1
|
Khalifa A, Palu R, Perkins AE, Volz A. Prenatal alcohol exposure alters expression of genes involved in cell adhesion, immune response, and toxin metabolism in adolescent rat hippocampus. PLoS One 2024; 19:e0293425. [PMID: 38271377 PMCID: PMC10810486 DOI: 10.1371/journal.pone.0293425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/11/2023] [Indexed: 01/27/2024] Open
Abstract
Prenatal alcohol exposure (PAE) can result in mild to severe consequences for children throughout their lives, with this range of symptoms referred to as Fetal Alcohol Spectrum Disorders (FASD). These consequences are thought to be linked to changes in gene expression and transcriptional programming in the brain, but the identity of those changes, and how they persist into adolescence are unclear. In this study, we isolated RNA from the hippocampus of adolescent rats exposed to ethanol during prenatal development and compared gene expression to controls. Briefly, dams were either given free access to standard chow ad libitum (AD), pair-fed a liquid diet (PF) or were given a liquid diet with ethanol (6.7% ethanol, ET) throughout gestation (gestational day (GD) 0-20). All dams were given control diet ad libitum beginning on GD 20 and throughout parturition and lactation. Hippocampal tissue was collected from adolescent male and female offspring (postnatal day (PD) 35-36). Exposure to ethanol caused widespread downregulation of many genes as compared to control rats. Gene ontology analysis demonstrated that affected pathways included cell adhesion, toxin metabolism, and immune responses. Interestingly, these differences were not strongly affected by sex. Furthermore, these changes were consistent when comparing ethanol-exposed rats to pair-fed controls provided with a liquid diet and those fed ad libitum on a standard chow diet. We conclude from this study that changes in genetic architecture and the resulting neuronal connectivity after prenatal exposure to alcohol continue through adolescent development. Further research into the consequences of specific gene expression changes on neural and behavioral changes will be vital to our understanding of the FASD spectrum of diseases.
Collapse
Affiliation(s)
- Amal Khalifa
- Department of Computer Science, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Rebecca Palu
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Amy E. Perkins
- Department of Psychology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Avery Volz
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
- Department of Psychology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| |
Collapse
|
2
|
Shirafuta Y, Tamura I, Shiroshita A, Fujimura T, Maekawa R, Taketani T, Sugino N. Analysis of cell-cell interaction between mural granulosa cells and cumulus granulosa cells during ovulation using single-cell RNA sequencing data of mouse ovary. Reprod Med Biol 2024; 23:e12564. [PMID: 38361634 PMCID: PMC10867398 DOI: 10.1002/rmb2.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Purpose We investigated the interactions between mural granulosa cells (MGCs) and cumulus granulosa cells (CGCs) during ovulation after the LH surge. Methods We performed clustering, pseudotime, and interactome analyses utilizing reported single-cell RNA sequencing data of mouse ovary at 6 h after eCG-hCG injection. Results Clustering analysis classified granulosa cells into two distinct populations, MGCs and CGCs. Pseudotime analysis divided granulosa cells into before and after the LH surge, and further divided them into two branches, the ovulatory MGCs and the ovulatory CGCs. Interactome analysis was performed to identify the interactions between MGCs and CGCs. Twenty-six interactions were acting from CGCs toward MGCs, involving ovulation and steroidogenesis. Thirty-six interactions were acting from MGCs toward CGCs, involving hyaluronan synthesis. There were 25 bidirectional interactions, involving the EGFR pathway. In addition, we found three novel interactions: Ephrins-Ephs pathway and Wnt-Lrp6 pathway from CGCs to MGCs, associated with steroidogenesis and lipid transport, respectively, and TGF-β-TGFBR1 pathway from MGCs to CGCs, associated with hyaluronan synthesis. Conclusions MGCs and CGCs interact with each other in the preovulatory follicle after the LH surge, and their interactions have roles in corpus luteum formation, oocyte maturation, and follicle rupture.
Collapse
Affiliation(s)
- Yuichiro Shirafuta
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Isao Tamura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Amon Shiroshita
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Taishi Fujimura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Ryo Maekawa
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Toshiaki Taketani
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Norihiro Sugino
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
3
|
Grönloh MLB, Arts JJG, Palacios Martínez S, van der Veen AA, Kempers L, van Steen ACI, Roelofs JJTH, Nolte MA, Goedhart J, van Buul JD. Endothelial transmigration hotspots limit vascular leakage through heterogeneous expression of ICAM-1. EMBO Rep 2023; 24:e55483. [PMID: 36382783 PMCID: PMC9827561 DOI: 10.15252/embr.202255483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Upon inflammation, leukocytes leave the circulation by crossing the endothelial monolayer at specific transmigration "hotspot" regions. Although these regions support leukocyte transmigration, their functionality is not clear. We found that endothelial hotspots function to limit vascular leakage during transmigration events. Using the photoconvertible probe mEos4b, we traced back and identified original endothelial transmigration hotspots. Using this method, we show that the heterogeneous distribution of ICAM-1 determines the location of the transmigration hotspot. Interestingly, the loss of ICAM-1 heterogeneity either by CRISPR/Cas9-induced knockout of ICAM-1 or equalizing the distribution of ICAM-1 in all endothelial cells results in the loss of TEM hotspots but not necessarily in reduced TEM events. Functionally, the loss of endothelial hotspots results in increased vascular leakage during TEM. Mechanistically, we demonstrate that the 3 extracellular Ig-like domains of ICAM-1 are crucial for hotspot recognition. However, the intracellular tail of ICAM-1 and the 4th Ig-like dimerization domain are not involved, indicating that intracellular signaling or ICAM-1 dimerization is not required for hotspot recognition. Together, we discovered that hotspots function to limit vascular leakage during inflammation-induced extravasation.
Collapse
Affiliation(s)
- Max L B Grönloh
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced MicroscopyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Janine J G Arts
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced MicroscopyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Sebastián Palacios Martínez
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Amerens A van der Veen
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Lanette Kempers
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Abraham C I van Steen
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Location AMCAmsterdamThe Netherlands
| | - Martijn A Nolte
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Joachim Goedhart
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced MicroscopyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced MicroscopyUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
4
|
Grönloh MLB, Tebbens ME, Kotsi M, Arts JJG, van Buul JD. Intercellular adhesion molecule 2 regulates diapedesis hotspots by allowing neutrophil crawling against the direction of flow. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2023; 5:e230005. [PMID: 37565726 PMCID: PMC10503216 DOI: 10.1530/vb-23-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/11/2023] [Indexed: 08/12/2023]
Abstract
Intercellular adhesion molecules (ICAMs) are cell surface proteins that play a crucial role in the body's immune response and inflammatory processes. ICAM1 and ICAM2 are two ICAM family members expressed on the surface of various cell types, including endothelial cells. They mediate the interaction between immune cells and endothelial cells, which are critical for the trafficking of leukocytes across the blood vessel wall during inflammation. Although ICAM1 plays a prominent role in the leukocyte extravasation cascade, it is less clear if ICAM2 strengthens ICAM1 function or has a separate function in the cascade. With CRISPR-)Cas9 technology, endothelial cells were depleted for ICAM1,ICAM2, or both, and we found that neutrophils favored ICAM1 over ICAM2 to adhere to. However, the absence of only ICAM2 resulted in neutrophils that were unable to find the transmigration hotspot, i.e. the preferred exit site. Moreover, we found that ICAM2 deficiency prevented neutrophils to migrate against the flow. Due to this deficiency, we concluded that ICAM2 helps neutrophils find the preferred exit sites and thereby contributes to efficient leukocyte extravasation.
Collapse
Affiliation(s)
- Max L B Grönloh
- Department of Medical Biochemistry, Vascular Biology Lab, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, Section Molecular Cytology at Swammerdam Institute for Life Sciences, the University of Amsterdam, Amsterdam, the Netherlands
| | - Merel E Tebbens
- Department of Medical Biochemistry, Vascular Biology Lab, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marianthi Kotsi
- Department of Medical Biochemistry, Vascular Biology Lab, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Janine J G Arts
- Leeuwenhoek Centre for Advanced Microscopy, Section Molecular Cytology at Swammerdam Institute for Life Sciences, the University of Amsterdam, Amsterdam, the Netherlands
- Department of Molecular Hematology, Sanquin Research, and Landsteiner Laboratory, Molecular Cell Biology Lab, Amsterdam, the Netherlands
| | - Jaap D van Buul
- Department of Medical Biochemistry, Vascular Biology Lab, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, Section Molecular Cytology at Swammerdam Institute for Life Sciences, the University of Amsterdam, Amsterdam, the Netherlands
- Department of Molecular Hematology, Sanquin Research, and Landsteiner Laboratory, Molecular Cell Biology Lab, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Dayyani M, Mousavi Mohammadi E, Ashoorion V, Sadeghirad B, Javedani Yekta M, Grotta JC, Gonzalez NR, Zabihyan S. Aneurysmal subarachnoid haemorrhage-cerebral vasospasm and prophylactic ibuprofen: a randomised controlled pilot trial protocol. BMJ Open 2022; 12:e058895. [PMID: 35414560 PMCID: PMC9006795 DOI: 10.1136/bmjopen-2021-058895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Cerebral vasospasm (CVS) is the leading cause of mortality and morbidity following aneurysmal subarachnoid haemorrhage (aSAH). One of the recently implicated underlying mechanisms of CVS is inflammatory cascades. Specific feasibility objectives include determining the ability to recruit 30 participants over 24 months while at least 75% of them comply with at least 75% of the study protocol and being able to follow 85% of them for 3 months after discharge. METHODS AND ANALYSIS This is a feasibility study for a randomised controlled trial. Eligible participants are adult patients who are 18 years of age and older with an aSAH confirmed by a brain CT scan, and CT angiography, or magnetic resonance angiography, or digital subtraction angiography who admitted to the emergency department within 12 hours of the ictus. Eligible subjects will be randomised 1:1 for the administration of either ibuprofen or a placebo, while both groups will concomitantly be treated by the standard of care for 2 weeks. Care givers, patients, outcome assessors and data analysts will be blinded. This will be the first study to investigate the preventive effects of a short-acting non-steroidal anti-inflammatory drug on CVS and the key expected outcome of this pilot study is the feasibility and safety assessment of the administration of ibuprofen in patients with aSAH. The objectives of the definitive trial would be to assess the effect of ibuprofen relative to placebo on mortality, CVS, delayed cerebral ischaemia, and level of disability at 3-month follow-up. ETHICS AND DISSEMINATION This study is approved by Mashhad University of Medical Sciences ethical committee (IR.MUMS.MEDICAL.REC.1398.225). Results from the study will be submitted for publication regardless of whether or not there are significant findings. TRIAL REGISTRATION NUMBER ISRCTN14611625.
Collapse
Affiliation(s)
- Mojtaba Dayyani
- Division of Neurosurgery, City of Hope Beckman Research Institute and Medical Center, Duarte, California, USA
- Department of Neurosurgery, Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
| | - Ermia Mousavi Mohammadi
- Department of Neurosurgery, Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
| | - Vahid Ashoorion
- Department of Health Research Methods Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Behnam Sadeghirad
- Department of Health Research Methods Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
| | | | - James C Grotta
- Mobile Stroke Unit and Stroke Research Program, Memorial Hermann Texas Medical Center, Houston, Texas, USA
| | - Nestor R Gonzalez
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Samira Zabihyan
- Department of Neurosurgery, Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
| |
Collapse
|
6
|
Understanding the Role of LFA-1 in Leukocyte Adhesion Deficiency Type I (LAD I): Moving towards Inflammation? Int J Mol Sci 2022; 23:ijms23073578. [PMID: 35408940 PMCID: PMC8998723 DOI: 10.3390/ijms23073578] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
LFA-1 (Lymphocyte function-associated antigen-1) is a heterodimeric integrin (CD11a/CD18) present on the surface of all leukocytes; it is essential for leukocyte recruitment to the site of tissue inflammation, but also for other immunological processes such as T cell activation and formation of the immunological synapse. Absent or dysfunctional expression of LFA-1, caused by mutations in the ITGB2 (integrin subunit beta 2) gene, results in a rare immunodeficiency syndrome known as Leukocyte adhesion deficiency type I (LAD I). Patients suffering from severe LAD I present with recurrent infections of the skin and mucosa, as well as inflammatory symptoms complicating the clinical course of the disease before and after allogeneic hematopoietic stem cell transplantation (alloHSCT); alloHSCT is currently the only established curative treatment option. With this review, we aim to provide an overview of the intrinsic role of inflammation in LAD I.
