1
|
Yuan H, Pan M, Chen H, Mao X. Immunotherapy for Pemphigus: Present and Future. Front Med (Lausanne) 2022; 9:901239. [PMID: 35783635 PMCID: PMC9240651 DOI: 10.3389/fmed.2022.901239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigus is a chronic and severe autoimmune bullous disease caused by autoantibodies targeting adhesion molecules between keratinocytes. It requires 2–3 years on average to manage the disease. To date, although Rituximab combined with short-term systemic glucocorticoids was accepted as first-line therapy, systemic glucocorticoids remain the primary therapeutic option for pemphigus patients, successfully decreasing morbidity and mortality from pemphigus. However, novel therapeutic strategies are desirable due to the low efficacy in some subset of patients and the long-term severe adverse effects of traditional therapies. Recently, immunotherapy has proved to be encouraging for disease control or cure. Based on the current understanding of the immune mechanisms of pemphigus, we review the immune targets and corresponding agents applied in practice or under clinical trials. The goals of the novel treatments are to improve the quality of life of pemphigus patients by improving efficacy and safety, minimizing side effects, achieving fast disease control, or curing the disease.
Collapse
Affiliation(s)
- Huijie Yuan
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Meng Pan
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Chen
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuming Mao
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Xuming Mao
| |
Collapse
|
2
|
Apostolidis SA, Kakara M, Painter MM, Goel RR, Mathew D, Lenzi K, Rezk A, Patterson KR, Espinoza DA, Kadri JC, Markowitz DM, E Markowitz C, Mexhitaj I, Jacobs D, Babb A, Betts MR, Prak ETL, Weiskopf D, Grifoni A, Lundgreen KA, Gouma S, Sette A, Bates P, Hensley SE, Greenplate AR, Wherry EJ, Li R, Bar-Or A. Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nat Med 2021; 27:1990-2001. [PMID: 34522051 PMCID: PMC8604727 DOI: 10.1038/s41591-021-01507-2] [Citation(s) in RCA: 357] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2 messenger RNA vaccination in healthy individuals generates immune protection against COVID-19. However, little is known about SARS-CoV-2 mRNA vaccine-induced responses in immunosuppressed patients. We investigated induction of antigen-specific antibody, B cell and T cell responses longitudinally in patients with multiple sclerosis (MS) on anti-CD20 antibody monotherapy (n = 20) compared with healthy controls (n = 10) after BNT162b2 or mRNA-1273 mRNA vaccination. Treatment with anti-CD20 monoclonal antibody (aCD20) significantly reduced spike-specific and receptor-binding domain (RBD)-specific antibody and memory B cell responses in most patients, an effect ameliorated with longer duration from last aCD20 treatment and extent of B cell reconstitution. By contrast, all patients with MS treated with aCD20 generated antigen-specific CD4 and CD8 T cell responses after vaccination. Treatment with aCD20 skewed responses, compromising circulating follicular helper T (TFH) cell responses and augmenting CD8 T cell induction, while preserving type 1 helper T (TH1) cell priming. Patients with MS treated with aCD20 lacking anti-RBD IgG had the most severe defect in circulating TFH responses and more robust CD8 T cell responses. These data define the nature of the SARS-CoV-2 vaccine-induced immune landscape in aCD20-treated patients and provide insights into coordinated mRNA vaccine-induced immune responses in humans. Our findings have implications for clinical decision-making and public health policy for immunosuppressed patients including those treated with aCD20.
