1
|
Kacanski N, Kolarovic J, Kostic T, Marjanovic I, Janic D, Pavlovic S, Karan-Djurasevic T. Presence of leukemic clone-specific immunoglobulin heavy chain rearrangements in neonatal blood spots of children with B-cell precursor acute lymphoblastic leukemia. Int J Lab Hematol 2024; 46:303-311. [PMID: 37929321 DOI: 10.1111/ijlh.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION Childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) can be traced back to birth using leukemic clone-specific immunoglobulin heavy chain (IGH) rearrangements, implying prenatal origin of this disease. METHODS We retrospectively analyzed neonatal blood spots (Guthrie cards) of 24 patients with childhood BCP-ALL aged 1-9.6 years (median 3.1 years) for the presence of clonotypic IGH rearrangements identified in diagnostic bone marrow samples. Based on the sequences of IGH rearrangements, 2 patient-specific primers were designed for each patient and used in semi-nested polymerase chain reaction for the detection of preleukemic clones at birth. RESULTS Clonotypic IGH rearrangements were detected in neonatal blood spots of 54.2% of patients (13/24). In two cases with double IGH rearrangements detected at diagnosis, only one rearrangement was present at birth, while in the third case both leukemic rearrangements were detected in neonatal blood. Guthrie card-positive findings were significantly more frequent in children ≤5 years of age than in older children (p = 0.011). Regarding patients' characteristics at birth and at diagnosis, Guthrie card-positivity was not associated with sex, birth weight and mother's age, as well as with white blood cell count, percentage of bone marrow blasts, immunophenotype and the presence of ETV6/RUNX1 and TCF3/PBX1 fusion genes at diagnosis. CONCLUSION Our study confirms that a large proportion of childhood BCP-ALL originates in utero, regardless of the molecular subtype defined by chromosomal aberrations. The observed trend toward younger age at diagnosis in Guthrie card-positive versus Guthrie card-negative patients implies that the age at diagnosis depends on the presence of preleukemic clone at birth, as well as on the timing of postnatal transforming genetic events.
Collapse
Affiliation(s)
- Natasa Kacanski
- Institute for Child and Youth Health Care of Vojvodina, Novi Sad, Serbia
| | - Jovanka Kolarovic
- Institute for Child and Youth Health Care of Vojvodina, Novi Sad, Serbia
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Tatjana Kostic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dragana Janic
- Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Teodora Karan-Djurasevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Rother MB, Jensen K, van der Burg M, van de Bovenkamp FS, Kroek R, van IJcken WFJ, van der Velden VHJ, Cupedo T, Olstad OK, van Dongen JJM, van Zelm MC. Decreased IL7Rα and TdT expression underlie the skewed immunoglobulin repertoire of human B-cell precursors from fetal origin. Sci Rep 2016; 6:33924. [PMID: 27658954 PMCID: PMC5034271 DOI: 10.1038/srep33924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/31/2016] [Indexed: 11/25/2022] Open
Abstract
Newborns are unable to mount antibody responses towards certain antigens. This has been related to the restricted repertoire of immunoglobulin (Ig) genes of their B cells. The mechanisms underlying the restricted fetal Ig gene repertoire are currently unresolved. We here addressed this with detailed molecular and cellular analysis of human precursor-B cells from fetal liver, fetal bone marrow (BM), and pediatric BM. In the absence of selection processes, fetal B-cell progenitors more frequently used proximal V, D and J genes in complete IGH gene rearrangements, despite normal Ig locus contraction. Fewer N-nucleotides were added in IGH gene rearrangements in the context of low TdT and XRCC4 expression. Moreover, fetal progenitor-B cells expressed lower levels of IL7Rα than their pediatric counterparts. Analysis of progenitor-B cells from IL7Rα-deficient patients revealed that TdT expression and N-nucleotides additions in Dh-Jh junctions were dependent on functional IL7Rα. Thus, IL7Rα affects TdT expression, and decreased expression of this receptor underlies at least in part the skewed Ig repertoire formation in fetal B-cell precursors. These new insights provide a better understanding of the formation of adaptive immunity in the developing fetus.
Collapse
Affiliation(s)
- Magdalena B. Rother
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kristin Jensen
- Department of Medical Biochemistry, Oslo University Hospital, Norway
- Volvat Medical Center, Oslo, Norway
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | - Roel Kroek
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | | | - Tom Cupedo
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Ole K. Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Norway
- Volvat Medical Center, Oslo, Norway
| | | | - Menno C. van Zelm
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Seiler RL, Wiemels JL. Occurrence of ²¹⁰Po and biological effects of low-level exposure: the need for research. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1230-7. [PMID: 22538346 PMCID: PMC3440115 DOI: 10.1289/ehp.1104607] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 04/26/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND Polonium-210 (²¹⁰Po) concentrations that exceed 1 Bq/L in drinking-water supplies have been reported from four widely separated U.S. states where exposure to it went unnoticed for decades. The radionuclide grandparents of ²¹⁰Po are common in sediments, and segments of the public may be chronically exposed to low levels of ²¹⁰Po in drinking water or in food products from animals raised in contaminated areas. OBJECTIVES We summarized information on the environmental behavior, biokinetics, and toxicology of ²¹⁰Po and identified the need for future research. METHODS Potential linkages between environmental exposure to ²¹⁰Po and human health effects were identified in a literature review. DISCUSSION ²¹⁰Po accumulates in the ovaries where it kills primary oocytes at low doses. Because of its radiosensitivity and tendency to concentrate ²¹⁰Po, the ovary may be the critical organ in determining the lowest injurious dose for ²¹⁰Po. ²¹⁰Po also accumulates in the yolk sac of the embryo and in the fetal and placental tissues. Low-level exposure to ²¹⁰Po may have subtle, long-term biological effects because of its tropism towards reproductive and embryonic and fetal tissues where exposure to a single alpha particle may kill or damage critical cells. ²¹⁰Po is present in cigarettes and maternal smoking has several effects that appear consistent with the toxicology of ²¹⁰Po. CONCLUSIONS Much of the important biological and toxicological research on ²¹⁰Po is more than four decades old. New research is needed to evaluate environmental exposure to ²¹⁰Po and the biological effects of low-dose exposure to it so that public health officials can develop appropriate mitigation measures where necessary.
Collapse
Affiliation(s)
- Ralph L Seiler
- Environmental Sciences Graduate Program, University of Nevada-Reno, P.O. Box 1025, Carson City, NV 89702, USA.
| | | |
Collapse
|
4
|
A translocation t(5;15)(q15;q11-13) infant case with acute lymphoblastic leukemia and literature review: prognosis implications. J Pediatr Hematol Oncol 2012; 34:368-71. [PMID: 22395215 DOI: 10.1097/mph.0b013e31824258f2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Infant acute lymphoblastic leukemia (ALL) represents poor prognosis despite intensive chemotherapy. Rearrangements of chromosome 11q23 are not observed in 34% of the cases. Infant ALL patients with t(5;15)(p15;q11-13) are rare and sporadic. In large series of infant ALL studies, 6 patients have been reported. We present a new case of an infant ALL patient with t(5;15)(p15;q11-13), and a literature review. Considering the data provided by our case and previous reports, we reinforce that this chromosomal abnormality is characteristic of ALL patients under 12 months of age sharing break point in 5p15 and 15q11-13 and strengthen the existence of an infant ALL subgroup characterized by pre-B L1 ALL, CD10-positive, complete remission (100%), and event-free survival (71%), with a relatively good prognosis and clearly less severe than the 11q23 rearrangement cases. This abnormality can be considered a recurrent abnormality on this nosologic group.
Collapse
|
5
|
Wiemels J. Perspectives on the causes of childhood leukemia. Chem Biol Interact 2012; 196:59-67. [PMID: 22326931 PMCID: PMC3839796 DOI: 10.1016/j.cbi.2012.01.007] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/05/2012] [Accepted: 01/24/2012] [Indexed: 12/22/2022]
Abstract
Acute leukemia is the most common cancer in children but the causes of the disease in the majority of cases are not known. About 80% are precursor-B cell in origin (CD19+, CD10+), and this immunophenotype has increased in incidence over the past several decades in the Western world. Part of this increase may be due to the introduction of new chemical exposures into the child's environment including parental smoking, pesticides, traffic fumes, paint and household chemicals. However, much of the increase in leukemia rates is likely linked to altered patterns of infection during early childhood development, mirroring causal pathways responsible for a similarly increased incidence of other childhood-diagnosed immune-related illnesses including allergy, asthma, and type 1 diabetes. Factors linked to childhood leukemia that are likely surrogates for immune stimulation include exposure to childcare settings, parity status and birth order, vaccination history, and population mixing. In case-control studies, acute lymphoblastic leukemia (ALL) is consistently inversely associated with greater exposure to infections, via daycare and later birth order. New evidence suggests also that children who contract leukemia may harbor a congenital defect in immune responder status, as indicated by lower levels of the immunosuppressive cytokine IL-10 at birth in children who grow up to contract leukemia, as well as higher need for clinical care for infections within the first year of life despite having lower levels of exposure to infections. One manifestation of this phenomenon may be leukemia clusters which tend to appear as a leukemia "outbreak" among populations with low herd immunity to a new infection. Critical answers to the etiology of childhood leukemia will require incorporating new tools into traditional epidemiologic approaches - including the classification of leukemia at a molecular scale, better exposure assessments at all points in a child's life, a comprehensive understanding of genetic risk factors, and an appraisal of the interplay between infectious exposures and the status of immune response in individuals.