Collapse
|
7
|
Kang X, Su S, Hong W, Geng W, Tang H. Research Progress on the Ability of Astragaloside IV to Protect the Brain Against Ischemia-Reperfusion Injury. Front Neurosci 2021; 15:755902. [PMID: 34867166 PMCID: PMC8637115 DOI: 10.3389/fnins.2021.755902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
Stroke, a disease with a sudden onset and high morbidity and mortality rates, is difficult to treat in the clinic. Traditional Chinese medicine has become increasingly widely used in clinical practice. Modern pharmacological studies have found that Radix Astragali has a variety of medicinal properties, i.e., immunoregulatory, antioxidative, anti-cancer, anti-diabetes, myocardial protective, hepatoprotective, and antiviral functions. This article reviews the protective effect and mechanism of astragaloside IV, which is extracted from Radix Astragali, on stroke, discusses the cerebroprotective effect of astragaloside IV against ischemia-reperfusion-related complications, offers insight into research prospects, and expands the idea of integrating traditional Chinese and Western medicine treatment strategies and drugs to provide a theoretical reference for the clinical treatment of cerebral ischemia-reperfusion injury and the improvement of stroke prognosis.
Collapse
Affiliation(s)
- Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Su
- Wenzhou Medical University, Wenzhou, China
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, China
| | - Hongli Tang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Kauer J, Vogt F, Hagelstein I, Hörner S, Märklin M, Maurer S, Salih HR, Jung G, Zekri L. CD18 Antibody Application Blocks Unwanted Off-Target T Cell Activation Caused by Bispecific Antibodies. Cancers (Basel) 2021; 13:cancers13184596. [PMID: 34572822 PMCID: PMC8467378 DOI: 10.3390/cancers13184596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Bispecific antibodies are a very effective immunotherapy against different types of cancer since they activate T cells in the presence of tumor cells. However, they can cause severe side effects, such as a systemic inflammation called cytokine release syndrome. We aimed to clarify an important mechanism that causes cytokine release syndrome. In cocultures of T cells with endothelial cells or lymphoid cells, application of bispecific antibodies can induce T cell activation and cytokine release in the absence of tumor cells. By blocking the adhesion molecule CD18, this interaction is interrupted and the unwanted T cell activation is diminished. CD18 blockade, however, does not interfere with T cell activation when tumor cells are present. Therefore, CD18 blockade could prevent side effects of bispecific antibodies without decreasing the anti-tumor effect. Abstract T cell-recruiting bispecific antibodies (bsAbs) are successfully used for the treatment of cancer. However, effective treatment with bsAbs is so far hampered by severe side effects, i.e., potentially life-threatening cytokine release syndrome. Off-target T cell activation due to binding of bispecific CD3 antibodies to T cells in the absence of target cells may contribute to excessive cytokine release. We report here, in an in vitro setting, that off-target T cell activation is induced by bsAbs with high CD3 binding affinity and increased by endothelial- or lymphoid cells that act as stimulating bystander cells. Blocking antibodies directed against the adhesion molecules CD18/CD54 or CD2/CD58 markedly reduced this type of off-target T cell activation. CD18 blockade—in contrast to CD2—did not affect the therapeutic activity of various bsAbs. Since CD18 antibodies have been shown to be safely applicable in patients, blockade of this integrin holds promise as a potential target for the prevention of unwanted off-target T cell activation and allows the application of truly effective bsAb doses.
Collapse
Affiliation(s)
- Joseph Kauer
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (F.V.); (S.H.); (G.J.); (L.Z.)
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (I.H.); (M.M.); (S.M.); (H.R.S.)
- Department of Oncology and Hematology, University Clinic Heidelberg, 69118 Heidelberg, Germany
- Correspondence: ; Tel.: +49-06221-56-8611
| | - Fabian Vogt
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (F.V.); (S.H.); (G.J.); (L.Z.)
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (I.H.); (M.M.); (S.M.); (H.R.S.)
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany
| | - Sebastian Hörner
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (F.V.); (S.H.); (G.J.); (L.Z.)
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (I.H.); (M.M.); (S.M.); (H.R.S.)
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany
| | - Stefanie Maurer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (I.H.); (M.M.); (S.M.); (H.R.S.)
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (I.H.); (M.M.); (S.M.); (H.R.S.)
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany
| | - Gundram Jung
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (F.V.); (S.H.); (G.J.); (L.Z.)
| | - Latifa Zekri
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (F.V.); (S.H.); (G.J.); (L.Z.)
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (I.H.); (M.M.); (S.M.); (H.R.S.)
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany
| |
Collapse
|
9
|
Chong DLW, Rebeyrol C, José RJ, Williams AE, Brown JS, Scotton CJ, Porter JC. ICAM-1 and ICAM-2 Are Differentially Expressed and Up-Regulated on Inflamed Pulmonary Epithelium, but Neither ICAM-2 nor LFA-1: ICAM-1 Are Required for Neutrophil Migration Into the Airways In Vivo. Front Immunol 2021; 12:691957. [PMID: 34484188 PMCID: PMC8415445 DOI: 10.3389/fimmu.2021.691957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/29/2021] [Indexed: 01/21/2023] Open
Abstract
Neutrophil migration into the airways is an important process to fight infection and is mediated by cell adhesion molecules. The intercellular adhesion molecules, ICAM-1 (CD54) and ICAM-2 (CD102) are known ligands for the neutrophil integrins, lymphocyte function associated antigen (LFA)-1 (αLβ2; CD11a/CD18), and macrophage-1 antigen (Mac-1;αMβ2;CD11b/CD18) and are implicated in leukocyte migration into the lung. However, it is ill-defined how neutrophils exit the lung and the role for ICAMs in trans-epithelial migration (TEpM) across the bronchial or alveolar epithelium. We found that human and murine alveolar epithelium expressed ICAM-1, whilst the bronchial epithelium expressed ICAM-2, and both were up-regulated during inflammatory stimulation in vitro and in inflammatory lung diseases such as cystic fibrosis. Although β2 integrins interacting with ICAM-1 and -2 mediated neutrophil migration across human bronchial epithelium in vitro, neither ICAM-2 nor LFA-1 binding of ICAM-1 mediated murine neutrophil migration into the lung or broncho-alveolar space during LPS-induced inflammation in vivo. Furthermore, TEpM of neutrophils themselves resulted in increased epithelial junctional permeability and reduced barrier function in vitro. This suggests that although β2 integrins interacting with ICAMs may regulate low levels of neutrophil traffic in healthy lung or early in inflammation when the epithelial barrier is intact; these interactions may be redundant later in inflammation when epithelial junctions are disrupted and no longer limit TEpM.
Collapse
Affiliation(s)
- Deborah L. W. Chong
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
| | - Carine Rebeyrol
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
| | - Ricardo J. José
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
| | - Andrew E. Williams
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
| | - Chris J. Scotton
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
- Institute of Biomedical and Clinical Sciences, College of Medicine & Health, Exeter, United Kingdom
| | - Joanna C. Porter
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
10
|
Grönloh MLB, Arts JJG, van Buul JD. Neutrophil transendothelial migration hotspots - mechanisms and implications. J Cell Sci 2021; 134:134/7/jcs255653. [PMID: 33795378 DOI: 10.1242/jcs.255653] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During inflammation, leukocytes circulating in the blood stream exit the vasculature in a process called leukocyte transendothelial migration (TEM). The current paradigm of this process comprises several well-established steps, including rolling, adhesion, crawling, diapedesis and sub-endothelial crawling. Nowadays, the role of the endothelium in transmigration is increasingly appreciated. It has been established that leukocyte exit sites on the endothelium and in the pericyte layer are in fact not random but instead may be specifically recognized by migrating leukocytes. Here, we review the concept of transmigration hotspots, specific sites in the endothelial and pericyte layer where most transmigration events take place. Chemokine cues, adhesion molecules and membrane protrusions as well as physical factors, such as endothelial junction stability, substrate stiffness, the presence of pericytes and basement membrane composition, may all contribute to local hotspot formation to facilitate leukocytes exiting the vasculature. In this Review, we discuss the biological relevance of such hotspots and put forward multiple mechanisms and factors that determine a functional TEM hotspot.
Collapse
Affiliation(s)
- Max L B Grönloh
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands.,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| | - Janine J G Arts
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands.,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands .,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
11
|
Chang BL, Ro LS, Chen CM, Lo YS, Lyu RK, Kuo HC, Liao MF, Chang CW, Chang HS, Huang CC, Wu YR, Chu CC, Weng YC, Chang KH. Serum levels of cell adhesion molecules in patients with neuromyelitis optica spectrum disorder. Ann Clin Transl Neurol 2020; 7:1854-1861. [PMID: 32860355 PMCID: PMC7545585 DOI: 10.1002/acn3.51167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022] Open
Abstract
Objectives Blood–brain barrier (BBB) disruption is a critical pathological process involved in neuromyelitis optica spectrum disorder (NMOSD). Here, we characterized the profile of five cell adhesion molecules in patients with NMOSD. Methods We measured levels of cell adhesion molecules, including ICAM‐1, ICAM‐2, VCAM‐1, PECAM‐1, and NCAM‐1, in the serum of 28 patients with NMOSD, 24 patients with multiple sclerosis (MS), and 25 healthy controls (HCs). Results ICAM‐2 levels (median: 394.8 ng/mL) were increased in patients with NMOSD compared with MS (267.1 ng/mL, P = 0.005) and HCs (257.4 ng/mL, P = 0.007), and VCAM‐1 and ICAM‐1 levels were higher in patients with NMOSD (641.9 ng/mL and 212.7 ng/mL, respectively) compared with HCs (465 ng/mL [P = 0.013] and 141.8 ng/mL [P = 0.002], respectively). However, serum PECAM‐1 levels were lower in patients with NMOSD (89.62 ng/mL) compared with MS (106.9 ng/mL, P = 0.015) and HCs (107.2 ng/mL, P = 0.007). Receiver operating characteristic curve analysis revealed that PECAM‐1 (area under the curve (AUC): 0.729) and ICAM‐2 (AUC: 0.747) had adequate abilities to distinguish NMOSD from MS, and VCAM‐1 (AUC: 0.719), PECAM‐1 (area under the curve: 0.743), ICAM‐1 (AUC: 0.778), and ICAM‐2 (AUC: 0.749) exhibited potential to differentiate NMOSD and HCs. Serum levels of PECAM‐1 also demonstrated a negative correlation with Kurtzke Expanded Disability Status Scale scores in patients with NMOSD. Interpretation Our results reveal possible BBB breakdown signals specifically observed in NMOSD and highlight the potential role of cell adhesion molecules as biomarkers of this disease.
