1
|
Huang H, Pan Y, Mai Q, Zhang C, Du Q, Liao Y, Qin S, Chen Y, Huang J, Li J, Liu T, Zou Q, Zhou Y, Yuan L, Wang W, Liang Y, Pan CY, Liu J, Yao S. Targeting CDCP1 boost CD8+ T cells-mediated cytotoxicity in cervical cancer via the JAK/STAT signaling pathway. J Immunother Cancer 2024; 12:e009416. [PMID: 39455095 PMCID: PMC11529519 DOI: 10.1136/jitc-2024-009416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cervical cancer remains a global health challenge. The identification of new immunotherapeutic targets may provide a promising platform for advancing cervical cancer treatment. OBJECTIVE This study aims to investigate the role of CUB domain-containing protein 1 (CDCP1) in cervical cancer progression and evaluate its potential as a therapeutic target. METHODS We performed comprehensive analyses using patient cohorts and preclinical models to examine the association between CDCP1 expression and cervical cancer prognosis. Then in immunodeficient and immunocompetent mouse models, we further investigated the impact of CDCP1 on the tumor immune microenvironment, focusing on its effects on tumor-infiltrating T cells, including cytotoxic T lymphocytes (CTLs) and regulatory T cells (Tregs). Mechanistic studies were performed to elucidate the pathways involved in CDCP1-mediated immune modulation, in particular its interaction with the T cell receptor CD6 and the activation of the JAK-STAT signaling pathway. RESULTS Our results show that CDCP1 overexpression is associated with poor prognosis and T cell infliction in cervical cancer. Specifically, it affects the activity of CTLs and Tregs. Mechanistically, CDCP1 binds to CD6 and inhibits the JAK-STAT pathway of T cells. The study further demonstrates that targeting CDCP1 with the inhibitor 8-prenylnaringenin (8PN) effectively suppresses tumor growth in vivo and enhances antitumor immunity. CONCLUSIONS CDCP1 plays a critical role in cervical cancer progression by modulating the tumor immune microenvironment. Targeting CDCP1 offers a promising therapeutic strategy to improve the outcome of patients with cervical cancer.
Collapse
Affiliation(s)
- Hua Huang
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Qiuwen Mai
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Shuhang Qin
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Yili Chen
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Jiaming Huang
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Jie Li
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Tianyu Liu
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Qiaojian Zou
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Yijia Zhou
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Li Yuan
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Chao Yun Pan
- Department of Biochemistry, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Do JS, Arribas-Layton D, Juan J, Garcia I, Saraswathy S, Qi M, Montero E, Reijonen H. The CD318/CD6 axis limits type 1 diabetes islet autoantigen-specific human T cell activation. J Autoimmun 2024; 146:103228. [PMID: 38642507 DOI: 10.1016/j.jaut.2024.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
CD6 is a glycoprotein expressed on CD4 and CD8 T cells involved in immunoregulation. CD318 has been identified as a CD6 ligand. The role of CD318 in T cell immunity is restricted as it has only been investigated in a few mice autoimmune models but not in human diseases. CD318 expression was thought to be limited to mesenchymal-epithelial cells and, therefore, contribute to CD6-mediated T cell activation in the CD318-expressing tissue rather than through interaction with antigen-presenting cells. Here, we report CD318 expression in a subpopulation of CD318+ myeloid dendritic (mDC), whereas the other peripheral blood populations were CD318 negative. However, CD318 can be induced by activation: a subset of monocytes treated with LPS and IFNγ and in vitro monocyte derived DCs were CD318+. We also showed that recombinant CD318 inhibited T cell function. Strikingly, CD318+ DCs suppressed the proliferation of autoreactive T cells specific for GAD65, a well-known targeted self-antigen in Type 1 Diabetes (T1D). Our study provides new insight into the role of the CD318/CD6 axis in the immunopathogenesis of inflammation, suggesting a novel immunoregulatory role of CD318 in T cell-mediated autoimmune diseases and identifying a potential novel immune checkpoint inhibitor as a target for intervention in T1D which is an unmet therapeutic need.
Collapse
MESH Headings
- Humans
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Autoantigens/immunology
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Glutamate Decarboxylase
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Lymphocyte Activation/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
Collapse
Affiliation(s)
- Jeong-Su Do
- Department of Immunology and Theranostics, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA.
| | - David Arribas-Layton
- Department of Immunology and Theranostics, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Jemily Juan
- Department of Molecular and Cellular Endocrinology, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Isaac Garcia
- Department of Molecular and Cellular Endocrinology, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Sindhu Saraswathy
- Department of Molecular and Cellular Endocrinology, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Meirigeng Qi
- Department of Translational Research and Cellular Therapeutics, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Enrique Montero
- Department of Molecular and Cellular Endocrinology, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Helena Reijonen
- Department of Immunology and Theranostics, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA.
| |
Collapse
|
3
|
Santos RF, de Sousa Linhares A, Steinberger P, Davis SJ, Oliveira L, Carmo AM. The CD6 interactome orchestrates ligand-independent T cell inhibitory signaling. Cell Commun Signal 2024; 22:286. [PMID: 38790044 PMCID: PMC11127300 DOI: 10.1186/s12964-024-01658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND T-cell membrane scaffold proteins are pivotal in T cell function, acting as versatile signaling hubs. While CD6 forms a large intracellular signalosome, it is distinguished from typical scaffolds like LAT or PAG by possessing a substantial ectodomain that binds CD166, a well-characterized ligand expressed on most antigen-presenting cells (APC), through the third domain (d3) of the extracellular region. Although the intact form of CD6 is the most abundant in T cells, an isoform lacking d3 (CD6∆d3) is transiently expressed on activated T cells. Still, the precise character of the signaling transduced by CD6, whether costimulatory or inhibitory, and the influence of its ectodomain on these activities are unclear. METHODS We expressed CD6 variants with extracellular deletions or cytosolic mutations in Jurkat cells containing eGFP reporters for NF-κB and NF-AT transcription factor activation. Cell activation was assessed by eGFP flow cytometry following Jurkat cell engagement with superantigen-presenting Raji cells. Using imaging flow cytometry, we evaluated the impact of the CD6-CD166 pair on cell adhesiveness during the antigen-dependent and -independent priming of T cells. We also examined the role of extracellular or cytosolic sequences on CD6 translocation to the immunological synapse, using immunofluorescence-based imaging. RESULTS Our investigation dissecting the functions of the extracellular and cytosolic regions of CD6 revealed that CD6 was trafficked to the immunological synapse and exerted tonic inhibition wholly dependent on its cytosolic tail. Surprisingly, however, translocation to the synapse occurred independently of the extracellular d3 and of engagement to CD166. On the other hand, CD6 binding to CD166 significantly increased T cell:APC adhesion. However, this activity was most evident in the absence of APC priming with superantigen, and thus, in the absence of TCR engagement. CONCLUSIONS Our study identifies CD6 as a novel 'on/off' scaffold-receptor capable of modulating responsiveness in two ways. Firstly, and independently of ligand binding, it establishes signaling thresholds through tonic inhibition, functioning as a membrane-bound scaffold. Secondly, CD6 has the capacity for alternative splicing-dependent variable ligand engagement, modulating its checkpoint-like activity.
Collapse
Affiliation(s)
- Rita F Santos
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ESS - IPP School of Health, Polytechnic of Porto, Porto, Portugal
| | - Annika de Sousa Linhares
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Medical Research Council, Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Liliana Oliveira
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Alexandre M Carmo
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
4
|
Wang Z, Xie C, Li Y, Cai J, Jian J, Xia L, Lu Y. A CD6 homolog of Nile tilapia (Oreochromis niloticus) conserved binding bacteria involved in the regulation of Streptococcus agalactiae induced inflammation. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109360. [PMID: 38184181 DOI: 10.1016/j.fsi.2024.109360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
As a lymphocyte-specific surface receptor belonging to the cysteine-rich superfamily of scavenger receptors, CD6 acts as a pattern recognition receptor for microbial components and is involved in the regulation of inflammatory responses. However, the characteristics and functions of CD6 molecules in lower vertebrates represented by teleost fish are unknown. In this study, a CD6 homolog (designated OnCD6) was characterized from Nile tilapia (Oreochromis niloticus), and establishing its role as a PRRs that participates in immune recognition. OnCD6 contains an open reading frame of 1872 bp that encodes a peptide of 623 amino acids, and contains two conserved SR domain. Multiple sequence alignment revealed that OnCD6 shares a relatively high level of identity with those of other species. Transcriptional expression analysis revealed that OnCD6 was constitutively expressed in immunes tissues such as head kidney and thymus. The expression level of OnCD6 in mainly immune tissues were found significantly upregulated after the injection of Streptococcus agalactiae (S. agalactiae). Moreover, OnCD6 protein was located in the head kidney and brain, mainly over the plasma membrane of lymphocytes in these immune tissues. In vitro experiments showed that CD6 extracellular protein bound to and aggregated several Gram-positive and -negative bacterial strains through the recognition of bacterial surface conserved components LPS and LTA etc. In vivo experiments demonstrated that overexpression OnCD6 before S. agalactiae challenge significantly improved tilapia survival, and this was concomitant with reduced bacterial load and pro-inflammatory cytokines (IL-1β and TNF-α). Taken together, our results illustrated the function of CD6 molecular pattern recognition receptors (PRRs) is conserved and plays an important role in antibacterial infection.