Collapse
Affiliation(s)
- Joseph Wiemels
- Department of Epidemiology and Biostatistics, University of California San Francisco, Helen Diller Cancer Center Research Building, 1450 3rd Street, HD274, San Francisco, CA 94158, United States.
| |
Collapse
|
6
|
Ordering human CD34+CD10-CD19+ pre/pro-B-cell and CD19- common lymphoid progenitor stages in two pro-B-cell development pathways. Proc Natl Acad Sci U S A 2010; 107:5925-30. [PMID: 20231472 DOI: 10.1073/pnas.0907942107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies here respond to two long-standing questions: Are human "pre/pro-B" CD34(+)CD10(-)CD19(+) and "common lymphoid progenitor (CLP)/early-B" CD34(+)CD10(+)CD19(-) alternate precursors to "pro-B" CD34(+)CD19(+)CD10(+) cells, and do the pro-B cells that arise from these progenitors belong to the same or distinct B-cell development pathways? Using flow cytometry, gene expression profiling, and Ig V(H)-D-J(H) sequencing, we monitor the initial 10 generations of development of sorted cord blood CD34(high)Lineage(-) pluripotential progenitors growing in bone marrow S17 stroma cocultures. We show that (i) multipotent progenitors (CD34(+)CD45RA(+)CD10(-)CD19(-)) directly generate an initial wave of Pax5(+)TdT(-) "unilineage" pre/pro-B cells and a later wave of "multilineage" CLP/early-B cells and (ii) the cells generated in these successive stages act as precursors for distinct pro-B cells through two independent layered pathways. Studies by others have tracked the origin of B-lineage leukemias in elderly mice to the mouse B-1a pre/pro-B lineage, which lacks the TdT activity that diversifies the V(H)-D-J(H) Ig heavy chain joints found in the early-B or B-2 lineage. Here, we show a similar divergence in human B-cell development pathways between the Pax5(+)TdT(-) pre/pro-B differentiation pathway that gives rise to infant B-lineage leukemias and the early-B pathway.
Collapse
|
7
|
Affiliation(s)
- Logan G Spector
- Division of Epidemiology/Clinical Research, Department of Pediatrics, University of Minnesota, MN, USA
| |
Collapse
|
8
|
Gruhn B, Taub JW, Ge Y, Beck JF, Zell R, Häfer R, Hermann FH, Debatin KM, Steinbach D. Prenatal origin of childhood acute lymphoblastic leukemia, association with birth weight and hyperdiploidy. Leukemia 2008; 22:1692-7. [DOI: 10.1038/leu.2008.152] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Spector LG, Hooten AJ, Ross JA. Ontogeny of Gene Expression: A Changing Environment for Malignancy: Figure 1. Cancer Epidemiol Biomarkers Prev 2008; 17:1021-3. [PMID: 18483321 DOI: 10.1158/1055-9965.epi-08-0275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Affiliation(s)
- Patrick A Zweidler-McKay
- The Children's Cancer Hospital at the University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
11
|
Emerenciano M, Koifman S, Pombo-de-Oliveira MS. Acute leukemia in early childhood. Braz J Med Biol Res 2007; 40:749-60. [PMID: 17581672 DOI: 10.1590/s0100-879x2007000600002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 03/27/2007] [Indexed: 11/22/2022] Open
Abstract
Acute leukemia in early childhood is biologically and clinically distinct. The particular characteristics of this malignancy diagnosed during the first months of life have provided remarkable insights into the etiology of the disease. The pro-B, CD10 negative immunophenotype is typically found in infant acute leukemia, and the most common genetic alterations are the rearrangements of the MLL gene. In addition, the TEL/AML1 fusion gene is most frequently found in children older than 24 months. A molecular study on a Brazilian cohort (age range 0-23 months) has detected TEL/AML1+ve (N = 9), E2A/PBX1+ve (N = 4), PML/RARA+ve (N = 4), and AML1/ETO+ve (N = 2) cases. Undoubtedly, the great majority of genetic events occurring in these patients arise prenatally. The environmental exposure to damaging agents that give rise to genetic changes prenatally may be accurately determined in infants since the window of exposure is limited and known. Several studies have shown maternal exposures that may give rise to leukemogenic changes. The Brazilian Collaborative Study Group of Infant Acute Leukemia has found that mothers exposed to dipyrone, pesticides and hormones had an increased chance to give birth to babies with infant acute leukemia [OR = 1.48 (95%CI = 1.05-2.07), OR = 2.27 (95%CI = 1.56-3.31) and OR = 9.08 (95%CI = 2.95-27.96)], respectively. This review aims to summarize recent clues that have facilitated the elucidation of the biology of early childhood leukemias, with emphasis on infant acute leukemia in the Brazilian population.
Collapse
Affiliation(s)
- M Emerenciano
- Divisão de Medicina Experimental, Centro de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brasil
| | | | | |
Collapse
|
12
|
Panzer-Grümayer ER, Cazzaniga G, van der Velden VHJ, del Giudice L, Peham M, Mann G, Eckert C, Schrauder A, Germano G, Harbott J, Basso G, Biondi A, van Dongen JJM, Gadner H, Haas OA. Immunogenotype changes prevail in relapses of young children with TEL-AML1-positive acute lymphoblastic leukemia and derive mainly from clonal selection. Clin Cancer Res 2006; 11:7720-7. [PMID: 16278392 DOI: 10.1158/1078-0432.ccr-05-1239] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Variations of the immunogenotype and TEL deletions in children with TEL-AML1+ acute lymphoblastic leukemia support the hypothesis that relapses derive from a persistent TEL-AML1+ preleukemic/leukemic clone rather than a resistant leukemia. We aimed at elucidating the relationship between the immunogenotype patterns at diagnosis and relapse as well as their clinical and biological relevance. PATIENTS AND METHODS Immunoglobulin and T-cell receptor gene rearrangements were analyzed in 41 children with a TEL-AML1+ acute lymphoblastic leukemia and an early (up to 30 months after diagnosis; n = 12) or late (at 30 months or later; n = 29) disease recurrence by a standardized PCR approach. RESULTS In 68% of the patients (group I), we identified differences in the immunogenotype patterns, whereas no changes were observed in the remaining 32% (group II). The divergence resulted more often from clonal selection than clonal evolution and consisted predominantly of losses (0-6, median 5) and/or gains (0-4, median 1) of rearrangements. The frequency and number of clonal immunoglobulin/T-cell receptor rearrangements in group I was higher at diagnosis (2-13, median 5) than at relapse (2-7, median 4), whereas it was the lowest in group II (1-5, median 3). Although group I children were younger at diagnosis, there was no correlation between particular immunogenotype patterns and remission duration. CONCLUSION These findings imply that the clonal heterogeneity in younger children most likely reflects an ongoing high recombinatorial activity in the preleukemic/leukemic cells, whereas the more uniform repertoire observed in older children mirrors end-stage rearrangement patterns of selected cell clones that evolved during the prolonged latency period.
Collapse
|
13
|
Abstract
Despite the greatly improved treatment regimes for childhood acute lymphoblastic leukaemia (ALL) in general, resulting in long-term survival in approximately 80% of cases, current therapies still fail in >50% of ALL cases diagnosed within the first year of life (i.e. in infants). Therefore, more adequate treatment strategies are urgently needed to also improve the prognosis for these very young patients with ALL. Here we review the current acquaintance with the biology of infant ALL and describe how this knowledge may lead to innovative therapeutic approaches.
Collapse
Affiliation(s)
- Ronald W Stam
- Department of Paediatric Oncology/Haematology, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | | |
Collapse
|
14
|
Li A, Goldwasser MA, Zhou J, Armstrong SA, Wang H, Dalton V, Fletcher JA, Sallan SE, Silverman LB, Gribben JG. Distinctive IGH gene segment usage and minimal residual disease detection in infant acute lymphoblastic leukaemias. Br J Haematol 2005; 131:185-92. [PMID: 16197448 DOI: 10.1111/j.1365-2141.2005.05754.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Infant acute lymphoblastic leukaemia (ALL) represents a rare but unique subset with poor prognosis. We analysed mixed-lineage leukaemia (MLL) gene rearrangements and the sequences of complete and incomplete immunoglobulin heavy chain gene rearrangements (IGH) in 14 infants (age < or = 12 months at diagnosis) enrolled on Dana-Farber Cancer Institute ALL Consortium Protocol 95-01. The dynamics of the leukaemic clone were followed during the course of the disease by quantitative real-time polymerase chain reaction of IGH rearrangements. Sixteen sequences were obtained from 13 (93%) of these infants. There was marked over usage of the V(H)6.1 gene segment (64%) in infants compared with older children with ALL (8%), (P < 0.001) and overusage of D(H)6 (P = 0.004) and J(H)1 (P = 0.004). Poor outcome was associated with MLL gene rearrangements rather than any specific V(H)D(H)J(H) gene usage patterns. Levels of minimal residual disease (MRD) at the end of induction appeared to be high in infants with ALL compared with older children, and although the number of infant cases studied was small, there were no differences in MRD levels after induction therapy in infant ALL with or without MLL gene rearrangements (P = 0.41) and quantitative MRD assessment at the early time points may not be predictive of outcome. Novel treatment strategies are required to improve the outcome in this poor prognosis subset of children with ALL.