Collapse
Affiliation(s)
- Bao-Luen Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Long-Sun Ro
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Yen-Shi Lo
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Rong-Kuo Lyu
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Hung-Chou Kuo
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Ming-Feng Liao
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Chun-Wei Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Hong-Shiu Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Ching-Chang Huang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Chun-Che Chu
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Yi-Ching Weng
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| |
Collapse
|
12
|
Van Laethem F, Saba I, Lu J, Bhattacharya A, Tai X, Guinter TI, Engelhardt B, Alag A, Rojano M, Ashe JM, Hanada KI, Yang JC, Sun PD, Singer A. Novel MHC-Independent αβTCRs Specific for CD48, CD102, and CD155 Self-Proteins and Their Selection in the Thymus. Front Immunol 2020; 11:1216. [PMID: 32612609 PMCID: PMC7308553 DOI: 10.3389/fimmu.2020.01216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
MHC-independent αβTCRs (TCRs) recognize conformational epitopes on native self-proteins and arise in mice lacking both MHC and CD4/CD8 coreceptor proteins. Although naturally generated in the thymus, these TCRs resemble re-engineered therapeutic chimeric antigen receptor (CAR) T cells in their specificity for MHC-independent ligands. Here we identify naturally arising MHC-independent TCRs reactive to three native self-proteins (CD48, CD102, and CD155) involved in cell adhesion. We report that naturally arising MHC-independent TCRs require high affinity TCR-ligand engagements in the thymus to signal positive selection and that high affinity positive selection generates a peripheral TCR repertoire with limited diversity and increased self-reactivity. We conclude that the affinity of TCR-ligand engagements required to signal positive selection in the thymus inversely determines the diversity and self-tolerance of the mature TCR repertoire that is selected.
Collapse
Affiliation(s)
- François Van Laethem
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Ingrid Saba
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Jinghua Lu
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Abhisek Bhattacharya
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Xuguang Tai
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Terry I Guinter
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Britta Engelhardt
- Theodor Kocher Institute, Faculty of Bern, Universität Bern, Bern, Switzerland
| | - Amala Alag
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Mirelle Rojano
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Jennifer M Ashe
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Ken-Ichi Hanada
- Surgery Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - James C Yang
- Surgery Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Peter D Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
13
|
Herich S, Schneider-Hohendorf T, Rohlmann A, Khaleghi Ghadiri M, Schulte-Mecklenbeck A, Zondler L, Janoschka C, Ostkamp P, Richter J, Breuer J, Dimitrov S, Rammensee HG, Grauer OM, Klotz L, Gross CC, Stummer W, Missler M, Zarbock A, Vestweber D, Wiendl H, Schwab N. Human CCR5high effector memory cells perform CNS parenchymal immune surveillance via GZMK-mediated transendothelial diapedesis. Brain 2020; 142:3411-3427. [PMID: 31563951 DOI: 10.1093/brain/awz301] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/05/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Although the CNS is immune privileged, continuous search for pathogens and tumours by immune cells within the CNS is indispensable. Thus, distinct immune-cell populations also cross the blood-brain barrier independently of inflammation/under homeostatic conditions. It was previously shown that effector memory T cells populate healthy CNS parenchyma in humans and, independently, that CCR5-expressing lymphocytes as well as CCR5 ligands are enriched in the CNS of patients with multiple sclerosis. Apart from the recently described CD8+ CNS tissue-resident memory T cells, we identified a population of CD4+CCR5high effector memory cells as brain parenchyma-surveilling cells. These cells used their high levels of VLA-4 to arrest on scattered VCAM1, their open-conformation LFA-1 to crawl preferentially against the flow in search for sites permissive for extravasation, and their stored granzyme K (GZMK) to induce local ICAM1 aggregation and perform trans-, rather than paracellular diapedesis through unstimulated primary brain microvascular endothelial cells. This study included peripheral blood mononuclear cell samples from 175 healthy donors, 29 patients infected with HIV, with neurological symptoms in terms of cognitive impairment, 73 patients with relapsing-remitting multiple sclerosis in remission, either 1-4 weeks before (n = 29), or 18-60 months after the initiation of natalizumab therapy (n = 44), as well as white matter brain tissue of three patients suffering from epilepsy. We here provide ex vivo evidence that CCR5highGZMK+CD4+ effector memory T cells are involved in CNS immune surveillance during homeostasis, but could also play a role in CNS pathology. Among CD4+ T cells, this subset was found to dominate the CNS of patients without neurological inflammation ex vivo. The reduction in peripheral blood of HIV-positive patients with neurological symptoms correlated to their CD4 count as a measure of disease progression. Their peripheral enrichment in multiple sclerosis patients and specific peripheral entrapment through the CNS infiltration inhibiting drug natalizumab additionally suggests a contribution to CNS autoimmune pathology. Our transcriptome analysis revealed a migratory phenotype sharing many features with tissue-resident memory and Th17.1 cells, most notably the transcription factor eomesodermin. Knowledge on this cell subset should enable future studies to find ways to strengthen the host defence against CNS-resident pathogens and brain tumours or to prevent CNS autoimmunity.
Collapse
Affiliation(s)
- Sebastian Herich
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology University of Münster, Münster, Germany
| | | | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Lisa Zondler
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Claudia Janoschka
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Patrick Ostkamp
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Jannis Richter
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Johanna Breuer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Stoyan Dimitrov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Oliver M Grauer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology University of Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Dietmar Vestweber
- Max Planck Institute for Molecular Biomedicine, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany
| |
Collapse
|
14
|
Kerrigan SW, Devine T, Fitzpatrick G, Thachil J, Cox D. Early Host Interactions That Drive the Dysregulated Response in Sepsis. Front Immunol 2019; 10:1748. [PMID: 31447831 PMCID: PMC6691039 DOI: 10.3389/fimmu.2019.01748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/10/2019] [Indexed: 01/18/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. While many individual cells and systems in the body are involved in driving the excessive and sometimes sustained host response, pathogen engagement with endothelial cells and platelets early in sepsis progression, are believed to be key. Significant progress has been made in establishing key molecular interactions between platelets and pathogens and endothelial cells and pathogens. This review will explore the growing number of compensatory connections between bacteria and viruses with platelets and endothelial cells and how a better understanding of these interactions are informing the field of potential novel ways to treat the dysregulated host response during sepsis.
Collapse
Affiliation(s)
- Steven W Kerrigan
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tatyana Devine
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Glenn Fitzpatrick
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jecko Thachil
- Department of Haematology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Dermot Cox
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
15
|
Edwards DN, Bix GJ. The Inflammatory Response After Ischemic Stroke: Targeting β 2 and β 1 Integrins. Front Neurosci 2019; 13:540. [PMID: 31191232 PMCID: PMC6546847 DOI: 10.3389/fnins.2019.00540] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability with limited therapeutic options. Resulting inflammatory mechanisms after reperfusion (removal of the thrombus) result in cytokine activation, calcium influx, and leukocytic infiltration to the area of ischemia. In particular, leukocytes migrate toward areas of inflammation by use of integrins, particularly integrins β1 and β2. Integrins have been shown to be necessary for leukocyte adhesion and migration, and thus are of immediate interest in many inflammatory diseases, including ischemic stroke. In this review, we identify the main integrins involved in leukocytic migration following stroke (α L β2, αDβ2, α4β1, and α5β1) and targeted clinical therapeutic interventions.
Collapse
Affiliation(s)
- Danielle N. Edwards
- Sanders–Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Gregory J. Bix
- Department of Neurology, University of Kentucky, Lexington, KY, United States
- Department of Neurosurgery, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
16
|
Demiryürek S, Saracaloglu A, Kimyon S, Mete A, Eronat O, Temiz E, Nacarkahya G, Tunca ZS, Düzen B, Saygili O, Güngör K, Karakök M, Demiryürek AT. Increased Expressions of ICAM-2 and ICAM-3 in Pterygium. Curr Eye Res 2019; 44:645-650. [PMID: 30657707 DOI: 10.1080/02713683.2019.1570527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Purpose: Pterygium, one of the most common ocular surface diseases, is characterized by inflammatory infiltrates, proliferation, angiogenesis, fibrosis, and extracellular matrix breakdown. The objective of this study was to elucidate the levels of the intercellular adhesion molecule (ICAM)-2, and ICAM-3 gene and protein expressions in pterygium. Methods: A total of 59 patients with pterygium were included in this study. mRNA from pterygial and conjunctival autograft tissues were extracted, and real-time polymerase chain reaction on the BioMark HD dynamic array system was performed for the ICAM-2 and ICAM-3 gene expressions. ICAM-2 and ICAM-3 protein expressions using western blot and immunohistochemistry methods were also investigated in pterygial and conjunctival autograft tissues. Results: ICAM-2 and ICAM-3 gene expressions were markedly augmented in pterygial tissues (P = 0.0018 and P = 0.0023, respectively). Significant increases in protein expressions in pterygial tissues were also detected for ICAM-2 and ICAM-3 (P = 0.0116 and P = 0.0252, respectively). In the immunohistochemical studies, there was a marked increase in ICAM-3 (P = 0.0152), but not in ICAM-2 (P = 0.1041), protein expressions in pterygial tissues. Significant positive correlations between pterygia grading with ICAM-2 protein expression (P = 0.0398) and ICAM-3 immunohistochemical scores (P = 0.0138) were observed. Conclusion: These results demonstrate, for the first time, the expressions of ICAM-2 and ICAM-3 in the pterygium. These findings may help to understand the signal transduction mechanisms in the pterygium formation and provide a new therapy strategy for pterygium treatment.
Collapse
Affiliation(s)
- Seniz Demiryürek
- a Department of Physiology, Faculty of Medicine , University of Gaziantep , Gaziantep , Turkey
| | - Ahmet Saracaloglu
- b Department of Medical Pharmacology, Faculty of Medicine , University of Gaziantep , Gaziantep , Turkey
| | - Sabit Kimyon
- c Department of Ophthalmology, Faculty of Medicine , University of Gaziantep , Gaziantep , Turkey
| | - Alper Mete
- c Department of Ophthalmology, Faculty of Medicine , University of Gaziantep , Gaziantep , Turkey
| | - Omer Eronat
- d Department of Pathology, Faculty of Medicine , University of Gaziantep , Gaziantep , Turkey
| | - Ebru Temiz
- e Department of Medical Biochemistry, Faculty of Medicine , Harran University , Sanliurfa , Turkey
| | - Gülper Nacarkahya
- f Department of Medical Biology, Faculty of Medicine , University of Gaziantep , Gaziantep , Turkey
| | - Zeynep Sav Tunca
- a Department of Physiology, Faculty of Medicine , University of Gaziantep , Gaziantep , Turkey
| | - Betül Düzen
- g Ophthalmology Clinic , Gaziantep Dr. Ersin Arslan Training and Research Hospital , Gaziantep , Turkey
| | - Oguzhan Saygili
- c Department of Ophthalmology, Faculty of Medicine , University of Gaziantep , Gaziantep , Turkey
| | - Kıvanc Güngör
- c Department of Ophthalmology, Faculty of Medicine , University of Gaziantep , Gaziantep , Turkey
| | - Metin Karakök
- d Department of Pathology, Faculty of Medicine , University of Gaziantep , Gaziantep , Turkey
| | - Abdullah T Demiryürek
- b Department of Medical Pharmacology, Faculty of Medicine , University of Gaziantep , Gaziantep , Turkey
| |
Collapse
|
17
|
Bonan S, Albrengues J, Grasset E, Kuzet SE, Nottet N, Bourget I, Bertero T, Mari B, Meneguzzi G, Gaggioli C. Membrane-bound ICAM-1 contributes to the onset of proinvasive tumor stroma by controlling acto-myosin contractility in carcinoma-associated fibroblasts. Oncotarget 2018; 8:1304-1320. [PMID: 27901489 PMCID: PMC5352056 DOI: 10.18632/oncotarget.13610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Acto-myosin contractility in carcinoma-associated fibroblasts leads to assembly of the tumor extracellular matrix. The pro-inflammatory cytokine LIF governs fibroblast activation in cancer by regulating the myosin light chain 2 activity. So far, however, how LIF mediates cytoskeleton contractility remains unknown. Using phenotypic screening assays based on knock-down of LIF-dependent genes in fibroblasts, we identified the glycoprotein ICAM-1 as a crucial regulator of stroma fibroblast proinvasive matrix remodeling. We demonstrate that the membrane-bound ICAM-1 isoform is necessary and sufficient to promote inflammation-dependent extracellular matrix contraction, which favors cancer cell invasion. Indeed, ICAM-1 mediates generation of acto-myosin contractility downstream of the Src kinases in stromal fibroblasts. Moreover, acto-myosin contractility regulates ICAM-1 expression by establishing a positive feedback signaling. Thus, targeting stromal ICAM-1 might constitute a possible therapeutic mean to counteract tumor cell invasion and dissemination.
