1
|
Yanagawa Y, Singh U. Diversity and Plasticity of Virulent Characteristics of Entamoeba histolytica. Trop Med Infect Dis 2023; 8:tropicalmed8050255. [PMID: 37235303 DOI: 10.3390/tropicalmed8050255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The complexity of clinical syndromes of amebiasis, caused by the parasite Entamoeba histolytica, stems from the intricate interplay between the host immune system, the virulence of the invading parasite, and the surrounding environment. Although there is still a relative paucity of information about the precise relationship between virulence factors and the pathogenesis of Entamoeba histolytica, by accumulating data from clinical and basic research, researchers have identified essential pathogenic factors that play a critical role in the pathogenesis of amebiasis, providing important insights into disease development through animal models. Moreover, the parasite's genetic variability has been associated with differences in virulence and disease outcomes, making it important to fully understand the epidemiology and pathogenesis of amebiasis. Deciphering the true mechanism of disease progression in humans caused by this parasite is made more difficult through its ability to demonstrate both genomic and pathological plasticity. The objective of this article is to underscore the heterogeneous nature of disease states and the malleable virulence characteristics in experimental models, while also identifying persistent scientific issues that need to be addressed.
Collapse
Affiliation(s)
- Yasuaki Yanagawa
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Upinder Singh
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Nakamura R, Yoshizawa A, Moriyasu T, Deloer S, Senba M, Kikuchi M, Koyasu S, Moro K, Hamano S. Group 2 Innate Lymphoid Cells Exacerbate Amebic Liver Abscess in Mice. iScience 2020; 23:101544. [PMID: 33083770 PMCID: PMC7509001 DOI: 10.1016/j.isci.2020.101544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/24/2020] [Accepted: 09/04/2020] [Indexed: 01/21/2023] Open
Abstract
Entamoeba histolytica, a protozoan parasite in the lumen of the human large intestine, occasionally spreads to the liver and induces amebic liver abscesses (ALAs). Upon infection with E. histolytica, high levels of type 2 cytokines are induced in the liver early after infection. However, the sources and functions of these initial type 2 cytokines in ALA formation remain unclear. In this study, we examined the roles of group 2 innate lymphoid cells (ILC2s) in ALA formation. Hepatic ILC2 numbers were significantly increased and they produced robust levels of IL-5. The in vivo transfer of ILC2s into Rag2−/−common γ chain (γc)−/− KO mice aggravated ALA formation accompanied by eosinophilia and neutrophilia. Furthermore, IL-33-deficient mice and IL-5-neutralized mice had less ALA formations. These results suggest that ILC2s contribute to exacerbating the pathogenesis of ALA by producing early type 2 cytokines and promoting the accumulation of eosinophils and neutrophils in the liver. ILC2s exacerbate ALA by promoting the accumulation of eosinophils and neutrophils Hepatic ILC2s are increased and the main source of IL-5 in the early phase of ALA Hepatic ILC2s localize with IL-33+ cells in the inflammatory areas of ALA IL-33 is a trigger of ILC2-mediated ALA formation
Collapse
Affiliation(s)
- Risa Nakamura
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Graduate School of Biomedical Sciences Doctoral Leadership Program, Nagasaki University, Nagasaki, Japan.,The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | - Akihiro Yoshizawa
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Department of Cardiovascular Medicine, International University of Health and Welfare (IUHW), School of Medicine, Chiba, Japan
| | - Taeko Moriyasu
- Graduate School of Biomedical Sciences Doctoral Leadership Program, Nagasaki University, Nagasaki, Japan.,The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan.,Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Sharmina Deloer
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Graduate School of Biomedical Sciences Doctoral Leadership Program, Nagasaki University, Nagasaki, Japan.,The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan.,Mucosal Immunity Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and infectious Diseases (NIAID), NIH, Maryland, USA
| | - Masachika Senba
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan.,Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Mihoko Kikuchi
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan.,Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Laboratory for Innate Immune Systems, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Graduate School of Biomedical Sciences Doctoral Leadership Program, Nagasaki University, Nagasaki, Japan.,The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| |
Collapse
|
3
|
Deloer S, Nakamura R, Mi-Ichi F, Adachi K, Kobayashi S, Hamano S. Mouse models of amoebiasis and culture methods of amoeba. Parasitol Int 2016; 65:520-525. [PMID: 27080249 DOI: 10.1016/j.parint.2016.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 10/21/2022]
Abstract
Entamoeba histolytica is the third leading parasitic cause of man mortality in the world. Infection occurs via ingestion of food or water contaminated with cysts of E. histolytica. Amoebae primarily colonize the intestine. The majority of amoebic infections are asymptomatic, but under some conditions, approximately 4-10% of infections progress to the invasive form of the disease. To better understand the pathogenesis of amoebiasis and the interaction between amoebae and their hosts, the development of suitable animal models is crucial. Pigs, gerbils, cats and mice are used as animal models for the study of amoebiasis in the laboratory. Among these, the most commonly used model is the mouse. In addition to intestinal amoebiasis, we developed a mouse model of liver abscess by inoculating amoeba through portal vein. However, the frequency of successful infection remains low, which is dependent on the conditions of amoebae in the laboratory. As the maintenance of virulent amoebae in the laboratory is unstable, it needs further refinement. This review summarizes mouse models of amoebiasis and the current state of laboratory culture method of amoebae.
Collapse
Affiliation(s)
- Sharmina Deloer
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Doctoral Leadership Program, Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Risa Nakamura
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Doctoral Leadership Program, Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Fumika Mi-Ichi
- Divisions of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Keishi Adachi
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Seiki Kobayashi
- Graduate School of Medicine, Department of Infectious Diseases, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Doctoral Leadership Program, Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
4
|
Campos-Rodríguez R, Gutiérrez-Meza M, Jarillo-Luna RA, Drago-Serrano ME, Abarca-Rojano E, Ventura-Juárez J, Cárdenas-Jaramillo LM, Pacheco-Yepez J. A review of the proposed role of neutrophils in rodent amebic liver abscess models. ACTA ACUST UNITED AC 2016; 23:6. [PMID: 26880421 PMCID: PMC4754534 DOI: 10.1051/parasite/2016006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/31/2016] [Indexed: 01/20/2023]
Abstract
Host invasion by Entamoeba histolytica, the pathogenic agent of amebiasis, can lead to the development of amebic liver abscess (ALA). Due to the difficulty of exploring host and amebic factors involved in the pathogenesis of ALA in humans, most studies have been conducted with animal models (e.g., mice, gerbils, and hamsters). Histopathological findings reveal that the chronic phase of ALA in humans corresponds to lytic or liquefactive necrosis, whereas in rodent models there is granulomatous inflammation. However, the use of animal models has provided important information on molecules and mechanisms of the host/parasite interaction. Hence, the present review discusses the possible role of neutrophils in the effector immune response in ALA in rodents. Properly activated neutrophils are probably successful in eliminating amebas through oxidative and non-oxidative mechanisms, including neutrophil degranulation, the generation of free radicals (O2−, H2O2, HOCl) and peroxynitrite, the activation of NADPH-oxidase and myeloperoxidase (MPO) enzymes, and the formation of neutrophil extracellular traps (NETs). On the other hand, if amebas are not eliminated in the early stages of infection, they trigger a prolonged and exaggerated inflammatory response that apparently causes ALAs. Genetic differences in animals and humans are likely to be key to a successful host immune response.