Collapse
Grants
- U19AI082630 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- T32 AR076951 NIAMS NIH HHS
- AI082630 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- R21 AI142638 NIAID NIH HHS
- AI108545 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- R01 AI152236 NIAID NIH HHS
- 75N9301900065 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- AI149680 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- T32 CA009140 NCI NIH HHS
- R01 AI118694 NIAID NIH HHS
- U19 AI082630 NIAID NIH HHS
- AI152236 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- P30-AI0450080 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- T32 AR076951-01 U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
- R01 AI105343 NIAID NIH HHS
- AI105343 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- R01 AI155577 NIAID NIH HHS
- UM1 AI144288 NIAID NIH HHS
- U19 AI149680 NIAID NIH HHS
- AI155577 U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health (OER)
- SI-2011-37160 National Multiple Sclerosis Society (National MS Society)
- UC4 DK112217 NIDDK NIH HHS
- P01 AI108545 NIAID NIH HHS
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (Division of Intramural Research of the NIAID)
- Penn | Perelman School of Medicine, University of Pennsylvania (Perelman School of Medicine at the University of Pennsylvania)
Collapse
Affiliation(s)
- Sokratis A Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mihir Kakara
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark M Painter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rishi R Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kerry Lenzi
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ayman Rezk
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kristina R Patterson
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Diego A Espinoza
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessy C Kadri
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel M Markowitz
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Clyde E Markowitz
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ina Mexhitaj
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dina Jacobs
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison Babb
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael R Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eline T Luning Prak
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kendall A Lundgreen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Center for Research on Coronavirus and Other Emerging Pathogens, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sigrid Gouma
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Center for Research on Coronavirus and Other Emerging Pathogens, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott E Hensley
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison R Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Rui Li
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Deng M, Tan J, Dai Q, Luo F, Xu J. Macrophage-Mediated Bone Formation in Scaffolds Modified With MSC-Derived Extracellular Matrix Is Dependent on the Migration Inhibitory Factor Signaling Pathway. Front Cell Dev Biol 2021; 9:714011. [PMID: 34621738 PMCID: PMC8490662 DOI: 10.3389/fcell.2021.714011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022] Open
Abstract
The positive role of macrophages in the osteogenesis of mesenchymal stem cells (MSCs) has been a recent research focus. On the other hand, MSCs could carefully regulate the paracrine molecules derived from macrophages. Human umbilical cord mesenchymal stem cells (hucMSCs) can reduce the secretion of inflammatory factors from macrophages to improve injury healing. hucMSC-derived extracellular matrix (hucMSC-ECM) has the similar effect to hucMSCs, which could combat the inflammatory response of macrophages. Additionally, MSC-derived extracellular matrix also enhanced bone regeneration by inhibiting osteoclastic differentiation of monocyte/macrophage lineage. However, whether hucMSC-ECM could improve bone formation by guiding macrophage-induced osteogenic differentiation of MSCs is unknown. Here, we present decalcified bone scaffolds modified by hucMSC-derived extracellular matrix (DBM-ECM), which maintained multiple soluble cytokines from hucMSCs, including macrophage migration inhibitory factor (MIF). Compared with DBM, the DBM-ECM scaffolds induced bone formation in an improved heterotopic ossification model of severe combined immunodeficiency (SCID) mice in a macrophage-dependent manner. Macrophages cocultured with DBM-ECM expressed four osteoinductive cytokines (BMP2, FGF2, TGFβ3 and OSM), which were screened out by RNA sequencing and measured by qPCR and western blot. The conditioned medium from macrophages cocultured with DBM-ECM improved the osteogenic differentiation of hBMSCs. Furthermore, DBM-ECM activated CD74/CD44 (the typical MIF receptors) signal transduction in macrophages, including phosphorylation of P38 and dephosphorylation of c-jun. On the other side, the inhibitory effects of the DBM-ECM scaffolds with a deficient of MIF on osteogenesis in vitro and in vivo revealed that macrophage-mediated osteogenesis depended on MIF/CD74 signal transduction. The results of this study indicate that the coordinated crosstalk of macrophages and MSCs plays a key role on bone regeneration, with an emphasis on hucMSC-ECM constructing a macrophage-derived osteoinductive microenvironment.
Collapse
Affiliation(s)
- Moyuan Deng
- Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jiulin Tan
- Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qijie Dai
- Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fei Luo
- Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jianzhong Xu
- Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Functional Role of B Cells in Atherosclerosis. Cells 2021; 10:cells10020270. [PMID: 33572939 PMCID: PMC7911276 DOI: 10.3390/cells10020270] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis is a lipid-driven inflammatory disease of blood vessels, and both innate and adaptive immune responses are involved in its development. The impact of B cells on atherosclerosis has been demonstrated in numerous studies and B cells have been found in close proximity to atherosclerotic plaques in humans and mice. B cells exert both atheroprotective and pro-atherogenic functions, which have been associated with their B cell subset attribution. While B1 cells and marginal zone B cells are considered to protect against atherosclerosis, follicular B cells and innate response activator B cells have been shown to promote atherosclerosis. In this review, we shed light on the role of B cells from a different, functional perspective and focus on the three major B cell functions: antibody production, antigen presentation/T cell interaction, and the release of cytokines. All of these functions have the potential to affect atherosclerosis by multiple ways and are dependent on the cellular milieu and the activation status of the B cell. Moreover, we discuss B cell receptor signaling and the mechanism of B cell activation under atherosclerosis-prone conditions. By summarizing current knowledge of B cells in and beyond atherosclerosis, we are pointing out open questions and enabling new perspectives.