Collapse
Affiliation(s)
- Stephanie Bonan
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, F-06107, Nice, France
| | - Jean Albrengues
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, F-06107, Nice, France
| | - Eloise Grasset
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, F-06107, Nice, France
| | - Sanya-Eduarda Kuzet
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, F-06107, Nice, France
| | - Nicolas Nottet
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, Sophia-Antipolis, France
| | - Isabelle Bourget
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, F-06107, Nice, France
| | - Thomas Bertero
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, F-06107, Nice, France
| | - Bernard Mari
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, Sophia-Antipolis, France
| | - Guerrino Meneguzzi
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, F-06107, Nice, France
| | - Cedric Gaggioli
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, F-06107, Nice, France
| |
Collapse
|
18
|
Sasaki Y, Tamura M, Takeda K, Ogi K, Nakagaki T, Koyama R, Idogawa M, Hiratsuka H, Tokino T. Identification and characterization of the intercellular adhesion molecule-2 gene as a novel p53 target. Oncotarget 2018; 7:61426-61437. [PMID: 27556181 PMCID: PMC5308662 DOI: 10.18632/oncotarget.11366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022] Open
Abstract
The p53 tumor suppressor inhibits cell growth through the activation of both cell cycle arrest and apoptosis, which maintain genome stability and prevent cancer development. Here, we report that intercellular adhesion molecule-2 (ICAM2) is transcriptionally activated by p53. Specifically, ICAM2 is induced by the p53 family and DNA damage in a p53-dependent manner. We identified a p53 binding sequence located within the ICAM2 gene that is responsive to wild-type p53, TAp73, and TAp63. In terms of function, we found that the ectopic expression of ICAM2 inhibited cancer cell migration and invasion. In addition, we demonstrated that silencing endogenous ICAM2 in cancer cells caused a marked increase in extracellular signal-regulated kinase (ERK) phosphorylation levels, suggesting that ICAM2 inhibits migration and invasion of cancer cells by suppressing ERK signaling. Moreover, ICAM2 is underexpressed in human cancer tissues containing mutant p53 as compared to those with wild-type p53. Notably, the decreased expression of ICAM2 is associated with poor survival in patients with various cancers. Our findings demonstrate that ICAM2 induction by p53 has a key role in inhibiting migration and invasion.
Collapse
Affiliation(s)
- Yasushi Sasaki
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Miyuki Tamura
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Kousuke Takeda
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan.,Department of Oral Surgery, Sapporo Medical University, Sapporo, Japan
| | - Kazuhiro Ogi
- Department of Oral Surgery, Sapporo Medical University, Sapporo, Japan
| | - Takafumi Nakagaki
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan.,Department of Oral Surgery, Sapporo Medical University, Sapporo, Japan
| | - Ryota Koyama
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | | | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
19
|
MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium. Sci Rep 2017; 7:45284. [PMID: 28358058 PMCID: PMC5372244 DOI: 10.1038/srep45284] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022] Open
Abstract
Leukocyte adhesion to brain endothelial cells, the blood-brain barrier main component, is a critical step in the pathogenesis of neuroinflammatory diseases such as multiple sclerosis (MS). Leukocyte adhesion is mediated mainly by selectins, cell adhesion molecules and chemokines induced by pro-inflammatory cytokines such as TNFα and IFNγ, but the regulation of this process is not fully clear. This study investigated the regulation of firm leukocyte adhesion to human brain endothelium by two different brain endothelial microRNAs (miRs), miR-126 and miR-126*, that are downregulated by TNFα and IFNγ in a human brain endothelial cell line, hCMEC/D3. Using a leukocyte adhesion in vitro assay under shear forces mimicking blood flow, we observed that reduction of endothelial miR-126 and miR-126* enhanced firm monocyte and T cell adhesion to hCMEC/D3 cells, whereas their increased expression partially prevented THP1, Jurkat and primary MS patient-derived PBMC firm adhesion. Furthermore, we observed that miR-126* and miR-126 downregulation increased E-selectin and VCAM1, respectively, while miR-126 overexpression reduced VCAM1 and CCL2 expression by hCMEC/D3 cells, suggesting that these miRs regulate leukocyte adhesion by modulating the expression of adhesion-associated endothelial mRNA targets. Hence, human brain endothelial miR-126 and miR-126* could be used as a therapeutic tool to reduce leukocyte adhesion and thus reduce neuroinflammation.
Collapse
|
20
|
HIV-1 Vpu Downmodulates ICAM-1 Expression, Resulting in Decreased Killing of Infected CD4 + T Cells by NK Cells. J Virol 2017; 91:JVI.02442-16. [PMID: 28148794 DOI: 10.1128/jvi.02442-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/26/2017] [Indexed: 12/20/2022] Open
Abstract
HIV-1 Vpu is known to alter the expression of numerous cell surface molecules. Given the ever-increasing list of Vpu targets identified to date, we undertook a proteomic screen to discover novel cell membrane proteins modulated by this viral protein. Plasma membrane proteome isolates from Vpu-inducible T cells were subjected to stable isotope labeling of amino acids in cell culture (SILAC)-based mass spectrometry analysis, and putative targets were validated by infection of primary CD4+ T cells. We report here that while intercellular adhesion molecule 1 (ICAM-1) and ICAM-3 are upregulated by HIV-1 infection, expression of Vpu offsets this increase by downregulating these molecules from the cell surface. Specifically, we show that Vpu is sufficient to downregulate and deplete ICAM-1 in a manner requiring the Vpu transmembrane domain and a dual-serine (S52/S56) motif necessary for recruitment of the beta-transducin repeat-containing E3 ubiquitin protein ligase (β-TrCP) component of the Skp, Cullin, F-box (SCFβ-TrCP) E3 ubiquitin ligase. Vpu interacts with ICAM-1 to induce its proteasomal degradation. Interestingly, the E3 ubiquitin ligase component β-TrCP-1 is dispensable for ICAM-1 surface downregulation yet is necessary for ICAM-1 degradation. Functionally, Vpu-mediated ICAM-1 downregulation lowers packaging of this adhesion molecule into virions, resulting in decreased infectivity. Importantly, while Vpu-mediated downregulation of ICAM-3 has a limited effect on the conjugation of NK cells to HIV-1-infected CD4+ T cells, downregulation of ICAM-1 by Vpu results in a reduced ability of NK cells to bind and kill infected T cells. Vpu-mediated ICAM-1 downregulation may therefore represent an evolutionary compromise in viral fitness by impeding the formation of cell-to-cell contacts between immune cells and infected T cells at the cost of decreased virion infectivity.IMPORTANCE The major barrier to eradicating HIV-1 infection is the establishment of treatment-resistant reservoirs early in infection. Vpu-mediated ICAM-1 downregulation may contribute to the evasion of cell-mediated immunity during acute infection to promote viral dissemination and the development of viral reservoirs. By aiding the immune system to clear infection prior to the development of reservoirs, novel treatments designed to disrupt Vpu-mediated ICAM-1 downregulation may be beneficial during acute infection or as a prophylactic treatment.
Collapse
|
21
|
Smyth LA, Meader L, Xiao F, Woodward M, Brady HJM, Lechler R, Lombardi G. Constitutive expression of the anti-apoptotic Bcl-2 family member A1 in murine endothelial cells leads to transplant tolerance. Clin Exp Immunol 2017; 188:219-225. [PMID: 28120329 DOI: 10.1111/cei.12931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2017] [Indexed: 11/26/2022] Open
Abstract
Anti-apoptotic genes, including those of the Bcl-2 family, have been shown to have dual functionality inasmuch as they inhibit cell death but also regulate inflammation. Several anti-apoptotic molecules have been associated with endothelial cell (EC) survival following transplantation; however, their exact role has yet to be elucidated in respect to controlling inflammation. In this study we created mice expressing murine A1 (Bfl-1), a Bcl-2 family member, under the control of the human intercellular adhesion molecule 2 (ICAM-2) promoter. Constitutive expression of A1 in murine vascular ECs conferred protection from cell death induced by the proinflammatory cytokine tumour necrosis factor (TNF)-α. Importantly, in a mouse model of heart allograft transplantation, expression of A1 in vascular endothelium increased survival in the absence of CD8+ T cells. Better graft outcome in mice receiving an A1 transgenic heart correlated with a reduced immune infiltration, which may be related to increased EC survival and reduced expression of adhesion molecules on ECs. In conclusion, constitutive expression of the anti-apoptotic molecule Bfl1 (A1) in murine vascular ECs leads to prolonged allograft survival due to modifying inflammation.
Collapse
Affiliation(s)
- L A Smyth
- Medical Research Council (MRC) Centre for Transplantation, King's College London, London, UK, National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK.,School of Health, Sports and Biosciences, University of East London, London, UK
| | - L Meader
- Medical Research Council (MRC) Centre for Transplantation, King's College London, London, UK, National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - F Xiao
- Medical Research Council (MRC) Centre for Transplantation, King's College London, London, UK, National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - M Woodward
- Peter Gorer Department of Immunobiology, Borough Wing, Guy's Hospital, King's College, London, UK
| | - H J M Brady
- Immunology and Infection Section, Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College, London, UK
| | - R Lechler
- Medical Research Council (MRC) Centre for Transplantation, King's College London, London, UK, National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - G Lombardi
- Medical Research Council (MRC) Centre for Transplantation, King's College London, London, UK, National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
22
|
Mason JC, Haskard DO. The Clinical Importance of Leucocyte and Endothelial Cell Adhesion Molecules in Inflammation. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/1358863x9400500306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Dorsamy V, Vallen C, Haffejee F, Moodley J, Naicker T. The role of trophoblast cell receptor expression in HIV-1 passage across the placenta in pre-eclampsia: an observational study. BJOG 2016; 124:920-928. [PMID: 27700010 DOI: 10.1111/1471-0528.14311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To compare expression of markers of HIV and associated receptors (p24, CD4, CCR5 and ICAM-2) in placentae and umbilical cords of HIV-associated and pre-eclamptic pregnancies to elucidate any association between these conditions in mother-to-child transmission. DESIGN Cross-sectional immunohistochemical analysis of target receptor expression. SETTING Laboratory-based study of primigravidae attending a district hospital in South Africa. POPULATION OR SAMPLE Retrospectively collected placental tissue (stratified into four groups according to HIV status of normotensive and pre-eclamptic participants (n = 20/group). METHOD Immunohistochemistry utilising CD4 (1:1), p24 (1:10), CCR5 (1:80) and ICAM-2 (1:100) antibodies was performed using light microscopy for image acquisition and analysis. MAIN OUTCOME MEASURES Evaluate the expression of receptors on syncytiotrophoblast involved in in utero transmission of HIV. RESULTS Syncytiotrophoblast was immunopositive for CD4 and CCR5 antibody with greater expression of CCR5 in HIV-positive versus HIV-negative groups (F1,159 = 6.979, P = 0.009) and normotensive versus pre-eclamptic groups (F1,159 = 8.803, P = 0.003). p24 was present in both placentae and umbilical cords of babies that were HIV-negative at 6 weeks. ICAM-2 immunostaining was observed in the syncytiotrophoblast across study groups and was significantly higher in the HIV-negative pre-eclamptic group (χ2 (3) = 45.3; P < 0.001). CONCLUSION Concurrent CD4 and CCR5 receptor expression demonstrates possible in utero viral entry routes across the placental barrier. ICAM-2 expression may influence HIV passage across the placenta or restoration of risk of pre-eclampsia in HAART-treated mothers. HIV was found in fetal circulation regardless of antiretroviral treatment. Further confirmatory ultrastructural and molecular work is warranted. TWEETABLE ABSTRACT CD4, CCR5 and ICAM-2 on syncytiotrophoblast may facilitate HIV infection of passage across the placenta.