Collapse
Affiliation(s)
- Aihong Li
- Department of Medical Biosciences, Pathology, Umea University, Umea, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li A, Rue M, Zhou J, Wang H, Goldwasser MA, Neuberg D, Dalton V, Zuckerman D, Lyons C, Silverman LB, Sallan SE, Gribben JG. Utilization of Ig heavy chain variable, diversity, and joining gene segments in children with B-lineage acute lymphoblastic leukemia: implications for the mechanisms of VDJ recombination and for pathogenesis. Blood 2004; 103:4602-9. [PMID: 15010366 DOI: 10.1182/blood-2003-11-3857] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequence analysis of the immunoglobulin heavy chain genes (IgH) has demonstrated preferential usage of specific variable (V), diversity (D), and joining (J) genes at different stages of B-cell development and in B-cell malignancies, and this has provided insight into B-cell maturation and selection. Knowledge of the association between rearrangement patterns based on updated databases and clinical characteristics of pediatric acute lymphoblastic leukemia (ALL) is limited. We analyzed 381 IgH sequences identified at presentation in 317 children with B-lineage ALL and assessed the V(H)D(H)J(H) gene utilization profiles. The D(H)J(H)-proximal V(H) segments and the D(H)2 gene family were significantly overrepresented. Only 21% of V(H)-J(H) joinings were potentially productive, a finding associated with a trend toward an increased risk of relapse. These results suggest that physical location at the V(H) locus is involved in preferential usage of D(H)J(H)-proximal V(H) segments whereas D(H) and J(H) segment usage is governed by position-independent molecular mechanisms. Molecular pathophysiology appears relevant to clinical outcome in patients who have only productive rearrangements, and specific rearrangement patterns are associated with differences in the tumor biology of childhood ALL.
Collapse
Affiliation(s)
- Aihong Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hübner S, Cazzaniga G, Flohr T, van der Velden VHJ, Konrad M, Pötschger U, Basso G, Schrappe M, van Dongen JJM, Bartram CR, Biondi A, Panzer-Grümayer ER. High incidence and unique features of antigen receptor gene rearrangements in TEL-AML1-positive leukemias. Leukemia 2004; 18:84-91. [PMID: 14574333 DOI: 10.1038/sj.leu.2403182] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The t(12;21) translocation resulting in the TEL-AML1 gene fusion is found in 25% of childhood B-cell precursor (BCP) acute lymphoblastic leukemias (ALL). Since TEL-AML1 has been reported to induce cell cycle retardation and thus may influence somatic recombination, we analyzed 214 TEL-AML1-positive ALL by PCR for rearrangements of the immunoglobulin (Ig) and T-cell receptor (TCR) genes. As a control group, 174 childhood BCP ALL without a TEL-AML1 were used. The majority of TEL-AML1-positive leukemias had a higher number of Ig/TCR rearrangements than control ALL. They also had a more mature immunogenotype characterized by their high frequency of complete IGH, IGK-Kde, and TCRG rearrangements. While IGK-Kde and TCRG were more frequently rearranged on both alleles at higher age, IGH and TCRD rearrangements decreased in their incidence along with a decrease in biallelic IGH rearrangements. This suggests that the recombination process continues in these leukemias leading to ongoing rearrangements and possibly also deletions of antigen receptor genes. We here provide first evidence that somatic recombination of antigen receptor genes is affected by the TEL-AML1 fusion, and that further age-related differences are probably caused by the longer latency period of the prenatally initiated TEL-AML1-positive leukemias in older children.
Collapse
Affiliation(s)
- S Hübner
- Children's Cancer Research Institute, St. Anna Kinderspital, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
van der Velden VHJ, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJM. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003; 17:1013-34. [PMID: 12764363 DOI: 10.1038/sj.leu.2402922] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Detection of minimal residual disease (MRD) has prognostic value in many hematologic malignancies, including acute lymphoblastic leukemia, acute myeloid leukemia, chronic myeloid leukemia, non-Hodgkin's lymphoma, and multiple myeloma. Quantitative MRD data can be obtained with real-time quantitative PCR (RQ-PCR) analysis of immunoglobulin and T-cell receptor gene rearrangements, breakpoint fusion regions of chromosome aberrations, fusion-gene transcripts, aberrant genes, or aberrantly expressed genes, their application being dependent on the type of disease. RQ-PCR analysis can be performed with SYBR Green I, hydrolysis (TaqMan) probes, or hybridization (LightCycler) probes, as detection system in several RQ-PCR instruments. Dependent on the type of MRD-PCR target, different types of oligonucleotides can be used for specific detection, such as an allele-specific oligonucleotide (ASO) probe, an ASO forward primer, an ASO reverse primer, or germline probe and primers. To assess the quantity and quality of the RNA/DNA, one or more control genes must be included. Finally, the interpretation of RQ-PCR MRD data needs standardized criteria and reporting of MRD data needs international uniformity. Several European networks have now been established and common guidelines for data analysis and for reporting of MRD data are being developed. These networks also include standardization of technology as well as regular quality control rounds, both being essential for the introduction of RQ-PCR-based MRD detection in multicenter clinical treatment protocols.
Collapse
Affiliation(s)
- V H J van der Velden
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 50, Rotterdam 3015 GE, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Konrad M, Metzler M, Panzer S, Ostreicher I, Peham M, Repp R, Haas OA, Gadner H, Panzer-Grumayer ER. Late relapses evolve from slow-responding subclones in t(12;21)-positive acute lymphoblastic leukemia: evidence for the persistence of a preleukemic clone. Blood 2003; 101:3635-40. [PMID: 12506024 DOI: 10.1182/blood-2002-10-3252] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TEL/AML1-positive childhood acute lymphoblastic leukemias (ALLs) generally have low-risk features, but still about 20% of patients relapse. Our initial molecular genetic analyses in 2 off-treatment relapses suggested that the initial and relapse clones represent different subclones that evolved from a common TEL/AML1-positive, treatment-resistant precursor. In order to further elaborate on this hypothesis, we studied 2 patients with late systemic relapses of their TEL/AML1-positive ALL (41 months and 49 months after initial diagnosis, respectively) who had distinct clonal antigen receptor gene rearrangements at diagnosis and relapse. These clone-specific markers enabled us to determine the responsiveness of the individual clones to treatment. The matching genomic TEL/AML1 breakpoints of the initial and the relapse clones in these patients confirmed their origin from a common progenitor cell. This proof was especially important in one of these 2 leukemias without a common antigen receptor gene rearrangement. Our retrospective analysis revealed that in both cases the relapse clone was already present at diagnosis. Despite their small sizes (5 x 10(-3) and 1 x 10(-4), respectively), we were able to detect their much slower responses to therapy compared with the dominant leukemic clone. Moreover, in all instances, these initially slow-responding clones, after they had developed into the relapse leukemia, were rapidly eradicated by the relapse treatment, underlining their different biology at the 2 time points of leukemia manifestation. We thus hypothesize that the minor clone was not fully malignant at initial diagnosis but acquired further mutations that may be necessary for the manifestation of relapse.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Cell Survival
- Child, Preschool
- Chromosomes, Human, Pair 12/ultrastructure
- Chromosomes, Human, Pair 21/ultrastructure
- Clone Cells/pathology
- Core Binding Factor Alpha 2 Subunit
- Female
- Gene Rearrangement, B-Lymphocyte
- Humans
- In Situ Hybridization, Fluorescence
- Infant
- Male
- Neoplasm Proteins/analysis
- Neoplasm Proteins/genetics
- Neoplastic Stem Cells/pathology
- Oncogene Proteins, Fusion/analysis
- Oncogene Proteins, Fusion/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Preleukemia/genetics
- Preleukemia/pathology
- Recurrence
- Remission Induction
- Retrospective Studies
- Time Factors
- Translocation, Genetic
Collapse
Affiliation(s)
- Marianne Konrad
- Children's Cancer Research Institute and St Anna Kinderspital, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang YH, Zhang Z, Burrows PD, Kubagawa H, Bridges SL, Findley HW, Cooper MD. V(D)J recombinatorial repertoire diversification during intraclonal pro-B to B-cell differentiation. Blood 2003; 101:1030-7. [PMID: 12393550 DOI: 10.1182/blood-2002-06-1828] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initial B-cell repertoire is generated by combinatorial immunoglobulin V(D)J gene segment rearrangements that occur in a preferential sequence. Because cellular proliferation occurs during the course of these rearrangement events, it has been proposed that intraclonal diversification occurs during this phase of B-cell development. An opportunity to examine this hypothesis directly was provided by the identification of a human acute lymphoblastic leukemic cell line that undergoes spontaneous differentiation from pro-B cell to the pre-B and B-cell stages with concomitant changes in the gene expression profile that normally occur during B-cell differentiation. After confirming the clonality of the progressively differentiating cells, an analysis of immunoglobulin genes and transcripts indicated that pro-B cell members marked by the same DJ rearrangement generated daughter B cells with multiple V(H) and V(L) gene segment rearrangements. These findings validate the principle of intraclonal V(D)J diversification during B-cell generation and define a manipulable model of human B-cell differentiation.
