaissance of IL-2 therapy.
Collapse
Affiliation(s)
- Denise Skrombolas
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY14642, USA
| | | |
Collapse
|
10
|
Zarogoulidis P, Darwiche K, Hohenforst-Schmidt W, Huang H, Li Q, Freitag L, Zarogoulidis K. Inhaled gene therapy in lung cancer: proof-of-concept for nano-oncology and nanobiotechnology in the management of lung cancer. Future Oncol 2013; 9:1171-94. [PMID: 23902248 DOI: 10.2217/fon.13.67] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Lung cancer still remains one of the leading causes of death among cancer patients. Although novel targeted therapies have been established in everyday treatment practice, and conventional platinum-based doublets have demonstrated effective results regarding overall and progression-free survival, we have still failed to achieve long-term survival. Therefore, several strategies of applying locoregional therapy are under investigation. Aerosol chemotherapy is already under investigation and, taking this a step further, aerosol gene therapies with multiple delivery systems are being developed. Several efforts have demonstrated its efficiency and effectiveness, but there are still multiple factors that have to be considered and combined to achieve an overall more effective multifunctional treatment. In the current review, we present data regarding aerosol delivery systems, transporters, carriers, vectors, genes, toxicity, efficiency, specificity, lung microenvironment and delivery gene therapy systems. Finally, we present current studies and future perspectives.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
11
|
Iwami KI, Natsume A, Wakabayashi T. Gene therapy for high-grade glioma. Neurol Med Chir (Tokyo) 2013; 50:727-36. [PMID: 20885107 DOI: 10.2176/nmc.50.727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-grade glioma is the most frequently occurring primary brain tumor and is associated with a poor prognosis. Current treatment regimens have had only a modest effect on the progressive course despite recent advances in surgery, radiotherapy, and chemotherapy. Gene therapy for brain tumors represents a novel and promising therapeutic approach and has been investigated clinically for the last two decades. The strategies of gene therapy include suicide gene therapy, immune gene therapy, oncolytic viral therapy, tumor suppressor gene therapy, and antisense therapy. Here, we review gene therapy approaches considering the clinical results, limitations, and future directions.
Collapse
Affiliation(s)
- Ken-ichiro Iwami
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Nagoya, Japan
| | | | | |
Collapse
|
12
|
Zhao H, Wu F, Cai Y, Chen Y, Wei L, Liu Z, Yuan W. Local antitumor effects of intratumoral delivery of rlL-2 loaded sustained-release dextran/PLGA-PLA core/shell microspheres. Int J Pharm 2013; 450:235-40. [PMID: 23624084 DOI: 10.1016/j.ijpharm.2013.04.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/25/2013] [Accepted: 04/09/2013] [Indexed: 12/13/2022]
Abstract
In this study, we formulated a rIL-2 loaded sustained-release dextran/PLGA-PLA core/shell microsphere, mimicking the paracrine mechanisms of cytokine action, to investigate its local antitumor efficacy. The presented microspheres were formed in two steps: rIL-2 was firstly loaded into dextran particles to keep its bioactivity by a unique method of stabilizing aqueous-aqueous "emulsion"; subsequently, the particles were encapsulated into poly(dl-lactide-co-glycolide)/polylactic acid (PLGA/PLA). A stable sustained release behavior in vitro was achieved for a period of about 25 days. In the subcutaneous colon carcinoma BALB/c mice models, a single dose of microspheres was introtumorally administrated and compared with multiple doses of rIL-2 solution to investigate the long acting effect of microspheres on tumor. The animal experiments showed the local efficacy at tumor site mediated by rIL-2 from a single dose of microspheres was better than that of multiple rIL-2 solution injections. Based on the experimental results, we conclude that rlL-2 loaded sustained-release dextran/PLGA-PLA core/shell microspheres represent a promising approach for local cancer treatment in animals.
Collapse
Affiliation(s)
- Haiping Zhao
- Department of Neurology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai 200092, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Flörcken A, Kopp J, van Lessen A, Movassaghi K, Takvorian A, Jöhrens K, Möbs M, Schönemann C, Sawitzki B, Egerer K, Dörken B, Pezzutto A, Westermann J. Allogeneic partially HLA-matched dendritic cells pulsed with autologous tumor cell lysate as a vaccine in metastatic renal cell cancer: a clinical phase I/II study. Hum Vaccin Immunother 2013; 9:1217-27. [PMID: 23458999 DOI: 10.4161/hv.24149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Multi-kinase inhibitors have been established for the treatment of advanced renal cell cancer, but long-term results are still disappointing and immunotherapeutic approaches remain an interesting experimental option particularly in patients with a low tumor burden. DC are crucial for antigen-specific MHC-restricted T cell immunity. Furthermore, allogeneic HLA-molecules pose a strong immunogenic signal and may help to induce tumor-specific T cell responses. In this phase I/II trial, 7 patients with histologically confirmed progressive metastatic RCC were immunized repetitively with 1 × 10 (7) allogeneic partially HLA-matched DC pulsed with autologous tumor lysate following a schedule of 8 vaccinations over 20 weeks. Patients also received 3 Mio IE IL-2 s.c. once daily starting in week 4. Primary endpoints of the study were feasibility and safety. Secondary endpoints were immunological and clinical responses. Vaccination was feasible and safe with no severe toxicity being observed. No objective response could be documented. However, while all patients had documented progress at study entry, 29% of the patients showed SD throughout the study with a mean TTP of 24.6 weeks (range 5 to 96 weeks). In 3/7 patients, TH1-polarized immune responses against RCC-associated antigens were observed. In one patient showing a minimal clinical response and a TTP of 96 weeks, clonally proliferated T cells against yet undefined antigens were induced by the vaccine. Vaccination with tumor antigen loaded DC remains an interesting experimental approach, but should rather be applied in the situation of minimal residual disease after systemic therapy. Additional depletion of regulatory cells might be a promising strategy.