Collapse
Affiliation(s)
- Zhiwen Wang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Caixia Xie
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuan Li
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jia Cai
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Liqun Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
5
|
Henriques SN, Oliveira L, Santos RF, Carmo AM. CD6-mediated inhibition of T cell activation via modulation of Ras. Cell Commun Signal 2022; 20:184. [PMID: 36414966 PMCID: PMC9682754 DOI: 10.1186/s12964-022-00998-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND CD6 is one of many cell surface receptors known to regulate signal transduction upon T cell activation. However, whether CD6 mediates costimulatory or inhibitory signals is controversial. When T cells engage with antigen presenting cells (APCs), CD6 interacts with its ligand CD166 at the cell-cell interface while the cytosolic tail assembles a complex signalosome composed of adaptors and effector enzymes, that may either trigger activating signaling cascades, or instead modulate the intensity of signaling. Except for a few cytosolic adaptors that connect different components of the CD6 signalosome, very little is known about the mechanistic effects of the cytosolic effectors that bind CD6. METHODS Jurkat model T cells were transfected to express wild-type (WT) CD6, or a cytoplasmic truncation, signaling-disabled mutant, CD6Δcyt. The two resulting cell lines were directly activated by superantigen (sAg)-loaded Raji cells, used as APCs, to assess the net signaling function of CD6. The Jurkat cell lines were further adapted to express a FRET-based unimolecular HRas biosensor that reported the activity of this crucial GTPase at the immunological synapse. RESULTS We show that deletion of the cytosolic tail of CD6 enhances T-cell responses, indicating that CD6 restrains T-cell activation. One component of the CD6-associated inhibitory apparatus was found to be the GTPase activating protein of Ras (RasGAP), that we show to associate with CD6 in a phosphorylation-dependent manner. The FRET HRas biosensor that we developed was demonstrated to be functional and reporting the activation of the T cell lines. This allowed to determine that the presence of the cytosolic tail of CD6 results in the down-regulation of HRas activity at the immunological synapse, implicating this fundamental GTPase as one of the targets inhibited by CD6. CONCLUSIONS This study provides the first description of a mechanistic sequence of events underlying the CD6-mediated inhibition of T-cell activation, involving the modulation of the MAPK pathway at several steps, starting with the coupling of RasGAP to the CD6 signalosome, the repression of the activity of Ras, and culminating in the reduction of ERK1/2 phosphorylation and of the expression of the T-cell activation markers CD69 and IL-2R α chain. Video abstract.
Collapse
Affiliation(s)
- Sónia N. Henriques
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal ,grid.5808.50000 0001 1503 7226Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Liliana Oliveira
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rita F. Santos
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Alexandre M. Carmo
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| |
Collapse
|
6
|
Mori D, Grégoire C, Voisinne G, Celis-Gutierrez J, Aussel R, Girard L, Camus M, Marcellin M, Argenty J, Burlet-Schiltz O, Fiore F, Gonzalez de Peredo A, Malissen M, Roncagalli R, Malissen B. The T cell CD6 receptor operates a multitask signalosome with opposite functions in T cell activation. J Exp Med 2021; 218:211516. [PMID: 33125054 PMCID: PMC7608068 DOI: 10.1084/jem.20201011] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
To determine the respective contribution of the LAT transmembrane adaptor and CD5 and CD6 transmembrane receptors to early TCR signal propagation, diversification, and termination, we describe a CRISPR/Cas9-based platform that uses primary mouse T cells and permits establishment of the composition of their LAT, CD5, and CD6 signalosomes in only 4 mo using quantitative mass spectrometry. We confirmed that positive and negative functions can be solely assigned to the LAT and CD5 signalosomes, respectively. In contrast, the TCR-inducible CD6 signalosome comprised both positive (SLP-76, ZAP70, VAV1) and negative (UBASH3A/STS-2) regulators of T cell activation. Moreover, CD6 associated independently of TCR engagement to proteins that support its implication in inflammatory pathologies necessitating T cell transendothelial migration. The multifaceted role of CD6 unveiled here accounts for past difficulties in classifying it as a coinhibitor or costimulator. Congruent with our identification of UBASH3A within the CD6 signalosome and the view that CD6 constitutes a promising target for autoimmune disease treatment, single-nucleotide polymorphisms associated with human autoimmune diseases have been found in the Cd6 and Ubash3a genes.
Collapse
Affiliation(s)
- Daiki Mori
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Claude Grégoire
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Guillaume Voisinne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Javier Celis-Gutierrez
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Rudy Aussel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Laura Girard
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Mylène Camus
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Jérémy Argenty
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
7
|
Kureel AK, Kumari S, Saini S, Satyaprakash, Singh B, Rai AK. Identification of a novel transcript variant of the human CD6 gene that lacks exon 9. Immunobiology 2019; 224:666-671. [PMID: 31235289 DOI: 10.1016/j.imbio.2019.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/27/2019] [Accepted: 06/18/2019] [Indexed: 01/27/2023]
Abstract
CD6 is a transmembrane glycoprotein, mainly expressed by all T cells and a subset of B cells. It has been shown that the human CD6 gene has six reported transcript isoforms, including full length and Δ3 isoforms. These are CD6a, CD6b, CD6c, CD6d, CD6e and CD6Δ3. In every isoform, particular exon(s) are known to be alternatively spliced out. In our findings, we observed a novel transcript isoform of CD6, where exon 9 is spliced out. Semi-qPCR and nucleotide sequencing confirmed the presence of a novel isoform of CD6 i.e. CD6f in human mononuclear cells. Quantitative expression showed significant high expression of CD6f over the full length transcript variant i.e. CD6a. Interestingly, their expressions get further increased upon polyclonal activation.
Collapse
Affiliation(s)
- Amit Kumar Kureel
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Smita Kumari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Sheetal Saini
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Satyaprakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Bharat Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India.
| |
Collapse
|
8
|
Gonçalves CM, Henriques SN, Santos RF, Carmo AM. CD6, a Rheostat-Type Signalosome That Tunes T Cell Activation. Front Immunol 2018; 9:2994. [PMID: 30619347 PMCID: PMC6305463 DOI: 10.3389/fimmu.2018.02994] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
Following T cell receptor triggering, T cell activation is initiated and amplified by the assembly at the TCR/CD3 macrocomplex of a multitude of stimulatory enzymes that activate several signaling cascades. The potency of signaling is, however, modulated by various inhibitory components already at the onset of activation, long before co-inhibitory immune checkpoints are expressed to help terminating the response. CD5 and CD6 are surface glycoproteins of T cells that have determinant roles in thymocyte development, T cell activation and immune responses. They belong to the superfamily of scavenger receptor cysteine-rich (SRCR) glycoproteins but whereas the inhibitory role of CD5 has been established for long, there is still controversy on whether CD6 may have similar or antagonistic functions on T cell signaling. Analysis of the structure and molecular associations of CD5 and CD6 indicates that these molecules assemble at the cytoplasmic tail a considerable number of signaling effectors that can putatively transduce diverse types of intracellular signals. Biochemical studies have concluded that both receptors can antagonize the flow of TCR-mediated signaling; however, the impact that CD5 and CD6 have on T cell development and T cell-mediated immune responses may be different. Here we analyze the signaling function of CD6, the common and also the different properties it exhibits comparing with CD5, and interpret the functional effects displayed by CD6 in recent animal models.
Collapse
Affiliation(s)
- Carine M Gonçalves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Sónia N Henriques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar and Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Rita F Santos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar and Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Alexandre M Carmo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Porto, Portugal
| |
Collapse
|
9
|
Meddens MBM, Mennens SFB, Celikkol FB, Te Riet J, Kanger JS, Joosten B, Witsenburg JJ, Brock R, Figdor CG, Cambi A. Biophysical Characterization of CD6-TCR/CD3 Interplay in T Cells. Front Immunol 2018; 9:2333. [PMID: 30356797 PMCID: PMC6189472 DOI: 10.3389/fimmu.2018.02333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/19/2018] [Indexed: 01/12/2023] Open
Abstract
Activation of the T cell receptor (TCR) on the T cell through ligation with antigen-MHC complex of an antigen-presenting cell (APC) is an essential process in the activation of T cells and induction of the subsequent adaptive immune response. Upon activation, the TCR, together with its associated co-receptor CD3 complex, assembles in signaling microclusters that are transported to the center of the organizational structure at the T cell-APC interface termed the immunological synapse (IS). During IS formation, local cell surface receptors and associated intracellular molecules are reorganized, ultimately creating the typical bull's eye-shaped pattern of the IS. CD6 is a surface glycoprotein receptor, which has been previously shown to associate with CD3 and co-localize to the center of the IS in static conditions or stable T cell-APC contacts. In this study, we report the use of different experimental set-ups analyzed with microscopy techniques to study the dynamics and stability of CD6-TCR/CD3 interaction dynamics and stability during IS formation in more detail. We exploited antibody spots, created with microcontact printing, and antibody-coated beads, and could demonstrate that CD6 and the TCR/CD3 complex co-localize and are recruited into a stimulatory cluster on the cell surface of T cells. Furthermore, we demonstrate, for the first time, that CD6 forms microclusters co-localizing with TCR/CD3 microclusters during IS formation on supported lipid bilayers. These co-localizing CD6 and TCR/CD3 microclusters are both radially transported toward the center of the IS formed in T cells, in an actin polymerization-dependent manner. Overall, our findings further substantiate the role of CD6 during IS formation and provide novel insight into the dynamic properties of this CD6-TCR/CD3 complex interplay. From a methodological point of view, the biophysical approaches used to characterize these receptors are complementary and amenable for investigation of the dynamic interactions of other membrane receptors.
Collapse
Affiliation(s)
- Marjolein B M Meddens
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Svenja F B Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - F Burcu Celikkol
- Department of Nano-BioPhysics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Joost Te Riet
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes S Kanger
- Department of Nano-BioPhysics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - J Joris Witsenburg
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
10
|
Consuegra-Fernández M, Lin F, Fox DA, Lozano F. Clinical and experimental evidence for targeting CD6 in immune-based disorders. Autoimmun Rev 2018. [DOI: 10.1016/j.autrev.2017.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Hem CD, Ekornhol M, Granum S, Sundvold-Gjerstad V, Spurkland A. CD6 and Linker of Activated T Cells are Potential Interaction Partners for T Cell-Specific Adaptor Protein. Scand J Immunol 2017; 85:104-112. [DOI: 10.1111/sji.12513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/27/2023]
Affiliation(s)
- C. D. Hem
- Department of Molecular Medicine; Institute of Basic Medical Sciences; University of Oslo; Oslo Norway
| | - M. Ekornhol
- Department of Molecular Medicine; Institute of Basic Medical Sciences; University of Oslo; Oslo Norway
| | - S. Granum
- Department of Molecular Medicine; Institute of Basic Medical Sciences; University of Oslo; Oslo Norway
| | - V. Sundvold-Gjerstad
- Department of Molecular Medicine; Institute of Basic Medical Sciences; University of Oslo; Oslo Norway
| | - A. Spurkland
- Department of Molecular Medicine; Institute of Basic Medical Sciences; University of Oslo; Oslo Norway
| |
Collapse
|
12
|
Remacha AR, Barrachina L, Álvarez-Arguedas S, Ranera B, Romero A, Vázquez FJ, Zaragoza P, Yañez R, Martín-Burriel I, Rodellar C. Expression of genes involved in immune response and in vitro immunosuppressive effect of equine MSCs. Vet Immunol Immunopathol 2015; 165:107-18. [DOI: 10.1016/j.vetimm.2015.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 02/08/2023]
|
13
|
Roncagalli R, Hauri S, Fiore F, Liang Y, Chen Z, Sansoni A, Kanduri K, Joly R, Malzac A, Lähdesmäki H, Lahesmaa R, Yamasaki S, Saito T, Malissen M, Aebersold R, Gstaiger M, Malissen B. Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a Lat adaptor-independent TCR signaling hub. Nat Immunol 2014; 15:384-392. [PMID: 24584089 DOI: 10.1038/ni.2843] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/03/2014] [Indexed: 02/08/2023]
Abstract
T cell antigen receptor (TCR)-mediated activation of T cells requires the interaction of dozens of proteins. Here we used quantitative mass spectrometry and activated primary CD4(+) T cells from mice in which a tag for affinity purification was knocked into several genes to determine the composition and dynamics of multiprotein complexes that formed around the kinase Zap70 and the adaptors Lat and SLP-76. Most of the 112 high-confidence time-resolved protein interactions we observed were previously unknown. The surface receptor CD6 was able to initiate its own signaling pathway by recruiting SLP-76 and the guanine nucleotide-exchange factor Vav1 regardless of the presence of Lat. Our findings provide a more complete model of TCR signaling in which CD6 constitutes a signaling hub that contributes to the diversification of TCR signaling.