Collapse
Affiliation(s)
- Yui-Hsi Wang
- Division of Developmental and Clinical Immunology, and Department of Medicine, University of Alabama at Birmingham and the Howard Hughes Medical Institute, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Kato K, Ohshima K, Shiokawa S, Shibata T, Suzumiya J, Kikuchi M. Rearrangement of immunoglobulin heavy and light chains and VH family in thyroid and salivary gland lymphomas. Pathol Int 2002; 52:747-54. [PMID: 12588443 DOI: 10.1046/j.1440-1827.2002.01418.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is often difficult to differentiate extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) from non-neoplastic inflammatory conditions. Demonstration of clonal lymphoid proliferation by molecular procedures is important for accurate diagnosis. We examined the clonal population of B-cell lymphomas in nine cases of thyroid and two cases of salivary gland B-cell lymphoma using semi-nested polymerase chain reaction (PCR)-based assay for IgH gene arrangement and reverse transcription (RT)-PCR single-strand conformation polymorphism (SSCP) for the detection of IgL gene rearrangement. Clonality was evident in nine out of 11 cases of B-cell lymphomas examined by PCR, and in six of eight cases by RT-PCR SSCP. In addition, analysis of VH families was performed in eight cases. Although VH3 family was frequently used, each case demonstrated the VH4, VH5 or VH6 family. It is possible that the normal counterpart of thyroid or salivary gland lymphoma might be different from peripheral blood B lymphocytes, which usually use VH3 family. Our results indicate that although no clonality was noted in one case by both PCR and SSCP, these molecular methods are useful as supplementary diagnostic tests for both thyroid and salivary gland lymphomas.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Clone Cells
- DNA Primers/chemistry
- Female
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Gene Rearrangement, B-Lymphocyte, Light Chain
- Humans
- Immunoglobulin Variable Region/genetics
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/pathology
- Male
- Middle Aged
- Polymorphism, Single-Stranded Conformational
- RNA, Neoplasm/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Salivary Gland Neoplasms/genetics
- Salivary Gland Neoplasms/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
Collapse
Affiliation(s)
- Kei Kato
- First Department of Pathology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Wiemels JL, Leonard BC, Wang Y, Segal MR, Hunger SP, Smith MT, Crouse V, Ma X, Buffler PA, Pine SR. Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 2002; 99:15101-6. [PMID: 12415113 PMCID: PMC137550 DOI: 10.1073/pnas.222481199] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Indexed: 11/18/2022] Open
Abstract
The t(1;19) translocation yields a fusion between E2A and PBX1 genes and occurs in 5% of acute lymphoblastic leukemia in children and adults. We used chromosomal translocations and Ig heavy chain (IGH)/T cell antigen receptor (TCR) rearrangements to develop an understanding of the etiology and natural history of this subtype of leukemia. We sequenced the genomic fusion between E2A and PBX1 in 22 preB acute lymphoblastic leukemias and two cell lines. The prenatal origin of the leukemia was assessed in 15 pediatric patients by screening for the clonotypic E2A-PBX1 translocation in neonatal blood spots, or Guthrie cards, obtained from the children at the time of birth. Two patients were determined to be weakly positive for the fusion at the time of birth, in contrast to previously studied childhood leukemia fusions, t(12;21), t(8;21), and t(4;11), which were predominantly prenatal. The presence of extensive N-nucleotides at the point of fusion in the E2A-PBX1 translocation as well as specific characteristics of the IGH/TCR rearrangements provided additional evidence for a postnatal, preB cell origin. Intriguingly, 16 of 24 breakpoints on the 3.2-kb E2A intron 14 were located within 5 bp, providing evidence for a site-specific recombination mechanism. Breakpoints on the 232-kb PBX1 intron 1 were more dispersed but highly clustered proximal to exon 2. In sum, the translocation breakpoints displayed evidence of unique temporal, ontological, and mechanistic formation than the previously analyzed pediatric leukemia translocation breakpoints and emphasize the need to differentiate cytogenetic and molecular subgroups for studies of leukemia causality.
Collapse
Affiliation(s)
- Joseph L Wiemels
- Department of Epidemiology and Biostatistics, University of California, San Francisco 94143, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Peham M, Panzer S, Fasching K, Haas OA, Fischer S, Marschalek R, Gadner H, Panzer-Grümayer ER. Low frequency of clonotypic Ig and T-cell receptor gene rearrangements in t(4;11) infant acute lymphoblastic leukaemia and its implication for the detection of minimal residual disease. Br J Haematol 2002; 117:315-21. [PMID: 11972513 DOI: 10.1046/j.1365-2141.2002.03428.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Infant t(4;11) acute lymphoblastic leukaemia (ALL) is a rare but cytogenetically well defined subgroup of immature B-cell precursor (BCP) ALL. To date, the configuration of their antigen receptor genes has not been studied in a large group of patients so far. In this study on 27 t(4;11) infant ALL, we have used standardized primer sets for the detection of all incomplete and complete immunoglobulin (Ig) heavy chain (IGH) rearrangements, as well as for the Ig light chain kappa (IGK), T-cell receptor delta (TCRD) and gamma (TCRG) rearrangements that are most common in childhood BCP ALL. Only 52% of cases displayed clonotypic antigen receptor gene rearrangements (IGH in 48%, IGK, TCRD and TCRG in 12%, 41% and 6% respectively). This low frequency suggests, together with the findings of predominantly incomplete DJh joins and monoallelic IGH rearrangements, that they are derived from an immature progenitor cell. As 48% of the t(4;11) infant ALL cases had no detectable antigen receptor gene rearrangements that could be used for minimal residual disease (MRD) analysis, we established an expression-independent, leukaemia-specific polymerase chain reaction (PCR) using the genomic sequence of the MLL-AF4 fusion genes. This method had high sensitivity and specificity and resulted in identical estimations of tumour loads when compared with IGH targets. Thus, genomic MLL-AF4 fusion genes are a good alternative target for the analysis of MRD in patients with t(4;11) leukaemias.
Collapse
Affiliation(s)
- Martina Peham
- Children's Cancer Research Institute, St. Anna Kinderspital, Kinderspitalgasse 6, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bussey KJ, Lawce HJ, Himoe E, Shu XO, Heerema NA, Perlman EJ, Olson SB, Magenis RE. SNRPN methylation patterns in germ cell tumors as a reflection of primordial germ cell development. Genes Chromosomes Cancer 2001; 32:342-52. [PMID: 11746975 DOI: 10.1002/gcc.1199] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Studies examining altered imprinted gene expression in cancer compare the observed expression pattern to the normal expression pattern for a given tissue of origin, usually the somatic expression pattern for the imprinted gene. Germ cell tumors (GCTs), however, require a developmental stage-dependent comparison. To explore using methylation as an indicator of germ cell development, we determined the pattern of methylation at the 5' untranslated region of SNRPN in 89 GCTs from both children and adults. Fifty-one of 84 tumors (60.7%) (12/30 (40%) of cultured pediatric GCTs, 23/36 (63.9%) of frozen adult GCTs, and 16/23 (69.5%) of frozen pediatric GCTs, with five samples having results from both cultured and uncultured material) demonstrated a nonsomatic methylation pattern after dual digestion with XbaI, NotI, and Southern blot analysis. In contrast, only 2 of 18 (11%) control samples (16 non-GCTs and 2 normal ovaries) exhibited a nonsomatic pattern. In both cases, the result was shown to be due to copy number differences between maternal and paternal homologs, unlike the GCTs in which there was no evidence of an uneven homolog number. A comparison of the data for only the gonadal GCTs and the control data showed a highly significant difference in the proportion of tumors with methylation alterations at this locus (P = 0.0000539). Since there is no published evidence of the involvement of SNRPN methylation changes in the development of malignancy, the data suggest that the methylation pattern of SNRPN in GCTs reflects that of the primordial germ cell giving rise to the tumor.
Collapse
Affiliation(s)
- K J Bussey
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland, Oregon, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Fasching K, Panzer S, Haas OA, Borkhardt A, Marschalek R, Griesinger F, Panzer-Grümayer ER. Presence of N regions in the clonotypic DJ rearrangements of the immunoglobulin heavy-chain genes indicates an exquisitely short latency in t(4;11)-positive infant acute lymphoblastic leukemia. Blood 2001; 98:2272-4. [PMID: 11568017 DOI: 10.1182/blood.v98.7.2272] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) is frequently initiated in utero at a time of developmentally regulated insertion of N regions into the DJ(H) rearrangements of immunoglobulin heavy-chain (Ig(H)) genes. Here it is shown that N regions are present in the clonotypic DJ(H) rearrangements in 11 of 12 infant ALLs with t(4;11). These data are compared with the 122 previously published DJ(H) sequences and were found to have a pattern similar to that of ALL in children older than 3 years at diagnosis but were unlike that in children younger than 3 years who predominantly lack N regions. These findings, therefore, indicate that t(4;11)-positive infant ALL is initiated later in fetal development than most B-cell precursor ALL from children younger than 3 years and that they have a shorter latency period already in utero.