Collapse
|
5
|
Wang L, Fu Y, Yu B, Jiang X, Liu H, Liu J, Zha B, Chu Y. HSP70, a Novel Regulatory Molecule in B Cell-Mediated Suppression of Autoimmune Diseases. J Mol Biol 2020; 433:166634. [PMID: 32860772 DOI: 10.1016/j.jmb.2020.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
B cells have recently emerged as playing regulatory role in autoimmune diseases. We have previously demonstrated that human peripheral blood CD19+CD24hiCD27+ B cells have regulatory function both in healthy donors and in patients with autoimmune disease. However, the mechanism of this regulation is still not fully understood. In this study, microarrays were utilized to compare gene expression of CD19+CD24hiCD27+ B cells (regulatory B cells, Bregs) with CD19+CD24loCD27- B cells (non-Bregs) in human peripheral blood. We found that heat shock protein 70 (HSP70) expression was significantly upregulated in Bregs. In vitro studies explored that HSP70 inhibition impaired the regulatory function of peripheral blood Bregs. In mouse models of autoimmune disease, using HSP70-deficient mice or HSP70 inhibitors, Bregs suppressed effector cells and rescued disease-associated phenotypes that were dependent on HSP70. Mechanistically, Bregs secreted HSP70, directly suppressing effector cells, such as T effect cells. These findings reveal that HSP70 is a novel factor that modulates Breg function and suggest that enhancing Breg-mediated production of HSP70 could be a viable therapy for autoimmune disease.
Collapse
Affiliation(s)
- Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Biotherapy Research Center, Fudan University, Shanghai 200032, China
| | - Ying Fu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xuechao Jiang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hongchun Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Bingbing Zha
- Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Biotherapy Research Center, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Siu JH, Motallebzadeh R, Pettigrew GJ. Humoral autoimmunity after solid organ transplantation: Germinal ideas may not be natural. Cell Immunol 2020; 354:104131. [DOI: 10.1016/j.cellimm.2020.104131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
|
7
|
Chong AS. B cells as antigen-presenting cells in transplantation rejection and tolerance. Cell Immunol 2020; 349:104061. [PMID: 32059816 DOI: 10.1016/j.cellimm.2020.104061] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/21/2022]
Abstract
Transplantation of fully allogeneic organs into immunocompetent recipients invariably elicits T cell and B cell responses that lead to the production of donor-specific antibodies (DSA). When immunosuppression is inadequate donor-specific T cell and B cell responses escape, leading to T cell-mediated rejection (TCMR), antibody mediated (ABMR) rejection, or mixed rejection (MR) exhibiting features of both TCMR and ABMR. Current literature suggests that ABMR is a major cause of late graft loss, and that new therapies to curtail the donor-specific humoral response are necessary. The majority of research into B cell responses elicited by allogeneic allografts in both preclinical models and clinical studies, has focused on the function of B cells as antibody-secreting cells and the pathogenic effects of DSA as mediators of ABMR. However, it has long been recognized that the DSA response to allografts is T cell-dependent, and that B cells engage in cognate interactions with T cells that provide "help" and promote B cell differentiation into antibody-secreting cells (ASCs). This review focusses the function of B cells as antigen-presenting cells (APCs) to T cells in lymphoid organs, how they may be critical APCs to T cell in the allograft, and the functional consequences of these interactions.