Collapse
Affiliation(s)
- Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Simon Hauri
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Switzerland
| | - Fréderic Fiore
- Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France.,INSERM US012, Marseille, France.,CNRS UMS3367, Marseille, France
| | - Yinming Liang
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Zhi Chen
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Amandine Sansoni
- Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France.,INSERM US012, Marseille, France.,CNRS UMS3367, Marseille, France
| | - Kartiek Kanduri
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Rachel Joly
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Aurélie Malzac
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Harri Lähdesmäki
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland.,Department of Information and Computer Science, Aalto University, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takashi Saito
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Switzerland
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France.,Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France.,INSERM US012, Marseille, France.,CNRS UMS3367, Marseille, France
| |
Collapse
|
14
|
Pinto M, Carmo AM. CD6 as a therapeutic target in autoimmune diseases: successes and challenges. BioDrugs 2013; 27:191-202. [PMID: 23568178 DOI: 10.1007/s40259-013-0027-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The transmembrane surface glycoprotein CD6 was one of the first antigens identified on T lymphocytes. The recognition of its involvement in T-cell signaling processes heralds the potential of CD6 as a target for therapy in a number of pathologies associated with imbalances in T-cell function. Its tissue distribution, cellular expression, and overall molecular structure are well described, and the interaction with its physiological ligand CD166 has been determined to the amino-acid level. Nevertheless, the involvement of CD6 in signaling pathways remains poorly characterized and its biological function is controversial; still unresolved are whether CD6 is a co-stimulatory molecule in T-cell activation or, similar to the related CD5 antigen, a modulator of intracellular signaling. Here we revisit the earliest attempts of modulating immune function using CD6 monoclonal antibodies, and review the current thinking behind the recent developments in immunotherapy targeting CD6. Notwithstanding the promises and hopes brought by monoclonals already in clinical trials, the fact is that very little is known about the mechanism of action of these reagents, whether they enhance the physiological role of the receptor or whether they may induce a completely novel biochemical response that might, nevertheless, be beneficially used to treat human immune pathology.
Collapse
Affiliation(s)
- Mafalda Pinto
- Cell Activation and Gene Expression Group, IBMC - Instituto de Biologia Molecular e Celular, Rua do Campo Alegre 823, 4150-180, Porto, Portugal
| | | |
Collapse
|
15
|
Identification of functionally relevant phoshorylatable serine clusters in the cytoplasmic region of the human CD6 lymphocyte surface receptor. FEBS Lett 2013; 587:2205-13. [PMID: 23711376 DOI: 10.1016/j.febslet.2013.05.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 11/23/2022]
Abstract
CD6 is a transmembrane receptor expressed by all T and a subset of B lymphocytes, where it physically associates with the antigen-specific receptor to modulate activation and differentiation processes through still poorly understood mechanisms. Its cytoplasmic tail lacks intrinsic catalytic activity but presents several consensus motifs for phosphorylation. The present work reports on the identification of two constitutively phosphorylated serine clusters (S480/482/484 and S560/562/565/567/568), which are embedded into Casein Kinase 2 consensus motifs, and are indispensable for proper mitogen-activated protein kinase activation following CD6 ligation. The data point to a novel level of regulation of CD6 function by intracytoplasmic serine phosphorylation.
Collapse
|
16
|
Oliveira MI, Gonçalves CM, Pinto M, Fabre S, Santos AM, Lee SF, Castro MAA, Nunes RJ, Barbosa RR, Parnes JR, Yu C, Davis SJ, Moreira A, Bismuth G, Carmo AM. CD6 attenuates early and late signaling events, setting thresholds for T-cell activation. Eur J Immunol 2011; 42:195-205. [PMID: 21956609 PMCID: PMC3298641 DOI: 10.1002/eji.201040528] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 08/23/2011] [Accepted: 09/20/2011] [Indexed: 12/27/2022]
Abstract
The T lineage glycoprotein CD6 is generally considered to be a costimulator of T-cell activation. Here, we demonstrate that CD6 significantly reduces early and late T-cell responses upon superantigen stimulation or TCR triggering by Abs. Measuring calcium mobilization in single cells responding to superantigen, we found that human T cells expressing rat CD6 react significantly less well compared with T cells not expressing the exogenous receptor. When the cytoplasmic domain of rat CD6 was removed, calcium responses were recovered, indicating that the inhibitory properties of CD6 are attributable to its cytoplasmic domain. Calcium responses, and also late indicators of T-cell activation such as IL-2 release, were also diminished in TCR-activated Jurkat cells expressing human CD6, compared with CD6-deficient cells or cells expressing a cytoplasmic deletion mutant of human CD6. Similarly, calcium signals triggered by anti-CD3 were enhanced in human T lymphocytes following morpholino-mediated suppression of CD6 expression. Finally, the proliferation of T lymphocytes was increased when the CD6-CD166 interaction was blocked with anti-CD166 Abs, but inhibited when anti-CD6 Abs were used. Our data suggest that CD6 is a signaling attenuator whose expression alone, i.e. in the absence of ligand engagement, is sufficient to restrain signaling in T cells.
Collapse
Affiliation(s)
- Marta I Oliveira
- Group of Cell Activation and Gene Expression, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rationale for Targeting CD6 as a Treatment for Autoimmune Diseases. ARTHRITIS 2011; 2010:130646. [PMID: 22076177 PMCID: PMC3195340 DOI: 10.1155/2010/130646] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/22/2010] [Indexed: 01/10/2023]
Abstract
CD6 is a 105–130 kDa surface glycoprotein expressed on the majority of T cells and a subset of B cells. The human cd6 gene maps to chromosome 11, and the expression of its protein product is tightly regulated. CD6 mediates cellular adhesion migration across the endothelial and epithelial cells. In addition, it participates in the antigen presentation by B cells and the subsequent proliferation of T cells. CD6 may bind in trans to surface glycoproteins (such as ALCAM and 3A11), or to microbial lipopolysaccharides, and may bind in cis to endogenous ligands (such as CD3 and CD5), and thereby deliver a costimulatory signal. Transinteractions are reinforced during autoimmune diseases (e.g., rheumatoid arthritis (RA), Sjögren's syndrome, and multiple sclerosis) and some cancers. Based on experimental data and on clinical results in RA and psoriasis, we believe that the recent humanized anti-CD6-specific mAb T1h may act as a regulator of the immunological response in addition to its function as an anti-T- and -B cell agent.
Collapse
|
18
|
Impedance spectroscopy and optical analysis of single biological cells and organisms in microsystems. Methods Mol Biol 2010; 583:149-82. [PMID: 19763464 DOI: 10.1007/978-1-60327-106-6_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
A novel microfabricated flow cytometer for simultaneous impedance and optical measurement of single cells and particles is described in this chapter. We discuss the sensitivity of the system with regard to the impedance sensor and describe the optical setup. The relevant parameters related to the experimental setup and sample preparation are discussed. The use of dielectrophoretic forces for particle manipulation is presented as a simple enabling technology, which allows the manipulation of particles within microfluidic devices. The fabrication processes required to produce the impedance sensor chips are described with relevance to the chip design and features. Finally, the system is used to discriminate between different marine algae populations.
Collapse
|
19
|
Molecular cloning and analysis of SSc5D, a new member of the scavenger receptor cysteine-rich superfamily. Mol Immunol 2009; 46:2585-96. [DOI: 10.1016/j.molimm.2009.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 05/11/2009] [Indexed: 11/18/2022]
|
20
|
te Riet J, Zimmerman AW, Cambi A, Joosten B, Speller S, Torensma R, van Leeuwen FN, Figdor CG, de Lange F. Distinct kinetic and mechanical properties govern ALCAM-mediated interactions as shown by single-molecule force spectroscopy. J Cell Sci 2007; 120:3965-76. [DOI: 10.1242/jcs.004010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activated leukocyte cell adhesion molecule (ALCAM) mediates dynamic homotypic and heterotypic cellular interactions. Whereas homotypic ALCAM-ALCAM interactions have been implicated in the development and maintenance of tissue architecture and tumor progression, heterotypic ALCAM-CD6 interactions act to initiate and stabilize T-cell–dendritic-cell interactions affecting T-cell activation. The ability to resist the forces acting on the individual bonds during these highly dynamic cellular contacts is thought to be crucial for the (patho)physiology of ALCAM-mediated cell adhesion. Here, we used atomic force microscopy to characterize the relationship between affinity, avidity and the stability of ALCAM-mediated interactions under external loading, at the single-molecule level. Disruption of the actin cytoskeleton resulted in enhanced ALCAM binding avidity, without affecting the tensile strength of the individual bonds. Force spectroscopy revealed that the ALCAM-CD6 bond displayed a significantly higher tensile strength, a smaller reactive compliance and an up to 100-fold lower dissociation rate in the physiological force window in comparison to the homotypic interaction. These results indicate that homotypic and heterotypic ALCAM-mediated adhesion are governed by significantly distinct kinetic and mechanical properties, providing novel insight into the role of ALCAM during highly dynamic cellular interactions.