Collapse
Affiliation(s)
- K Fasching
- Children's Cancer Research Institute, St Anna Kinderspital, and Clinic for Blood Group Serology, University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The enormous diversity of immunoglobulin (Ig) variable (V) gene sequences encoding the antibody repertoire are formed by the somatic recombination of relatively few genetic elements. In B-lineage malignancies, Ig gene rearrangements have been widely used for determining clonality and cell origin. The recent development of rapid cloning and sequencing techniques has resulted in a substantial accumulation of IgV region sequences at various stages of B-cell development and has revealed stage-specific trends in the use of V, diversity, joining genes, the degree of noncoding nucleotide addition, and the rate of somatic mutations. Furthermore, sequences from B-lineage malignant cells nearly reflect the characteristics of the normal counterpart at each respective stage of development. Alternatively, from the IgV region structure of the malignant cells, it is possible to speculate at which stage of B-cell development the cells were transformed. As the complete nucleotide sequences of the human Ig heavy and Ig light V region loci have now been determined, the study of Ig genetics has entered into the super-information era.
Collapse
Affiliation(s)
- H Kiyoi
- Department of Infectious Diseases, Nagoya University School of Medicine, Japan.
| | | |
Collapse
|
26
|
Szczepański T, Willemse MJ, van Wering ER, van Weerden JF, Kamps WA, van Dongen JJ. Precursor-B-ALL with D(H)-J(H) gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia 2001; 15:1415-23. [PMID: 11516102 DOI: 10.1038/sj.leu.2402206] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The IGH gene configuration was investigated in 97 childhood precursor-B-ALL patients at initial diagnosis. Rearrangements were found by Southern blotting in all but three patients (97%) and in 30 cases (31%) we observed oligoclonal IGH gene rearrangements. Heteroduplex PCR analysis revealed at least one clonal PCR product in all Southern blot-positive cases. In 89 patients (92%) complete V(D)J rearrangements were found, while incomplete D(H)-J(H) rearrangements occurred in only 21 patients (22%). In 5% of cases the D(H)-J(H) rearrangements were the sole IGH gene rearrangements. Sequence analysis of the 31 identified incomplete rearrangements revealed preferential usage of segments from the D(H)2, D(H)3 and D(H)7 families (78%). While D(H)2 and D(H)3 gene rearrangements occur frequently in normal B cells and B cell precursors, the relatively frequent usage of D(H)7-27 (19%) in precursor-B-ALL patients is suggestive of leukemic transformation during prenatal lymphopoiesis. Among J(H) gene segments in the incomplete D(H)-J(H) rearrangements, the J(H)6 segment was significantly overrepresented (61%). This observation together with the predominant usage of the most upstream D(H) genes indicates that many of the identified clonal D(H)-J(H) gene rearrangements in precursor-B-ALL probably represent secondary recombinations, having deleted pre-existing D(H)-J(H) joinings. The patients with incomplete D(H)-J(H) gene rearrangements were frequently characterized by hyperdiploid karyotype with additional copies of chromosome 14 and/or by IGH oligoclonality. The presence of incomplete D(H)-J(H) joinings was also significantly associated with a less mature immunogenotype: overrepresentation of V(H)6-1 gene segment usage, absence of biallelic TCRD deletions, and low frequency of TCRG gene rearrangements. This immature immunogenotype of precursor-B-ALL with incomplete IGH gene rearrangements was not associated with more aggressive disease.
Collapse
Affiliation(s)
- T Szczepański
- Department of Immunology, University Hospital Rotterdam/Erasmus University Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The purpose of this study was to characterize the spatial distribution, number and size of CD34(+) cells in fetal bone marrow. Thin sections of normal fetal bone marrow from lumbar vertebrae were stained using CD34 antibody QBend/10. Sections were used under light microscopy with various eyepiece graticules to make measurements of CD34(+) cells in situ. Results showed that at mid- and late gestation, approximately 2% and 0.5% of fetal bone marrow cells were CD34(+) respectively. The mean distance of CD34(+) cells from the nearest trabecular bone surface was 61 +/- 4 and 46 +/- 4 microm, respectively, for mid- and late gestation. The mean distance to the nearest neighbour was 46 +/- 5 and 105 +/- 15 microm, and the mean distance to the nearest blood vessel was 13 +/- 1 and 17 +/- 2 microm respectively. The concentration of CD34(+) cells in the peripheral region was 6.5 times greater than that at the centre of the sections. Overall, the percentage number of CD34(+) cells decreased with gestational age. The cellular and nuclear diameters of CD34(+) cells remained unchanged throughout mid- and late gestation at 5.4 +/- 0.1 and 3.8 +/- 0.1 microm respectively. This information will be used to calculate the natural background alpha-radiation dose to haemopoietic stem cells.
Collapse
Affiliation(s)
- J E Allen
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, UK.
| | | |
Collapse
|
28
|
Mortuza FY, Moreira IM, Papaioannou M, Gameiro P, Coyle LA, Gricks CS, Amlot P, Prentice HG, Madrigal A, Hoffbrand AV, Foroni L. Immunoglobulin heavy-chain gene rearrangement in adult acute lymphoblastic leukemia reveals preferential usage of J(H)-proximal variable gene segments. Blood 2001; 97:2716-26. [PMID: 11313263 DOI: 10.1182/blood.v97.9.2716] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to characterize individual-segment and overall patterns of V(H) gene usage in adult B-lineage acute lymphoblastic leukemia (ALL). Theoretical values of V(H) segment usage were calculated with the assumption that all V(H) segments capable of undergoing rearrangement have an equal probability of selection for recombination. Leukemic clones from 127 patients with adult B-lineage acute leukemias were studied by fingerprinting by means of primers for the framework 1 and joining segments. Clones from early preimmune B cells (245 alleles identified) show a predominance of V(H)6 family rearrangements and, consequently, do not conform to this hypothesis. However, profiles of V(H) gene family usage in mature B cells, as investigated in peripheral blood (6 samples), B-cell lymphomas (36 clones) and chronic lymphocytic leukemia (56 clones), are in agreement with this theoretical profile. Sequence analyses of 64 V(H) clones in adult ALL revealed that the rate of V(H) usage is proportional to the proximity of the V(H) gene to the J(H) locus and that the relationship can be mathematically defined. Except for V(H)6, no other V(H) gene is excessively used in adult ALL. V(H) pseudogenes are rarely used (n = 2), which implies the existence of early mechanisms in the pathway to B-cell maturation to reduce wasteful V(H)-(D(H))-J(H) recombination. Finally, similar to early immunoglobulin-H rearrangement patterns in the mouse, B cells of ALL derive from a pool of cells more immature than the cells in chronic lymphoid B-cell malignancies.
Collapse
Affiliation(s)
- F Y Mortuza
- Department of Haematology and Immunology, Royal Free and University College of London (Royal Free Campus), London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The incidence of clonal T-cell receptor rearrangements in B-cell precursor acute lymphoblastic leukemia varies with age and genotype. Blood 2000. [DOI: 10.1182/blood.v96.6.2254.h8002254_2254_2261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B-cell precursor acute lymphoblastic leukemias (BCP-ALLs) are increasingly treated on risk-adapted protocols based on presenting clinical and biological features. Residual molecular positivity of clonal immunoglobulin (IG) and T-cell receptor (TCR) rearrangements allows detection of patients at an increased risk of relapse. If these rearrangements are to be used for universal follow-up, it is important to determine the extent to which they are informative in different BCP-ALL subsets. We show thatIGH V-D-J rearrangements occur in 89% of 163 BCP-ALL, with no significant variation according to age or genotype (BCR-ABL, TEL-AML1, MLL-AF4, and E2A-PBX1). In contrast,TCRG rearrangements, which occur in 60% of patients overall, are frequent in BCR-ABL and TEL-AML1, are less so in MLL-AF4, and are virtually absent in infants aged predominantly from 1 to 2 years and in E2A-PBX1 ALLs. Incidence of the predominant TCRD Vδ2-Dδ3 rearrangement decreases with age but is independent of genotype. These differences are not due to differential recombination activating gene activity, nor can they be explained adequately by stage of maturation arrest. Analysis of MLL-AF4 BCP-ALL is in keeping with transformation of a precursor at an early stage of ontogenic development, despite the adult onset of the cases analyzed. We postulate that the complete absence of TCRG rearrangement in E2A-PBX1 cases may result from deregulated E2A function. These data also have practical consequences for the use ofTCR clonality for the molecular follow-up of BCP-ALL.
Collapse
|
30
|
The incidence of clonal T-cell receptor rearrangements in B-cell precursor acute lymphoblastic leukemia varies with age and genotype. Blood 2000. [DOI: 10.1182/blood.v96.6.2254] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
B-cell precursor acute lymphoblastic leukemias (BCP-ALLs) are increasingly treated on risk-adapted protocols based on presenting clinical and biological features. Residual molecular positivity of clonal immunoglobulin (IG) and T-cell receptor (TCR) rearrangements allows detection of patients at an increased risk of relapse. If these rearrangements are to be used for universal follow-up, it is important to determine the extent to which they are informative in different BCP-ALL subsets. We show thatIGH V-D-J rearrangements occur in 89% of 163 BCP-ALL, with no significant variation according to age or genotype (BCR-ABL, TEL-AML1, MLL-AF4, and E2A-PBX1). In contrast,TCRG rearrangements, which occur in 60% of patients overall, are frequent in BCR-ABL and TEL-AML1, are less so in MLL-AF4, and are virtually absent in infants aged predominantly from 1 to 2 years and in E2A-PBX1 ALLs. Incidence of the predominant TCRD Vδ2-Dδ3 rearrangement decreases with age but is independent of genotype. These differences are not due to differential recombination activating gene activity, nor can they be explained adequately by stage of maturation arrest. Analysis of MLL-AF4 BCP-ALL is in keeping with transformation of a precursor at an early stage of ontogenic development, despite the adult onset of the cases analyzed. We postulate that the complete absence of TCRG rearrangement in E2A-PBX1 cases may result from deregulated E2A function. These data also have practical consequences for the use ofTCR clonality for the molecular follow-up of BCP-ALL.