Collapse
Affiliation(s)
- Anne Flörcken
- Department of Hematology; Oncology, and Tumor Immunology; Charité University Medicine Berlin; Campus Virchow- Klinikum; Berlin, Germany; Department of Hematology; Oncology, and Tumor Immunology; Charité University Medicine Berlin; Campus Benjamin Franklin; Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Acute Leukaemia. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03259522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Abstract
The description of a cell-free soluble anti-tumour factor by Carswell et al. in 1975 (Proc Natl Acad Sci USA, 72: 3666–3670) was followed by a long series of experimental and clinical investigations into the role of cell-free mediators in cancer immunotherapy. These investigations included research on the effects of macrophage–derived eicosanoids (cycloxygenase and lipoxygenase derivates of arachidonic acid) and of monokines such as tumour necrosis factor-α, interleukin-1 and granulocyte–monocyte–macrophage–colony stimulating factor) and of lymphocyte products: interleukins and interferons. The investigations yielded information on the effects of various factors on macrophage and T-cell activation in vitro, determination of direct anti-tumour properties on animal and human tumour cells in vitro and on therapeutic effectiveness in tumour-bearing individuals either alone or in combination with other therapeutic factors and their production by tumour cells. During recent years much effort has been dedicated towards the use of the tumour cells transfected with cytokine genes in the preparation of cancer vaccines. Cycloxygenase products (prostaglandins) were usually assumed to inhibit expression of anti-tumour activity by macrophages and an increase in their production in cancer patients was considered as a poor prognostic index. Lipoxygenase (leukotrienes) products were assumed to exhibit antitumour activity and to induce production of IL-1 by macrophages. Interleukins 2, 4, 6, 7, 12 and the interferons were extensively tested for their therapeutic effectiveness in experimental tumour models and in cancer clinical trials. The general conclusion on the use of cell-free mediators for cancer immunotherapy is that much still has to be done in order to assure effective and reproducible therapeutic effectiveness for routine use in the treatment of human neoplasia.
Collapse
Affiliation(s)
- S Ben-Efraim
- Department of Human Microbiology Sackler Faculty of Medicine Tel-Aviv University Tel-Aviv 69978 Israel
| |
Collapse
|
16
|
|
17
|
Abstract
Devitalized tumor cells either autologous or allogeneic have been used as anti-cancer vaccines with the purpose of facilitating the induction of an immune response able to destroy growing tumor cells since the identification of tumor antigens was deemed not to be necessary, particularly in the autologous system. Such vaccines were tested first in animal models and then in the clinics as unmodified tumor cells or after insertion of genes coding for factors known to increase the immune response against tumors. These vaccines were usually given by subcutaneous injections along with different immunological adjuvants. Such immunization approaches were found to be effective in mice when carried out in a tumor preventive setting but significantly less in the therapeutic context, that is, in the presence of an established tumor. By analyzing several clinical trials of vaccination using either autologous or allogeneic unmodified and gene-modified tumor cells published in the last 10 to 15 years, we conclude for a lack of sufficient evidence for efficacy of this strategy in inducing both a strong immune response and a therapeutic response. A potential variant of this strategy is the direct intratumoral injection of immunostimulatory genes delivered by vectors in vivo. But even this approach failed to provide a statistically significant clinical benefit for the cancer patients.We also point out the inherent drawbacks of the tumor cell-based vaccine strategy that include (a) a limited frequency by which human tumor lines can be obtained from clinical samples, (b) the low number of available cells for vaccination, (c) the release of immune-suppressive factors by tumor cells, and (d) the cost and time necessary for standardization and collecting/expanding a number of cells according to the approved regulatory requirements. Thus, taking into consideration the new developments in cancer vaccines, we believe that tumor cell-based vaccines should be dismissed as anti-cancer vaccines unless a clear benefit could be demonstrated by the few ongoing trials of combination with new immunomodulating reagents (eg, anti-CTLA4, PD-1, chemotherapy).
Collapse
|
18
|
Attenello F, Raza SM, Dimeco F, Olivi A. Chemotherapy for brain tumors with polymer drug delivery. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:339-53. [PMID: 22230452 DOI: 10.1016/b978-0-444-52138-5.00022-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Frank Attenello
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | | | | |
Collapse
|
19
|
Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin Dev Immunol 2011; 2011:732413. [PMID: 22190972 PMCID: PMC3235820 DOI: 10.1155/2011/732413] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/24/2011] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite intensive treatment, the prognosis for patients with GBM remains grim with a median survival of only 14.6 months. Immunotherapy has emerged as a promising approach for treating many cancers and affords the advantages of cellular-level specificity and the potential to generate durable immune surveillance. The complexity of the tumor microenvironment poses a significant challenge to the development of immunotherapy for GBM, as multiple signaling pathways, cytokines, and cell types are intricately coordinated to generate an immunosuppressive milieu. The development of new immunotherapy approaches frequently uncovers new mechanisms of tumor-mediated immunosuppression. In this review, we discuss many of the current approaches to immunotherapy and focus on the challenges presented by the tumor microenvironment.
Collapse
|
20
|
Naik JD, Twelves CJ, Selby PJ, Vile RG, Chester JD. Immune recruitment and therapeutic synergy: keys to optimizing oncolytic viral therapy? Clin Cancer Res 2011; 17:4214-24. [PMID: 21576084 DOI: 10.1158/1078-0432.ccr-10-2848] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oncolytic viruses consist of a diverse range of DNA and RNA viruses traditionally thought to mediate their effects by exploiting aberrations in tumor pathways, allowing preferential viral replication in, and killing of, tumor cells. Clinical development has progressed to late-phase trials, potentially heralding their introduction into clinical practice. However, despite this promise, the activity of oncolytic viruses has yet to achieve the potential suggested in preclinical models. To address this disparity, we need to recognize the complex interaction among oncolytic viruses, tumor, chemotherapy, and host immune system, and appreciate that direct oncolysis may not be the only factor to play an important role in oncolytic virus-mediated antitumor efficacy. Although key in inactivating viruses, the host immune system can also act as an ally against tumors, interacting with oncolytic viruses under the right conditions to generate useful and long-lasting antitumor immunity. Preclinical data also suggest that oncolytic viruses show synergy with standard therapies, which may offer improved clinical response rates. Here, we explore clinical and preclinical data on clinically relevant oncolytic viruses, highlighting areas of progress, uncertainty, and translational opportunity, with respect to immune recruitment and therapeutic synergy.