Collapse
Affiliation(s)
- Joost te Riet
- Department of Tumour Immunology (278), Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO Box 9101, 6500HB Nijmegen, The Netherlands
- Department of Scanning Probe Microscopy, Institute for Molecules and Materials (IMM), Radboud University Nijmegen, PO Box 9010, 6500GL Nijmegen, The Netherlands
| | - Aukje W. Zimmerman
- Department of Tumour Immunology (278), Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO Box 9101, 6500HB Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Tumour Immunology (278), Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO Box 9101, 6500HB Nijmegen, The Netherlands
| | - Ben Joosten
- Department of Tumour Immunology (278), Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO Box 9101, 6500HB Nijmegen, The Netherlands
| | - Sylvia Speller
- Department of Scanning Probe Microscopy, Institute for Molecules and Materials (IMM), Radboud University Nijmegen, PO Box 9010, 6500GL Nijmegen, The Netherlands
| | - Ruurd Torensma
- Department of Tumour Immunology (278), Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO Box 9101, 6500HB Nijmegen, The Netherlands
| | - Frank N. van Leeuwen
- Department of Tumour Immunology (278), Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO Box 9101, 6500HB Nijmegen, The Netherlands
| | - Carl G. Figdor
- Department of Tumour Immunology (278), Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO Box 9101, 6500HB Nijmegen, The Netherlands
| | - Frank de Lange
- Department of Tumour Immunology (278), Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO Box 9101, 6500HB Nijmegen, The Netherlands
- Department of Cell Biology (283), Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO Box 9101, 6500HB Nijmegen, The Netherlands
| |
Collapse
|
21
|
Castro MAA, Oliveira MI, Nunes RJ, Fabre S, Barbosa R, Peixoto A, Brown MH, Parnes JR, Bismuth G, Moreira A, Rocha B, Carmo AM. Extracellular isoforms of CD6 generated by alternative splicing regulate targeting of CD6 to the immunological synapse. THE JOURNAL OF IMMUNOLOGY 2007; 178:4351-61. [PMID: 17371992 DOI: 10.4049/jimmunol.178.7.4351] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The great majority of mammalian genes yield multiple transcripts arising from differential mRNA processing, but in very few instances have alternative forms been assigned distinct functional properties. We have cloned and characterized a new isoform of the accessory molecule CD6 that lacks the CD166 binding domain and is expressed in rat and human primary cells. The novel isoform, CD6Deltad3, results from exon 5 skipping and consequently lacks the third scavenger receptor cysteine-rich (SRCR) domain of CD6. Differential expression of the SRCR domain 3 resulted in a remarkable functional difference: whereas full-length CD6 targeted to the immunological synapse, CD6Deltad3 was unable to localize at the T cell:APC interface during Ag presentation. Analysis of expression of CD6 variants showed that, while being more frequent in coexpression with full-length CD6, the CD6Deltad3 isoform constituted the sole species in a small percentage of T cells. In the rat thymus, CD6Deltad3 is less represented in double-positive thymocytes but is detectable in nearly 50% of single-positive CD4 or CD8 thymocytes, suggesting that CD6 switching between full-length and Deltad3 isoforms may be involved in thymic selection. Strikingly, CD6Deltad3 is markedly up-regulated upon activation of T lymphocytes, partially substituting full-length CD6, as evaluated by RT-PCR analysis at the single-cell level, by immunoblotting, and by flow cytometry using Abs recognizing SRCR domains 1 and 3 of human CD6. This elegant mechanism controlling the expression of the CD166 binding domain may help regulate signaling delivered by CD6, through different types of extracellular engagement.
Collapse
MESH Headings
- Activated-Leukocyte Cell Adhesion Molecule/metabolism
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Antigen-Presenting Cells/chemistry
- Antigen-Presenting Cells/immunology
- Antigens, CD/analysis
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/analysis
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Humans
- Lymphocyte Activation
- Molecular Sequence Data
- Protein Isoforms/analysis
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Structure, Tertiary
- Rats
- Receptors, Scavenger/metabolism
- Sequence Deletion
- T-Lymphocytes/chemistry
- T-Lymphocytes/immunology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Mónica A A Castro
- Group of Cell Activation and Gene Expression, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hassan NJ, Simmonds SJ, Clarkson NG, Hanrahan S, Puklavec MJ, Bomb M, Barclay AN, Brown MH. CD6 regulates T-cell responses through activation-dependent recruitment of the positive regulator SLP-76. Mol Cell Biol 2006; 26:6727-38. [PMID: 16914752 PMCID: PMC1592849 DOI: 10.1128/mcb.00688-06] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Deciphering the role of lymphocyte membrane proteins depends on dissecting the role of a protein in the steady state and on engagement with its ligand. We show that expression of CD6 in T cells limits their responsiveness but that engagement by the physiological ligand CD166 gives costimulation. This costimulatory effect of CD6 is mediated through phosphorylation-dependent binding of a specific tyrosine residue, 662Y, in its cytoplasmic region to the adaptor SLP-76. A direct interaction between SLP-76 and CD6 was shown by binding both to a phosphorylated peptide (equilibrium dissociation constant [K(D)] = 0.5 muM at 37 degrees C) and, using a novel approach, to native phosphorylated CD6. Evidence that CD6 and SLP-76 interact in cells was obtained in coprecipitation experiments with normal human T cells. Analysis of human CD6 mutants in a murine T-cell hybridoma model showed that both costimulation by CD6 and the interaction between CD6 and SLP-76 were dependent on 662Y. The results have implications for regulation by CD6 and the related T-cell surface protein, CD5.
Collapse
Affiliation(s)
- Namir J Hassan
- Sir William Dunn School of Pathology, South Parks Rd., Oxford, OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kato Y, Tanaka Y, Hayashi M, Okawa K, Minato N. Involvement of CD166 in the activation of human gamma delta T cells by tumor cells sensitized with nonpeptide antigens. THE JOURNAL OF IMMUNOLOGY 2006; 177:877-84. [PMID: 16818742 DOI: 10.4049/jimmunol.177.2.877] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported that human Vgamma2Vdelta2-gammadelta T cells were activated by many human tumor cell lines treated with pamidronate (PAM) in a gammadelta TCR-dependent manner. In the present study, we indicated that a synthetic pyrophosphomonoester Ag, 2-methy-3-butenyl-1-pyrophosphate, could directly "sensitize" the tumor cells to activate gammadelta T cells independently of the host metabolism, while the sensitizing effect of PAM was reported to be dependent on the pharmacological activity. Some exceptional tumor cells that failed to be sensitized by PAM were incapable of activating gammadelta T cells by the treatment with 2-methy-3-butenyl-1-pyrophosphate either, suggesting a requirement of host factor(s) for the effective gammadelta T cell activation in addition to the nonpeptide Ags. By screening mAbs against a large panel of tumor cell lines, we found that the expression of CD166 closely paralleled the capacity of activating gammadelta T cells upon PAM treatment. The transfection of a CD166-negative tumor cell line with CD166 cDNA caused a marked enhancement of the capacity to activate gammadelta T cells following PAM treatment. On the contrary, down-regulation of the CD166 expression in a CD166-bearing tumor cell line by short hairpin RNA resulted in a significant reduction of PAM-induced gammadelta T cell-stimulatory activity. gammadelta T cells expressed CD6, a receptor of CD166, and CD6 and CD166 were recruited together to the center of synapse between gammadelta T cells and PAM-treated tumor cells, colocalizing with gammadelta TCR/CD3. The results suggested that the engagement of CD6 with CD166 on tumor cells played an important role in the gammadelta T cell activation by the tumor cells loaded with nonpeptide Ags either endogenously or exogenously.
Collapse
Affiliation(s)
- Yu Kato
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
24
|
Ibáñez A, Sarrias MR, Farnós M, Gimferrer I, Serra-Pagès C, Vives J, Lozano F. Mitogen-Activated Protein Kinase Pathway Activation by the CD6 Lymphocyte Surface Receptor. THE JOURNAL OF IMMUNOLOGY 2006; 177:1152-9. [PMID: 16818773 DOI: 10.4049/jimmunol.177.2.1152] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CD6 is a cell surface receptor primarily expressed on immature thymocytes and mature T and B1a lymphocytes. Through its binding to activated leukocyte cell adhesion molecule (ALCAM/CD166), CD6 is considered to play an important role in lymphocyte development and activation. Accordingly, CD6 associates with the TCR/CD3 complex and colocalizes with it at the center of the mature immunological synapse on T lymphocytes. Moreover, the CD6-ALCAM interaction has been shown to be critical for proper immunological synapse maturation and T cell proliferative responses. However, the precise biological effects of CD6 ligation and its signaling pathway are still not well understood. The present study shows that CD6 ligation with three different specific mAbs (161.8, SPV-L14.2, and MAE1-C10) induces time- and dose-dependent activation of ERK1/2 on normal and leukemic human T cells. This effect was also observed upon CD6 ligation with a chimerical ALCAM protein (ALCAM-Fc). The C-terminal cytoplasmic region of CD6, as well as Src tyrosine kinases, was critical for CD6-induced ERK1/2 activation. Synergistic effects were observed upon coligation of the TCR/CD3 complex with CD6. The ligation of CD6 induced the transcriptional activation of reporter genes under the control of the c-Fos serum responsive element and AP-1. Accordingly, CD6-mediated activation of p38 and JNK was also observed. These findings indicate that the CD6-ALCAM interaction results in activation of the three MAPK cascades, likely influencing the dynamic balance that determines whether resting or activated lymphocytes survive or undergo apoptosis.