Collapse
Affiliation(s)
- V Dorsamy
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - C Vallen
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - F Haffejee
- Department of Basic Medical Sciences, Durban University of Technology, Durban, South Africa
| | - J Moodley
- Women's Health and HIV Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - T Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
24
|
Glass KA, Longley SJ, Bliss JM, Shaw SK. Protection of Candida parapsilosis from neutrophil killing through internalization by human endothelial cells. Virulence 2016; 6:504-14. [PMID: 26039751 DOI: 10.1080/21505594.2015.1042643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Candida parapsilosis is a fungal pathogen that is associated with hematogenously disseminated disease in premature neonates, acutely ill or immunocompromised patients. In cell culture, C. parapsilosis cells are actively and avidly endocytosed by endothelial cells via actin polymerization mediated by N-WASP. Here we present evidence that C. parapsilosis that were internalized by endothelial cells remained alive, and avoided being acidified or otherwise damaged via the host cell. Internalized fungal cells reproduced intracellularly and eventually burst out of the host endothelial cell. When neutrophils were added to endothelium and C. parapsilosis, they patrolled the endothelial surface and efficiently killed most adherent fungal cells prior to endocytosis. But after endocytosis by endothelial cells, internalized fungal cells evaded neutrophil killing. Silencing endothelial N-WASP blocked endocytosis of C. parapsilosis and left fungal cells stranded on the cell surface, where they were susceptible to neutrophil killing. These observations suggest that for C. parapsilosis to escape from the bloodstream, fungi may adhere to and be internalized by endothelial cells before being confronted and phagocytosed by a patrolling leukocyte. Once internalized by endothelial cells, C. parapsilosis may safely replicate to cause further rounds of infection. Immunosurveillance of the intravascular lumen by leukocytes crawling on the endothelial surface and rapid killing of adherent yeast may play a major role in controlling C. parapsilosis dissemination and infected endothelial cells may be a significant reservoir for fungal persistence.
Collapse
Affiliation(s)
- Kyle A Glass
- a Department of Pediatrics; Women & Infants Hospital of Rhode Island ; Providence , RI , USA
| | | | | | | |
Collapse
|
25
|
Alaşehirli B, Oguz E, Gokcen C, Erbagcı AB, Orkmez M, Demiryurek AT. Relationship between soluble intercellular adhesion molecules and attention-deficit/hyperactivity disorder. Int J Psychiatry Med 2015; 50:238-47. [PMID: 26377944 DOI: 10.1177/0091217415605040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-oneset psychiatric disease, characterized by excessive overactivity, inattention, and impulsiveness. In recent studies, it is emphasized that inflammation may have a role in ADHD. In this study, we aimed to investigate whether there are associations between ADHD and serum levels of soluble intercellular adhesion molecules (s-ICAMs) which have important role in inflammatory diseases. We also measured the levels of these molecules after treatment with oros-methylphenidate. METHODS Twenty-five patients diagnosed with ADHD according to Diagnostic and Statistical Manual of Mental Disorders-IV-TR criteria and 18 healthy volunteer controls were included in this study. The levels of sICAMs were measured in the serum of the patients and healthy volunteers by ELISA kit as described. RESULTS The levels of sICAM-1 and sICAM-2 were significantly higher in patients compared with controls. The level of sICAM-2 was decreased significantly in group treated with oros-methylphenidate. CONCLUSIONS This is the first study pointing out the relationship between sICAMs and ADHD. The changes in sICAM-2 level may have a role in the effect mechanism of oros-methylphenidate, used for the treatment of ADHD.
Collapse
Affiliation(s)
- Belgin Alaşehirli
- Department of Medical Pharmacology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Elif Oguz
- Department of Medical Pharmacology, Faculty of Medicine, University of Harran, Sanliurfa, Turkey
| | - Cem Gokcen
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Ayse Binnur Erbagcı
- Department of Medical Biochemistry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Mustafa Orkmez
- Department of Medical Biochemistry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Abdullah T Demiryurek
- Department of Medical Pharmacology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| |
Collapse
|
26
|
The isolation and culture of endothelial colony-forming cells from human and rat lungs. Nat Protoc 2015; 10:1697-708. [DOI: 10.1038/nprot.2015.107] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
27
|
Muller WA. The regulation of transendothelial migration: new knowledge and new questions. Cardiovasc Res 2015; 107:310-20. [PMID: 25987544 PMCID: PMC4592322 DOI: 10.1093/cvr/cvv145] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/13/2015] [Accepted: 04/01/2015] [Indexed: 12/14/2022] Open
Abstract
Leucocyte transendothelial migration (TEM) involves a co-operative series of interactions between surface molecules on the leucocyte and cognate counter-ligands on the endothelial cell. These interactions set up a cascade of signalling events inside the endothelial cell that both allow for the junctions to loosen and for membrane to be recruited from the lateral border recycling compartment (LBRC). The LBRC is thought to provide an increased surface area and unligated receptors to the leucocyte to continue the process. The relative importance of the individual adhesion/signalling molecules that promote transmigration may vary depending on the type of leucocyte, the vascular bed, the inflammatory stimulus, and the stage of the inflammatory response. However, the molecular interactions between leucocyte and endothelial cell activate signalling pathways that disengage the adherens and tight junctions and recruit the LBRC to the site of transmigration. With the exception of disengaging the junctions, similar molecules and mechanisms promote transcellular migration as paracellular migration of leucocytes. This review will discuss the molecular interactions and signalling pathways that regulate transmigration, and the common themes that emerge from studying TEM of different leucocyte subsets under different inflammatory conditions. We will also raise some unanswered questions in need of future research.
Collapse
Affiliation(s)
- William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Ward Building 3-140, 303 East Chicago Avenue, Chicago, IL 60611, USA
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Neutrophil extravasation from the blood into tissues is initiated by tethering and rolling of neutrophils on endothelial cells, followed by neutrophil integrin activation and shear resistant arrest, crawling, diapedesis and breaching the endothelial basement membrane harbouring pericytes. Endothelial intercellular cell adhesion molecule (ICAM)-1 and ICAM-2, in conjunction with ICAM-1 on pericytes, critically contribute to each step. In addition, epithelial ICAM-1 is involved in neutrophil migration to peri-epithelial sites. The most recent findings on the role of ICAM-1 and ICAM-2 for neutrophil migration into tissues will be reviewed here. RECENT FINDINGS Signalling via endothelial ICAM-1 and ICAM-2 contributes to stiffness of the endothelial cells at sites of chronic inflammation and junctional maturation, respectively. Endothelial ICAM-2 contributes to neutrophil crawling and initiation of paracellular diapedesis, which then proceeds independent of ICAM-2. Substantial transcellular neutrophil diapedesis across the blood-brain barrier is strictly dependent on endothelial ICAM-1 and ICAM-2. Endothelial ICAM-1 or ICAM-2 is involved in neutrophil-mediated plasma leakage. ICAM-1 on pericytes assists the final step of neutrophil extravasation. Epithelial ICAM-1 rather indirectly promotes neutrophil migration to peri-epithelial sites. SUMMARY ICAM-1 and ICAM-2 are involved in each step of neutrophil extravasation, and have redundant but also distinct functions. Analysis of the role of endothelial ICAM-1 requires simultaneous consideration of ICAM-2.
Collapse
|
29
|
Chakraborty S, Núñez D, Hu SY, Domingo MP, Pardo J, Karmenyan A, Chiou A. FRET based quantification and screening technology platform for the interactions of leukocyte function-associated antigen-1 (LFA-1) with intercellular adhesion molecule-1 (ICAM-1). PLoS One 2014; 9:e102572. [PMID: 25032811 PMCID: PMC4102529 DOI: 10.1371/journal.pone.0102572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/19/2014] [Indexed: 11/29/2022] Open
Abstract
The interaction between leukocyte function-associated antigen-1(LFA-1) and intercellular adhesion molecule-1 (ICAM-1) plays a pivotal role in cellular adhesion including the extravasation and inflammatory response of leukocytes, and also in the formation of immunological synapse. However, irregular expressions of LFA-1 or ICAM-1 or both may lead to autoimmune diseases, metastasis cancer, etc. Thus, the LFA-1/ICAM-1 interaction may serve as a potential therapeutic target for the treatment of these diseases. Here, we developed one simple 'in solution' steady state fluorescence resonance energy transfer (FRET) technique to obtain the dissociation constant (Kd) of the interaction between LFA-1 and ICAM-1. Moreover, we developed the assay into a screening platform to identify peptides and small molecules that inhibit the LFA-1/ICAM-1 interaction. For the FRET pair, we used Alexa Fluor 488-LFA-1 conjugate as donor and Alexa Fluor 555-human recombinant ICAM-1 (D1-D2-Fc) as acceptor. From our quantitative FRET analysis, the Kd between LFA-1 and D1-D2-Fc was determined to be 17.93±1.34 nM. Both the Kd determination and screening assay were performed in a 96-well plate platform, providing the opportunity to develop it into a high-throughput assay. This is the first reported work which applies FRET based technique to determine Kd as well as classifying inhibitors of the LFA-1/ICAM-1 interaction.
Collapse
Affiliation(s)
| | - David Núñez
- Instituto de Carboquímica, CSIC, Zaragoza, Spain
- Immune Effector Cells Group, Aragón Health Research Institute, Biomedical Research Centre of Aragón, Zaragoza, Spain
| | - Shih-Yang Hu
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - María Pilar Domingo
- Instituto de Carboquímica, CSIC, Zaragoza, Spain
- Immune Effector Cells Group, Aragón Health Research Institute, Biomedical Research Centre of Aragón, Zaragoza, Spain
| | - Julian Pardo
- Immune Effector Cells Group, Aragón Health Research Institute, Biomedical Research Centre of Aragón, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, Facultad de Ciencias, University of Zaragoza, Zaragoza, Spain
- Aragón I+D Foundation, Government of Aragon, Zaragoza, Spain
- Nanoscience Institute of Aragón, Aragón I+D Foundation, University of Zaragoza, Zaragoza, Spain
| | - Artashes Karmenyan
- Biophotonics & Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Eva Ma Gálvez
- Instituto de Carboquímica, CSIC, Zaragoza, Spain
- Immune Effector Cells Group, Aragón Health Research Institute, Biomedical Research Centre of Aragón, Zaragoza, Spain
| | - Arthur Chiou
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Biophotonics & Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
30
|
ICAM-2 confers a non-metastatic phenotype in neuroblastoma cells by interaction with α-actinin. Oncogene 2014; 34:1553-62. [PMID: 24704826 DOI: 10.1038/onc.2014.87] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/29/2014] [Accepted: 02/24/2014] [Indexed: 12/16/2022]
Abstract
Progressive metastatic disease is a major cause of mortality for patients diagnosed with multiple types of solid tumors. One of the long-term goals of our laboratory is to identify molecular interactions that regulate metastasis, as a basis for developing agents that inhibit this process. Toward this goal, we recently demonstrated that intercellular adhesion molecule-2 (ICAM-2) converted neuroblastoma (NB) cells from a metastatic to a non-metastatic phenotype, a previously unknown function for ICAM-2. Interestingly, ICAM-2 suppressed metastatic but not tumorigenic potential in preclinical models, supporting a novel mechanism of regulating metastasis. We hypothesized that the effects of ICAM-2 on NB cell phenotype depend on the interaction of ICAM-2 with the cytoskeletal linker protein α-actinin. The goal of the study presented here was to evaluate the impact of α-actinin binding to ICAM-2 on the phenotype of NB tumor cells. We used in silico approaches to examine the likelihood that the cytoplasmic domain of ICAM-2 binds directly to α-actinin. We then expressed variants of ICAM-2 with mutated α-actinin-binding domains, and compared the impact of ICAM-2 and each variant on NB cell adhesion, migration, anchorage-independent growth, co-precipitation with α-actinin and production of localized and disseminated tumors in vivo. The in vitro and in vivo characteristics of cells expressing ICAM-2 variants with modified α-actinin-binding domains differed from cells expressing ICAM-2 wild type (WT) and also from cells that expressed no detectable ICAM-2. Like the WT protein, ICAM-2 variants inhibited cell adhesion, migration and colony growth in vitro. However, unlike the WT protein, ICAM-2 variants did not completely suppress development of disseminated NB tumors in vivo. The data suggest the presence of α-actinin-dependent and α-actinin-independent mechanisms, and indicate that the interaction of ICAM-2 with α-actinin is critical to conferring an ICAM-2-mediated non-metastatic phenotype in NB cells.