Collapse
Affiliation(s)
- Jay D Naik
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK.
| | | | | | | | | |
Collapse
|
21
|
Schwenter F, Zarei S, Luy P, Padrun V, Bouche N, Lee JS, Mulligan RC, Morel P, Mach N. Cell encapsulation technology as a novel strategy for human anti-tumor immunotherapy. Cancer Gene Ther 2011; 18:553-62. [PMID: 21566667 DOI: 10.1038/cgt.2011.22] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjuvant in autologous cell-based anti-tumor immunotherapy has recently been approved for clinical application. To avoid the need for individualized processing of autologous cells, we developed a novel strategy based on the encapsulation of GM-CSF-secreting human allogeneic cells. GM-CSF-producing K562 cells showed high, stable and reproducible cytokine secretion when enclosed into macrocapsules. For clinical development, the cryopreservation of these devices is critical. Thawing of capsules frozen at different time points displayed differences in GM-CSF release shortly after thawing. However, similar secretion values to those of non-frozen control capsules were obtained 8 days after thawing at a rate of >1000 ng GM-CSF per capsule every 24 h. For future human application, longer and reinforced capsules were designed. After irradiation and cryopreservation, these capsules produced >300 ng GM-CSF per capsule every 24 h 1 week after thawing. The in vivo implantation of encapsulated K562 cells was evaluated in mice and showed preserved cell survival. Finally, as a proof of principle of biological activity, capsules containing B16-GM-CSF allogeneic cells implanted in mice induced a prompt inflammatory reaction. The ability to reliably achieve high adjuvant release using a standardized procedure may lead to a new clinical application of GM-CSF in cell-based cancer immunization.
Collapse
Affiliation(s)
- F Schwenter
- Department of Oncology, Geneva University Hospital and Medical School, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Puskas J, Skrombolas D, Sedlacek A, Lord E, Sullivan M, Frelinger J. Development of an attenuated interleukin-2 fusion protein that can be activated by tumour-expressed proteases. Immunology 2011; 133:206-20. [PMID: 21426339 DOI: 10.1111/j.1365-2567.2011.03428.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The ability to alter the cytokine microenvironment has the potential to shape immune responses in many physiological settings, including the immunotherapy of tumours. We set out to develop a general approach in which cytokines could be functionally attenuated until activated. We report the development and initial characterization of fusion proteins in which human or mouse interleukin-2 (IL-2), a potent growth factor for immune cells, is joined to a specific IL-2 inhibitory binding component separated by a protease site. The rationale is that upon cleavage by a protease the cytokine is free to dissociate from the inhibitory component and becomes biologically more available. We describe the successful development of two attenuation strategies using specific binding: the first uses the mouse IL-2 receptor alpha chain as the inhibitory binding component whereas the second employs a human antibody fragment (scFv) reactive with human IL-2. We demonstrated that the fusion proteins containing a prostate-specific antigen or a matrix metalloproteinase (MMP) protease cleavage site are markedly attenuated in the intact fusion protein but had enhanced bioactivity of IL-2 in vitro when cleaved. Further, we showed that a fusion protein composed of the IL-2/IL-2 receptor alpha chain with an MMP cleavage site reduced tumour growth in vivo in a peritoneal mouse tumour model. This general strategy should be applicable to other proteases and immune modulators allowing site-specific activation of immunomodulators while reducing unwanted side-effects.
Collapse
Affiliation(s)
- John Puskas
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Magselectofection: an integrated method of nanomagnetic separation and genetic modification of target cells. Blood 2011; 117:e171-81. [PMID: 21357765 DOI: 10.1182/blood-2010-08-302646] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Research applications and cell therapies involving genetically modified cells require reliable, standardized, and cost-effective methods for cell manipulation. We report a novel nanomagnetic method for integrated cell separation and gene delivery. Gene vectors associated with magnetic nanoparticles are used to transfect/transduce target cells while being passaged and separated through a high gradient magnetic field cell separation column. The integrated method yields excellent target cell purity and recovery. Nonviral and lentiviral magselectofection is efficient and highly specific for the target cell population as demonstrated with a K562/Jurkat T-cell mixture. Both mouse and human enriched hematopoietic stem cell pools were effectively transduced by lentiviral magselectofection, which did not affect the hematopoietic progenitor cell number determined by in vitro colony assays. Highly effective reconstitution of T and B lymphocytes was achieved by magselectofected murine wild-type lineage-negative Sca-1(+) cells transplanted into Il2rg(-/-) mice, stably expressing GFP in erythroid, myeloid, T-, and B-cell lineages. Furthermore, nonviral, lentiviral, and adenoviral magselectofection yielded high transfection/transduction efficiency in human umbilical cord mesenchymal stem cells and was fully compatible with their differentiation potential. Upscaling to a clinically approved automated cell separation device was feasible. Hence, once optimized, validated, and approved, the method may greatly facilitate the generation of genetically engineered cells for cell therapies.
Collapse
|
24
|
Shashidharamurthy R, Bozeman EN, Patel J, Kaur R, Meganathan J, Selvaraj P. Immunotherapeutic strategies for cancer treatment: A novel protein transfer approach for cancer vaccine development. Med Res Rev 2011; 32:1197-219. [DOI: 10.1002/med.20237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Erica N. Bozeman
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta Georgia
| | - Jaina Patel
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta Georgia
| | - Ramneet Kaur
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta Georgia
| | - Jeyandra Meganathan
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta Georgia
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta Georgia
| |
Collapse
|
25
|
Tagalakis AD, Grosse SM, Meng QH, Mustapa MFM, Kwok A, Salehi SE, Tabor AB, Hailes HC, Hart SL. Integrin-targeted nanocomplexes for tumour specific delivery and therapy by systemic administration. Biomaterials 2010; 32:1370-6. [PMID: 21074847 DOI: 10.1016/j.biomaterials.2010.10.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/15/2010] [Indexed: 11/30/2022]
Abstract
Nanoparticle formulations offer opportunities for tumour delivery of therapeutic reagents. The Receptor-Targeted Nanocomplex (RTN) formulation consists of a PEGylated, endosomally-cleavable lipid and an RGD integrin-targeting, endosomally-cleavable peptide. Nancomplexes self-assemble on mixing with plasmid DNA to produce nanoparticles of about 100 nm. The environmentally-sensitive linkers promote intracellular disassembly and release of the DNA. RTNs carrying luciferase genes were administered intravenously to mice carrying subcutaneous neuroblastoma tumours. Luciferase expression was much higher in tumours than in liver, spleen and lungs while plasmid biodistribution studies supported the expression data. Transfection in tumours was enhanced two-fold by integrin-targeting peptides compared to non-targeted nanocomplexes. RTNs containing the interleukin-2 (IL-2) and IL-12 genes were administered intravenously with seven doses at 48 h intervals and tumour growth monitored. Tumours from treated animals were approximately 75% smaller on day 11 compared with RTNs containing control plasmids with one third of treated mice surviving long-term. Extensive leukocyte infiltration, decreased vascularization and increased necrotic areas were observed in the tumours from IL2/IL12 treated animals. Splenocytes from re-challenged mice displayed enhanced IL-2 production following Neuro-2A co-culture, which, combined with infiltration studies, suggested a cytotoxic T cell-mediated9 tumour-rejection process. The integrin-targeted RTN formulation may have broader applications in the further development of cancer therapeutics.