Collapse
Affiliation(s)
- Anita S Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
8
|
B cell receptor ligation induces display of V-region peptides on MHC class II molecules to T cells. Proc Natl Acad Sci U S A 2019; 116:25850-25859. [PMID: 31796587 PMCID: PMC6926052 DOI: 10.1073/pnas.1902836116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
B and T lymphocytes collaborate during immune responses to antigens. B cells use membrane-bound antibody as part of their antigen receptor while T cells use a different receptor that recognizes antigen fragments bound to MHC molecules. We show here that T cells can recognize the variable parts of the B cell receptor when these are presented on MHC molecules. A prerequisite for such receptor cross-talk is that the B cell receptor binds antigen. The cross-talk results in collaboration between B and T cells and production of antibodies directed against the antigen. The findings have implications for basic immune regulation. The results may also help us understand the mechanism behind the development of SLE-like autoimmune diseases and B cell lymphomas. The B cell receptors (BCRs) for antigen express variable (V) regions that are enormously diverse, thus serving as markers on individual B cells. V region-derived idiotypic (Id) peptides can be displayed as pId:MHCII complexes on B cells for recognition by CD4+ T cells. It is not known if naive B cells spontaneously display pId:MHCII in vivo or if BCR ligation is required for expression, thereby enabling collaboration between Id+ B cells and Id-specific T cells. Here, using a mouse model, we show that naive B cells do not express readily detectable levels of pId:MHCII. However, BCR ligation by Ag dramatically increases physical display of pId:MHCII, leading to activation of Id-specific CD4+ T cells, extrafollicular T–B cell collaboration and some germinal center formation, and production of Id+ IgG. Besides having implications for immune regulation, the results may explain how persistent activation of self-reactive B cells induces the development of autoimmune diseases and B cell lymphomas.
Collapse
|
9
|
Getahun A, Cambier JC. Non-Antibody-Secreting Functions of B Cells and Their Contribution to Autoimmune Disease. Annu Rev Cell Dev Biol 2019; 35:337-356. [PMID: 30883216 DOI: 10.1146/annurev-cellbio-100617-062518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
B cells play multiple important roles in the pathophysiology of autoimmune disease. Beyond producing pathogenic autoantibodies, B cells can act as antigen-presenting cells and producers of cytokines, including both proinflammatory and anti-inflammatory cytokines. Here we review our current understanding of the non-antibody-secreting roles that B cells may play during development of autoimmunity, as learned primarily from reductionist preclinical models. Attention is also given to concepts emerging from clinical studies using B cell depletion therapy, which shed light on the roles of these mechanisms in human autoimmune disease.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA; .,Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA; .,Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Following solid organ transplantation (SOT), populations of donor lymphocytes are frequently found in the recipient circulation. Their impact on host alloimmunity has long been debated but remains unclear, and it has been suggested that transferred donor lymphocytes may either promote tolerance to the graft or hasten its rejection. We discuss possible mechanisms by which the interaction of donor passenger lymphocytes with recipient immune cells may either augment the host alloimmune response or inhibit it. RECENT FINDINGS Recent work has highlighted that donor T lymphocytes are the most numerous of the donor leukocyte populations within a SOT and that these may be transferred to the recipient after transplantation. Surprisingly, graft-versus-host recognition of major histocompatibility complex class II on host B cells by transferred donor CD4 T cells can result in marked augmentation of host humoral alloimmunity and lead to early graft failure. Killing of donor CD4 T cells by host natural killer cells is critical in preventing this augmentation. SUMMARY The ability of passenger donor CD4 T cells to effect long-term augmentation of the host humoral alloimmune response raises the possibility that ex-vivo treatment or modification of the donor organ prior to implantation may improve long-term transplant outcomes.
Collapse
|
11
|
Tay C, Liu YH, Kanellakis P, Kallies A, Li Y, Cao A, Hosseini H, Tipping P, Toh BH, Bobik A, Kyaw T. Follicular B Cells Promote Atherosclerosis via T Cell–Mediated Differentiation Into Plasma Cells and Secreting Pathogenic Immunoglobulin G. Arterioscler Thromb Vasc Biol 2018; 38:e71-e84. [DOI: 10.1161/atvbaha.117.310678] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022]
Abstract
Objective—
B cells promote or protect development of atherosclerosis. In this study, we examined the role of MHCII (major histocompatibility II), CD40 (cluster of differentiation 40), and Blimp-1 (B-lymphocyte–induced maturation protein) expression by follicular B (FO B) cells in development of atherosclerosis together with the effects of IgG purified from atherosclerotic mice.