Collapse
MESH Headings
- Activated-Leukocyte Cell Adhesion Molecule/metabolism
- Activated-Leukocyte Cell Adhesion Molecule/physiology
- Antibodies, Monoclonal/metabolism
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/physiology
- Apoptosis/immunology
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Cell Line, Tumor
- Cell Survival/immunology
- Cytoplasm/chemistry
- Cytoplasm/immunology
- Cytoplasm/metabolism
- Enzyme Activation/immunology
- Enzyme Induction/immunology
- Humans
- Jurkat Cells
- Leukemia/enzymology
- Leukemia/immunology
- Leukemia/pathology
- Ligands
- MAP Kinase Signaling System/immunology
- Mitogen-Activated Protein Kinase 1/biosynthesis
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/biosynthesis
- Mitogen-Activated Protein Kinase 3/metabolism
- Peptide Fragments/physiology
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- T-Lymphocytes/pathology
- Up-Regulation/immunology
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- Anna Ibáñez
- Servei d'Immunologia, Hospital Clínic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Villaroel 170, 08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Zimmerman AW, Joosten B, Torensma R, Parnes JR, van Leeuwen FN, Figdor CG. Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells. Blood 2006; 107:3212-20. [PMID: 16352806 DOI: 10.1182/blood-2005-09-3881] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Interactions between T cells and antigen-presenting cells (APCs) are the first step in the induction of an adaptive immune response. Here, we show that CD6 and its ligand activated leukocyte cell adhesion molecule (ALCAM) are actively recruited to the antigen-induced dendritic cell (DC)–T-cell contact zone. Moreover, ALCAM-blocking antibodies interfere with DC–T-cell conjugate formation, demonstrating that CD6-ALCAM binding is essential for stable T-cell–APC contact. We now demonstrate that besides their role in establishing initial contacts, CD6-ALCAM interactions are also required during the proliferative phase of the T-cell response; the presence of CD6-blocking antibodies or recombinant ALCAM-Fc proteins results in a strong and sustained inhibition of T-cell proliferation. Furthermore, simultaneous crosslinking of CD6 and CD3 induces enhanced proliferation and transcriptional activity to a similar level as observed after CD3 and CD28 co-crosslinking, demonstrating that CD6 is an important costimulatory molecule. The stability of ALCAM-CD6 binding, which contrasts with transient homotypic ALCAM-ALCAM interactions, further supports the long-lasting effects observed on T-cell proliferation. Taken together, we demonstrate that CD6 and ALCAM form a key adhesive receptor-ligand pair that is not only involved in early DC-T-cell binding but also in sustaining DC-induced T-cell proliferation long after the initial contact has been established.
Collapse
MESH Headings
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigen Presentation/drug effects
- Antigen Presentation/immunology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/pharmacology
- Antigens, Differentiation, T-Lymphocyte/immunology
- CD28 Antigens/immunology
- CD3 Complex/immunology
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/immunology
- Cell Adhesion Molecules, Neuronal/pharmacology
- Cell Communication/drug effects
- Cell Communication/immunology
- Cell Differentiation/drug effects
- Cell Differentiation/immunology
- Cells, Cultured
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Fetal Proteins/genetics
- Fetal Proteins/immunology
- Fetal Proteins/pharmacology
- Humans
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/pharmacology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Time Factors
Collapse
Affiliation(s)
- Aukje W Zimmerman
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Gimferrer I, Ibáñez A, Farnós M, Sarrias MR, Fenutría R, Roselló S, Zimmermann P, David G, Vives J, Serra-Pagès C, Lozano F. The lymphocyte receptor CD6 interacts with syntenin-1, a scaffolding protein containing PDZ domains. THE JOURNAL OF IMMUNOLOGY 2005; 175:1406-14. [PMID: 16034076 DOI: 10.4049/jimmunol.175.3.1406] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD6 is a type I membrane glycoprotein expressed on thymocytes, mature T and B1a lymphocytes, and CNS cells. CD6 binds to activated leukocyte cell adhesion molecule (CD166), and is considered as a costimulatory molecule involved in lymphocyte activation and thymocyte development. Accordingly, CD6 partially associates with the TCR/CD3 complex and colocalizes with it at the center of the mature immunological synapse (IS) on T lymphocytes. However, the signaling pathway used by CD6 is still mostly unknown. The yeast two-hybrid system has allowed us the identification of syntenin-1 as an interacting protein with the cytoplasmic tail of CD6. Syntenin-1 is a PDZ (postsynaptic density protein-95, postsynaptic discs large, and zona occludens-1) domain-containing protein, which functions as an adaptor protein able to bind cytoskeletal proteins and signal transduction effectors. Mutational analyses showed that certain amino acids of the most C-terminal sequence of CD6 (-YDDISAA) and the two postsynaptic density protein-95, postsynaptic discs large, and zona occludens-1 domains of syntenin-1 are relevant to the interaction. Further confirmation of the CD6-syntenin-1 interaction was obtained from pull-down and co-immunoprecipitation assays in mammalian cells. Image analyses also showed that syntenin-1 accumulates at CD6 caps and at the IS. Therefore, we propose that syntenin-1 may function as a scaffolding protein coupling CD6 and most likely other lymphocyte receptors to cytoskeleton and/or signaling effectors during IS maturation.
Collapse
Affiliation(s)
- Idoia Gimferrer
- Servei d'Immunologia, Hospital Clínic Universitari, Institut di Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gimferrer I, Calvo M, Mittelbrunn M, Farnós M, Sarrias MR, Enrich C, Vives J, Sánchez-Madrid F, Lozano F. Relevance of CD6-Mediated Interactions in T Cell Activation and Proliferation. THE JOURNAL OF IMMUNOLOGY 2004; 173:2262-70. [PMID: 15294938 DOI: 10.4049/jimmunol.173.4.2262] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD6 is a cell surface receptor expressed on immature thymocytes and mature T and B1a lymphocytes. The ultimate function of CD6 has not been deciphered yet, but much evidence supports a role for CD6 in T cell activation and differentiation. In this study, we show that a fraction of CD6 molecules physically associates with the TCR/CD3 complex by coimmunoprecipitation, cocapping, and fluorescence resonance energy transfer experiments. Image analysis of Ag-specific T-APC conjugates demonstrated that CD6 and its ligand, activated leukocyte cell adhesion molecule (CD166), colocalize with TCR/CD3 at the center of the immunological synapse, the so-called central supramolecular activation cluster. The addition of a soluble rCD6 form significantly reduced the number of mature Ag-specific T-APC conjugates, indicating that CD6 mediates early cell-cell interactions needed for immunological synapse maturation to proceed. This was in agreement with the dose-dependent inhibition of CD3-mediated T cell proliferation induced by soluble rCD6. Taken together, our data illustrate the important role played by the intra- and intercellular molecular interactions mediated by CD6 during T cell activation and proliferation processes.
Collapse
Affiliation(s)
- Idoia Gimferrer
- Servei d'Immunologia, Hospital Clínic i Provincial de Barcelona, Institut de Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gimferrer I, Farnós M, Calvo M, Mittelbrunn M, Enrich C, Sánchez-Madrid F, Vives J, Lozano F. The accessory molecules CD5 and CD6 associate on the membrane of lymphoid T cells. J Biol Chem 2003; 278:8564-71. [PMID: 12473675 DOI: 10.1074/jbc.m209591200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD5 and CD6 are closely related lymphocyte surface receptors of the scavenger receptor cysteine-rich superfamily, which show highly homologous extracellular regions but little conserved cytoplasmic tails. Both molecules are expressed on the same lymphocyte populations (thymocytes, mature T cells, and B1a cells) and share similar co-stimulatory properties on mature T cells. Although several works have been reported on the molecular associations and the signaling pathway mediated by CD5, very limited information is available for CD6 in this regard. Here we show the physical association of CD5 and CD6 at the cell membrane of lymphocytes, as well as their localization at the immunological synapse. CD5 and CD6 co-immunoprecipitate from Brij 96 but not Nonidet P-40 cell lysates, independently of both the co-expression of other lymphocyte surface receptors and the integrity of CD5 cytoplasmic region. Fluorescence resonance energy transfer analysis, co-capping, and co-modulation experiments demonstrate the physical in vivo association of CD5 and CD6. Analysis of T cell/antigen-presenting cells conjugates shows the accumulation of both molecules at the immunological synapse. These results indicate that CD5 and CD6 are structurally and physically related receptors, which may be functionally linked to provide either similar or complementary accessory signals during T cell activation and/or differentiation.
Collapse
Affiliation(s)
- Idoia Gimferrer
- Servei d'Immunologia, Institut Clinic d'Infeccions i Immunologia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic, Barcelona 08036, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Carmo AM, Castro MAA, Arosa FA. CD2 and CD3 Associate Independently with CD5 and Differentially Regulate Signaling Through CD5 in Jurkat T Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.8.4238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
In T lymphocytes, the CD2 and CD5 glycoproteins are believed to be involved in the regulation of signals elicited by the TCR/CD3 complex. Here we show that CD2 and CD3 independently associate with CD5 in human PBMC and Jurkat cells. CD5 coprecipitates with CD2 in CD3-deficient cells and, conversely, coprecipitates with CD3 in cells devoid of CD2. In unstimulated CD2+ CD3+ Jurkat cells, CD5 associates equivalently with CD2 and CD3 and is as efficiently phosphorylated in CD2 as in CD3 immune complexes. However, upon activation the involvement of CD5 is the opposite in the CD2 and CD3 pathways. CD5 becomes rapidly tyrosine phosphorylated after CD3 stimulation, but is dephosphorylated upon CD2 cross-linking. These opposing effects correlate with the decrease in the activity of the SH2 domain-containing protein phosphatase 1 (SHP-1) following CD3 activation vs an enhanced activity of the phosphatase after CD2 triggering. The failure of CD5 to become phosphorylated on tyrosine residues in the CD2 pathway has no parallel with the lack of use of ζ-chains in CD2 signaling; contrasting with comparable levels of association of CD2 or CD3 with CD5, ζ associates with CD2 only residually and is nevertheless slightly phosphorylated after CD2 stimulation. The modulation of CD5 phosphorylation may thus represent a level of regulation controlled by CD2 in signal transduction mechanisms in human T lymphocytes.
Collapse
Affiliation(s)
- Alexandre M. Carmo
- *Laboratório de Imunologia Molecular, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; and
- †Medical Research Council Cellular Immunology Unit, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Mónica A. A. Castro
- *Laboratório de Imunologia Molecular, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; and
| | - Fernando A. Arosa
- *Laboratório de Imunologia Molecular, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; and
| |
Collapse
|
31
|
Levesque MC, Heinly CS, Whichard LP, Patel DD. Cytokine-regulated expression of activated leukocyte cell adhesion molecule (CD166) on monocyte-lineage cells and in rheumatoid arthritis synovium. ARTHRITIS AND RHEUMATISM 1998; 41:2221-9. [PMID: 9870879 DOI: 10.1002/1529-0131(199812)41:12<2221::aid-art18>3.0.co;2-i] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine whether monocyte/macrophage expression of the CD6 ligand, activated leukocyte cell adhesion molecule (ALCAM) (CD166), is regulated by cytokines during inflammation in rheumatoid arthritis (RA). METHODS We used flow cytometry to test whether cytokines present in rheumatoid synovium could regulate ALCAM cell surface expression on peripheral blood (PB) monocytes and RA synovial fluid (SF) macrophages, and we examined ALCAM expression in situ in RA synovium by immunofluorescence. RESULTS The monocyte differentiation factors interleukin-3, macrophage colony-stimulating factor (M-CSF), and granulocyte-macrophage colony-stimulating factor augmented ALCAM expression on PB monocytes. ALCAM was expressed on monocyte-lineage cells in situ in inflamed synovium from patients with RA (9 of 9), but not in uninflamed synovium from patients with joint trauma (0 of 3). Furthermore, in vitro culture-induced ALCAM expression on PB monocytes and CD14+ RA SF cells was inhibited by an M-CSF neutralizing antibody. CONCLUSION ALCAM expression on PB and SF monocytes/macrophages is enhanced by M-CSF.