Collapse
Affiliation(s)
- Aristides D Tagalakis
- Molecular Immunology Unit, UCL Institute of Child Health, University College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Westermann J, Flörcken A, Willimsky G, van Lessen A, Kopp J, Takvorian A, Jöhrens K, Lukowsky A, Schönemann C, Sawitzki B, Pohla H, Frank R, Dörken B, Schendel DJ, Blankenstein T, Pezzutto A. Allogeneic gene-modified tumor cells (RCC-26/IL-7/CD80) as a vaccine in patients with metastatic renal cell cancer: a clinical phase-I study. Gene Ther 2010; 18:354-63. [DOI: 10.1038/gt.2010.143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Balza E, Carnemolla B, Mortara L, Castellani P, Soncini D, Accolla RS, Borsi L. Therapy-induced antitumor vaccination in neuroblastomas by the combined targeting of IL-2 and TNFalpha. Int J Cancer 2010; 127:101-10. [PMID: 19877124 DOI: 10.1002/ijc.25018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
L19-IL2 and L19TNFalpha are fusion proteins composed of L19(scFv), specific for the angiogenesis-associated ED-B containing fibronectin isoform and IL-2 or TNFalpha. Because of the tumor targeting properties of L19, IL-2 and TNFalpha concentrate at therapeutic doses at the tumor vascular level. To evaluate the therapeutic effects of L19-IL2 and L19mTNFalpha in neuroblastoma (NB)-bearing mice, A/J mice bearing Neuro2A or NIE115 NB were systemically treated with L19-IL2 and L19mTNFalpha, alone or in combination protocols. Seventy percent of Neuro2A- and 30% of NIE115-bearing mice were cured by the combined treatment with L19-IL2 and L19mTNFalpha, and further rejected a homologous tumor challenge, indicating specific antitumor immune memory. The immunological bases of tumor cure and rejection were studied. A highly efficient priming of CD4(+) T helper cells and CD8(+) CTL effectors was generated, paralleled by massive infiltration in the tumor tissue of CD4(+) and CD8(+) T cells at day 16 after tumor cell implantation, when, after therapy, tumor volume was drastically reduced and tumor necrosis reached about 80%. The curative treatment resulted in a long-lasting antitumor immune memory, accompanied by a mixed Th1/Th2 type of response. Concluding, L19-IL2 and L19mTNFalpha efficiently cooperate in determining a high percentage of NB cure that, in our experimental models, is strongly associated to the generation of adaptive immunity involving CD4(+) and CD8(+) T cells.
Collapse
Affiliation(s)
- Enrica Balza
- Cell Biology Laboratory, Department of Translational Oncology, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhu S, Lee DA, Li S. IL-12 and IL-27 sequential gene therapy via intramuscular electroporation delivery for eliminating distal aggressive tumors. THE JOURNAL OF IMMUNOLOGY 2010; 184:2348-54. [PMID: 20139275 DOI: 10.4049/jimmunol.0902371] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Eradication of residual malignancies and metastatic tumors via a systemic approach is the key for successfully treating cancer and increasing cancer patient survival. Systemic administration of IL-12 protein in an acute large dose is effective but toxic. Systemic administration of IL-12 gene by persistently expressing a low level of IL-12 protein may reduce the systemic toxicity but only eradicates IL-12-sensitive tumors. In this study, we discovered that sequential administration of IL-12- and IL-27-encoding DNA, referred to as sequential IL-12-->IL-27 (IL-12 administration followed by IL-27 administration 10 d after) gene therapy, not only eradicated IL-12-sensitive CT26 tumors from 100% of mice but also eradicated the highly malignant 4T1 tumors from 33% of treated mice in multiple independent experiments. This IL-12-->IL-27 sequential gene therapy is not only superior to IL-12-encoding plasmid DNA given a total of two times at a 10-d interval sequential gene therapy for eliminating tumors but also for inducing CTL activity, increasing T cell infiltration into tumors, and yielding a large number of tumor-specific IFN-gamma-positive CD8 T cells. Notably, depletion of either T or NK cells during the IL-27 treatment phase reverses tumor eradication, suggesting an NK cell requirement for this sequential gene therapy-mediated tumor eradication. Both reversal of the administration sequence and coadministration of IL-12 and IL-27 impaired tumor eradication in 4T1 tumor-bearing mice. This IL-12-->IL-27 sequential gene therapy, via sequential administration of IL-12- and IL-27-encoding plasmid DNA into tumor-bearing mice through i.m. electroporation, provides a simple but effective approach for eliminating inaccessible residual tumors.
Collapse
Affiliation(s)
- Shiguo Zhu
- School of Medicine, Institute of Medical Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | |
Collapse
|
29
|
Bozeman EN, Shashidharamurthy R, Paulos SA, Palaniappan R, D’Souza M, Selvaraj P. Cancer vaccine development: designing tumor cells for greater immunogenicity. FRONT BIOSCI-LANDMRK 2010; 15:309-20. [PMID: 20036822 PMCID: PMC4513666 DOI: 10.2741/3622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer vaccine development is one of the most hopeful and exhilarating areas in cancer research. For this reason, there has been a growing interest in the development and application of novel immunotherapies for the treatment of cancer with the focus being on stimulating the immune system to target tumor cells specifically while leaving normal cells unharmed. From such research has emerged a host of promising immunotherapies such as dendritic cell-based vaccines, cytokine therapies and gene transfer technology. These therapies seek to counteract the poor immunogenicity of tumors by augmenting the host's immune system with a variety of immunostimulatory proteins such as cytokines and costimulatory molecules. While such therapies have proven effective in the induction of anti-tumor immunity in animal models, they are less than optimal and pose a high risk of clinical infeasibility. Herein, we further discuss these immunotherapies as well as a feasible and efficient alternative that, in pre-clinical animal models, allows for the expression of specific immunostimulatory molecules on the surface of tumor cells by a novel protein transfer technology.