Approach and Results—
Using mixed chimeric
Ldlr
−/−
mice whose B cells are deficient in MHCII or CD40, we demonstrate that these molecules are critical for the proatherogenic actions of FO B cells. During development of atherosclerosis, these deficiencies affected T–B cell interactions, germinal center B cells, plasma cells, and IgG. As FO B cells differentiating into plasma cells require Blimp-1, we also assessed its role in the development of atherosclerosis. Blimp-1-deficient B cells greatly attenuated atherosclerosis and immunoglobulin—including IgG production, preventing IgG accumulation in atherosclerotic lesions; Blimp-1 deletion also attenuated lesion proinflammatory cytokines, apoptotic cell numbers, and necrotic core. To determine the importance of IgG for atherosclerosis, we purified IgG from atherosclerotic mice. Their transfer but not IgG from nonatherosclerotic mice into
Ldlr
−/−
mice whose B cells are Blimp-1-deficient increased atherosclerosis; transfer was associated with IgG accumulating in atherosclerotic lesions, increased lesion inflammatory cytokines, apoptotic cell numbers, and necrotic core size.
Conclusions—
The mechanism by which FO B cells promote atherosclerosis is highly dependent on their expression of MHCII, CD40, and Blimp-1. FO B cell differentiation into IgG-producing plasma cells also is critical for their proatherogenic actions. Targeting B–T cell interactions and pathogenic IgG may provide novel therapeutic strategies to prevent atherosclerosis and its adverse cardiovascular complications.
Collapse
Affiliation(s)
- Christopher Tay
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Yu-Han Liu
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Peter Kanellakis
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Axel Kallies
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia (A.K.)
| | - Yi Li
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Anh Cao
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Hamid Hosseini
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Peter Tipping
- Department of Medicine, Centre for Inflammatory Diseases (P.T., B.-H.T., T.K)
| | - Ban-Hock Toh
- Department of Medicine, Centre for Inflammatory Diseases (P.T., B.-H.T., T.K)
| | - Alex Bobik
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
- Department of Immunology (A.B.), Monash University, Melbourne, Victoria, Australia
| | - Tin Kyaw
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
- Department of Medicine, Centre for Inflammatory Diseases (P.T., B.-H.T., T.K)
| |
Collapse
|
12
|
Musette P, Bouaziz JD. B Cell Modulation Strategies in Autoimmune Diseases: New Concepts. Front Immunol 2018; 9:622. [PMID: 29706952 PMCID: PMC5908887 DOI: 10.3389/fimmu.2018.00622] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/13/2018] [Indexed: 12/04/2022] Open
Abstract
B cells are major effector cells in autoimmunity through antibody production, T cell help and pro-inflammatory cytokine production. Major advances have been made in human B cell biology knowledge using rituximab and type II new anti-CD20 antibodies, anti-CD19 antibodies, anti-CD22 antibodies, autoantigen specific B cell depleting therapy (chimeric antigen receptor T cells), and B cell receptor signaling inhibition (Bruton’s tyrosine kinase inhibitors). However, in certain circumstances B cell depleting therapy may lead to the worsening of the autoimmune disease which is in accordance with the existence of a regulatory B cell population. Current concepts and future directions for B cell modulating therapies in autoimmune diseases with a special focus on pemphigus are discussed.
Collapse
Affiliation(s)
- Philippe Musette
- Dermatology Department, INSERM U976, Rouen University Hospital, Rouen, France
| | - Jean David Bouaziz
- Dermatology Department, INSERM U976, Saint Louis University Hospital, Paris, France
| |
Collapse
|
13
|
Wypych TP, Marzi R, Wu GF, Lanzavecchia A, Sallusto F. Role of B cells in T H cell responses in a mouse model of asthma. J Allergy Clin Immunol 2017; 141:1395-1410. [PMID: 28889953 DOI: 10.1016/j.jaci.2017.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/22/2017] [Accepted: 09/01/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND The importance of B lymphocytes to present antigens for antibody production is well documented. In contrast, very little is known about their capacity to influence CD4+ T-cell activation during a primary or secondary response to allergens. OBJECTIVE Using mouse models of asthma, we investigated the role of B cells as antigen-presenting cells in priming and maintenance of TH cell responses. METHODS Mice were immunized through the intranasal route with house dust mite (HDM) extract derived from Dermatophagoides pteronyssinus. B cells were depleted in HDM-sensitized animals to investigate the importance of B cells in maintenance of the allergic response. B cells were depleted before HDM sensitization to investigate the role of B cells in T-cell priming; furthermore, HDM sensitization was performed in mice with MHC class II expression restricted to the B-cell lineage. RESULTS We found that B cells serve as potent antigen-presenting cells ex vivo and restimulate in vivo-primed HDM-specific TH cells. HDM antigens were taken up by B cells independently of B-cell receptor specificity, indicating that HDM uptake and antigen presentation to CD4+ T cells is not restricted to rare B cells carrying HDM-specific B cell receptors. B-cell depletion before HDM challenge in HDM-sensitized mice resulted in a dramatic reduction of allergic response, indicating the role of B cells in amplification of TH2 responses. In contrast, HDM sensitization of mice in which MHC class II expression was restricted to B cells revealed the inability of these cells to prime TH2 responses but highlighted their unexpected role in priming TH1 and TH17 responses. CONCLUSION Collectively, these data reveal new mechanisms leading to initiation and exacerbation of the allergic response that might have implications for designing new therapeutic strategies to combat HDM allergy.