Collapse
|
31
|
Amsellem V, Dryden NH, Martinelli R, Gavins F, Almagro LO, Birdsey GM, Haskard DO, Mason JC, Turowski P, Randi AM. ICAM-2 regulates vascular permeability and N-cadherin localization through ezrin-radixin-moesin (ERM) proteins and Rac-1 signalling. Cell Commun Signal 2014; 12:12. [PMID: 24593809 PMCID: PMC4015342 DOI: 10.1186/1478-811x-12-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/28/2014] [Indexed: 01/09/2023] Open
Abstract
Background Endothelial junctions control functions such as permeability, angiogenesis and contact inhibition. VE-Cadherin (VECad) is essential for the maintenance of intercellular contacts. In confluent endothelial monolayers, N-Cadherin (NCad) is mostly expressed on the apical and basal membrane, but in the absence of VECad it localizes at junctions. Both cadherins are required for vascular development. The intercellular adhesion molecule (ICAM)-2, also localized at endothelial junctions, is involved in leukocyte recruitment and angiogenesis. Results In human umbilical vein endothelial cells (HUVEC), both VECad and NCad were found at nascent cell contacts of sub-confluent monolayers, but only VECad localized at the mature junctions of confluent monolayers. Inhibition of ICAM-2 expression by siRNA caused the appearance of small gaps at the junctions and a decrease in NCad junctional staining in sub-confluent monolayers. Endothelioma lines derived from WT or ICAM-2-deficient mice (IC2neg) lacked VECad and failed to form junctions, with loss of contact inhibition. Re-expression of full-length ICAM-2 (IC2 FL) in IC2neg cells restored contact inhibition through recruitment of NCad at the junctions. Mutant ICAM-2 lacking the binding site for ERM proteins (IC2 ΔERM) or the cytoplasmic tail (IC2 ΔTAIL) failed to restore junctions. ICAM-2-dependent Rac-1 activation was also decreased in these mutant cell lines. Barrier function, measured in vitro via transendothelial electrical resistance, was decreased in IC2neg cells, both in resting conditions and after thrombin stimulation. This was dependent on ICAM-2 signalling to the small GTPase Rac-1, since transendothelial electrical resistance of IC2neg cells was restored by constitutively active Rac-1. In vivo, thrombin-induced extravasation of FITC-labeled albumin measured by intravital fluorescence microscopy in the mouse cremaster muscle showed that permeability was increased in ICAM-2-deficient mice compared to controls. Conclusions These results indicate that ICAM-2 regulates endothelial barrier function and permeability through a pathway involving N-Cadherin, ERMs and Rac-1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Anna M Randi
- Imperial College for Translational and Experimental Medicine, NHLI Vascular Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12, ONN, UK.
| |
Collapse
|
32
|
Wu SH, Núnez D, Hu SY, Domingo MP, Chen YC, Wei PK, Pardo J, Gálvez EM, Chiou A. The effect of acidic pH on the inhibitory efficacy of peptides against the interaction ICAM-1/LFA-1 studied by surface plasmon resonance (SPR). Biosens Bioelectron 2014; 56:159-66. [PMID: 24487103 DOI: 10.1016/j.bios.2014.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 12/19/2022]
Abstract
Synthetic peptides have been developed for therapeutic applications for decades. The therapeutic efficacy often depends not only on the stabilization of the peptides but also on their binding specificity and affinity to the target molecules to interfere with designated molecular interaction. In this study, the binding affinity of human intercellular adhesion molecule 1 (ICAM-1) chimera and leukocyte function-associated antigen-1 (LFA-1) derived peptides was measured by surface plasmon resonance (SPR) detection, and the results were compared with that of the interaction (of ICAM-1) with the LFA-1 whole protein. To mimic diverse pathological situations in vivo where a low pH has been reported, we studied pH regulated binding affinity of ICAM-1/LFA-1 at pH 7.4, 6.5, and 4.0 without and with magnesium ion. We have found that the binding affinity of LFA-1 whole protein and ICAM-1 increases significantly as the environmental pH decreases, regardless of the absence or the presence of magnesium ion. The affinity of different (LFA-1) derived peptides also depends on the pH, although in all cases the peptides retain its ability to inhibit ICAM-1/LFA-1 interaction. The biomedical relevance of these data has been confirmed using a cell aggregation assay, suggesting that LFA-1 derived peptides show great potential for peptide drug development with a wide functional window of pH range for potential applications in LFA-1 related tumor therapy and autoimmune disease treatment.
Collapse
Affiliation(s)
- Shu-Han Wu
- Institute of Biophotonics, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 11221, Taiwan, ROC; Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - David Núnez
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza 50009, Spain; Instituto de Carboquímica ICB-CSIC, Zaragoza 50018, Spain; Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza 50009, Spain
| | - Shih-Yang Hu
- Institute of Biophotonics, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 11221, Taiwan, ROC
| | - María Pilar Domingo
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza 50009, Spain; Instituto de Carboquímica ICB-CSIC, Zaragoza 50018, Spain
| | - Yi-Chun Chen
- Institute of Imaging and Biomedical Photonics, National Chiao Tung University, Tainan 71150, Taiwan, ROC
| | - Pei-Kuen Wei
- Institute of Biophotonics, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 11221, Taiwan, ROC; Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Julián Pardo
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza 50009, Spain; Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza 50009, Spain; Aragón I+D Foundation (ARAID), Government of Aragon, Zaragoza 50004, Spain; Nanoscience Institute of Aragon (INA), Aragón I+D Foundation (ARAID), University of Zaragoza, Zaragoza 50009, Spain.
| | - Eva M Gálvez
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza 50009, Spain; Instituto de Carboquímica ICB-CSIC, Zaragoza 50018, Spain.
| | - Arthur Chiou
- Institute of Biophotonics, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 11221, Taiwan, ROC; Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 11221, Taiwan, ROC.
| |
Collapse
|
33
|
Sullivan DP, Muller WA. Neutrophil and monocyte recruitment by PECAM, CD99, and other molecules via the LBRC. Semin Immunopathol 2013; 36:193-209. [PMID: 24337626 DOI: 10.1007/s00281-013-0412-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/28/2013] [Indexed: 12/14/2022]
Abstract
The recruitment of specific leukocyte subtypes to the site of tissue injury is the cornerstone of inflammation and disease progression. This process has become an intense area of research because it presents several possible steps against which disease-specific therapies could be targeted. Leukocytes are recruited out of the blood stream by a series of events that include their capture, rolling, activation, and migration along the endothelium. In the last step, the leukocytes squeeze between adjacent endothelial cells to gain access to the inflamed tissue through a process referred to as transendothelial migration (TEM). Although many of the molecules, such as PECAM and CD99, that regulate these sequential steps have been identified, much less is understood regarding how they work together to coordinate the complex intercellular communications and dramatic shape changes that take place between the endothelial cells and leukocytes. Several of the endothelial cell proteins that function in TEM are localized to the lateral border recycling compartment (LBRC), an interconnected reticulum of membrane that recycles selectively to the endothelial borders. The recruitment of the LBRC to surround the migrating leukocyte is required for efficient TEM. This review will focus on the proteins and mechanisms that mediate TEM and specifically how the LBRC functions in the context of these molecular interactions and membrane movements.
Collapse
Affiliation(s)
- David P Sullivan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Ward Building, Rm 3-140, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | | |
Collapse
|
34
|
Halai K, Whiteford J, Ma B, Nourshargh S, Woodfin A. ICAM-2 facilitates luminal interactions between neutrophils and endothelial cells in vivo. J Cell Sci 2013; 127:620-9. [PMID: 24317296 PMCID: PMC4007766 DOI: 10.1242/jcs.137463] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Intercellular adhesion molecule 2 (ICAM-2) is expressed on endothelial cells (ECs) and supports neutrophil extravasation. However, the full details of its role remain unknown, and the present study investigates the functional mechanisms of ICAM-2 in neutrophil–endothelial-cell interactions. Our initial studies showed expression of ICAM-2 at both EC junctions and on the EC body. In line with the observed expression profile analysis of neutrophil–vessel-wall interactions using real-time in vivo confocal microscopy identified numerous functional roles for ICAM-2 within the vascular lumen and at the stage of neutrophil extravasation. Functional or genetic blockade of ICAM-2 significantly reduced neutrophil crawling velocity, increased frequency of crawling with a disrupted stop-start profile, and prolonged interaction of neutrophils with EC junctions prior to transendothelial cell migration (TEM), collectively resulting in significantly reduced extravasation. Pharmacological blockade of the leukocyte integrin MAC-1 indicated that some ICAM-2-dependent functions might be mediated through ligation of this integrin. These findings highlight novel roles for ICAM-2 in mediating luminal neutrophil crawling and the effect on subsequent levels of extravasation.
Collapse
Affiliation(s)
- Krishma Halai
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | | | |
Collapse
|
35
|
Lecce L, Lindsay L, Kaneko Y, Murphy CR. ICAM-2 and lipid rafts disappear from the basal plasma membrane of uterine epithelial cells during early pregnancy in rats. Cell Tissue Res 2013; 353:563-73. [DOI: 10.1007/s00441-013-1656-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/02/2013] [Indexed: 01/29/2023]
|
36
|
Feduska JM, Garcia PL, Brennan SB, Bu S, Council LN, Yoon KJ. N-glycosylation of ICAM-2 is required for ICAM-2-mediated complete suppression of metastatic potential of SK-N-AS neuroblastoma cells. BMC Cancer 2013; 13:261. [PMID: 23714211 PMCID: PMC3700849 DOI: 10.1186/1471-2407-13-261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/22/2013] [Indexed: 11/12/2022] Open
Abstract
Background Cell adhesion molecules (CAMs) are expressed ubiquitously. Each of the four families of CAMs is comprised of glycosylated, membrane-bound proteins that participate in multiple cellular processes including cell-cell communication, cell motility, inside-out and outside-in signaling, tumorigenesis, angiogenesis and metastasis. Intercellular adhesion molecule-2 (ICAM-2), a member of the immunoglobulin superfamily of CAMs, has six N-linked glycosylation sites at amino acids (asparagines) 47, 82, 105, 153, 178 and 187. Recently, we demonstrated a previously unknown function for ICAM-2 in tumor cells. We showed that ICAM-2 suppressed neuroblastoma cell motility and growth in soft agar, and induced a juxtamembrane distribution of F-actin in vitro. We also showed that ICAM-2 completely suppressed development of disseminated tumors in vivo in a murine model of metastatic NB. These effects of ICAM-2 on NB cell phenotype in vitro and in vivo depended on the interaction of ICAM-2 with the cytoskeletal linker protein α-actinin. Interestingly, ICAM-2 did not suppress subcutaneous growth of tumors in mice, suggesting that ICAM-2 affects the metastatic but not the tumorigenic potential of NB cells. The goal of the study presented here was to determine if the glycosylation status of ICAM-2 influenced its function in neuroblastoma cells. Methods Because it is well documented that glycosylation facilitates essential steps in tumor progression and metastasis, we investigated whether the glycosylation status of ICAM-2 affected the phenotype of NB cells. We used site-directed mutagenesis to express hypo- or non-glycosylated variants of ICAM-2, by substituting alanine for asparagine at glycosylation sites, and compared the impact of each variant on NB cell motility, anchorage-independent growth, interaction with intracellular proteins, effect on F-actin distribution and metastatic potential in vivo. Results The in vitro and in vivo phenotypes of cells expressing glycosylation site variants differed from cells expressing fully-glycosylated ICAM-2 or no ICAM-2. Most striking was the finding that mice injected intravenously with NB cells expressing glycosylation site variants survived longer (P ≤ 0.002) than mice receiving SK-N-AS cells with undetectable ICAM-2. However, unlike fully-glycosylated ICAM-2, glycosylation site variants did not completely suppress disseminated tumor development. Conclusions Reduced glycosylation of ICAM-2 significantly attenuated, but did not abolish, its ability to suppress metastatic properties of NB cells.