Collapse
Affiliation(s)
- Erica N. Bozeman
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | | | - Simon A. Paulos
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy and Health Sciences, 3001 Mercer University Dr., Atlanta, GA 30341, USA
| | - Ravi Palaniappan
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy and Health Sciences, 3001 Mercer University Dr., Atlanta, GA 30341, USA
| | - Martin D’Souza
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy and Health Sciences, 3001 Mercer University Dr., Atlanta, GA 30341, USA
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
30
|
Abstract
Several immunostimulant approaches have been studied in the treatment of gliomas. The advent of recombinant DNA technology led to a nonspecific immunostimulation via systemic administration of cytokines. Recently, in attempts to more closely mimic their natural activity, cytokines have been delivered by implanting genetically transduced cells or by using in vivo gene transfer techniques. The latest efforts have focused on immunostimulatory agents that act directly on antigen-presenting cells and effector cells of the immune system via pattern recognition receptors. Combining these strategies with more than one mode of immunotherapy may provide better clinical results.
Collapse
Affiliation(s)
- Nicholas Butowski
- Department of Neurological Surgery, University of California San Francisco, 400 Parnassus Avenue, A808, San Francisco, CA 94143, USA.
| |
Collapse
|
31
|
Brill TH, Kübler HR, Pohla H, Buchner A, Fend F, Schuster T, van Randenborgh H, Paul R, Kummer T, Plank C, Eisele B, Breul J, Hartung R, Schendel DJ, Gansbacher B. Therapeutic Vaccination with an Interleukin-2–Interferon-γ-Secreting Allogeneic Tumor Vaccine in Patients with Progressive Castration-Resistant Prostate Cancer: A Phase I/II Trial. Hum Gene Ther 2009; 20:1641-51. [DOI: 10.1089/hum.2009.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Thomas H. Brill
- Institut für Experimentelle Onkologie und Therapieforschung, Technische Universität München, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Hubert R. Kübler
- Urologische Klinik und Poliklinik, Technische Universität München, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Heike Pohla
- Laboratory of Tumor Immunology, LIFE Center University Clinic–Grosshadern, Ludwig Maximilians University, 81377 Munich, Germany
- Institute of Molecular Immunology and Clinical Cooperation Group “Immune Monitoring,” Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany
| | - Alexander Buchner
- Laboratory of Tumor Immunology, LIFE Center University Clinic–Grosshadern, Ludwig Maximilians University, 81377 Munich, Germany
- Department of Urology, University Clinic-Grosshadern, Ludwig Maximilians University, 81377 Munich, Germany
| | - Falko Fend
- Institut für Pathologie und Pathologische Anatomie, Technische Universität München, Klinikum rechts der Isar, 81675 Munich, Germany
- Institute of Pathology, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Tibor Schuster
- Institut für Medizinische Statistik und Epidemiologie, Technische Universität München, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Heiner van Randenborgh
- Urologische Klinik und Poliklinik, Technische Universität München, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Roger Paul
- Urologische Klinik und Poliklinik, Technische Universität München, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Tania Kummer
- Institut für Experimentelle Onkologie und Therapieforschung, Technische Universität München, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Christian Plank
- Institut für Experimentelle Onkologie und Therapieforschung, Technische Universität München, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Bernd Eisele
- Vakzine Projekt Management, 30625 Hannover, Germany
| | - Jürgen Breul
- Urologische Klinik und Poliklinik, Technische Universität München, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Rudolf Hartung
- Urologische Klinik und Poliklinik, Technische Universität München, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Dolores J. Schendel
- Institute of Molecular Immunology and Clinical Cooperation Group “Immune Monitoring,” Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany
| | - Bernd Gansbacher
- Institut für Experimentelle Onkologie und Therapieforschung, Technische Universität München, Klinikum rechts der Isar, 81675 Munich, Germany
| |
Collapse
|
32
|
Kim YS. Tumor Therapy Applying Membrane-bound Form of Cytokines. Immune Netw 2009; 9:158-68. [PMID: 20157604 PMCID: PMC2816950 DOI: 10.4110/in.2009.9.5.158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 10/11/2009] [Indexed: 12/18/2022] Open
Abstract
Tumor therapy using cytokines has been developed for last two decades. Several recombinant cytokines and tumor cell vaccines produced by cytokine gene transfer have been in clinical trials, but several side effects hamper routine clinical applications. Many cytokines are originally expressed as membrane-bound form and then processed to secretory form exerting paracrine effects. Though functional differences of these two types of cytokines are elusive yet, the membrane-bound form of cytokine may exert its effects on restricted target cells as a juxtacrine, which are in physical contacts. With the efforts to improve antitumor activities of cytokines in cancer patients, developing new strategies to alleviate life-threatening side effects became an inevitable goal of tumor immunologists. Among these, tumor cell vaccines expressing cytokines as membrane-bound form on tumor cell surface have been developed by genetic engineering techniques with the hope of selective stimulation of the target cells that are in cell-to-cell contacts. In this review, recent progress of tumor cell vaccines expressing membrane-bound form of cytokines will be discussed.
Collapse
Affiliation(s)
- Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|
33
|
Lévy F, Colombetti S. Promises and Limitations of Murine Models in the Development of Anticancer T-Cell Vaccines. Int Rev Immunol 2009; 25:269-95. [PMID: 17169777 DOI: 10.1080/08830180600992407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Murine models have been instrumental in defining the basic mechanisms of antitumor immunity. Most of these mechanisms have since been shown to operate in humans as well. Based on these similarities, active vaccination strategies aimed at eliciting antitumor T-cell responses have been elaborated and successfully implemented in various mouse models. However, the results of human antitumor vaccination trials have been rather disappointing thus far. This review summarizes the different experimental approaches used in mice to induce antitumor T-cell responses and identifies some critical parameters that should be considered when evaluating results from murine models.
Collapse
Affiliation(s)
- Frédéric Lévy
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland.
| | | |
Collapse
|
34
|
Abstract
Whole-cell tumor vaccines have been investigated for more than 20 years for their efficacy in both preclinical models and in clinical trials in humans. There are clear advantages of whole-cell/polyepitope vaccination over those types of immunotherapy that target specific epitopes. Multiple and unknown antigens may be targeted to both the innate and adaptive immune system, and this may be further augmented by genetic modification of the vaccine cells to provide cytokines and costimulation. In this review, we give an overview of the field including the preclinical and clinical advances using unmodified and modified tumor-cell vaccines.