Collapse
|
31
|
Verhagen OJ, Willemse MJ, Breunis WB, Wijkhuijs AJ, Jacobs DC, Joosten SA, van Wering ER, van Dongen JJ, van der Schoot CE. Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2000; 14:1426-35. [PMID: 10942239 DOI: 10.1038/sj.leu.2401801] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Large-scale clinical studies on detection of minimal residual disease (MRD) in acute lymphoblastic leukemia (ALL) have shown that quantification of MRD levels is needed for reliable MRD-based risk group classification. Recently, we have shown that 'real-time' quantitative PCR (RQ-PCR) can be applied for this purpose using patient-specific immunoglobulin (Ig) and T cell receptor (TCR) gene rearrangements as PCR targets with TaqMan probes at the position of the junctional region and two germline primers. Now, we tested an alternative approach on 35 immunoglobulin heavy chain (IGH) gene rearrangements, by designing three germline JH TaqMan probes to be used in combination with one of six corresponding germline JH primers and one allele specific oligonucleotide (ASO) primer complementary to the junctional region. In nine cases in which both approaches were compared, at least similar (n = 4) or slightly higher (n= 5) maximal sensitivities were obtained using an ASO primer. The ASO primer approach reached maximal sensitivities of at least 10(-4) in 33 out of 35 IGH rearrangements. The reproducible range for accurate quantification spanned four to five orders of magnitude in 31 out of 35 cases. In 13 out of 35 rearrangements the stringency of PCR conditions had to be increased to remove or diminish background signals; this only concerned the frequently occurring JH4, JH5 and JH6 gene rearrangements. After optimization of the conditions (mainly by increasing the annealing temperature), only occasional aspecific amplification signals were observed at high threshold cycle (CT) values above 42 cycles and at least six cycles above the CT value of the detection limit. Hence, these rare aspecific signals could be easily discriminated from specific signals. We conclude that the here presented set of three germline JH Taq-Man probes and six corresponding germline JH primers can be used to develop patient-specific RQ-PCR assays, which allow accurate and sensitive MRD analysis in almost all IGH gene rearrangements. These results will facilitate standardized RQ-PCR analysis for MRD detection in large clinical studies.
Collapse
Affiliation(s)
- O J Verhagen
- Department of Immunohematology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Detection of clonotypic IGH and TCR rearrangements in the neonatal blood spots of infants and children with B-cell precursor acute lymphoblastic leukemia. Blood 2000. [DOI: 10.1182/blood.v96.1.264] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
An attractive hypothesis is that in utero exposure of hematopoietic cells to oncogenic agents can induce molecular changes leading to overt acute lymphoblastic leukemia (ALL) in infants and perhaps older children as well. Although supported by studies of identical infant twins with concordant leukemia, and of nontwined patients withMLL gene rearrangements, this concept has not been extended to the larger population of B-lineage ALL patients who lack unique nonconstitutive mutations or abnormally rearranged genes. We therefore sought to demonstrate a prenatal origin for 7 cases of B-cell precursor ALL (either CD10+ or CD10−) that had been diagnosed in infants and children 14 days to 9 years of age. Using a polymerase chain reaction–based assay, we identified the same clonotypic immunoglobulin heavy-chain complementarity determining region or T-cell receptor VD2-DD3 sequences in the neonatal blood spots (Guthrie card) and leukemic cell DNAs of 2 infants with CD10− ALL and 2 of the 5 older patients with CD10+ ALL. Nucleotide sequencing showed a paucity of N or P regions and shortened D germ line and conserved J sequences, indicative of cells arising from fetal hematopoiesis. Our findings strongly suggest a prenatal origin for some cases of B-cell precursor ALL lacking specific clonotypic abnormalities.
Collapse
|
33
|
|
34
|
|
35
|
Detection of clonotypic IGH and TCR rearrangements in the neonatal blood spots of infants and children with B-cell precursor acute lymphoblastic leukemia. Blood 2000. [DOI: 10.1182/blood.v96.1.264.013k08_264_268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An attractive hypothesis is that in utero exposure of hematopoietic cells to oncogenic agents can induce molecular changes leading to overt acute lymphoblastic leukemia (ALL) in infants and perhaps older children as well. Although supported by studies of identical infant twins with concordant leukemia, and of nontwined patients withMLL gene rearrangements, this concept has not been extended to the larger population of B-lineage ALL patients who lack unique nonconstitutive mutations or abnormally rearranged genes. We therefore sought to demonstrate a prenatal origin for 7 cases of B-cell precursor ALL (either CD10+ or CD10−) that had been diagnosed in infants and children 14 days to 9 years of age. Using a polymerase chain reaction–based assay, we identified the same clonotypic immunoglobulin heavy-chain complementarity determining region or T-cell receptor VD2-DD3 sequences in the neonatal blood spots (Guthrie card) and leukemic cell DNAs of 2 infants with CD10− ALL and 2 of the 5 older patients with CD10+ ALL. Nucleotide sequencing showed a paucity of N or P regions and shortened D germ line and conserved J sequences, indicative of cells arising from fetal hematopoiesis. Our findings strongly suggest a prenatal origin for some cases of B-cell precursor ALL lacking specific clonotypic abnormalities.
Collapse
|
36
|
Presence of clone-specific antigen receptor gene rearrangements at birth indicates an in utero origin of diverse types of early childhood acute lymphoblastic leukemia. Blood 2000. [DOI: 10.1182/blood.v95.8.2722] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
There is strong evidence that infant leukemias with a t(4;11) translocation originate in utero. To test whether other subtypes of childhood leukemias are also initiated during fetal life, we used clone-specific genetic markers for the analysis of neonatal blood spots from 5 children aged 6 months to 4 years 8 months at diagnosis of pro-B, common acute lymphoblastic leukemia (ALL), and T-ALL. In all children, the clonotypic antigen receptor gene rearrangements were already present at birth. The estimated amount of clonotypic cells was in the range of 10 to 100 cells per blood spot. In 2 infants with a t(4;11) positive ALL, we detected similar amounts of the fusion gene sequences compared with the clonal antigen receptor gene rearrangements, suggesting the presence of both markers in the same cells. Our data indicate that the first leukemogenic event of diverse types of childhood ALL may already occur in utero.
Collapse
|
37
|
Presence of clone-specific antigen receptor gene rearrangements at birth indicates an in utero origin of diverse types of early childhood acute lymphoblastic leukemia. Blood 2000. [DOI: 10.1182/blood.v95.8.2722.008k09_2722_2724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is strong evidence that infant leukemias with a t(4;11) translocation originate in utero. To test whether other subtypes of childhood leukemias are also initiated during fetal life, we used clone-specific genetic markers for the analysis of neonatal blood spots from 5 children aged 6 months to 4 years 8 months at diagnosis of pro-B, common acute lymphoblastic leukemia (ALL), and T-ALL. In all children, the clonotypic antigen receptor gene rearrangements were already present at birth. The estimated amount of clonotypic cells was in the range of 10 to 100 cells per blood spot. In 2 infants with a t(4;11) positive ALL, we detected similar amounts of the fusion gene sequences compared with the clonal antigen receptor gene rearrangements, suggesting the presence of both markers in the same cells. Our data indicate that the first leukemogenic event of diverse types of childhood ALL may already occur in utero.
Collapse
|
38
|
Abstract
Abstract
This article discusses ways in which pediatric patients with acute lymphoblastic leukemia (ALL) can be stratified to receive intensive and less intensive therapies in order to decrease morbidity and mortality. Specifically, the focus may shift away from current intensive therapies for ultra low-risk patients and away from transplantation for certain patients at relapse. In contrast, infants with ALL comprise an ultra high-risk population in need of specialized approaches.
In Section I Dr. Lange describes the need to identify ultra low-risk children. Groups around the world have improved the outcome of children with ALL by identifying the basic “total therapy” model of the 1970s and stratifying treatment according to risk of relapse. Current first-line treatment cures about 85% of children with standard-risk ALL and 70% of children with high-risk disease. However, all children receive anthracyclines, alkylating agents, or moderate- to high-dose antimetabolite infusions. While randomized clinical trials prove that these intensifications reduce relapses, they also show that half of all children with ALL can be cured with the modest therapy of the 1970s and early 1980s. The patients curable with lesser therapy may be considered an ultra low-risk group. Attempts to use age, gender, white count, morphology, and karyotype to identify the ultra low-risk group of patients with a 90-95% cure rate with minimal therapy have failed. An expanded repertoire of tools such as pharmacogenetic profiling, PCR measurement of minimal residual disease and microarray technology may make this goal achievable in this decade.
In section II Dr. Chessells addresses the management of children with relapsed ALL. The chance of successful re-treatment with conventional chemotherapy for relapse depends on the duration of first remission and the site of relapse. Bone marrow transplantation from a histocompatible sibling or other suitable donor, which is widely accepted as the treatment of choice for children with a first remission of < 24 months, is associated with a high risk of relapse. Bone marrow transplantation for later bone marrow relapse improves leukemia-free survival but has significant short-term and long-term toxicities. The challenges are to develop more effective treatment for early relapse and to identify those children with relapsed ALL who are curable with chemotherapy or, failing this, those children who would be candidates for bone marrow transplantation in third remission.