Collapse
Affiliation(s)
- Tomasz Piotr Wypych
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Roberta Marzi
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Gregory F Wu
- Department of Neurology, Washington University, St Louis, Mo
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.
| |
Collapse
|
14
|
Devarapu SK, Lorenz G, Kulkarni OP, Anders HJ, Mulay SR. Cellular and Molecular Mechanisms of Autoimmunity and Lupus Nephritis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:43-154. [PMID: 28526137 DOI: 10.1016/bs.ircmb.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoimmunity involves immune responses directed against self, which are a result of defective self/foreign distinction of the immune system, leading to proliferation of self-reactive lymphocytes, and is characterized by systemic, as well as tissue-specific, inflammation. Numerous mechanisms operate to ensure the immune tolerance to self-antigens. However, monogenetic defects or genetic variants that weaken immune tolerance render susceptibility to the loss of immune tolerance, which is further triggered by environmental factors. In this review, we discuss the phenomenon of immune tolerance, genetic and environmental factors that influence the immune tolerance, factors that induce autoimmunity such as epigenetic and transcription factors, neutrophil extracellular trap formation, extracellular vesicles, ion channels, and lipid mediators, as well as costimulatory or coinhibitory molecules that contribute to an autoimmune response. Further, we discuss the cellular and molecular mechanisms of autoimmune tissue injury and inflammation during systemic lupus erythematosus and lupus nephritis.
Collapse
Affiliation(s)
- S K Devarapu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - G Lorenz
- Klinikum rechts der Isar, Abteilung für Nephrologie, Technische Universität München, Munich, Germany
| | | | - H-J Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - S R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
15
|
Bogolyubova AV, Belousov PV. Inflammatory immune infiltration in human tumors: Role in pathogenesis and prognostic and diagnostic value. BIOCHEMISTRY (MOSCOW) 2016; 81:1261-1273. [DOI: 10.1134/s0006297916110043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Zhu LY, Shao T, Nie L, Zhu LY, Xiang LX, Shao JZ. Evolutionary implication of B-1 lineage cells from innate to adaptive immunity. Mol Immunol 2015; 69:123-30. [PMID: 26573260 DOI: 10.1016/j.molimm.2015.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 11/27/2022]
Abstract
The paradigm that B cells mainly play a central role in adaptive immunity may have to be reevaluated because B-1 lineage cells have been found to exhibit innate-like functions, such as phagocytic and bactericidal activities. Therefore, the evolutionary connection of B-1 lineage cells between innate and adaptive immunities have received much attention. In this review, we summarized various innate-like characteristics of B-1 lineage cells, such as natural antibody production, antigen-presenting function in primary adaptive immunity, and T cell-independent immune responses. These characteristics seem highly conserved between fish B cells and mammalian B-1 cells during vertebrate evolution. We proposed an evolutionary outline of B cells by comparing biological features, including morphology, phenotype, ontogeny, and functional activity between B-1 lineage cells and macrophages or B-2 cells. The B-1 lineage may be a transitional cell type between phagocytic cells (e.g., macrophages) and B-2 cells that functionally connects innate and adaptive immunities. Our discussion would contribute to the understanding on the origination of B cells specialized in adaptive immunity from innate immunity. The results might provide further insight into the evolution of the immune system as a whole.