Collapse
Affiliation(s)
- John Copier
- Division of Cellular and Molecular Medicine, Department of Oncology, St. George's University of London, London, UK
| | | |
Collapse
|
35
|
Asadi-Moghaddam K, Chiocca EA. Gene- and viral-based therapies for brain tumors. Neurotherapeutics 2009; 6:547-57. [PMID: 19560744 PMCID: PMC3052738 DOI: 10.1016/j.nurt.2009.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 01/21/2023] Open
Abstract
Advances in understanding and controlling genes and their expression have set the stage to alter genetic material to fight or prevent disease with brain tumors being among one of the first human malignancies to be targeted by gene therapy. All proteins are coded for by DNA and most neoplastic diseases ultimately result from the expression or lack thereof with one or more proteins (e.g., coded by oncogenes or tumor suppressor genes, respectively). In theory, therefore, diseases could be treated by expression of the appropriate protein in the affected cells. Gene therapy is an experimental treatment that involves introducing genetic material (DNA or RNA) into cells, and it has made important advances in the past decade. Within this short time span, it has moved from the conceptual laboratory research stage to clinical translational trials for brain tumors. The most efficient approaches for gene delivery are based on viral vectors, which have been proven relatively safe in the CNS, despite occasional cases of morbidity and death in non-neurosurgical trials. However, the human response to various viral vectors can not be predicted in a reliable manner from animal experimentation, nor can size, consistency, and extent of experimental brain tumors in mouse models reflect the large, necrotic, infiltrative nature of malignant gliomas. Furthermore, the problem of delivering genetic vectors into solid brain tumors and the efficiency in situ gene transfer remains one of the most significant hurdles in gene therapy.
Collapse
Affiliation(s)
- Kaveh Asadi-Moghaddam
- Department of Neurological Surgery, Dardinger Center for Neuro-oncology and Neurosciences, James Cancer Hospital/Solove Research Institute, The Ohio State University Medical Center, N-1017 Doan Hall, 410 W. 10th Avenue, 43210-1240 Columbus, OH
| | - E. Antonio Chiocca
- Department of Neurological Surgery, Dardinger Center for Neuro-oncology and Neurosciences, James Cancer Hospital/Solove Research Institute, The Ohio State University Medical Center, N-1017 Doan Hall, 410 W. 10th Avenue, 43210-1240 Columbus, OH
| |
Collapse
|
36
|
Karanikolas N, Coleman J. Vaccine Development. Bladder Cancer 2009. [DOI: 10.1007/978-1-59745-417-9_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Koppenhagen FJ, Balemans LT, Steerenberg PA, Jagmont TM, Otter WD, Storm G. The Design of a Pharmaceuttcally Acceptable Liposomal Formulation of Recombinant Interleukin-2 (Ril-2) for Locoregional Anticancer Immunotherapy. J Liposome Res 2008. [DOI: 10.3109/08982109909018653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Heys SD, Gough DB, Eremin O. Section Review: Biologicals & Immunologicals: Immunotherapy with interleukin-2: Recent developments. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.3.269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Hüttinger C, Hirschberger J, Jahnke A, Köstlin R, Brill T, Plank C, Küchenhoff H, Krieger S, Schillinger U. Neoadjuvant gene delivery of feline granulocyte-macrophage colony-stimulating factor using magnetofection for the treatment of feline fibrosarcomas: a phase I trial. J Gene Med 2008; 10:655-67. [DOI: 10.1002/jgm.1185] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
40
|
Choi JW, Lim HY, Chang M, Cheon J, Kim YS. Anti‐tumor immunity induced by tumor cells express a membrane‐bound form of IL‐2 and SDF‐1. Anim Cells Syst (Seoul) 2008. [DOI: 10.1080/19768354.2008.9647173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
41
|
Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H. Bone marrow-derived cells present MHC class I-restricted tumour antigens in priming of antitumour immune responses. CIBA FOUNDATION SYMPOSIUM 2007; 187:229-40; discussion 240-4. [PMID: 7796673 DOI: 10.1002/9780470514672.ch15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many tumours express tumour-specific antigens capable of being presented to CD8+ T cells by major histocompatibility complex (MHC) class I molecules. Current models of antigen presentation predict that the tumour cell itself should present its own MHC class I-restricted antigens to T cells. Earlier cross-priming experiments have demonstrated that at least some MHC class I-restricted antigens may also be presented by bystander cells. There is no detectable presentation of MHC class I-restricted tumour antigens by the tumour itself during priming of tumour-specific responses. The tumour antigens are presented exclusively by host bone marrow-derived cells. These results imply that an efficient mechanism exists in vivo for transfer of MHC I-restricted antigens to bone marrow-derived antigen presenting cells. They also suggest that HLA matching may not be critical in the clinical application of allogeneic tumour vaccines.
Collapse
Affiliation(s)
- A Y Huang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The possibility of inducing a strong immune response to impair tumor growth by ectopically expressing cytokines, followed by the generation of an antitumor memory raised great hopes and enthusiasm as a therapeutic approach. However, the efficacy of this strategy on established tumor models appeared low and the initial results in the clinics were disappointing. Recently, new evidence indicates that cytokine gene combination or the combined use of cytokine genes with additional gene therapy approaches induces a synergistic effect supporting the use of cytokine gene therapy to improve the clinical outcome for cancer patients.
Collapse
Affiliation(s)
- Osvaldo L Podhajcer
- Gene Therapy Laboratory, Instituto Leloir - CONICET, University of Buenos Aires, Av. Patricias Argentinas 435, (C1405BWE) Buenos Aires, Argentina.
| | | | | |
Collapse
|
43
|
Hao JS, Shan BE. Immune enhancement and anti-tumour activity of IL-23. Cancer Immunol Immunother 2006; 55:1426-31. [PMID: 16676182 PMCID: PMC11031071 DOI: 10.1007/s00262-006-0171-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 03/29/2006] [Indexed: 11/28/2022]
Abstract
Immunotherapy, including the use of cytokines and/or modified tumour cells immune stimulatory cytokines, can enhance the host anti-tumour immune responses. Interleukin-23 (IL-23) is a relative novel cytokine, which consists of a heterodimer of the IL-12p40 subunit and a novel p19 subunit. IL-23 has biological activities similar to but distinct from IL-12. IL-23 can enhance the proliferation of memory T cells and the production of IFN-gamma, IL-12 and TNF-alpha from activated T cells. IL-23 activates macrophages to produce TNF-alpha and nitric oxide. IL-23 can also act directly on dendritic cells and possesses potent anti-tumour and anti-metastatic activity in murine models of cancer. IL-23 can also induce a lower level of IFN-gamma production compared with that induced by IL-12. This may make IL-23 an alternative and safer therapeutic agent for cancer, as IL-12 administration can lead to severe toxic side effects because of the extremely high levels of IFN-gamma it induces.