Collapse
Affiliation(s)
- Joseph M Feduska
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
37
|
Eichten A, Adler AP, Cooper B, Griffith J, Wei Y, Yancopoulos GD, Lin HC, Thurston G. Rapid decrease in tumor perfusion following VEGF blockade predicts long-term tumor growth inhibition in preclinical tumor models. Angiogenesis 2013; 16:429-41. [PMID: 23238831 PMCID: PMC3595479 DOI: 10.1007/s10456-012-9328-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/23/2012] [Indexed: 01/09/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a key upstream mediator of tumor angiogenesis, and blockade of VEGF can inhibit tumor angiogenesis and decrease tumor growth. However, not all tumors respond well to anti-VEGF therapy. Despite much effort, identification of early response biomarkers that correlate with long-term efficacy of anti-VEGF therapy has been difficult. These difficulties arise in part because the functional effects of VEGF inhibition on tumor vessels are still unclear. We therefore assessed rapid molecular, morphologic and functional vascular responses following treatment with aflibercept (also known as VEGF Trap or ziv-aflibercept in the United States) in preclinical tumor models with a range of responses to anti-VEGF therapy, including Colo205 human colorectal carcinoma (highly sensitive), C6 rat glioblastoma (moderately sensitive), and HT1080 human fibrosarcoma (resistant), and correlated these changes to long-term tumor growth inhibition. We found that an overall decrease in tumor vessel perfusion, assessed by dynamic contrast-enhanced ultrasound (DCE-US), and increases in tumor hypoxia correlated well with long-term tumor growth inhibition, whereas changes in vascular gene expression and microvessel density did not. Our findings support previous clinical studies showing that decreased tumor perfusion after anti-VEGF therapy (measured by DCE-US) correlated with response. Thus, measuring tumor perfusion changes shortly after treatment with VEGF inhibitors, or possibly other anti-angiogenic therapies, may be useful to predict treatment efficacy.
Collapse
Affiliation(s)
- Alexandra Eichten
- Regeneron Pharmaceuticals Inc, 777 Old Saw Mill River Road, Tarrytown, NY 10591 USA
| | - Alexander P. Adler
- Regeneron Pharmaceuticals Inc, 777 Old Saw Mill River Road, Tarrytown, NY 10591 USA
| | - Blerta Cooper
- Regeneron Pharmaceuticals Inc, 777 Old Saw Mill River Road, Tarrytown, NY 10591 USA
| | - Jennifer Griffith
- Regeneron Pharmaceuticals Inc, 777 Old Saw Mill River Road, Tarrytown, NY 10591 USA
| | - Yi Wei
- Regeneron Pharmaceuticals Inc, 777 Old Saw Mill River Road, Tarrytown, NY 10591 USA
| | | | - Hsin Chieh Lin
- Regeneron Pharmaceuticals Inc, 777 Old Saw Mill River Road, Tarrytown, NY 10591 USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals Inc, 777 Old Saw Mill River Road, Tarrytown, NY 10591 USA
| |
Collapse
|
38
|
The leucocyte β2 (CD18) integrins: the structure, functional regulation and signalling properties. Biosci Rep 2012; 32:241-69. [PMID: 22458844 DOI: 10.1042/bsr20110101] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Leucocytes are highly motile cells. Their ability to migrate into tissues and organs is dependent on cell adhesion molecules. The integrins are a family of heterodimeric transmembrane cell adhesion molecules that are also signalling receptors. They are involved in many biological processes, including the development of metazoans, immunity, haemostasis, wound healing and cell survival, proliferation and differentiation. The leucocyte-restricted β2 integrins comprise four members, namely αLβ2, αMβ2, αXβ2 and αDβ2, which are required for a functional immune system. In this paper, the structure, functional regulation and signalling properties of these integrins are reviewed.
Collapse
|
39
|
Astragaloside IV protects against focal cerebral ischemia/reperfusion injury correlating to suppression of neutrophils adhesion-related molecules. Neurochem Int 2012; 60:458-65. [DOI: 10.1016/j.neuint.2012.01.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 01/17/2012] [Accepted: 01/24/2012] [Indexed: 01/06/2023]
|
40
|
Estecha A, Aguilera-Montilla N, Sánchez-Mateos P, Puig-Kröger A. RUNX3 regulates intercellular adhesion molecule 3 (ICAM-3) expression during macrophage differentiation and monocyte extravasation. PLoS One 2012; 7:e33313. [PMID: 22479382 PMCID: PMC3315569 DOI: 10.1371/journal.pone.0033313] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 02/07/2012] [Indexed: 01/08/2023] Open
Abstract
The adhesion molecule ICAM-3 belongs to the immunoglobulin gene superfamily and functions as a ligand for the β2 integrins LFA-1, Mac-1 and αdβ2. The expression of ICAM-3 is restricted to cells of the hematopoietic lineage. We present evidences that the ICAM-3 gene promoter exhibits a leukocyte-specific activity, as its activity is significantly higher in ICAM-3+ hematopoietic cell lines. The activity of the ICAM-3 gene promoter is dependent on the occupancy of RUNX cognate sequences both in vitro and in vivo, and whose integrity is required for RUNX responsiveness and for the cooperative actions of RUNX with transcription factors of the Ets and C/EBP families. Protein analysis revealed that ICAM-3 levels diminish upon monocyte-derived macrophage differentiation, monocyte transendothelial migration and dendritic cell maturation, changes that correlate with an increase in RUNX3. Importantly, disruption of RUNX-binding sites led to enhanced promoter activity, and small interfering RNA-mediated reduction of RUNX3 expression resulted in increased ICAM-3 mRNA levels. Altogether these results indicate that the ICAM-3 gene promoter is negatively regulated by RUNX transcription factors, which contribute to the leukocyte-restricted and the regulated expression of ICAM-3 during monocyte-to-macrophage differentiation and monocyte extravasation.
Collapse
Affiliation(s)
- Ana Estecha
- Laboratorio de Inmuno-Oncología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Paloma Sánchez-Mateos
- Laboratorio de Inmuno-Oncología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Amaya Puig-Kröger
- Laboratorio de Inmuno-Oncología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- * E-mail:
| |
Collapse
|
41
|
Golias C, Batistatou A, Bablekos G, Charalabopoulos A, Peschos D, Mitsopoulos P, Charalabopoulos K. Physiology and pathophysiology of selectins, integrins, and IgSF cell adhesion molecules focusing on inflammation. A paradigm model on infectious endocarditis. ACTA ACUST UNITED AC 2011; 18:19-32. [PMID: 21892874 DOI: 10.3109/15419061.2011.606381] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of adhesion bonds, either among cells or among cells and components of the extracellular matrix, is a crucial process. These interactions are mediated by some molecules collectively known as adhesion molecules (CAMs). CAMs are ubiquitously expressed proteins playing a central role in controlling cell migration, proliferation, survival, and apoptosis. Besides their key function in physiological maintenance of tissue integrity, CAMs play an eminent role in various pathological processes such as cardiovascular disorders, atherogenesis, atherosclerotic plaque progression and regulation of the inflammatory response. CAMs such as selectins, integrins, and immunoglobulin superfamily take part in interactions between leukocyte and vascular endothelium (leukocyte rolling, arrest, firm adhesion, migration). Experimental data and pathologic observations support the assumption that pathogenic microorganisms attach to vascular endothelial cells or sites of vascular injury initiating intravascular infections. In this review a paradigm focusing on cell adhesion molecules pathophysiology and infective endocarditis development is given.
Collapse
Affiliation(s)
- Christos Golias
- Department of Physiology, Medical Faculty, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | | | | | | |
Collapse
|
42
|
Lask A, Goichberg P, Cohen A, Goren-Arbel R, Milstein O, Aviner S, Feine I, Ophir E, Reich-Zeliger S, Hagin D, Klein T, Nagler A, Berrebi A, Reisner Y. TCR-independent killing of B cell malignancies by anti-third-party CTLs: the critical role of MHC-CD8 engagement. THE JOURNAL OF IMMUNOLOGY 2011; 187:2006-14. [PMID: 21753148 DOI: 10.4049/jimmunol.1100095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously demonstrated that anti-third-party CTLs (stimulated under IL-2 deprivation against cells with an MHC class I [MHC-I] background different from that of the host and the donor) are depleted of graft-versus-host reactivity and can eradicate B cell chronic lymphocytic leukemia cells in vitro or in an HU/SCID mouse model. We demonstrated in the current study that human allogeneic or autologous anti-third-party CTLs can also efficiently eradicate primary non-Hodgkin B cell lymphoma by inducing slow apoptosis of the pathological cells. Using MHC-I mutant cell line as target cells, which are unrecognizable by the CTL TCR, we demonstrated directly that this killing is TCR independent. Strikingly, this unique TCR-independent killing is induced through lymphoma MHC-I engagement. We further showed that this killing mechanism begins with durable conjugate formation between the CTLs and the tumor cells, through rapid binding of tumor ICAM-1 to the CTL LFA-1 molecule. This conjugation is followed by a slower second step of MHC-I-dependent apoptosis, requiring the binding of the MHC-I α2/3 C region on tumor cells to the CTL CD8 molecule for killing to ensue. By comparing CTL-mediated killing of Daudi lymphoma cells (lacking surface MHC-I expression) to Daudi cells with reconstituted surface MHC-I, we demonstrated directly for the first time to our knowledge, in vitro and in vivo, a novel role for MHC-I in the induction of lymphoma cell apoptosis by CTLs. Additionally, by using different knockout and transgenic strains, we further showed that mouse anti-third-party CTLs also kill lymphoma cells using similar unique TCR-independence mechanism as human CTLs, while sparing normal naive B cells.