Collapse
Affiliation(s)
- M C Levesque
- Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
32
|
Bunnell SC, Berg LJ. The signal transduction of motion and antigen recognition: factors affecting T cell function and differentiation. GENETIC ENGINEERING 1998; 20:63-110. [PMID: 9666556 DOI: 10.1007/978-1-4899-1739-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- S C Bunnell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
33
|
Kobarg J, Whitney GS, Palmer D, Aruffo A, Bowen MA. Analysis of the tyrosine phosphorylation and calcium fluxing of human CD6 isoforms with different cytoplasmatic domains. Eur J Immunol 1997; 27:2971-80. [PMID: 9394826 DOI: 10.1002/eji.1830271133] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CD6 is a cell surface glycoprotein that functions both as a co-stimulatory and adhesion receptor on T cells. Recently we have described CD6 isoforms (CD6a, b, c, d, e) that arise via alternative splicing of exons encoding the cytoplasmic region of the molecule. CD6 becomes phosphorylated on tyrosine (Tyr) residues following stimulation through the T cell receptor (TCR) complex. Since the phosphorylation of Tyr residues renders some cell surface receptors competent for interactions with proteins of intracellular signaling pathways, we wanted to determine which region(s) and residues in the cytoplasmic domain of CD6 were important for phosphorylation on Tyr residues. We engineered and stably expressed chimeric receptors that consisted of the extracellular region of mouse CD6 and the cytoplasmic regions of either naturally occurring isoforms of human CD6, truncated proteins, or point mutants. We were able to demonstrate that of the nine Tyr residues in the cytoplasmic domain of the largest isoform CD6a, the two C-terminal Tyr residues (Tyr 629/662) are critical for the phosphorylation of CD6 following TCR cross-linking. Isoform CD6e, which is missing a region that contains two proline-rich motifs, is not phosphorylated. We further analyzed the ability of the different CD6 isoforms and truncated receptors to mobilize intracellular calcium after CD6/TCR co-ligation. All CD6 isoforms, including CD6e, as well as the truncation mutant delta 555, which is missing approximately the C-terminal half of the cytoplasmic domain, are able to increase Ca2+ influx. Taken together, these results suggest that the region of CD6 which is critical for Ca2+ mobilization is located N-terminal from amino acid 555 and is therefore different from the region located at the C terminus of CD6, which is necessary for tyrosine phosphorylation.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution/genetics
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/chemistry
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Calcium/metabolism
- Cell Culture Techniques
- Cytoplasm/chemistry
- Cytoplasm/immunology
- Cytoplasm/metabolism
- Humans
- Isomerism
- Jurkat Cells
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phosphorylation
- Point Mutation
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/biosynthesis
- Tyrosine/genetics
- Tyrosine/metabolism
Collapse
Affiliation(s)
- J Kobarg
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, USA.
| | | | | | | | | |
Collapse
|
34
|
Aruffo A, Bowen MA, Patel DD, Haynes BF, Starling GC, Gebe JA, Bajorath J. CD6-ligand interactions: a paradigm for SRCR domain function? IMMUNOLOGY TODAY 1997; 18:498-504. [PMID: 9357143 DOI: 10.1016/s0167-5699(97)01130-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The scavenger receptor cysteine-rich (SRCR) superfamily, which includes proteins expressed by leukocytes, can be subdivided into groups A and B. Group B contains the lymphocyte cell-surface receptor CD6. This article reviews recent progress in understanding the interaction between CD6 and its ligand, activated leukocyte cell adhesion molecule (ALCAM). Analysis of the CD6-ALCAM interaction may help to understand how other SRCR domains bind to their ligands.
Collapse
MESH Headings
- Activated-Leukocyte Cell Adhesion Molecule
- Amino Acid Sequence
- Animals
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Cell Adhesion Molecules/immunology
- Glycoproteins/immunology
- Humans
- Ligands
- Membrane Proteins
- Models, Molecular
- Molecular Sequence Data
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Immunologic
- Receptors, Lipoprotein
- Receptors, Scavenger
- Scavenger Receptors, Class B
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- A Aruffo
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, WA 98121, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Singer NG, Mitra R, Lialios F, Richardson BC, Marks RM, Pesando JM, Fox DA, Nickoloff BJ. CD6 dependent interactions of T cells and keratinocytes: functional evidence for a second CD6 ligand on gamma-interferon activated keratinocytes. Immunol Lett 1997; 58:9-14. [PMID: 9436462 DOI: 10.1016/s0165-2478(97)02707-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The CD6 glycoprotein is expressed by T lymphocytes and is hypothesized to interact with one or more ligands expressed on antigen presenting cells (APCs). We show that CD6 mediates binding of the transformed CD4+ T cell line Hut 78 to gamma-interferon activated keratinocytes (KCs). A recombinant CD6-Ig fusion protein has been reported to bind to a CD6 ligand ALCAM, but this is the first demonstration that cell-cell adhesion of human T lymphocytes can be CD6 dependent. The known CD6 ligand ALCAM (CD166) is expressed on cultured KCs but does not appear to mediate KC-Hut 78 binding, suggesting the existence of additional CD6 ligands expressed on KCs. In functional studies using autologous KCs as APCs for tetanus toxoid specific T cell clones, KCs +/- gamma-interferon are unable to stimulate autologous T cells with recall antigen. Therefore interaction of T cell CD6 with CD6 ligands on KCs does not provide sufficient co-stimulation of primed T cells to support responses to nominal antigen.
Collapse
Affiliation(s)
- N G Singer
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor 48109-0531, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bowen MA, Bajorath J, D'Egidio M, Whitney GS, Palmer D, Kobarg J, Starling GC, Siadak AW, Aruffo A. Characterization of mouse ALCAM (CD166): the CD6-binding domain is conserved in different homologs and mediates cross-species binding. Eur J Immunol 1997; 27:1469-78. [PMID: 9209500 DOI: 10.1002/eji.1830270625] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM; CD166) is a member of the immunoglobulin gene superfamily (IgSF) which is expressed by activated leukocytes and thymic epithelial cells and is a ligand for the lymphocyte antigen CD6. Herein, we report on the isolation and characterization of cDNA clones encoding mouse ALCAM (mALCAM). Comparison of the predicted amino acid sequence of mALCAM and human ALCAM (hALCAM) showed an overall identity of 93%. Binding studies with truncated forms of the extracellular region of mALCAM showed that the CD6 binding site is located in the N-terminal Ig-like domain and that mALCAM is capable of binding both human and mouse CD6. Mutagenesis studies on hALCAM suggested that residues critical for CD6 binding map to the predicted A'GFCC'C" beta-sheet of ALCAM's N-terminal binding domain. Residue differences in the N-terminal domains of mALCAM and hALCAM were analyzed with the aid of a molecular model of ALCAM. All residues critical for CD6 binding are conserved in both mALCAM and hALCAM, whereas residue differences map to the predicted BED face which is opposite the CD6 binding site on hALCAM. These findings provide a molecular rationale for the observed cross-species CD6/ALCAM interaction and the apparent inability to generate monoclonal antibodies (mAb) against the CD6 binding site. RNA blot analysis showed that mRNA transcripts encoding mALCAM are expressed in the brain, lung, liver, and the kidney, as well as by activated leukocytes and a number of cell lines. A rat mAb specific for mALCAM was produced and by two-color immunofluorescence studies was shown to bind to both activated CD4+ and CD8+ T cells.
Collapse
MESH Headings
- Activated-Leukocyte Cell Adhesion Molecule
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Cloning, Molecular
- Conserved Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/isolation & purification
- Glycoproteins/chemistry
- Glycoproteins/immunology
- Glycoproteins/metabolism
- Humans
- L Cells
- Ligands
- Mice
- Molecular Sequence Data
- Organ Specificity/immunology
- Protein Binding/immunology
- Protein Structure, Tertiary
- Rats
- Sequence Homology, Amino Acid
- Species Specificity
- Thymus Gland
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M A Bowen
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, WA 98121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Singer NG, Richardson BC, Powers D, Hooper F, Lialios F, Endres J, Bott CM, Fox DA. Role of the CD6 glycoprotein in antigen-specific and autoreactive responses of cloned human T lymphocytes. Immunol Suppl 1996; 88:537-43. [PMID: 8881754 PMCID: PMC1456636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
CD6 is a 130 000 MW T-cell surface glycoprotein that can deliver coactivating signals to mature T lymphocytes. Studies using monoclonal antibodies (mAb) have defined at least four epitopes on CD6, and distinct functional responses are elicited by mAb to the different epitopes. The function of CD6 is unknown. Multiple CD6 ligands are predicted, based on data that a soluble CD6 fusion protein precipitates at least three peptides. A cDNA clone for one of these ligands, termed activated leucocyte-cell adhesion molecule (ALCAM) has recently been isolated. In order to further characterize the role of CD6 in cell-cell interactions, we have examined the role of CD6 in a variety of responses by tetanus toxoid (TT) specific human T-cell clones. Anti-CD6 mAb UMCD6 (epitope 3) inhibits antigen-specific responses of such clones to TT, but not to the superantigen SEA. Responses of clones to nominal antigen are CD6-dependent using either peripheral blood mononuclear cells (PBMC) or macrophage-depleted E rosette negative cells as the antigen-presenting cell (APC) population. Furthermore, these clones made autoreactive with DNA methyltransferase inhibitors express increased CD6, and autoreactivity is inhibited by UMCD6. Taken together, the data suggests the existence of a functional CD6 ligand in peripheral blood which is expressed by APC, including cells other than macrophages. Interactions between CD6 and CD6 ligands may regulate both antigen specific and autoreactive responses of human T lymphocytes.