Collapse
Affiliation(s)
- Rafael Campos-Rodríguez
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - Manuel Gutiérrez-Meza
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México - Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - Rosa Adriana Jarillo-Luna
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México - Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - María Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Unidad Xochimilco, Universidad Autónoma Metropolitana, Distrito Federal, México
| | - Edgar Abarca-Rojano
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - Javier Ventura-Juárez
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Luz María Cárdenas-Jaramillo
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - Judith Pacheco-Yepez
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| |
Collapse
|
5
|
Morphological Findings in Trophozoites during Amoebic Abscess Development in Misoprostol-Treated BALB/c Mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:898467. [PMID: 26090455 PMCID: PMC4450255 DOI: 10.1155/2015/898467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/05/2014] [Accepted: 10/14/2014] [Indexed: 11/17/2022]
Abstract
During amoebic liver abscess (ALA) formation in susceptible animals, immune response is regulated by prostaglandin E2 (PGE2) dependent mechanisms. The aim of this study was to analyze the effect of misoprostol (MPL), a PGE1 analogue, on ALA formation in BALB/c mice. Male mice from BALB/c strain were intrahepatically infected with 7.5 × 105 trophozoites of E. histolytica strain HM1:IMSS and treated with 10−4 M of MPL daily until sacrifice at 2, 4, and 7 days postinfection (p.i.). ALA formation was evaluated at 2, 4, and 7 days postinfection; trophozoite morphology was analyzed using immunohistochemistry and image analysis. Results showed an increase in frequency of ALA formation in infected and MPL-treated mice only at 2 days p.i. (P = 0.03). A significant diminution in the size of trophozoites was detected in abscesses from mice independently of MPL treatment (from 5.8 ± 1.1 µm at 2 days p.i. to 2.7 ± 1.9 µm at 7 days p.i.) compared with trophozoites dimensions observed in susceptible hamsters (9.6 ± 2.7 µm) (P < 0.01). These results suggest that MPL treatment may modify the adequate control of inflammatory process to allow the persistence of trophozoites in the liver; however, natural resistance mechanisms cannot be discarded.
Collapse
|
6
|
Faust DM, Guillen N. Virulence and virulence factors in Entamoeba histolytica, the agent of human amoebiasis. Microbes Infect 2012; 14:1428-41. [DOI: 10.1016/j.micinf.2012.05.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/09/2012] [Accepted: 05/28/2012] [Indexed: 11/26/2022]
|
7
|
Girard-Misguich F, Cognie J, Delgado-Ortega M, Berthon P, Rossignol C, Larcher T, Melo S, Bruel T, Guibon R, Chérel Y, Sarradin P, Salmon H, Guillén N, Meurens F. Towards the establishment of a porcine model to study human amebiasis. PLoS One 2011; 6:e28795. [PMID: 22205970 PMCID: PMC3244410 DOI: 10.1371/journal.pone.0028795] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/15/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Entamoeba histolytica is an important parasite of the human intestine. Its life cycle is monoxenous with two stages: (i) the trophozoite, growing in the intestine and (ii) the cyst corresponding to the dissemination stage. The trophozoite in the intestine can live as a commensal leading to asymptomatic infection or as a tissue invasive form producing mucosal ulcers and liver abscesses. There is no animal model mimicking the whole disease cycle. Most of the biological information on E. histolytica has been obtained from trophozoite adapted to axenic culture. The reproduction of intestinal amebiasis in an animal model is difficult while for liver amebiasis there are well-described rodent models. During this study, we worked on the assessment of pigs as a new potential model to study amebiasis. METHODOLOGY/PRINCIPAL FINDINGS We first co-cultured trophozoites of E. histolytica with porcine colonic fragments and observed a disruption of the mucosal architecture. Then, we showed that outbred pigs can be used to reproduce some lesions associated with human amebiasis. A detailed analysis was performed using a washed closed-jejunal loops model. In loops inoculated with virulent amebas a severe acute ulcerative jejunitis was observed with large hemorrhagic lesions 14 days post-inoculation associated with the presence of the trophozoites in the depth of the mucosa in two out four animals. Furthermore, typical large sized hepatic abscesses were observed in the liver of one animal 7 days post-injection in the portal vein and the liver parenchyma. CONCLUSIONS The pig model could help with simultaneously studying intestinal and extraintestinal lesion development.
Collapse
Affiliation(s)
- Fabienne Girard-Misguich
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
- Université de Versailles Saint-Quentin-en-Yvelines, Département de Biologie, Versailles, France
| | - Juliette Cognie
- Institut National de la Recherche Agronomique (INRA), UMR 85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR 6175, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | | | - Patricia Berthon
- INRA, UR 1282, Infectiologie Animale et Santé Publique, Nouzilly, France
| | | | - Thibaut Larcher
- INRA, UMR 703, Ecole Nationale Vétérinaire Agroalimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Nantes, France
| | - Sandrine Melo
- INRA, UR 1282, Infectiologie Animale et Santé Publique, Nouzilly, France
| | - Timothée Bruel
- INRA, UR 1282, Infectiologie Animale et Santé Publique, Nouzilly, France
| | - Roseline Guibon
- INRA, UR 1282, Infectiologie Animale et Santé Publique, Nouzilly, France
| | - Yan Chérel
- INRA, UMR 703, Ecole Nationale Vétérinaire Agroalimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Nantes, France
| | - Pierre Sarradin
- INRA, UE 1277, Plate-forme d'Infectiologie Expérimentale, Nouzilly, France
| | - Henri Salmon
- INRA, UR 1282, Infectiologie Animale et Santé Publique, Nouzilly, France
| | - Nancy Guillén
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
| | - François Meurens
- INRA, UR 1282, Infectiologie Animale et Santé Publique, Nouzilly, France
- * E-mail:
| |
Collapse
|
8
|
Carranza-Rosales P, Santiago-Mauricio MG, Guzmán-Delgado NE, Vargas-Villarreal J, Lozano-Garza G, Ventura-Juárez J, Balderas-Rentería I, Morán-Martínez J, Gandolfi AJ. Precision-cut hamster liver slices as an ex vivo model to study amoebic liver abscess. Exp Parasitol 2010; 126:117-25. [PMID: 20412797 DOI: 10.1016/j.exppara.2010.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/22/2010] [Accepted: 04/12/2010] [Indexed: 01/01/2023]
Abstract
Entamoeba histolytica is the etiological agent of amoebiasis, the second cause of global morbidity and mortality due to parasitic diseases in humans. In approximately 1% of the cases, amoebas penetrate the intestinal mucosa and spread to other organs, producing extra-intestinal lesions, among which amoebic liver abscess (ALA) is the most common. To study ALA, in vivo and in vitro models are used. However, animal models may pose ethical issues, and are time-consuming and costly; and cell cultures represent isolated cellular lineages. The present study reports the infection of precision-cut hamster liver slices with Entamoeba histolytica trophozoites. The infection time-course, including tissue damage, parallels findings previously reported in the animal model. At the same time amoebic virulence factors were detected in the infected slices. This new model to study ALA is simple and reproducible, and employs less than 1/3 of the hamsters required for in vivo analyses.