Collapse
Affiliation(s)
- Jing-Sheng Hao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011 Hebei China
| | - Bao-En Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011 Hebei China
| |
Collapse
|
44
|
Abstract
The development of cancer vaccines, aimed to enhance the immune response against a tumor, is a promising area of research. A better understanding of both the molecular mechanisms that govern the generation of an effective immune response and the biology of a tumor has contributed to substantial progress in the field. Areas of intense investigation in cancer immunotherapy will be discussed here, including: (1) the discovery and characterization of novel tumor antigens to be used as targets for vaccination; (2) the investigation of different vaccine-delivery modalities such as cellular-based vaccines, protein- and peptide-based vaccines, and vector-based vaccines; (3) the characterization of biological adjuvants to further improve the immunogenicity of a vaccine; and (4) the investigation of multimodal therapies where vaccines are being combined with other oncological treatments such as radiation and chemotherapy. A compilation of data from preclinical studies conducted in vitro as well as in animal models is presented here. The results from these studies would certainly support the development of new vaccination strategies toward cancer vaccines with enhanced clinical efficacy.
Collapse
Affiliation(s)
- Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
45
|
Abstract
GVAX is a granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transfected tumor cell vaccine. Original work with GM-CSF as a recombinant DNA protein (Leukine) involved proliferative stimulation of macrophages and neutrophils for the purpose of reducing hematopoietic toxicity related to dose-intensive chemotherapy. Following US Food and Drug Administration approval of Leukine several years ago, extensive preclinical results have demonstrated an immunostimulatory effect related to GM-CSF gene when transfected into tumor cells and used as a vaccine (GVAX). Tumor regression and prolonged survival was demonstrated in animal models. Toxicology with GVAX indicated no adverse effects, which enabled further testing in cancer patients. A small number of responses were demonstrated in Phase I trials in immunosensitive cancer patients (renal cell carcinoma and melanoma). However, a series of dramatic complete and durable responses in advanced non-small cell lung cancer patients, demonstrated in recent clinical trials, have generated interest in further development of this vaccine in nontraditional cancer disease types. The rationale of GVAX development and a summary of clinical results are reviewed.
Collapse
|
46
|
Debret R, Le Naour RR, Sallenave JM, Deshorgue A, Hornebeck WG, Guenounou M, Bernard P, Antonicelli FD. Elastin fragments induce IL-1beta upregulation via NF-kappaB pathway in melanoma cells. J Invest Dermatol 2006; 126:1860-8. [PMID: 16675961 DOI: 10.1038/sj.jid.5700337] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a previous work, we reported the influence of elastin fragments (EFs) on matrix metalloproteinases-2 and -14 expression and activation in melanoma cells in vitro. We hypothesized that EFs might also modulate expression of other mediators involved during melanoma progression. Therefore we investigated the contribution of EFs on IL-1beta expression, a cytokine playing a key role in melanoma cells activation. Our results evidenced that high tumorigenic melanoma cells (M3Da cells) treated with EFs led to IL-1beta mRNA and protein upregulation. The effects of EFs on M3Da cells were found to be mediated by receptor (spliced galactosidase) occupancy, as being suppressed by lactose and reproduced by cell stimulation with the VGVAPG peptide. Binding of EFs to their receptor induced a rapid activation of extracellular signal-regulated kinase 1/2; and p38 mitogen-activated protein kinase pathways. However, these pathways were not associated with IL-1beta mRNA upregulation by EFs. Concomitantly, we demonstrated that EFs stimulation induced NF-kappaB nuclear translocation and DNA binding on IL-1beta promoter region whereas inhibition of NF-kappaB with the specific chemical inhibitor SN-50 or by overexpression of IkappaB, the endogenous inhibitor of NF-kappaB pathway, totally abolished EFs-mediated IL-1beta mRNA overexpression. These results demonstrate that EFs induce NF-kappaB activation, leading to IL-1beta upregulation in invasive melanoma cells.
Collapse
Affiliation(s)
- Romain Debret
- Department of Dermatology, CNRS UMR 6198 Faculty of Medicine, University of Reims, Champagne-Ardenne, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Miyahara R, Banerjee S, Kawano K, Efferson C, Tsuda N, Miyahara Y, Ioannides CG, Chada S, Ramesh R. Melanoma differentiation-associated gene-7 (mda-7)/interleukin (IL)-24 induces anticancer immunity in a syngeneic murine model. Cancer Gene Ther 2006; 13:753-61. [PMID: 16543916 DOI: 10.1038/sj.cgt.7700954] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies have shown that the human melanoma differentiation-associated gene-7 (mda-7)/interleukin-24 (IL-24) has tumor-suppressor activity in vitro and in vivo. Additionally, in vitro studies using human peripheral blood mononuclear cells indicate that mda-7/IL-24 has TH1 cytokine-like activity. However, the individual properties of mda-7/IL-24 have been previously examined separately. Thus, there is not a single study that has examined both, antitumor and proimmune properties of mda-7/IL-24. Furthermore, the tumor suppressive activity and the cytokine activity of mda-7/IL-24 have not been previously tested in an immunocompetent setting. We therefore in the present study evaluated the antitumor and immune properties of mda-7/IL-24 in a murine syngeneic tumor model. In vitro, adenovirus-mediated mda-7 gene (Ad-mda7) transfer to murine fibrosarcoma (UV2237m; MCA16) and normal (10T1/2) cells significantly inhibited growth (P=0.001) and induced apoptosis in tumor cells but not in normal cells. In vivo, intratumoral administration of Ad-mda7 resulted in significant inhibition of tumor growth (P<0.05), with a subset of mice showing complete tumor regression. We next evaluated the immune potentiation activity of Ad-mda7 in a cancer vaccine model. UV2237m cells transfected with Ad-mda7 and injected into syngeneic immunocompetent C3H mice were unable to grow; however, they did grow in immunocompromised nude mice. These tumor-free C3H mice, when challenged with parental tumor cells experienced no tumor growth, suggesting induction of systemic immunity. Moreover, splenocytes prepared from vaccinated C3H mice demonstrated higher proliferative activity and produced elevated levels of TH1 cytokines compared with those from control mice. An in vitro subset analysis of splenocytes from vaccinated mice demonstrated a significant increase in the CD3(+)CD8(+) but not the CD3(+)CD4(+) cell population (P=0.019). Thus Ad-mda7 treatment of syngeneic tumors induces tumor cell death and promotes immune activation, leading to anticancer immunity.