In Section III Dr. Felix addresses the problem of infant ALL. ALL of infancy is clinically aggressive, and infants continue to have the worst prognosis of all pediatric patients with ALL. High white blood cell count, younger age, bulky extramedullary disease, and CNS disease at diagnosis are unfavorable characteristics. These features occur with MLL gene translocations. The probability of an MLL gene translocation and the probability of poor outcome both are greatest in younger infants. Specialized intensive chemotherapy approaches and bone marrow transplantation in first remission for this disease may lead to improved survival.
Refined recognition of pediatric patients with ALL who need more and less intensive therapies is necessary to increase survival and decrease toxicities.
Collapse
|
39
|
Abstract
This article discusses ways in which pediatric patients with acute lymphoblastic leukemia (ALL) can be stratified to receive intensive and less intensive therapies in order to decrease morbidity and mortality. Specifically, the focus may shift away from current intensive therapies for ultra low-risk patients and away from transplantation for certain patients at relapse. In contrast, infants with ALL comprise an ultra high-risk population in need of specialized approaches.In Section I Dr. Lange describes the need to identify ultra low-risk children. Groups around the world have improved the outcome of children with ALL by identifying the basic “total therapy” model of the 1970s and stratifying treatment according to risk of relapse. Current first-line treatment cures about 85% of children with standard-risk ALL and 70% of children with high-risk disease. However, all children receive anthracyclines, alkylating agents, or moderate- to high-dose antimetabolite infusions. While randomized clinical trials prove that these intensifications reduce relapses, they also show that half of all children with ALL can be cured with the modest therapy of the 1970s and early 1980s. The patients curable with lesser therapy may be considered an ultra low-risk group. Attempts to use age, gender, white count, morphology, and karyotype to identify the ultra low-risk group of patients with a 90-95% cure rate with minimal therapy have failed. An expanded repertoire of tools such as pharmacogenetic profiling, PCR measurement of minimal residual disease and microarray technology may make this goal achievable in this decade.In section II Dr. Chessells addresses the management of children with relapsed ALL. The chance of successful re-treatment with conventional chemotherapy for relapse depends on the duration of first remission and the site of relapse. Bone marrow transplantation from a histocompatible sibling or other suitable donor, which is widely accepted as the treatment of choice for children with a first remission of < 24 months, is associated with a high risk of relapse. Bone marrow transplantation for later bone marrow relapse improves leukemia-free survival but has significant short-term and long-term toxicities. The challenges are to develop more effective treatment for early relapse and to identify those children with relapsed ALL who are curable with chemotherapy or, failing this, those children who would be candidates for bone marrow transplantation in third remission.In Section III Dr. Felix addresses the problem of infant ALL. ALL of infancy is clinically aggressive, and infants continue to have the worst prognosis of all pediatric patients with ALL. High white blood cell count, younger age, bulky extramedullary disease, and CNS disease at diagnosis are unfavorable characteristics. These features occur with MLL gene translocations. The probability of an MLL gene translocation and the probability of poor outcome both are greatest in younger infants. Specialized intensive chemotherapy approaches and bone marrow transplantation in first remission for this disease may lead to improved survival.Refined recognition of pediatric patients with ALL who need more and less intensive therapies is necessary to increase survival and decrease toxicities.
Collapse
|
40
|
Abstract
We report a pair of identical twins with concordant acute lymphoblastic leukemia (ALL). Unusually, their diagnoses were spaced 9 years apart at ages 5 and 14. Leukemic cells in both twins had aTEL-AML1 rearrangement, which was characterized at the DNA level by an adaptation of a long distance polymerase chain reaction (PCR) method. The genomic fusion sequence was identical in the two leukemias, indicative of a single cell origin in one fetus, in utero. At the time twin 1 was diagnosed (aged 5 years), the bone marrow of twin 2 was hematologically normal. However, retrospective scrutiny of the DNA from an archived slide with clonotypic TEL-AML1 primers showed that the presumptive preleukemic clone was present and disseminated 9 years before a clinical diagnosis. These data provide novel insight into the natural history of childhood leukemia and suggest that consequent to a prenatal initiation of a leukemic clone, most probably by TEL-AML fusion itself, the latency of ALL can be both extremely variable and protracted. This, in turn, is likely to reflect the timing of critical secondary events.
Collapse
|
41
|
Shiokawa S, Mortari F, Lima JO, Nuñez C, Bertrand FE, Kirkham PM, Zhu S, Dasanayake AP, Schroeder HW. IgM Heavy Chain Complementarity-Determining Region 3 Diversity Is Constrained by Genetic and Somatic Mechanisms Until Two Months After Birth. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.10.6060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Due to the greater range of lengths available to the third complementarity determining region of the heavy chain (HCDR3), the Ab repertoire of normal adults includes larger Ag binding site structures than those seen in first and second trimester fetal tissues. Transition to a steady state range of HCDR3 lengths is not complete until the infant reaches 2 mo of age. Fetal constraints on length begin with a genetic predilection for use of short DH (D7-27 or DQ52) gene segments and against use of long DH (e.g., D3 or DXP) and JH (JH6) gene segments in both fetal liver and fetal bone marrow. Further control of length is achieved through DH-specific limitations in N addition, with D7-27 DJ joins including extensive N addition and D3-containing DJ joins showing a paucity of N addition. DH-specific constraints on N addition are no longer apparent in adult bone marrow. Superimposed upon these genetic mechanisms to control length is a process of somatic selection that appears to ensure expression of a restricted range of HCDR3 lengths in both fetus and adult. B cells that express Abs of an “inappropriate” length appear to be eliminated when they first display IgM on their cell surface. Control of N addition appears aberrant in X-linked agammaglobulinemia, which may exacerbate the block in B cell development seen in this disease. Restriction of the fetal repertoire appears to be an active process, forcing limits on the diversity, and hence range of Ab specificities, available to the young.
Collapse
Affiliation(s)
- Satoshi Shiokawa
- *Division of Developmental and Clinical Immunology, Departments of
- †Medicine and
| | - Frank Mortari
- *Division of Developmental and Clinical Immunology, Departments of
- †Medicine and
| | - Jose O. Lima
- *Division of Developmental and Clinical Immunology, Departments of
- †Medicine and
| | - César Nuñez
- *Division of Developmental and Clinical Immunology, Departments of
- †Medicine and
| | - Fred E. Bertrand
- *Division of Developmental and Clinical Immunology, Departments of
- ‡Microbiology, and
| | - Perry M. Kirkham
- *Division of Developmental and Clinical Immunology, Departments of
- ‡Microbiology, and
| | - Shigui Zhu
- *Division of Developmental and Clinical Immunology, Departments of
- †Medicine and
| | - Ananda P. Dasanayake
- §Specialized Center for Caries Research, University of Alabama, Birmingham, AL 35294
| | - Harry W. Schroeder
- *Division of Developmental and Clinical Immunology, Departments of
- †Medicine and
- ‡Microbiology, and
| |
Collapse
|
42
|
|
43
|
The Fetal Origin of B-Precursor Leukemia in the Eμ-ret Mouse. Blood 1998. [DOI: 10.1182/blood.v92.10.3529.422k51_3529_3536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Before the clinical onset of B-precursor lymphoblastic leukemia, Eμ-ret mice have an expansion of late pro-B cells (CD45R+CD43+CD24+BP-1+) within the bone marrow. To characterize the early effects of the transgene product on lymphopoiesis, we initially sequenced the Ig heavy chain (IgH) rearrangements within the late pro-B cells in 24-day-old Eμ-ret and transgene negative mice. In both mouse populations, the IgH rearrangements were polyclonal, predominately nonproductive, and exhibited similar V, D, and J gene usage. However, the frequency of N regions, a marker of postnatal lymphopoiesis, was notably different. At the VD junction, N regions were found in 25 of 25 (100.0%) rearrangements from transgene-negative mice compared with 12 of 36 (33.3%) rearrangements from Eμ-ret mice. At the DJ junction, N regions were found in 21 of 25 (84.0%) rearrangements from transgene negative mice compared with 4 of 36 (11.1%) rearrangements from Eμ-ret mice. Subsequently, we sequenced the clonal IgH rearrangements from 9 leukemias that developed in 10-to 38-week-old mice and found that 7 leukemias had a least 1 rearrangement that lacked N regions at the DJ junction. In addition, V replacement events were observed in the 1 leukemia studied in detail. Terminal deoxynucleotidyl transferase, the enzyme responsible for N region addition, was expressed at markedly lower levels in late pro-B cells from 7- to 10-day-old Eμ-ret mice compared with transgene-negative mice. Examination of fetal lymphopoiesis in Eμ-ret mice identified a relative increase in early (CD45R+CD43+CD24+BP-1−) and late pro-B cells and a decrease in more differentiated CD43− B-lineage cells. Fetal early pro-B cells from Eμ-ret mice proliferated threefold to fivefold greater but differentiated to a lesser extent than those from transgene negative mice when cultured in vitro with interleukin-7. These data suggest that the B precursor leukemias in adult Eμ-ret mice arise from the progeny of pro-B cells generated in utero.