Collapse
Affiliation(s)
- Pilar Carranza-Rosales
- División de Biología Celular y Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Administración de Correos No. 4, Apartado Postal 020, Colonia Independencia, Monterrey, NL, CP 64720, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Solis CF, Santi-Rocca J, Perdomo D, Weber C, Guillén N. Use of bacterially expressed dsRNA to downregulate Entamoeba histolytica gene expression. PLoS One 2009; 4:e8424. [PMID: 20037645 PMCID: PMC2793006 DOI: 10.1371/journal.pone.0008424] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 11/24/2009] [Indexed: 11/18/2022] Open
Abstract
Background Modern RNA interference (RNAi) methodologies using small interfering RNA (siRNA) oligonucleotide duplexes or episomally synthesized hairpin RNA are valuable tools for the analysis of gene function in the protozoan parasite Entamoeba histolytica. However, these approaches still require time-consuming procedures including transfection and drug selection, or costly synthetic molecules. Principal Findings Here we report an efficient and handy alternative for E. histolytica gene down-regulation mediated by bacterial double-stranded RNA (dsRNA) targeting parasite genes. The Escherichia coli strain HT115 which is unable to degrade dsRNA, was genetically engineered to produce high quantities of long dsRNA segments targeting the genes that encode E. histolytica β-tubulin and virulence factor KERP1. Trophozoites cultured in vitro were directly fed with dsRNA-expressing bacteria or soaked with purified dsRNA. Both dsRNA delivery methods resulted in significant reduction of protein expression. In vitro host cell-parasite assays showed that efficient downregulation of kerp1 gene expression mediated by bacterial dsRNA resulted in significant reduction of parasite adhesion and lytic capabilities, thus supporting a major role for KERP1 in the pathogenic process. Furthermore, treatment of trophozoites cultured in microtiter plates, with a repertoire of eighty-five distinct bacterial dsRNA segments targeting E. histolytica genes with unknown function, led to the identification of three genes potentially involved in the growth of the parasite. Conclusions Our results showed that the use of bacterial dsRNA is a powerful method for the study of gene function in E. histolytica. This dsRNA delivery method is also technically suitable for the study of a large number of genes, thus opening interesting perspectives for the identification of novel drug and vaccine targets.
Collapse
Affiliation(s)
- Carlos F. Solis
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
| | - Julien Santi-Rocca
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
| | - Doranda Perdomo
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
| | - Christian Weber
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
| | - Nancy Guillén
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France
- INSERM U786, Paris, France
- * E-mail:
| |
Collapse
|
10
|
Davis PH, Chen M, Zhang X, Clark CG, Townsend RR, Stanley SL. Proteomic comparison of Entamoeba histolytica and Entamoeba dispar and the role of E. histolytica alcohol dehydrogenase 3 in virulence. PLoS Negl Trop Dis 2009; 3:e415. [PMID: 19365541 PMCID: PMC2663792 DOI: 10.1371/journal.pntd.0000415] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 03/17/2009] [Indexed: 11/28/2022] Open
Abstract
The protozoan intestinal parasite Entamoeba histolytica infects millions of people worldwide and is capable of causing amebic dysentery and amebic liver abscess. The closely related species Entamoeba dispar colonizes many more individuals, but this organism does not induce disease. To identify molecular differences between these two organisms that may account for their differential ability to cause disease in humans, we used two-dimensional gel-based (DIGE) proteomic analysis to compare whole cell lysates of E. histolytica and E. dispar. We observed 141 spots expressed at a substantially (>5-fold) higher level in E. histolytica HM-1∶IMSS than E. dispar and 189 spots showing the opposite pattern. Strikingly, 3 of 4 proteins consistently identified as different at a greater than 5-fold level between E. histolytica HM-1∶IMSS and E. dispar were identical to proteins recently identified as differentially expressed between E. histolytica HM-1∶IMSS and the reduced virulence strain E. histolytica Rahman. One of these was E. histolytica alcohol dehydrogenase 3 (EhADH3). We found that E. histolytica possesses a higher level of NADP-dependent alcohol dehydrogenase activity than E. dispar and that some EhADH3 can be localized to the surface of E. histolytica. Episomal overexpression of EhADH3 in E. histolytica trophozoites resulted in only subtle phenotypic differences in E. histolytica virulence in animal models of amebic colitis and amebic liver abscess, making it difficult to directly link EhADH3 levels to virulence differences between E. histolytica and less-pathogenic Entamoeba. Infection with Entamoeba histolytica can result in disabling diarrhea or even death, while the morphologically identical and genetically similar Entamoeba dispar harmlessly colonizes the human intestine. Understanding the molecular differences between these two organisms by comparing their protein repertoire may help us to understand why E. histolytica invades into colonic tissue, while E. dispar remains a benign passenger. Here, we identify four proteins that appear to be differentially expressed between the two species and show that a metabolic enzyme, which would appear to be an unlikely candidate for a role in disease, is expressed at much higher levels in the pathogenic organism.
Collapse
Affiliation(s)
- Paul H. Davis
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Minghe Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaochun Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - C. Graham Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - R. Reid Townsend
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Samuel L. Stanley
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
11
|
Host-microbe interactions and defense mechanisms in the development of amoebic liver abscesses. Clin Microbiol Rev 2009; 22:65-75, Table of Contents. [PMID: 19136434 DOI: 10.1128/cmr.00029-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SUMMARY Amoebiasis by Entamoeba histolytica is a major public health problem in developing countries and leads to several thousand deaths per year. The parasite invades the intestine (provoking diarrhea and dysentery) and the liver, where it forms abscesses (amoebic liver abscesses [ALAs]). The liver is the organ responsible for filtering blood coming from the intestinal tract, a task that implies a particular structure and immune features. Amoebae use the portal route and break through the sinusoidal endothelial barrier to reach the hepatic parenchyma. When faced with systemic and cell-mediated defenses, trophozoites adapt to their new environment and modulate host responses, leading to parasite survival and the formation of inflammatory foci. Cytopathogenic effects and the onset of inflammation may be caused by diffusible products originating from parasites and/or immune cells either by their secretion or by their release after cell death. Liver infection thus results from the interplay between E. histolytica and hepatic cells. Despite its importance in terms of public health burden, the lack of integrated data on ALA genesis means that we have only an incomplete description of the initiation and development of hepatic amoebiasis. Here, we review the main steps of ALA development as well as the responses triggered in both the host and the parasite. Transcriptome studies highlighted parasite factors involved in adherence to human cells, cytopathogenic effects, and adaptative and stress responses. An understanding of their role in ALA development will help to unravel the host-pathogen interactions and their evolution throughout the infection.
Collapse
|
12
|
Tsutsumi V, Shibayama M. Experimental amebiasis: a selected review of some in vivo models. Arch Med Res 2006; 37:210-20. [PMID: 16380321 DOI: 10.1016/j.arcmed.2005.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 09/23/2005] [Indexed: 10/25/2022]
Abstract
The use of in vivo animal models in amebiasis has contributed significantly to the knowledge of this common human parasitic disease. Although there is no animal model that mimics the whole cycle of the human disease, the use of different susceptible and resistant laboratory animals and the availability for many years of techniques for the axenic culture of trophozoites of Entamoeba histolytica have allowed a better understanding of the parasite and the host-parasite relationship. The recent introduction of frontier methodologies in biology has increased our comprehension of this parasite. New information on the cellular and molecular biology and genetics of this organism has been extensively reported, and much of this has clearly required the more frequent use of animal models to verify specific facts. Based on experimental animals characterized previously, the introduction of new animal models with genetic or surgical modifications, especially in mice, has allowed a more adequate analysis of the mechanisms of pathogenesis. Multiple factors have been considered in the promotion of the invasiveness and virulence of E. histolytica. Additionally, the immunological and physiological responses of the host, depending on the environmental conditions, lead to the establishment or the rejection of the parasite. The role of inflammatory reaction to amebic infection constitutes one of the controversies that has been studied by several authors. In susceptible animals (hamsters and gerbils), inflammatory cell damage seems to be related to target cell lysis, while in resistant animals (mice), inflammatory cells appear to protect the host by lysing the parasite. Presently, the involvement of various substances in the development of lesions including lectins, proteases, amebapores, promoters of apoptosis, cytokines, nitric oxide, etc., is being examined using different in vivo models.