Collapse
Affiliation(s)
- R Miyahara
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu K, Idoyaga J, Charalambous A, Fujii SI, Bonito A, Mordoh J, Wainstok R, Bai XF, Liu Y, Steinman RM. Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells. ACTA ACUST UNITED AC 2006; 202:1507-16. [PMID: 16330814 PMCID: PMC2213343 DOI: 10.1084/jem.20050956] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
If irradiated tumor cells could be rendered immunogenic, they would provide a safe, broad, and patient-specific array of antigens for immunotherapies. Prior approaches have emphasized genetic transduction of live tumor cells to express cytokines, costimulators, and surrogate foreign antigens. We asked if immunity could be achieved by delivering irradiated, major histocompatibility complex–negative plasmacytoma cells to maturing mouse dendritic cells (DCs) within lymphoid organs. Tumor cells injected intravenously (i.v.) were captured by splenic DCs, whereas subcutaneous (s.c.) injection led only to weak uptake in lymph node or spleen. The natural killer T (NKT) cells mobilizing glycolipid α-galactosyl ceramide, used to mature splenic DCs, served as an effective adjuvant to induce protective immunity. This adjuvant function was mimicked by a combination of poly IC and agonistic αCD40 antibody. The adjuvant glycolipid had to be coadministered with tumor cells i.v. rather than s.c. Specific resistance was generated both to a plasmacytoma and lymphoma. The resistance afforded by a single vaccination lasted >2 mo and required both CD4+ and CD8+ T cells. Mature tumor capturing DCs stimulated the differentiation of P1A tumor antigen-specific, CD8+ T cells and uniquely transferred tumor resistance to naive mice. Therefore, the access of dying tumor cells to DCs that are maturing to activated NKT cells efficiently induces long-lived adaptive resistance.
Collapse
Affiliation(s)
- Kang Liu
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
In view of the limited success of available treatment modalities for breast cancer, alternative and complementary strategies need to be developed. The delineation of the molecular basis of breast cancer provides the possibility of specific intervention by gene therapy through the introduction of genetic material for therapeutic purposes. In this regard, several gene therapy approaches for carcinoma of the breast have been developed. These approaches can be divided into six broad categories: (1) mutation compensation, (2) molecular chemotherapy, (3) proapoptotic gene therapy, (4) antiangiogenic gene therapy, (5) genetic immunopotentiation, and (6) genetic modulation of resistance/sensitivity. Clinical trials for breast cancer have been initiated to evaluate safety, toxicity, and efficacy. Combined modality therapy with gene therapy and chemotherapy or radiation therapy has shown promising results. It is expected that as new therapeutic targets and approaches are identified and advances in vector design are realized, gene therapy will play an increasing role in clinical breast cancer treatment.
Collapse
Affiliation(s)
- MA Stoff-Khalili
- Division of Human Gene Therapy, Departments of Medicine, Surgery, Pathology and the Gene Therapy Center, University of Alabama at Birmingham, Birminham, AL, USA
- Department of Obstetrics and Gynecology, University of Duesseldorf, Medical Center, Duesseldorf, Germany
| | - P Dall
- Department of Obstetrics and Gynecology, University of Duesseldorf, Medical Center, Duesseldorf, Germany
| | - DT Curiel
- Division of Human Gene Therapy, Departments of Medicine, Surgery, Pathology and the Gene Therapy Center, University of Alabama at Birmingham, Birminham, AL, USA
| |
Collapse
|
50
|
Nagarajan S, Selvaraj P. Human tumor membrane vesicles modified to express glycolipid-anchored IL-12 by protein transfer induce T cell proliferation in vitro: a potential approach for local delivery of cytokines during vaccination. Vaccine 2005; 24:2264-74. [PMID: 16376465 DOI: 10.1016/j.vaccine.2005.11.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 11/09/2005] [Accepted: 11/18/2005] [Indexed: 10/25/2022]
Abstract
Administration of soluble human interleukin-12 (hIL-12) has been shown to induce a potent anti-tumor response. However, the use of soluble hIL-12 is hindered by its cytotoxicity when systemically administered and the difficulty of transferring multiple genes into primary tumor cells. In this study, we developed a membrane-anchored hIL-12 and expressed it on tumor membrane vesicles to deliver and confine IL-12 to the vaccination site. We constructed a glycolipid-anchored hIL-12 (GPI-hIL-12) by fusing the coding region of p35 and p40 subunits of hIL-12 with the GPI-signal sequence of CD59 at the C-terminal ends. The two subunits were processed correctly and expressed as a GPI-anchored disulfide-linked heterodimeric protein on the cell surface. GPI-hIL-12 cells induced proliferation of activated T cells and augmentation of allogeneic T cell generation in an MLR assay. Purified GPI-hIL-12 was efficiently intercalated onto isolated tumor cell membrane vesicles prepared from various human tumor cell lines. Further, the incorporation of GPI-hIL-12 onto tumor membrane vesicles induced proliferation of T cells and the release of IFN-gamma by activated T cells. Notably, GPI-hIL-12 enhanced the proliferative response initiated by CD80, a principal costimulatory molecule for T cell activation. These studies suggest that tumor membrane vesicles modified with GPI-anchored cytokines can be used to create potent immunogenic tumor vaccines for use in human immunotherapy. Since protein transfer can be used to modify tumor membrane vesicles obtained from surgical specimens, this approach offers a useful alternative to gene therapy as a means of developing cancer vaccines.
Collapse
Affiliation(s)
- Shanmugam Nagarajan
- Department of Pathology and Laboratory Medicine, Rm. 7309, Woodruff Memorial Research Building, 101, Woodruff Circle, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|