Collapse
|
44
|
Abstract
Abstract
Before the clinical onset of B-precursor lymphoblastic leukemia, Eμ-ret mice have an expansion of late pro-B cells (CD45R+CD43+CD24+BP-1+) within the bone marrow. To characterize the early effects of the transgene product on lymphopoiesis, we initially sequenced the Ig heavy chain (IgH) rearrangements within the late pro-B cells in 24-day-old Eμ-ret and transgene negative mice. In both mouse populations, the IgH rearrangements were polyclonal, predominately nonproductive, and exhibited similar V, D, and J gene usage. However, the frequency of N regions, a marker of postnatal lymphopoiesis, was notably different. At the VD junction, N regions were found in 25 of 25 (100.0%) rearrangements from transgene-negative mice compared with 12 of 36 (33.3%) rearrangements from Eμ-ret mice. At the DJ junction, N regions were found in 21 of 25 (84.0%) rearrangements from transgene negative mice compared with 4 of 36 (11.1%) rearrangements from Eμ-ret mice. Subsequently, we sequenced the clonal IgH rearrangements from 9 leukemias that developed in 10-to 38-week-old mice and found that 7 leukemias had a least 1 rearrangement that lacked N regions at the DJ junction. In addition, V replacement events were observed in the 1 leukemia studied in detail. Terminal deoxynucleotidyl transferase, the enzyme responsible for N region addition, was expressed at markedly lower levels in late pro-B cells from 7- to 10-day-old Eμ-ret mice compared with transgene-negative mice. Examination of fetal lymphopoiesis in Eμ-ret mice identified a relative increase in early (CD45R+CD43+CD24+BP-1−) and late pro-B cells and a decrease in more differentiated CD43− B-lineage cells. Fetal early pro-B cells from Eμ-ret mice proliferated threefold to fivefold greater but differentiated to a lesser extent than those from transgene negative mice when cultured in vitro with interleukin-7. These data suggest that the B precursor leukemias in adult Eμ-ret mice arise from the progeny of pro-B cells generated in utero.
Collapse
|
45
|
Shiokawa S, Nishimura J, Ohshima K, Uike N, Yamamoto K. Establishment of a novel B cell clonality analysis using single-strand conformation polymorphism of immunoglobulin light chain messenger signals. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:1393-400. [PMID: 9811330 PMCID: PMC1853392 DOI: 10.1016/s0002-9440(10)65726-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The remarkable diversity of the complementarity determining region (CDR) 3 of the immunoglobulin (Ig) heavy (H) chain gene rearrangements has been exploited to identify the clonal populations of B cells in B cell malignancies. However, when B cell malignancies of different categories were examined, the overall detection rate was found to be approximately 70%. The development of a simple clonality analysis using Ig light (L) chain CDR3 diversity has been hampered due to the sparseness of knowledge regarding the sequence of Vkappa and Vlambda gene segments and the restriction of L chain CDR3 length. Based on the recently reported Vkappa and Vlambda gene sequences, we designed Vkappa and Vlambda framework 3 consensus primers. We combined the reverse transcriptase polymerase chain reaction (RT-PCR) of IgL chain transcripts with a single-strand conformation polymorphism (SSCP) analysis and then analyzed samples from patients with B cell malignancies. Clonal B cell populations were detected as discrete bands, and identical clones showed a similar mobility in a RT-PCR SSCP analysis. This method was thus found to be a useful supplement to the previously described approach of VH gene amplification for detecting clonal B cell populations. By using SSCP, we were able to determine the clonal identities of B cell expansion in different samples.
Collapse
Affiliation(s)
- S Shiokawa
- Department of Clinical Immunology, Medical Institute of Bioregulation, Kyushu University, Beppu, Oita, Japan
| | | | | | | | | |
Collapse
|
46
|
Ford AM, Bennett CA, Price CM, Bruin MC, Van Wering ER, Greaves M. Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci U S A 1998; 95:4584-8. [PMID: 9539781 PMCID: PMC22533 DOI: 10.1073/pnas.95.8.4584] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The TEL (ETV6)-AML1 (CBFA2) gene fusion is the most common reciprocal chromosomal rearrangement in childhood cancer occurring in approximately 25% of the most predominant subtype of leukemia- common acute lymphoblastic leukemia. The TEL-AML1 genomic sequence has been characterized in a pair of monozygotic twins diagnosed at ages 3 years, 6 months and 4 years, 10 months with common acute lymphoblastic leukemia. The twin leukemic DNA shared the same unique (or clonotypic) but nonconstitutive TEL-AML1 fusion sequence. The most plausible explanation for this finding is a single cell origin of the TEL-AML fusion in one fetus in utero, probably as a leukemia-initiating mutation, followed by intraplacental metastasis of clonal progeny to the other twin. Clonal identity is further supported by the finding that the leukemic cells in the two twins shared an identical rearranged IGH allele. These data have implications for the etiology and natural history of childhood leukemia.
Collapse
Affiliation(s)
- A M Ford
- Leukaemia Research Fund Centre, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
AbstractAcute leukemia has a high concordance rate in young identical twins and in infants this is known, from molecular analysis, to reflect an in utero origin in one twin followed by prenatal metastasis to the other twin via intraplacental anastomoses. The situation in older twins with leukemia has been less clear. We describe a pair of identical twins who were diagnosed with a T-cell malignancy at 9 and 11 years of age, one with T-cell non-Hodgkin's lymphoma and the other with T-cell acute lymphoblastic leukemia. Leukemic cells from the twins shared the same TCRβ gene rearrangement with an identical 11 bp N region. The most plausible interpretation of this result is that these malignancies were initiated in one twin fetus in utero, in a single T-lineage cell that had stable bi-allelic TCRβ rearrangements. Progeny of this cell then spread to the other twin before birth via shared placental vasculature. This was then followed by a 9- and 11-year preleukemic latent period before clinical disease manifestation as leukemia or lymphoma. This result has considerable implications for the etiology and natural history of pediatric leukemia.
Collapse
|
48
|
Abstract
Acute leukemia has a high concordance rate in young identical twins and in infants this is known, from molecular analysis, to reflect an in utero origin in one twin followed by prenatal metastasis to the other twin via intraplacental anastomoses. The situation in older twins with leukemia has been less clear. We describe a pair of identical twins who were diagnosed with a T-cell malignancy at 9 and 11 years of age, one with T-cell non-Hodgkin's lymphoma and the other with T-cell acute lymphoblastic leukemia. Leukemic cells from the twins shared the same TCRβ gene rearrangement with an identical 11 bp N region. The most plausible interpretation of this result is that these malignancies were initiated in one twin fetus in utero, in a single T-lineage cell that had stable bi-allelic TCRβ rearrangements. Progeny of this cell then spread to the other twin before birth via shared placental vasculature. This was then followed by a 9- and 11-year preleukemic latent period before clinical disease manifestation as leukemia or lymphoma. This result has considerable implications for the etiology and natural history of pediatric leukemia.
Collapse
|
49
|
Chen HT, Alexander CB, Chen FF, Mage RG. Rabbit DQ52 and DH gene expression in early B-cell development. Mol Immunol 1996; 33:1313-21. [PMID: 9171891 DOI: 10.1016/s0161-5890(96)00107-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rabbits predominantly rearrange the most 3'VH gene (VH1); thus combinatorial diversity is very limited. In man and mouse, the most 3'DH gene, DQ52, is preferentially rearranged early in B-cell development. To test whether this preference for rearranging a DH gene segment based on 3' end proximity exists in rabbit, we cloned and sequenced the rabbit DQ52 gene. The 11 base pair coding region sequence is identical to a published mouse DQ52, and 81.8% similar to the human sequence. It is localized approximately 805 bp upstream of the JH1 gene. However, the 3' recombination signal sequence has an atypical nonamer. We prepared mRNA from 15- to 28-day fetal rabbits and amplified expressed VDJ sequences of mu mRNA by RT-PCR. The PCR products with VDJ rearrangements were cloned and sequenced. As expected, 44 of 45 VDJ sequences reflected use of the 3' VH1a2 gene, but the DQ52 gene was utilized very infrequently, if at all. We found only one VDJ sequence from 28-day fetal liver B-cells with 8 bp that matched the germline DQ52 sequence. Instead of expressing DQ52, another DH gene, Df was frequently expressed. We cloned the genomic Df gene and localized it about 32 kb upstream of the JH region. Thus, in contrast to man and mouse, rabbits preferentially express a DH gene located in the middle of the DH region early in B cell ontogeny. This may correlate with more frequent initial rearrangement of VH to DH in rabbit B cells.
Collapse
Affiliation(s)
- H T Chen
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | | | | | | |
Collapse
|
50
|
Ross JA, Perentesis JP, Robison LL, Davies SM. Big babies and infant leukemia: a role for insulin-like growth factor-1? Cancer Causes Control 1996; 7:553-9. [PMID: 8877054 DOI: 10.1007/bf00051889] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several epidemiologic studies have demonstrated that high birthweight is associated with an increased risk of infant leukemia; however, the reason for this relationship is unclear. Biologic data demonstrate that birth weight is correlated positively with circulating levels of insulin-like growth factor-1 (IGF-1). IGF-1 is important in blood formation and regulation and has been shown to stimulate the growth of both myeloid and lymphoid cells in culture. Since infants who develop leukemia are likely to have had at least one transforming event occur in utero, we hypothesize that high levels of IGF-1 may both produce a larger baby and contribute to leukemogenesis.
Collapse
Affiliation(s)
- J A Ross
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|