Collapse
Affiliation(s)
- Víctor Tsutsumi
- Departamento de Patología Experimental, CINVESTAV-IPN, México, D.F., México.
| | | |
Collapse
|
13
|
Pelosof LC, Davis PH, Zhang Z, Zhang X, Stanley SL. Co-ordinate but disproportionate activation of apoptotic, regenerative and inflammatory pathways characterizes the liver response to acute amebic infection. Cell Microbiol 2006; 8:508-22. [PMID: 16469061 DOI: 10.1111/j.1462-5822.2005.00642.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver has the remarkable ability to respond to injury with repair and regeneration. The protozoan parasite Entamoeba histolytica is the major cause of liver abscess worldwide. We report a transcriptional analysis of the response of mouse liver to E. histolytica infection, the first study looking at acute liver infection by a non-viral pathogen. Focusing on early time points, we identified 764 genes with altered transcriptional levels in amebic liver abscess. The response to infection is rapid and complex, with concurrent increased expression of genes linked to host defence through IL-1, TLR2, or interferon-induced pathways, liver regeneration via activation of IL-6 pathways, and genes associated with programmed cell death possibly through TNFalpha or Fas pathways. A comparison of amebic liver infection with the liver response to partial hepatectomy or toxins reveals striking similarities between amebic liver abscess and non-infectious injury in key components of the liver regeneration pathways. However, the response in amebic liver abscess is biased towards apoptosis when compared with acute liver injury from hepatectomy, toxins, or other forms of liver infection. E. histolytica infection of the liver simultaneously activates inflammatory, regenerative and apoptotic pathways, but the sum of these early responses is biased towards programmed cell death.
Collapse
Affiliation(s)
- Lorraine C Pelosof
- Department of Medicine, Division of Infectious Diseases, Campus Box 8051, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
14
|
Campos-Rodríguezp R, Jarillo-Luna A. The pathogenicity of Entamoeba histolytica is related to the capacity of evading innate immunity. Parasite Immunol 2005; 27:1-8. [PMID: 15813717 DOI: 10.1111/j.1365-3024.2005.00743.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The host and parasite factors that influence susceptibility to Entamoeba histolytica infection and disease are not well understood. Entamoeba histolytica pathogenicity has been considered by focusing principally on parasite rather than host factors. Thus, research has concentrated on explaining the molecular differences between pathogenic E. histolytica and non-pathogenic E. dispar. However, the amoeba molecules considered most important for host tissue destruction (amoebapore, galactose/N-acetyl galactosamine inhibitable lectin, and cysteine proteinases) are present in both pathogenic E. histolytica and non-pathogenic E. dispar. In addition, the genetic differences in pathogenicity among E. histolytica isolates are unlikely to completely explain the different outcomes of infection. Considering that the principal difference between pathogenic and non-pathogenic amoebas lies in their surface coats, we propose that pathogenicity of the amoebas is related to the composition and properties of the surface coat components (or pathogen-associated molecular patterns, PAMPs), and the ability of innate immune response to recognize these components and eliminate the parasite. According to this hypothesis, a key feature that may distinguish pathogenic (E. histolytica) from non-pathogenic (E. dispar) strains is whether or not they can overcome innate immune defences. A corollary of this hypothesis is that in susceptible individuals the PAMPs are either not recognized or they are recognized by a set of Toll-like receptors (TLRs) that leads to an inflammatory response. In both cases, the result is tissue damage. On the contrary, in resistant individuals the innate/inflammatory response, induced through the activation of a different set of TLRs, eliminates the parasite.
Collapse
Affiliation(s)
- Rafael Campos-Rodríguezp
- Departamento de Bioquímica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF.
| | | |
Collapse
|
15
|
Zhang X, Zhang Z, Alexander D, Bracha R, Mirelman D, Stanley SL. Expression of amoebapores is required for full expression of Entamoeba histolytica virulence in amebic liver abscess but is not necessary for the induction of inflammation or tissue damage in amebic colitis. Infect Immun 2004; 72:678-83. [PMID: 14742508 PMCID: PMC321641 DOI: 10.1128/iai.72.2.678-683.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entamoeba histolytica trophozoites produce amoebapores, a family of small amphipathic peptides capable of insertion into bacterial or eukaryotic membranes and causing cellular lysis. Recently, E. histolytica trophozoites that are totally deficient in the production of amoebapore-A were created through a gene silencing mechanism (R. Bracha, Y. Nuchamowitz, and D. Mirelman, Eukaryot. Cell 2:295-305, 2003). Here we tested the virulence of amoebapore A(-) trophozoites in models of the two major forms of amebic disease: amebic liver abscess and amebic colitis. We demonstrate that amoebapore expression is required for full virulence in the SCID mouse model of amebic liver abscess, but E. histolytica trophozoites that do not express amoebapore-A can still cause inflammation and tissue damage in infected human colonic xenografts. These data are consistent with the concept that tissue damage may proceed by different mechanisms in amebic liver abscess compared to amebic colitis.
Collapse
Affiliation(s)
- Xiaochun Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
16
|
Jarillo-Luna RA, Campos-Rodríguez R, Tsutsumi V. Entamoeba histolytica: immunohistochemical study of hepatic amoebiasis in mouse. Neutrophils and nitric oxide as possible factors of resistance. Exp Parasitol 2002; 101:40-56. [PMID: 12243737 DOI: 10.1016/s0014-4894(02)00021-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Studies in mice have not rendered conclusive data on cell and humoral factors to support the resistance of this rodent to Entamoeba histolytica infection. In Balb/c and C3H/HeJ mice inoculated with live or fixed trophozoites, we studied the evolution of the hepatic lesion, the kinetics of inflammatory cells, and the participation of some humoral factors in the development of the hepatic amoebic lesion. From the first hour, amoebae were surrounded by neutrophils containing inducible nitric oxide synthase (iNOS); macrophages also expressing iNOS appeared lately, whereas NK cells were not part of the inflammatory infiltrates. On the fourth day, neutrophils, macrophages, T and B lymphocytes, plasma cells, and some NK cells limited the lesions and anti-amoeba antibodies appeared when most parasites had been eliminated. Therefore, the resistance of the mice to E. histolytica probably lies in non-specific immune responses, among which the activation of neutrophils and the production of nitric oxide (NO) may be important amoebicide factors.
Collapse
Affiliation(s)
- R A Jarillo-Luna
- Department of Experimental Pathology, Center for Research and Advanced Studies, National Polytechnic Institute, Cinvestav-IPN, México City, Mexico
| | | | | |
Collapse
|
17
|
Rigothier MC, Khun H, Tavares P, Cardona A, Huerre M, Guillén N. Fate of Entamoeba histolytica during establishment of amoebic liver abscess analyzed by quantitative radioimaging and histology. Infect Immun 2002; 70:3208-15. [PMID: 12011016 PMCID: PMC128000 DOI: 10.1128/iai.70.6.3208-3215.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasite Entamoeba histolytica is the causative agent of amoebiasis, a human disease characterized by dysentery and liver abscess. The physiopathology of hepatic lesions can be satisfactorily reproduced in the hamster animal model by the administration of trophozoites through the portal vein route. Hamsters were infected with radioactively labeled amoebas for analysis of liver abscess establishment and progression. The radioimaging of material from parasite origin and quantification of the number inflammation foci, with or without amoebas, described here provides the first detailed assessment of trophozoite survival and death during liver infection by E. histolytica. The massive death of trophozoites observed in the first hours postinfection correlates with the presence of a majority of inflammatory foci without parasites. A critical point for success of infection is reached after 12 h when the lowest number of trophozoites is observed. The process then enters a commitment phase during which parasites multiply and the size of the infection foci increases fast. The liver shows extensive areas of dead hepatocytes that are surrounded by a peripheral layer of parasites facing inflammatory cells leading to acute inflammation. Our results show that the host response promotes massive parasite death but also suggest also that this is a major contributor to the establishment of inflammation during development of liver abscess.