Collapse
Affiliation(s)
- Assaf Lask
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wipfler P, Oppermann K, Pilz G, Afazel S, Haschke-Becher E, Harrer A, Huemer M, Kunz A, Golaszewski S, Staffen W, Ladurner G, Kraus J. Adhesion molecules are promising candidates to establish surrogate markers for natalizumab treatment. Mult Scler 2010; 17:16-23. [PMID: 20937631 DOI: 10.1177/1352458510383075] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Natalizumab is the first monoclonal antibody therapy approved for multiple sclerosis (MS). Its therapeutic mechanism is the blockade of the α4-integrin subunit of the adhesion molecule (AM) very late activation antigen-4 (VLA-4), which leads to an inhibition of immune cell extravasation into the central nervous system (CNS). METHODS We investigated changes in the expression levels of unblocked α4-integrin and further AM (intercellular adhesion molecule-1, -2, -3 (cICAM-1, -2, -3), leukocyte function associated antigen-1 (LFA-1)) on peripheral blood mononuclear cells (PBMC) determined by flow cytometry from 25 patients with MS before the first natalizumab infusion and before the fourth infusion. In 15 MS patients AM expression was evaluated every 3 months over 1 year. RESULTS We found a significant decrease (p < 0.0001) of unblocked α4-integrin cell surface expression on all investigated PBMC subsets (T cells -61.7%, B cells -69.1%, monocytes/macrophages -46.4%) in the blood of MS patients after 3 months of natalizumab treatment. Moreover, a continuous decrease (p < 0.05) of unblocked α4-integrin expression levels was seen after 3, 6, 9, and 12 months. As a secondary effect, expression levels of the other investigated AM were differentially affected. CONCLUSIONS Results show a sustained decrease of unblocked α4-integrin expression not only in all patients but also in all investigated PBMC subsets. This probably results in a continuously decreasing transmigration of PBMC into the CNS and may explain the improved clinical efficacy in the second treatment year and also the increasing risk of progressive multifocal leukoencephalopathy during long-term natalizumab therapy. We conclude that AM expression profiles are promising candidates for the development of a biomarker system to determine both natalizumab treatment response and patients at risk for opportunistic CNS infections.
Collapse
Affiliation(s)
- P Wipfler
- Paracelsus Medical University, Christian-Doppler-Klinik, University Hospital of Neurology, Salzburg, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pradilla G, Chaichana KL, Hoang S, Huang J, Tamargo RJ. Inflammation and cerebral vasospasm after subarachnoid hemorrhage. Neurosurg Clin N Am 2010; 21:365-79. [PMID: 20380976 DOI: 10.1016/j.nec.2009.10.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Morbidity and mortality of patients with aneurysmal subarachnoid hemorrhage (aSAH) is significantly related to the development of chronic cerebral vasospasm. Despite extensive clinical and experimental research, the pathophysiology of the events that result in delayed arterial spasm is not fully understood. A review of the published literature on cerebral vasospasm that included but was not limited to all PubMed citations from 1951 to the present was performed. The findings suggest that leukocyte-endothelial cell interactions play a significant role in the pathophysiology of cerebral vasospasm and explain the clinical variability and time course of the disease. Experimental therapeutic targeting of the inflammatory response when timed correctly can prevent vasospasm, and supplementation of endothelial relaxation by nitric oxide-related therapies and other approaches could result in reversal of the arterial narrowing and improved outcomes in patients with aSAH.
Collapse
Affiliation(s)
- Gustavo Pradilla
- Division of Cerebrovascular Neurosurgery, Department of Neurosurgery, The Johns Hopkins University School of Medicine, Meyer Building 8-181, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
45
|
Pearson S, Lancrin C, Lacaud G, Kouskoff V. The sequential expression of CD40 and Icam2 defines progressive steps in the formation of blood precursors from the mesoderm germ layer. Stem Cells 2010; 28:1089-98. [PMID: 20506544 DOI: 10.1002/stem.434] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During embryogenesis, the hematopoietic program is specified from the mesodermal germ layer through the formation of hemangioblast. This precursor gives rise to a hemogenic endothelium that later on matures to generate primitive and definitive hematopoietic precursors. A lack of specific cell surface markers to identify cells with discrete developmental potential is a major hurdle in the quest to further understand the cellular and molecular program governing blood formation. In the present study, we identify CD40 and Icam2, two markers typically associated with the adult immunological compartment, as expressed at the earliest stages of blood specification both in vitro and in vivo. Using in vitro serum-free culture conditions that support the efficient and directed differentiation of embryonic stem cells, we show that the sequential expression of CD40 and Icam2 delineate a transition in the acquisition of the blood potential from hemangioblast to hemogenic endothelium leading to the formation of primitive and definitive hematopoietic progenitors. CD40 is transiently expressed at the onset of blood development and marks first the hemangioblast then the hemogenic endothelium but is no longer expressed on fully committed hematopoietic precursors within the fetal liver. In contrast, Icam2 is first expressed on the hemogenic endothelium and its expression persists on fetal liver hematopoietic progenitors. Taken together, our data identify novel cell surface markers allowing us to further refine our understanding of the events marking progressive hematopoietic commitment from the mesoderm germ layer.
Collapse
Affiliation(s)
- Stella Pearson
- Cancer Research UK Stem Cell Hematopoiesis Group, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
46
|
Distinct roles for LFA-1 affinity regulation during T-cell adhesion, diapedesis, and interstitial migration in lymph nodes. Blood 2009; 115:1572-81. [PMID: 20023213 DOI: 10.1182/blood-2009-08-237917] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During the course of homing to lymph nodes (LNs), T cells undergo a multistep adhesion cascade that culminates in a lymphocyte function-associated antigen 1 (LFA-1)-dependent firm adhesion to the luminal surface of high endothelial venules (HEVs). The importance of LFA-1 affinity regulation in supporting T-cell arrest on HEVs has been well established, however, its importance in the postadhesion phase, which involves intraluminal crawling and diapedesis to the extravascular space, remains elusive. Here we have shown that LFA-1 affinity needs to be appropriately regulated to support these essential steps in the homing cascade. Genetically engineered T cells that were unable to properly down-regulate LFA-1 affinity underwent enhanced, chemokine-independent arrest in HEVs but showed perturbed intravascular crawling to transmigration sites and compromised diapedesis across HEVs. By contrast, the extravascular migration of T cells was insensitive to the affinity-enhancing LFA-1 mutation. These results highlight the requirement for balanced LFA-1 affinity regulation in intravascular and transvascular, but not extravascular, T-cell migration in LNs.
Collapse
|
47
|
Beeckman DSA, Vanrompay DCG. Biology and intracellular pathogenesis of high or low virulent Chlamydophila psittaci strains in chicken macrophages. Vet Microbiol 2009; 141:342-53. [PMID: 19828268 DOI: 10.1016/j.vetmic.2009.09.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/07/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
Abstract
Within a few days post infection of SPF turkeys, highly pathogenic Chlamydophila (Cp.) psittaci genotype A and D strains can be found in blood monocytes/macrophages, while this effect is less pronounced for infection with a milder genotype B strain. To elucidate on the observed difference, we studied the developmental cycle of avian Cp. psittaci strains of varying virulence in a matched avian monocyte/macrophage cell line (HD11) by electron microscopy and immunofluorescence and determined the gene transcription of 26 Type III secretion related genes and six control genes upon infection of HD11 cells. The genotype A (84/55) and D (92/1293) strains (1) clearly induced actin recruitment to the site of entry, (2) initiated host cell degeneration at earlier time points, and (3) survived and proliferated better when compared to the milder CP3 strain. Strain 84/2334, genetically intermediate between Cp. psittaci and Cp. abortus, did not induce actin recruitment. Limited mRNA transcripts for the cell division genes ftsW and ftsK were in agreement with the observed low replication of Cp. psittaci in these host cells. The results also indicated that genes coding for the structural components of the Type III secretion system were transcribed earlier compared to an infection in epithelial cells. Based on the presented results, we postulate that upon infection of blood monocytes/macrophages, Cp. psittaci deliberately limits its replication and immediately arms itself to infect other cells elsewhere in the host, whilst using the monocytes/macrophages as a quick transport vehicle.
Collapse
Affiliation(s)
- Delphine Sylvie Anne Beeckman
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, BE-9000 Ghent, Belgium.
| | | |
Collapse
|
48
|
Chaichana KL, Pradilla G, Huang J, Tamargo RJ. Role of inflammation (leukocyte-endothelial cell interactions) in vasospasm after subarachnoid hemorrhage. World Neurosurg 2009; 73:22-41. [PMID: 20452866 DOI: 10.1016/j.surneu.2009.05.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Delayed vasospasm is the leading cause of morbidity and mortality after aneurysmal subarachnoid hemorrhage (aSAH). This phenomenon was first described more than 50 years ago, but only recently has the role of inflammation in this condition become better understood. METHODS The literature was reviewed for studies on delayed vasospasm and inflammation. RESULTS There is increasing evidence that inflammation and, more specifically, leukocyte-endothelial cell interactions play a critical role in the pathogenesis of vasospasm after aSAH, as well as in other conditions including meningitis and traumatic brain injury. Although earlier clinical observations and indirect experimental evidence suggested an association between inflammation and chronic vasospasm, recently direct molecular evidence demonstrates the central role of leukocyte-endothelial cell interactions in the development of chronic vasospasm. This evidence shows in both clinical and experimental studies that cell adhesion molecules (CAMs) are up-regulated in the perivasospasm period. Moreover, the use of monoclonal antibodies against these CAMs, as well as drugs that decrease the expression of CAMs, decreases vasospasm in experimental studies. It also appears that certain individuals are genetically predisposed to a severe inflammatory response after aSAH based on their haptoglobin genotype, which in turn predisposes them to develop clinically symptomatic vasospasm. CONCLUSION Based on this evidence, leukocyte-endothelial cell interactions appear to be the root cause of chronic vasospasm. This hypothesis predicts many surprising features of vasospasm and explains apparently unrelated phenomena observed in aSAH patients. Therapies aimed at preventing inflammation may prevent and/or reverse arterial narrowing in patients with aSAH and result in improved outcomes.
Collapse
Affiliation(s)
- Kaisorn L Chaichana
- Division of Cerebrovascular Neurosurgery, Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
49
|
Møller F, Andersen CB, Nielsen LB. Adhesion of T and B lymphocytes to mouse atherosclerotic aortas: Association with lesion topology and VCAM‐1 expression. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 65:559-70. [PMID: 16271987 DOI: 10.1080/00365510500321564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Although T and B lymphocytes accumulate in atherosclerotic lesions and play a key role in their growth, the mechanisms involved in the adhesion and recruitment of T and B lymphocytes by the lesions have not been resolved. The aim of this study was to compare T and B lymphocyte adhesion to atherosclerotic arteries and to test the role of VCAM-1 and ICAM-1. MATERIAL AND METHODS T and B lymphocytes were labelled with red and green fluorescent dyes and incubated with freshly isolated aortas from apolipoprotein-E-deficient mice. In some experiments the aortas were pre-incubated with specific monoclonal antibodies. After washing, the adhering cells were detected by confocal laser scanning microscopy. RESULTS The number of T and B lymphocytes that adhered to the aortic intimal surface was similar in both lesioned and non-lesioned areas and in the shoulder region of the lesions. However, the adhesion of T and B lymphocytes was significantly higher in the shoulder regions compared with the lesioned (p<0.0001) and non-lesioned areas of the aorta (p<0.0001). After pre-incubation of the aortas with antibodies against VCAM-1 or ICAM-1, the lymphocyte adhesions in lesioned areas were 42 % (p = 0.04) and 55 % (p = 0.17), respectively, of those in lesioned areas that had been pre-incubated with a control antibody. However, although VCAM-1 protein expression was most pronounced in the shoulder region, the lymphocyte adhesions in the shoulder region and in non-lesioned areas were unaffected by pre-incubation with VCAM-1 antibodies. CONCLUSIONS The results suggest that adhesion of T and B lymphocytes to mouse aortic endothelium is similar, is affected by lesion topology and is dependent on VCAM-1 expression over the core of atherosclerotic lesions.
Collapse
Affiliation(s)
- F Møller
- Department of Clinical Biochemistry, University of Copenhagen, Denmark
| | | | | |
Collapse
|
50
|
Abstract
Although critical for cell adhesion and migration during normal immune-mediated reactions, leukocyte integrins are also involved in the pathogenesis of diverse clinical conditions including autoimmune diseases and chronic inflammation. Leukocyte integrins therefore have been targets for anti-adhesive therapies to treat the inflammatory disorders. Recently, the therapeutic potential of integrin antagonists has been demonstrated in psoriasis and multiple sclerosis. However, current therapeutics broadly affect integrin functions and, thus, yield unfavorable side effects. This review discusses the major leukocyte integrins and the anti-adhesion strategies for treating immune diseases.
Collapse
|