Collapse
Affiliation(s)
- N G Singer
- Division of Rheumatology, University of Michigan Medical Center, Ann Arbor 48109-0531, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bowen MA, Bajorath J, Siadak AW, Modrell B, Malacko AR, Marquardt H, Nadler SG, Aruffo A. The amino-terminal immunoglobulin-like domain of activated leukocyte cell adhesion molecule binds specifically to the membrane-proximal scavenger receptor cysteine-rich domain of CD6 with a 1:1 stoichiometry. J Biol Chem 1996; 271:17390-6. [PMID: 8663238 DOI: 10.1074/jbc.271.29.17390] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) was recently identified as a ligand for CD6, a signaling receptor expressed on T cells, a subset of B cells, and some cells in the brain. Receptor-ligand binding assays, antibody blocking experiments, and examination of the tissue distribution of these two cell surface proteins suggest that CD6-ALCAM interactions play an important role in mediating the binding of thymocytes to thymic epithelial cells and of T cells to activated leukocytes. Presently, the details of CD6-ALCAM interactions and of signaling through CD6 are unknown. A series of truncated human ALCAM and CD6 immunoglobulin fusion proteins were produced and tested in different binding assays to analyze ALCAM-CD6 interactions in more detail. In this study, we report that the amino-terminal Ig-like domain of human ALCAM specifically binds to the third membrane-proximal scavenger receptor cysteine-rich (SRCR) domain of human CD6. Using thrombin-cleaved Ig fusion proteins containing single or multiple ALCAM or CD6 domains, we were able to determine that the stoichiometry of the interaction between the amino-terminal ALCAM domains and the membrane-proximal CD6 SRCR domain is 1:1. These results provide the first example of an Ig-like domain mediating an interaction with an SRCR domain.
Collapse
Affiliation(s)
- M A Bowen
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, Washington 98121, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Rubbi CP, Rickwood D. A simple immunomagnetic bead-based technique for the detection of surface molecules capable of inducing T cell functional polarisation. J Immunol Methods 1996; 192:157-64. [PMID: 8699012 DOI: 10.1016/0022-1759(96)00046-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Activated T cells can release lymphokines selectively towards the site of contact with the target cell. In this way the specificity of the target-effector cell interaction can be maintained in spite of signalling being mediated by soluble factors (Mosmann, 1988, Immunol. Today 9, 306). However, this polarised phenotype is not expressed in resting T cells; rather it appears to be induced in the first minutes following T cell activation. In order to analyse single molecules for their ability to induce T cell polarisation, we devised a technique based on targeting different T cell surface molecules with specific antibodies immobilised on to immunomagnetic beads. The polarised phenotype was determined from observation of the microtubule organising centre being oriented towards the site of interaction with the bead. When applied to T cell lines, the technique permitted the classification of CD3 as a polarisation-inducing molecule, while no polarisation was found when targeting CD2, CD6 and CD8 molecules. This technique has a number of potential applications since it can, in principle, be applied to any cell surface molecule or cell type. Technical details and the sensitivity of the procedure are discussed.
Collapse
Affiliation(s)
- C P Rubbi
- Department of Biology, University of Essex, Colchester, UK
| | | |
Collapse
|
40
|
Criado G, Feito MJ, Rojo JM. CD4-dependent and -independent association of protein tyrosine kinases to the T cell receptor/CD3 complex of CD4+ mouse T lymphocytes. Eur J Immunol 1996; 26:1228-34. [PMID: 8647197 DOI: 10.1002/eji.1830260607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tyrosine phosphorylation of different substrates is the earliest intracellular signal detected after T cell receptor (TcR) ligation. Several tyrosine kinases have been detected associated to the CD3-TcR complex in stimulated or unstimulated cells, including p56lck, p59fyn and ZAP-70. We have observed, in one mouse T helper CD4 T cell line, that most TcR- or CD3-associated tyrosine kinase activity comes from CD4:p56lck (Diez-Orejas, R., Ballester, S., Feito, M. J., Ronda, M., Ojeda, G., Criado, G., Portolés, P. and Rojo, J. M., EMBO J. 1994. 13: 90). To analyze whether this is a major way of tyrosine kinase association to the TcR in normal CD4+ T cells, we examined the nature and mode of association of tyrosine kinases to the TcR complex in normal spleen CD4+ T lymphocytes. Our results show that, in normal CD4+ T lymphocytes, as in CD4+ T cell lines, there is a stable and readily detectable association between CD4:p56lck and the TcR/CD3 complex, as determined by in vitro kinase activity in immunoprecipitates from cell lysates. However, TcR/CD3 complexes from nature CD4+ lymphocytes have detectable amounts of p56lck associated in a CD4-independent manner, as shown by immunodepletion of the lysates with anti-CD4 antibodies. In addition, TcR/CD3 also bind p59fyn regardless of the presence of CD4. Conversely, we have observed that CD4 co-precipitates small quantities of p56fyn in a TcR/CD3-independent manner. Overall, our data suggest the existence of different possible molecular complexes between TcR/CD3, CD4 and their attending kinases, as well as some quantitative and qualitative differences between CD4+ T cells and CD4+ T cell lines in kinase association to the TcR/CD3 complex.
Collapse
Affiliation(s)
- G Criado
- Centro de Investigaciones Biológicas, C.S.I.C., Madrid, Spain
| | | | | |
Collapse
|
41
|
Starling GC, Whitney GS, Siadak AW, Llewellyn MB, Bowen MA, Farr AG, Aruffo AA. Characterization of mouse CD6 with novel monoclonal antibodies which enhance the allogeneic mixed leukocyte reaction. Eur J Immunol 1996; 26:738-46. [PMID: 8625962 DOI: 10.1002/eji.1830260403] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human CD6 is a cell surface protein expressed by thymocytes, mature T cells, a subset of B cells and certain cells of the brain. On human T cells, CD6 has been shown to act as a co-stimulatory molecule which modulates T cell receptor (TCR)-mediated T cell activation. To study further the recently identified mouse CD6 (mCD6), we generated and characterized a set of anti-mCD6 mAb. Anti-mCD6 mAb recognizing the mCD6 scavenger receptor cysteine-rich (SRCR) extracellular domains 1 and 3 were identified. mAb against SRCR domain 3, but not domain 1, inhibited the interaction of CD6 with a recently identified ligand, activated leukocyte cell adhesion molecule (ALCAM). Immunohistochemical analysis indicated that mCD6 expression was largely localized to the T cell areas of lymphoid tissue and, as previously reported in the human, CD6 was also expressed by neurons. CD6 was highly expressed on mouse T cells isolated from the spleen, lymph node and thymus as demonstrated by two-color immunofluorescence analysis. The CD4+ and CD8+ cells in these lymphoid compartments expressed similar levels of CD6. Immunoprecipitation studies showed that mouse thymocytes predominantly express a CD6 isoform of approximately 130 kDa, while splenocytes predominantly express a CD6 isoform of approximately 100 kDa. Anti-mCD6 mAb enhanced allogeneic mixed leukocyte reactions (MLR), indicating that CD6-ALCAM interactions may regulate the proliferative capacity of T cells.
Collapse
Affiliation(s)
- G C Starling
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, WA 98121, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Pal A, Romain PL, Singer NG, Fox D, Stavnezer J. Mouse CD6: sequence of cDNA and expression of mRNA. Immunol Lett 1996; 49:133-7. [PMID: 8964601 DOI: 10.1016/0165-2478(95)02466-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/genetics
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/isolation & purification
- Mice
- Molecular Sequence Data
- RNA, Messenger/biosynthesis
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- A Pal
- Department of Medicine, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | |
Collapse
|
43
|
Robinson WH, Neuman de Vegvar HE, Prohaska SS, Rhee JW, Parnes JR. Human CD6 possesses a large, alternatively spliced cytoplasmic domain. Eur J Immunol 1995; 25:2765-9. [PMID: 7589069 DOI: 10.1002/eji.1830251008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human CD6 is a monomeric 105/130-kDa T cell surface glycoprotein that is involved in T cell activation. The apparent discrepancy between the size of the cytoplasmic domain in human (44 amino acids) and mouse (243 amino acids) CD6, led us to use reverse transcriptase-polymerase chain reaction of human peripheral blood lymphocyte mRNA to isolate cDNA clones that include the carboxyl-terminal coding region of human CD6. The nucleotide sequence of the longest human cDNA clone, CD6-PB1, predicts a protein of 668 amino acids with a 244-amino acid cytoplasmic domain similar in size to and possessing 71.5% amino acid sequence identity with the cytoplasmic domain of mouse CD6. This previously unrecognized 244-amino acid cytoplasmic domain does not have significant homology to any other known protein (except mouse CD6), but does possess two proline-rich motifs containing the SH3 domain-binding consensus sequence, a serine-threonine-rich motif repeated three times, three protein kinase C phosphorylation-site motifs, and 10 casein kinase-2 phosphorylation-site motifs. These sequences are likely to play a role in the ability of CD6-specific monoclonal antibodies to stimulate T cell proliferation. Full-length CD6 cDNA containing this cytoplasmic domain sequence encodes a monomeric 105/130-kDa protein that can be immunoprecipitated from the surface of transfected cells and comigrates upon SDS-PAGE with wild-type CD6 immunoprecipitated from PBL. We also isolated two alternatively spliced forms of human CD6 cDNA lacking sequences encoding membrane-proximal regions of the cytoplasmic domain which maintain the same reading frame as CD6-PB1. The short cytoplasmic domain of the previously reported human CD6-15 cDNA clone results from a deletion of a 20-bp segment through use of an alternative 3' splice site, resulting in a frame shift and premature termination of translation relative to the clones we have isolated. These data demonstrate that human CD6 possesses a large cytoplasmic domain containing sequence motifs that are likely to be involved in signal transduction upon stimulation of T cells through CD6 ligation.
Collapse
Affiliation(s)
- W H Robinson
- Department of Medicine, Stanford University School of Medicine, CA 94305-5487, USA
| | | | | | | | | |
Collapse
|
44
|
Whitney GS, Starling GC, Bowen MA, Modrell B, Siadak AW, Aruffo A. The membrane-proximal scavenger receptor cysteine-rich domain of CD6 contains the activated leukocyte cell adhesion molecule binding site. J Biol Chem 1995; 270:18187-90. [PMID: 7543097 DOI: 10.1074/jbc.270.31.18187] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Binding studies with a CD6 immunoglobulin fusion protein (CD6 Rg) resulted in the identification and cloning of a CD6 ligand. This ligand was found to be a member of the immunoglobulin supergene family and was named ALCAM (activated leukocyte cell adhesion molecule). Cell adhesion assays showed that CD6-ALCAM interactions mediate thymocyte-thymic epithelium cell binding. ALCAM is also expressed by activated leukocytes and neurons and may be involved in interactions between T cells and activated leukocytes and between cells of the immune and nervous systems, respectively. Herein we describe the preparation of domain-specific murine CD6 Rg fusion proteins and show that the membrane-proximal SRCR (scavenger receptor cysteine-rich) domain of CD6 contains the ALCAM binding site. We also show that mAbs which bind to this domain preferentially block CD6-ALCAM binding. These results demonstrate that the membrane-proximal SRCR domain of CD6 is necessary for CD6 binding to ALCAM and provide the first direct evidence for the interaction of an SRCR domain with a ligand.