Collapse
Affiliation(s)
- Marie-Christine Rigothier
- Laboratoire de Biologie et Contrôle des Organismes Parasites, UPRES 398-IFR 75, Faculté de Pharmacie, Université Paris-Sud, France
| | | | | | | | | | | |
Collapse
|
18
|
Yan L, Stanley SL. Blockade of caspases inhibits amebic liver abscess formation in a mouse model of disease. Infect Immun 2001; 69:7911-4. [PMID: 11705976 PMCID: PMC98890 DOI: 10.1128/iai.69.12.7911-7914.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We looked at the effect of inhibiting caspases on amebic liver abscess in the mouse model of infection. A dose of the pan-caspase inhibitor benzyloxycarbonyl-V-A-D-O-methyl fluoromethyl ketone (Z-VAD-FMK; R & D Systems) given to SCID mice 2 h prior to direct hepatic inoculation with Entamoeba histolytica trophozoites, and 12 h after amebic inoculation, reduced the mean liver abscess size by 70% at 24 h compared to a control group. These data indicate that apoptosis plays a significant but not an exclusive role in amebic liver abscess formation in the mouse model.
Collapse
Affiliation(s)
- L Yan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
19
|
Abstract
This article updates recent advances in the body of knowledge of diagnosis and treatment of intestinal parasites. The articles focus on the manifestations of disease in the immunocompetent adult host from developed countries. Specific pathogens discussed are Giardia lamblia and Dientamoeba fragilis, Entamoeba histolytica, Entamoeba dipar, Blastocystis hominis, Cyclospora cayetanensis, and Cryptosporidium parvum.
Collapse
Affiliation(s)
- D E Katz
- Department of Medicine, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, Maryland, USA
| | | |
Collapse
|
20
|
Abstract
Few organisms are more aptly named than Entamoeba histolytica, an intestinal protozoan parasite that can lyse and destroy human tissue. Within the past four years, new models of E. histolytica infection have begun to illuminate how amoebic trophozoites cause intestinal disease and liver abscess, and have expanded our understanding of the remarkable killing ability of this parasite. Here, I summarize recent work on the interactions between E. histolytica and human intestine, and between E. histolytica and hepatocytes, and discuss what these studies tell us about the role of inflammation and programmed cell death in the pathogenesis of amoebiasis.
Collapse
Affiliation(s)
- S L Stanley
- Depts Medicine and Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
21
|
Lotter H, Khajawa F, Stanley SL, Tannich E. Protection of gerbils from amebic liver abscess by vaccination with a 25-mer peptide derived from the cysteine-rich region of Entamoeba histolytica galactose-specific adherence lectin. Infect Immun 2000; 68:4416-21. [PMID: 10899838 PMCID: PMC98337 DOI: 10.1128/iai.68.8.4416-4421.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2000] [Accepted: 05/12/2000] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasite Entamoeba histolytica causes extensive morbidity and mortality through intestinal infection and amebic liver abscess. Here we show that immunization of gerbils with a single keyhole limpet hemocyanin-coupled 25-mer peptide derived from the 170-kDa subunit of the E. histolytica galactose-binding adhesin is sufficient to confer substantial protection against experimentally induced amebic liver abscesses. Vaccination provided total protection in 5 of 15 immunized gerbils, and abscesses were significantly smaller (P < 0.01) in the remaining vaccinated animals. The degree of protection correlated with the titer of antibodies to the peptide, and results of passive transfer experiments performed with SCID mice were consistent with a role for antibodies in protection. In addition, parenteral or oral vaccination of gerbils with 13-amino-acid subfragments of the peptide N-terminally fused to the B subunit of cholera toxin also significantly inhibited liver abscess formation (P < 0.05). These data indicate that small peptides derived from the galactose-binding adhesin administered by the parenteral or oral route can provide protection against amebic liver abscess and should be considered as components of a subunit vaccine against invasive amoebiasis.
Collapse
Affiliation(s)
- H Lotter
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | | | | | | |
Collapse
|
22
|
Jarillo-Luna RA, Campos-Rodríguez R, Tsutsumi V. Participation of neutrophils, macrophages, and endothelial cells in the amebic liver lesion in the mouse. Arch Med Res 2000; 31:S101-3. [PMID: 11070242 DOI: 10.1016/s0188-4409(00)00184-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- R A Jarillo-Luna
- Departamento de Bioquímica, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | |
Collapse
|
23
|
Abstract
Amebiasis is a major cause of morbidity and mortality throughout the tropical world. Entamoeba histolytica is now recognized as a separate species from the morphologically identical E. dispar, which cannot invade. Cysteine proteinases are a key virulence factor of E. histolytica and play a role in intestinal invasion by degrading the extracellular matrix and circumventing the host immune response through cleavage of secretory immunoglobulin A (sIgA), IgG, and activation of complement. Cysteine proteinases are encoded by at least seven genes, several of which are found in E. histolytica but not E. dispar. A number of new animal models, including the formation of liver abscesses in SCID mice and intestinal infection in human intestinal xenografts, have proven useful to confirm the critical role of cysteine proteinases in invasion. Detailed structural analysis of cysteine proteinases should provide further insights into their biochemical function and may facilitate the design of specific inhibitors which could be used as potential chemotherapeutic agents in the future.
Collapse
|
24
|
Abstract
Amebiasis is a major cause of morbidity and mortality throughout the tropical world. Entamoeba histolytica is now recognized as a separate species from the morphologically identical E. dispar, which cannot invade. Cysteine proteinases are a key virulence factor of E. histolytica and play a role in intestinal invasion by degrading the extracellular matrix and circumventing the host immune response through cleavage of secretory immunoglobulin A (sIgA), IgG, and activation of complement. Cysteine proteinases are encoded by at least seven genes, several of which are found in E. histolytica but not E. dispar. A number of new animal models, including the formation of liver abscesses in SCID mice and intestinal infection in human intestinal xenografts, have proven useful to confirm the critical role of cysteine proteinases in invasion. Detailed structural analysis of cysteine proteinases should provide further insights into their biochemical function and may facilitate the design of specific inhibitors which could be used as potential chemotherapeutic agents in the future.
Collapse
Affiliation(s)
- X Que
- Departments of Pathology and Medicine, University of California San Diego Medical Center, San Diego, CA 92103-8416, USA
| | | |
Collapse
|
25
|
Seydel KB, Smith SJ, Stanley SL. Innate immunity to amebic liver abscess is dependent on gamma interferon and nitric oxide in a murine model of disease. Infect Immun 2000; 68:400-2. [PMID: 10603416 PMCID: PMC97149 DOI: 10.1128/iai.68.1.400-402.2000] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence from in vitro studies suggests that gamma interferon (IFN-gamma) and nitric oxide (NO) are important in host defense against the protozoan parasite Entamoeba histolytica. We used SCID mice with targeted disruption of the IFN-gamma receptor gene and mice with targeted disruption of the gene encoding inducible NO synthase to show that IFN-gamma plays a role in the innate immunity to amebic liver abscess seen in SCID mice while NO is required for control of amebic liver abscess in immunocompetent mice.
Collapse
Affiliation(s)
- K B Seydel
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
26
|
Huston CD, Petri WA. Host-pathogen interaction in amebiasis and progress in vaccine development. Eur J Clin Microbiol Infect Dis 1998; 17:601-14. [PMID: 9832261 DOI: 10.1007/bf01708342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Entamoeba histolytica, the causative organism of invasive intestinal and extraintestinal amebiasis, infects approximately 50 million people each year, causing an estimated 40 to 100 thousand deaths annually. Because amebae only infect humans and some higher non-human primates, an anti-amebic vaccine could theoretically eradicate the organism. Uncontrolled epidemiologic studies indicate that acquired immunity to amebic infection probably occurs and that such a vaccine might be feasible. Application of molecular biologic techniques has led to rapid progress towards understanding how Entamoeba histolytica causes disease, and to the identification of several amebic proteins associated with virulence. These proteins are now being evaluated as potential vaccine components. Parenteral and oral vaccine preparations containing recombinant amebic proteins have been effective in preventing disease in a gerbil model of amebic liver abscess. Although systemic and mucosal cellular and humoral immunity both appear to play a role in protection against Entamoeba histolytica, the relative importance of each in the human immune response remains unknown. No animal model of intestinal amebiasis currently exists, moreover, so it has been impossible to evaluate protection against colonization and colitis. Further investigation of the fundamental mechanisms by which Entamoeba histolytica causes disease and of the human immune response to amebic infection is necessary to assess the true feasibility of an anti-amebic vaccine.
Collapse
Affiliation(s)
- C D Huston
- Department of Internal Medicine, University of Vermont College of Medicine, Burlington 05401, USA
| | | |
Collapse
|
27
|
Velazquez C, Shibayama-Salas M, Aguirre-Garcia J, Tsutsumi V, Calderon J. Role of neutrophils in innate resistance to Entamoeba histolytica liver infection in mice. Parasite Immunol 1998; 20:255-62. [PMID: 9651927 DOI: 10.1046/j.1365-3024.1998.00128.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to define the role of neutrophils in the innate resistance to Entamoeba histolytica liver infection in mice, we examined the pattern of liver lesion induced by direct injection of E. histolytica trophzoites in normal mice and in neutrophil-depleted mice. A variety of histological lesions were found, the extent of liver damage was considerably higher in the neutrophil-depleted mice. Livers from neutrophil-depleted mice displayed areas of liquefactive (lytic) necrosis containing a large number of amoebae and absence of neutrophils or mononuclear cells. By contrast, in the liver of normal mice, neutrophils were seen associated to E. histolytica at early stages of infection. In both mouse groups, areas of TUNEL-positive dead hepatocytes were observed and a characteristic internucleosomal banding pattern of genomic DNA consistent with apoptosis was detected in DNA harvested from amoebic liver lesions. These data suggest that neutrophils play an important role in the mechanisms of resistance to amoebic liver infection in mice. In addition, our histological analysis suggests that E. histolytica is capable of producing liver damage in the absence of inflammatory cells.
Collapse
Affiliation(s)
- C Velazquez
- Department of Cell Biology, CINVESTAV, Mexico DF
| | | | | | | | | |
Collapse
|
28
|
Seydel KB, Stanley SL. Entamoeba histolytica induces host cell death in amebic liver abscess by a non-Fas-dependent, non-tumor necrosis factor alpha-dependent pathway of apoptosis. Infect Immun 1998; 66:2980-3. [PMID: 9596776 PMCID: PMC108298 DOI: 10.1128/iai.66.6.2980-2983.1998] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/1997] [Accepted: 03/24/1998] [Indexed: 02/07/2023] Open
Abstract
Amebic liver abscess is characterized by extensive areas of dead hepatocytes that form cavities surrounded by a thin rim of inflammatory cells and few Entamoeba histolytica trophozoites. E. histolytica produces pore-forming proteins and proteinases, but how trophozoites actually kill host cells has been unclear. Here, we report that E. histolytica induces apoptosis in both inflammatory cells and hepatocytes in a severe combined immunodeficient (SCID) mouse model of amebic liver abscess. By studying infection in C57/BL6.lpr and C57/BL6.gld mice, we found that E. histolytica-induced apoptosis does not require the Fas/Fas ligand pathway of apoptosis, and by using mice with a targeted deletion of the tumor necrosis factor receptor I gene, we have shown that E. histolytica-induced apoptosis is not mediated by tumor necrosis factor alpha. Our data indicate that apoptosis plays a prominent role in the host cell death seen in amebic liver abscess in a mouse model of disease and suggest that E. histolytica induces cell death without using two common pathways for apoptosis.
Collapse
Affiliation(s)
- K B Seydel
- Departments of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
29
|
Marinets A, Zhang T, Guillén N, Gounon P, Bohle B, Vollmann U, Scheiner O, Wiedermann G, Stanley SL, Duchêne M. Protection against invasive amebiasis by a single monoclonal antibody directed against a lipophosphoglycan antigen localized on the surface of Entamoeba histolytica. J Exp Med 1997; 186:1557-65. [PMID: 9348313 PMCID: PMC2199119 DOI: 10.1084/jem.186.9.1557] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/1997] [Revised: 08/25/1997] [Indexed: 02/05/2023] Open
Abstract
A panel of monoclonal antibodies was raised from mice immunized with a membrane preparation from Entamoeba histolytica, the pathogenic species causing invasive amebiasis in humans. Antibody EH5 gave a polydisperse band in immunoblots from membrane preparations from different E. histolytica strains, and a much weaker signal from two strains of the nonpathogenic species Entamoeba dispar. Although the exact chemical structure of the EH5 antigen is not yet known, the ability of the antigen to be metabolically radiolabeled with [32P]phosphate or [3H]glucose, its sensitivity to digestion by mild acid and phosphatidylinositol-specific phospholipase C, and its specific extraction from E. histolytica trophozoites by a method used to prepare lipophosphoglycans from Leishmania showed that it could be classified as an amebal lipophosphoglycan. Confocal immunofluorescence and immunogold labeling of trophozoites localized the antigen on the outer face of the plasma membrane and on the inner face of internal vesicle membranes. Antibody EH5 strongly agglutinated amebas in a similar way to concanavalin A (Con A), and Con A bound to immunoaffinity-purified EH5 antigen. Therefore, surface lipophosphoglycans may play an important role in the preferential agglutination of pathogenic amebas by Con A. The protective ability of antibody EH5 was tested in a passive immunization experiment in a severe combined immunodeficient (SCID) mouse model. Intrahepatic challenge of animals after administration of an isotype-matched control antibody or without treatment led to the development of a liver abscess in all cases, whereas 11 out of 12 animals immunized with the EH5 antibody developed no liver abscess. Our results demonstrate the importance and, for the first time, the protective capacity of glycan antigens on the surface of the amebas.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/metabolism
- Antibodies, Protozoan/therapeutic use
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/immunology
- Antigens, Protozoan/ultrastructure
- Binding Sites, Antibody
- Concanavalin A/metabolism
- Entamoeba histolytica/immunology
- Entamoeba histolytica/ultrastructure
- Entamoebiasis/immunology
- Entamoebiasis/parasitology
- Entamoebiasis/prevention & control
- Female
- Fluorescent Antibody Technique, Indirect
- Glycosphingolipids/chemistry
- Glycosphingolipids/immunology
- Immunization, Passive
- Immunoblotting
- Membrane Proteins/chemistry
- Membrane Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Microscopy, Confocal
- Microscopy, Electron
- Protein Binding/immunology
- Protozoan Proteins/immunology
Collapse
Affiliation(s)
- A Marinets
- Institute for Specific Prophylaxis and Tropical Medicine, A-1095 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Seydel KB, Zhang T, Stanley SL. Neutrophils play a critical role in early resistance to amebic liver abscesses in severe combined immunodeficient mice. Infect Immun 1997; 65:3951-3. [PMID: 9284178 PMCID: PMC175565 DOI: 10.1128/iai.65.9.3951-3953.1997] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Animal models of liver abscess formation with Entamoeba histolytica suggest that the neutrophil is the first cell of the host immune system to interact with the invading ameba. In vitro studies have suggested that lysis of neutrophils by virulent amebae may exacerbate the damage seen in amebic liver abscesses. To investigate the role of neutrophils in vivo, we used the severe combined immunodeficient (SCID) mouse model of amebic liver abscess formation and compared liver damage in neutrophil-depleted and control mice. We found that neutrophil-depleted animals have significantly larger amebic liver abscesses at early stages of infection and that abscesses in neutrophil-depleted SCID mice lack the prominent inflammatory cell ring seen in amebic liver abscesses in control SCID mice. These data suggest that neutrophils play a protective role in the early host response to amebic infection of the liver.