Collapse
MESH Headings
- Activated-Leukocyte Cell Adhesion Molecule
- Antibodies, Monoclonal/pharmacology
- Antibody Specificity
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Binding Sites
- Cell Adhesion Molecules/metabolism
- Epitopes
- Glycoproteins/metabolism
- Humans
- Membrane Proteins
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Binding/drug effects
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Lipoprotein
- Receptors, Scavenger
- Recombinant Fusion Proteins/metabolism
- Scavenger Receptors, Class B
- Structure-Activity Relationship
Collapse
Affiliation(s)
- G S Whitney
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, Washington 98121, USA
| | | | | | | | | | | |
Collapse
|
45
|
Bowen MA, Patel DD, Li X, Modrell B, Malacko AR, Wang WC, Marquardt H, Neubauer M, Pesando JM, Francke U. Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J Exp Med 1995; 181:2213-20. [PMID: 7760007 PMCID: PMC2192054 DOI: 10.1084/jem.181.6.2213] [Citation(s) in RCA: 300] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Antibody-blocking studies have demonstrated the role of CD6 in thymocyte-thymic epithelial (TE) cell adhesion. Here we report that CD6 expressed by COS cells mediates adhesion to TE cells and that this interaction is specifically blocked with an anti-CD6 monoclonal antibody (mAb) or with a mAb (J4-81) that recognized a TE cell antigen. We isolated and expressed a cDNA clone encoding this antigen and show that COS cells transfected with this cDNA bind a CD6 immunoglobulin fusion protein (CD6-Rg). This antigen, which we named ALCAM (activated leukocyte-cell adhesion molecule) because of its expression on activated leukocytes, appears to be the human homologue of the chicken neural adhesion molecule BEN/SC-1/DM-GRASP. The gene was mapped to human chromosome 3q13.1-q13.2 by fluorescence in situ hybridization of cDNA probes to metaphase chromosomes. We prepared an ALCAM-Rg fusion protein and showed that it binds to COS cell transfectants expressing CD6, demonstrating that ALCAM is a CD6 ligand. The observations that ALCAM is also expressed by activated leukocytes and that both ALCAM and CD6 are expressed in the brain suggest that ALCAM-CD6 interactions may play a role in the binding of T and B cells to activated leukocytes, as well as in interactions between cells of the nervous system.
Collapse
Affiliation(s)
- M A Bowen
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, Washington 98121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Patel DD, Wee SF, Whichard LP, Bowen MA, Pesando JM, Aruffo A, Haynes BF. Identification and characterization of a 100-kD ligand for CD6 on human thymic epithelial cells. J Exp Med 1995; 181:1563-8. [PMID: 7535342 PMCID: PMC2191949 DOI: 10.1084/jem.181.4.1563] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CD6 is a 130-kD glycoprotein expressed on the surface of thymocytes and peripheral blood T cells that is involved in TCR-mediated T cell activation. In thymus, CD6 mediates interactions between thymocytes and thymic epithelial (TE) cells. In indirect immunofluorescence assays, a recombinant CD6-immunoglobulin fusion protein (CD6-Rg) bound to cultured human TE cells and to thymic fibroblasts. CD6-Rg binding to TF and TE cells was trypsin sensitive, and 54 +/- 4% of binding was divalent cation dependent. By screening the blind panel of 479 monoclonal antibodies (mAbs) from the 5th International Workshop on Human Leukocyte Differentiation Antigens for expression on human TE cells and for the ability to block CD6-Rg binding to TE cells, we found one mAb (J4-81) that significantly inhibited the binding of CD6-Rg to TE cells (60 +/- 7% inhibition). A second mAb to the surface antigen identified by mAb J4-81, J3-119, enhanced the binding of CD6-Rg to TE cells by 48 +/- 5%. Using covalent cross-linking and trypsin digestion, we found that mAb J4-81 and CD6-Rg both bound to the same 100-kD glycoprotein (CD6L-100) on the surface of TE cells. These data demonstrate that a 100-kD glycoprotein on TE cells detected by mAb J4-81 is a ligand for CD6.
Collapse
Affiliation(s)
- D D Patel
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Ley SC, Marsh M, Bebbington CR, Proudfoot K, Jordan P. Distinct intracellular localization of Lck and Fyn protein tyrosine kinases in human T lymphocytes. J Biophys Biochem Cytol 1994; 125:639-49. [PMID: 7513706 PMCID: PMC2119993 DOI: 10.1083/jcb.125.3.639] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Two src family kinases, lck and fyn, participate in the activation of T lymphocytes. Both of these protein tyrosine kinases are thought to function via their interaction with cell surface receptors. Thus, lck is associated with CD4, CD8, and Thy-1, whereas fyn is associated with the T cell antigen receptor and Thy-1. In this study, the intracellular localization of these two protein tyrosine kinases in T cells was analyzed by immunofluorescence and confocal microscopy. Lck was present at the plasma membrane, consistent with its proposed role in transmembrane signalling, and was also associated with pericentrosomal vesicles which co-localized with the cation-independent mannose 6-phosphate receptor. Surprisingly, fyn was not detected at the plasma membrane in either Jurkat T cells or T lymphoblasts but was closely associated with the centrosome and to microtubule bundles radiating from the centrosome. In mitotic cells, fyn co-localized with the mitotic spindle and poles. The essentially non-overlapping intracellular distributions of lck and fyn suggest that these kinases may be accessible to distinct regulatory proteins and substrates and, therefore, may regulate different aspects of T cell activation. Anti-phosphotyrosine antibody staining at the plasma membrane increases dramatically after CD3 cross-linking of Jurkat T cells. The localization of lck to the plasma membrane suggests that it may participate in mediating this increase in tyrosine phosphorylation, rather than fyn. Furthermore, the distribution of fyn in mitotic cells raises the possibility that it functions at the M phase of the cell cycle.
Collapse
Affiliation(s)
- S C Ley
- National Institute for Medical Research, London, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Duplay P, Thome M, Hervé F, Acuto O. p56lck interacts via its src homology 2 domain with the ZAP-70 kinase. J Exp Med 1994; 179:1163-72. [PMID: 8145035 PMCID: PMC2191435 DOI: 10.1084/jem.179.4.1163] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
p56lck, a member of the src family of protein tyrosine kinases, is an essential component in T cell receptor (TCR) signal transduction. p56lck contains a src homology 2 (SH2) domain found in a number of proteins involved in intracellular signaling. SH2 domains have been implicated in protein-protein interactions by binding to sequences in target proteins containing phosphorylated tyrosine. Using an in vitro assay, we have studied specific binding of tyrosine-phosphorylated proteins to a recombinant p56lck SH2 domain. In nonactivated Jurkat cells, two tyrosine-phosphorylated proteins were detected. Stimulation with anti-CD3 monoclonal antibodies induced the binding of seven additional tyrosine-phosphorylated proteins to the SH2 domain of p56lck. We have identified the zeta-associated tyrosine kinase, ZAP-70, as one of these proteins. Evidence suggests that binding of ZAP-70 to p56lck SH2 is direct and not mediated by zeta. The significance of this interaction was further investigated in vivo. p56lck could be coprecipitated with the zeta/ZAP-70 complex and conversely, ZAP-70 was detected in p56lck immunoprecipitates of activated Jurkat cells. The physical association of p56lck and ZAP-70 during activation supports the recently proposed functional cooperation of these two tyrosine kinases in TCR signaling.
Collapse
Affiliation(s)
- P Duplay
- Department of Immunology, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
49
|
Ley SC, Verbi W, Pappin DJ, Druker B, Davies AA, Crumpton MJ. Tyrosine phosphorylation of alpha tubulin in human T lymphocytes. Eur J Immunol 1994; 24:99-106. [PMID: 7517366 DOI: 10.1002/eji.1830240116] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
N-terminal sequencing of the 55- and 50-kDa polypeptides affinity purified on a phosphotyrosine monoclonal antibody column from activated Jurkat T cells identified alpha and beta tubulin. Two-dimensional gel analysis indicated that alpha tubulin was directly phosphorylated on tyrosine. beta Tubulin was not detectably tyrosine phosphorylated but was precipitated by anti-phosphotyrosine (PTyr) antibody by virtue of its association with the alpha subunit as a heterodimer. Phosphotyrosyl alpha tubulin was not incorporated into intact microtubules and was all in the unpolymerized soluble fraction. These results suggest that tyrosine phosphorylation of alpha tubulin may inhibit the ability of this subunit to polymerize into microtubules. Stimulation of Jurkat T cells via T cell receptor increased the amount of tubulin precipitated by the anti-PTyr antibody. These data raise the possibility that the polymerization of tubulin heterodimers may be regulated by phosphorylation on tyrosine during T cell activation.
Collapse
Affiliation(s)
- S C Ley
- Cellular Immunology, National Institute for Medical Research, London, GB
| | | | | | | | | | | |
Collapse
|
50
|
Delves P. CELL-SURFACE ANTIGENS. Cell Immunol 1994. [PMCID: PMC7155440 DOI: 10.1016/b978-0-12-208885-8.50013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cell surface is covered with protein molecules that are held in the membrane by hydrophobic transmembrane segments or glycosyl–phosphatidylinositol (GPI) anchors. Antigens found on cell surfaces comprise not only those encoded by the cell itself but also the products of intracellular parasites. Soluble ligands may be bound to receptor structures on the cell membrane or lectin-like molecules bound to cell-surface carbohydrate structures. The molecules that form an integral part of the cell surface may be proteins, glycoproteins, or glycolipids. They subserve one of three major functions: adhesion, antigen recognition, or receptors for soluble mediators. However, many cell-surface molecules possess more than one function—for example, molecules involved in cell–cell or cell–extracellular matrix adhesion can also themselves be involved in signal transduction. The cell-surface antigens of leukocytes have been intensively studied because of ease of access to this cellular compartment.
Collapse
|