Collapse
Affiliation(s)
- K B Seydel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
31
|
Lotter H, Zhang T, Seydel KB, Stanley SL, Tannich E. Identification of an epitope on the Entamoeba histolytica 170-kD lectin conferring antibody-mediated protection against invasive amebiasis. J Exp Med 1997; 185:1793-801. [PMID: 9151705 PMCID: PMC2196324 DOI: 10.1084/jem.185.10.1793] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/1997] [Indexed: 02/04/2023] Open
Abstract
The emergence of multidrug-resistant organisms and the failure to eradicate infection by a number of important pathogens has led to increased efforts to develop vaccines to prevent infectious diseases. However, the nature of the immune response to vaccination with a given antigen can be complex and unpredictable. An example is the galactose- and N-acetylgalactosamine-inhibitable lectin, a surface antigen of Entamoeba histolytica that has been identified as a major candidate in a vaccine to prevent amebiasis. Vaccination with the lectin can induce protective immunity to amebic liver abscess in some animals, but others of the same species exhibit exacerbations of disease after vaccination. To better understand this phenomenon, we used recombinant proteins corresponding to four distinct domains of the molecule, and synthetic peptides to localize both protective and exacerbative epitopes of the heavy chain subunit of the lectin. We show that protective immunity after vaccination can be correlated with the development of an antibody response to a region of 25 amino acid residues of the lectin, and have confirmed the importance of the antibody response to this region by passive immunization studies. In addition, we show that exacerbation of disease can be linked to the development of antibodies that bind to an NH2-terminal domain of the lectin. These findings are clinically relevant, as individuals who are colonized with E. histolytica but are resistant to invasive disease have a high prevalence of antibodies to the protective epitope(s), compared to individuals with a history of invasive amebiasis. These studies should enable us to develop an improved vaccine for amebiasis, and provide a model for the identification of protective and exacerbative epitopes of complex antigens.
Collapse
Affiliation(s)
- H Lotter
- Department of Molecular Biology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | | | | | | | | |
Collapse
|
32
|
Abstract
The intestinal protozoan parasite Entamoeba histolytica causes amebic dysentery and amebic liver abscess, and ranks third worldwide among parasitic causes of death. The application of molecular techniques to the study of this organism have led to major advances in understanding the pathophysiology of amebic infection. This article reviews what is currently known about the pathogenesis, clinical manifestations, diagnosis, and treatment of amebiasis.
Collapse
Affiliation(s)
- E Li
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
33
|
Affiliation(s)
- K B Seydel
- Department of Medicine and Molecular Microbiology, Washington University, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
34
|
Abstract
Advancements in our understanding of amebiasis have been rapid over the decade that I have followed this field. What was identified morphologically for years as Entamoeba histolytica has been redescribed with modern techniques as a complex of two species, the commensal parasite E. dispar and the pathogenic parasite E. histolytica that is the cause of colitis and liver abscess. Antigen detection tests are now available for the rapid detection in stool of the pathogenic species E. histolytica. New understandings of the importance of luminal as well as tissue-active antimebic medications in the treatment of invasive disease have been reached. The groundwork is being laid for an understanding of the protective immune responses to infection, and at the lab bench DNA transfection of the parasite has opened studies of pathogenesis to genetic analysis. While necessarily an incomplete sketch of the field, I have attempted here to highlight some recent and important developments of interest to clinicians and microbiologists.
Collapse
Affiliation(s)
- W A Petri
- Department of Internal Medicine, University of Virginia, Charlottesville 22908, USA
| |
Collapse
|
35
|
Eckmann L, Reed SL, Smith JR, Kagnoff MF. Entamoeba histolytica trophozoites induce an inflammatory cytokine response by cultured human cells through the paracrine action of cytolytically released interleukin-1 alpha. J Clin Invest 1995; 96:1269-79. [PMID: 7657801 PMCID: PMC185748 DOI: 10.1172/jci118161] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Infection with the protozoan parasite Entamoeba histolytica results in a high mortality worldwide. To initiate infection, E. histolytica trophozoites in the bowel lumen penetrate the epithelium, and cause extensive lysis of host cells. The acute amebic lesions in animal models are characterized by infiltration with inflammatory cells, particularly neutrophils. The acute host response is likely important for determining whether the infection will spread systemically, but little is known regarding the signals which initiate an acute inflammatory response to E. histolytica. In the studies reported herein, we used an in vitro model system to define the proinflammatory signals produced by epithelial and other host cells in response to infection with E. histolytica trophozoites. Coculture of human epithelial and stromal cells and cell lines with trophozoites is shown to increase expression and secretion of an array of chemoattractant and proinflammatory cytokines, including IL-8, GRO alpha, GM-CSF, IL-1 alpha, and IL-6. Moreover, high-level secretion of those cytokines is regulated by the paracrine action of cytolytically released IL-1 alpha. A second mechanism for trophozoite-induced IL-8 production involves trophozoite-target cell contact via a galactose-inhibitable amebic adherence protein, and appears to be mediated through increased intracellular calcium levels. These studies define novel mechanisms through which acute inflammation can be initiated in the host in response to a cytolytic pathogen, such as E. histolytica.
Collapse
Affiliation(s)
- L Eckmann
- Department of Medicine, University of California, San Diego, La Jolla 93093, USA
| | | | | | | |
Collapse
|
36
|
Stanley SL, Blanchard JL, Johnson N, Foster L, Kunz-Jenkins C, Zhang T, Tian K, Cogswell FB. Immunogenicity of the recombinant serine rich Entamoeba histolytica protein (SREHP) amebiasis vaccine in the African green monkey. Vaccine 1995; 13:947-51. [PMID: 7483769 DOI: 10.1016/0264-410x(95)00001-h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report the first study in non-human primates of the safety and immunogenicity of a recombinant vaccine designed to prevent amebic liver abscess. In a pilot study, a recombinant vaccine containing the serine rich Entamoeba histolytica protein (SREHP) attached to a maltose binding protein (SREHP/MBP), which has been shown to be effective in preventing amebic liver abscess in rodent models of infection, was used to immunize two African Green Monkeys. Vaccination with SREHP/MBP resulted in no systemic side-effects. The monkeys receiving the SREHP/MBP protein developed antibodies that recognized the recombinant SREHP/MBP molecule, the native SREHP protein, and the surface of amebic trophozoites. Antiserum from SREHP/MBP-vaccinated monkeys could block the adhesion of E. histolytica trophozoites to mammalian cells, a feature that may correlate with vaccine efficacy. Attempts to produce amebic liver abscess in naive African Green Monkeys by direct hepatic inoculation with virulent E. histolytica trophozoites was not successful, suggesting this species is probably not suitable for vaccine efficacy studies.
Collapse
Affiliation(s)
- S L Stanley
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Stanley SL, Zhang T, Rubin D, Li E. Role of the Entamoeba histolytica cysteine proteinase in amebic liver abscess formation in severe combined immunodeficient mice. Infect Immun 1995; 63:1587-90. [PMID: 7890426 PMCID: PMC173193 DOI: 10.1128/iai.63.4.1587-1590.1995] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Evidence from in vitro studies suggest that the Entamoeba histolytica cysteine proteinase plays a role in the tissue lysis and cytopathic effects seen in invasive amebiasis. We used affinity-purified antibodies against a recombinant E. histolytica cysteine proteinase to demonstrate that the proteinase is present extracellularly in amebic liver abscesses in mice with severe combined immunodeficiency (SCID mice). Treatment of E. histolytica trophozoites with specific cysteine proteinase inhibitor E-64 blocked or greatly reduced liver abscess formation at 48 h in SCID mice. Our study suggests an important role for a functional cysteine proteinase in amebic liver abscess formation.
Collapse
Affiliation(s)
- S L Stanley
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|
38
|
Soong CJ, Torian BE, Abd-Alla MD, Jackson TF, Gatharim V, Ravdin JI. Protection of gerbils from amebic liver abscess by immunization with recombinant Entamoeba histolytica 29-kilodalton antigen. Infect Immun 1995; 63:472-7. [PMID: 7822012 PMCID: PMC173019 DOI: 10.1128/iai.63.2.472-477.1995] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The goal of our study was to obtain a highly conserved Entamoeba histolytica recombinant antigen for study as a subunit amebiasis vaccine. We screened a Uni-Zap cDNA library of E. histolytica (strain HM1:IMSS) with human immune sera and isolated a dominant 804-bp cDNA clone. A 33-kDa fusion protein expressed from the cDNA clone was determined by monoclonal antibody binding, DNA hybridization, and nucleotide sequence to be the complete E. histolytica 29-kDa antigen. Serum antibodies to the recombinant protein were detected by enzyme-linked immunosorbent assay in 80% of subjects from Egypt and South Africa with amebic liver abscess. Similar results were found with the native 29-kDa protein. Native and recombinant 29-kDa antigens induced proliferation of lymphocytes harvested from patients with amebic liver abscess (P < 0.01 compared with controls). Intraperitoneal immunization of gerbils with the recombinant fusion protein (10 micrograms) with Titermax adjuvant elicited an antigen-specific serum immunoglobulin G antibody response and was partially protective (54%) against intrahepatic challenge with 5 x 10(5) virulent axenic trophozoites (strain HM1:IMSS). In summary, the recombinant form of the E. histolytica 29-kDa antigen demonstrated serologic specificity for amebic liver abscess, exhibited conserved T-cell epitopes, and was effective as a subunit vaccine in an experimental animal model of amebic liver abscess.
Collapse
Affiliation(s)
- C J Soong
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | | | | | | | | |
Collapse
|
39
|
Campos-Rodríguez R, Shibayama-Salas M, Pacheco-Yépez J, Martínez-Palomo A, Tsutsumi V. Passive immunization during experimental amebic liver-abscess development. Parasitol Res 1995; 81:86-8. [PMID: 7536923 DOI: 10.1007/bf00932422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R Campos-Rodríguez
- Department of Biochemistry, School of Medicine, National Polytechnic Institute, México, D.F
| | | | | | | | | |
Collapse
|
40
|
Zhang T, Stanley SL. Protection of gerbils from amebic liver abscess by immunization with a recombinant protein derived from the 170-kilodalton surface adhesin of Entamoeba histolytica. Infect Immun 1994; 62:2605-8. [PMID: 8188384 PMCID: PMC186551 DOI: 10.1128/iai.62.6.2605-2608.1994] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The protozoan parasite Entamoeba histolytica causes extensive morbidity and mortality worldwide through intestinal infection and amebic liver abscess. Here we show that vaccination of gerbils, a standard model for amebic liver abscess, with recombinant proteins derived from the 170-kDa galactose-binding adhesin of E. histolytica and the serine-rich E. histolytica protein or a combination of the two recombinant antigens provides excellent protection against subsequent hepatic challenge with virulent E. histolytica trophozoites.
Collapse
Affiliation(s)
- T Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
41
|
Zhang T, Cieslak PR, Foster L, Kunz-Jenkins C, Stanley SL. Antibodies to the serine rich Entamoeba histolytica protein (SREHP) prevent amoebic liver abscess in severe combined immunodeficient (SCID) mice. Parasite Immunol 1994; 16:225-30. [PMID: 8072766 DOI: 10.1111/j.1365-3024.1994.tb00344.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amoebic liver abscess caused by Entamoeba histolytica is a major cause of morbidity and mortality worldwide. We used mice with severe combined immunodeficiency (SCID mice) to study the role of antibody in protection from amoebic liver abscess, and to identify protective antigens of E. histolytica. Antisera to recombinant versions of two major surface antigens of E. histolytica, the serine rich E. histolytica protein (SREHP) and the 170 kDa adhesin were used in this study. We found that 100% of SCID mice passively immunized with antiserum to the recombinant SREHP molecule were protected from developing amoebic liver abscess after intrahepatic challenge with virulent E. histolytica trophozoites. In contrast, preimmune serum, antiserum to a portion of the 170 kDa adhesin, and antiserum to the trpE fusion partner of SREHP did not protect SCID mice from amoebic liver abscess. Our study demonstrates that antibodies to a recombinant version of the amoebic SREHP molecule can protect against amoebic liver abscess, and suggest the recombinant SREHP molecule should be considered as a possible vaccine candidate to prevent amoebic liver abscess.
Collapse
Affiliation(s)
- T Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | | | |
Collapse
|
42
|
Abstract
Mice with severe combined immunodeficiency (SCID mice) have become a favored model system for the study of many parasitic diseases. In this review, Samuel Stanley Jr and Herbert Virgin IV provide a brief overview of the biology of the SCID mouse, and review some examples of how the SCID mouse model has been applied to the study of the immunology of a number of different parasitic diseases.
Collapse
Affiliation(s)
- S L Stanley
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
43
|
Mann BJ, Chung CY, Dodson JM, Ashley LS, Braga LL, Snodgrass TL. Neutralizing monoclonal antibody epitopes of the Entamoeba histolytica galactose adhesin map to the cysteine-rich extracellular domain of the 170-kilodalton subunit. Infect Immun 1993; 61:1772-8. [PMID: 7682994 PMCID: PMC280764 DOI: 10.1128/iai.61.5.1772-1778.1993] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Entamoeba histolytica adheres to human colonic mucins and colonic epithelial cells via a galactose-binding adhesin. The adhesin is a heterodimeric glycoprotein composed of 170- and 35-kDa subunits. Fragments of the hgl1 gene encoding the 170-kDa subunit were expressed as recombinant fusion proteins in Escherichia coli and reacted with anti-adhesin monoclonal antibodies (MAbs) or pooled human immune sera. The MAbs tested recognize seven distinct epitopes on the 170-kDa subunit and have distinct effects on the adherence and complement-inhibitory activities of the adhesin. All seven MAbs reacted with a fusion protein containing the cysteine-rich domain of the protein. Pooled human immune sera reacted with the same cysteine-rich domain as the MAbs and also with a construct containing the first 596 amino acids. Reactivity of three MAbs with the surface of intact trophozoites confirmed that the cysteine-rich domain was located extracellularly. The location of individual epitopes was fine mapped by constructing carboxy-terminal deletions in the cysteine-rich region of the fusion protein. The locations of adherence-enhancing and -inhibiting epitopes were partially distinguished, and the epitopes where complement-inhibitory MAbs bound were demonstrated to be near the adhesin's area of sequence identity with the human complement inhibitor CD59.
Collapse
Affiliation(s)
- B J Mann
- Department of Medicine, University of Virginia, Charlottesville 22908
| | | | | | | | | | | |
Collapse
|