Collapse
Affiliation(s)
- Lv-yun Zhu
- College of Science, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China; College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China
| | - Tong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China
| | - Li Nie
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China
| | - Ling-yun Zhu
- College of Science, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Li-xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China.
| | - Jian-zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, People's Republic of China.
| |
Collapse
|
17
|
Germain C, Gnjatic S, Dieu-Nosjean MC. Tertiary Lymphoid Structure-Associated B Cells are Key Players in Anti-Tumor Immunity. Front Immunol 2015; 6:67. [PMID: 25755654 PMCID: PMC4337382 DOI: 10.3389/fimmu.2015.00067] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/02/2015] [Indexed: 12/25/2022] Open
Abstract
It is now admitted that the immune system plays a major role in tumor control. Besides the existence of tumor-specific T cells and B cells, many studies have demonstrated that high numbers of tumor-infiltrating lymphocytes are associated with good clinical outcome. In addition, not only the density but also the organization of tumor-infiltrating immune cells has been shown to determine patient survival. Indeed, more and more studies describe the development within the tumor microenvironment of tertiary lymphoid structures (TLS), whose presence has a positive impact on tumor prognosis. TLS are transient ectopic lymphoid aggregates displaying the same organization and functionality as canonical secondary lymphoid organs, with T-cell-rich and B-cell-rich areas that are sites for the differentiation of effector and memory T cells and B cells. However, factors favoring the emergence of such structures within tumors still need to be fully characterized. In this review, we survey the state of the art of what is known about the general organization, induction, and functionality of TLS during chronic inflammation, and more especially in cancer, with a particular focus on the B-cell compartment. We detail the role played by TLS B cells in anti-tumor immunity, both as antigen-presenting cells and tumor antigen-specific antibody-secreting cells, and raise the question of the capacity of chemotherapeutic and immunotherapeutic agents to induce the development of TLS within tumors. Finally, we explore how to take advantage of our knowledge on TLS B cells to develop new therapeutic tools.
Collapse
Affiliation(s)
- Claire Germain
- Laboratory Cancer, Immune Control and Escape, Cordeliers Research Center, INSERM UMRS1138 , Paris , France ; UMRS1138, University Pierre and Marie Curie , Paris , France ; UMRS1138, University Paris Descartes , Paris , France
| | - Sacha Gnjatic
- Division of Hematology, Oncology and Immunology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Marie-Caroline Dieu-Nosjean
- Laboratory Cancer, Immune Control and Escape, Cordeliers Research Center, INSERM UMRS1138 , Paris , France ; UMRS1138, University Pierre and Marie Curie , Paris , France ; UMRS1138, University Paris Descartes , Paris , France
| |
Collapse
|
18
|
Wang Y, Han X. B Cells with Regulatory Function in Human Diseases. AUTOIMMUNE DISEASES AND THERAPEUTIC APPROACHES : OPEN ACCESS 2014; 1:107. [PMID: 26973880 PMCID: PMC4788385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Yuhua Wang
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, USA
| | - Xiaozhe Han
- Corresponding Author: Xiaozhe Han, The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, USA; Tel: 617-892-8447; Fax: 617-892-8612;
| |
Collapse
|
19
|
Lykken JM, DiLillo DJ, Weimer ET, Roser-Page S, Heise MT, Grayson JM, Weitzmann MN, Tedder TF. Acute and chronic B cell depletion disrupts CD4+ and CD8+ T cell homeostasis and expansion during acute viral infection in mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:746-56. [PMID: 24928986 DOI: 10.4049/jimmunol.1302848] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
B cells provide humoral protection against pathogens and promote cellular immunity through diverse nonclassical effector functions. To assess B cell function in promoting T cell homeostasis, mature B cells were either acutely or chronically depleted in mice using CD20 mAb. Acute B cell depletion in either 2- or 4-mo-old mice significantly reduced spleen and lymph node CD4(+) and CD8(+) T cell numbers, including naive, activated, and Foxp3(+)CD25(+)CD4(+) regulatory T cell subsets. The numbers of IFN-γ- and TNF-α-producing T cells were also significantly reduced. Chronic B cell depletion for 6 mo in aged naive mice resulted in a 40-70% reduction in activated CD4(+) and CD8(+) T cell numbers and 20-50% reductions in IFN-γ-producing T cells. Therefore, B cells were necessary for maintaining naive CD4(+) and CD8(+) T cell homeostasis for subsequent optimal T cell expansion in young and old mice. To determine the significance of this finding, a week of B cell depletion in 4-mo-old mice was followed by acute viral infection with lymphocytic choriomeningitis virus Armstrong. Despite their expansion, activated and cytokine-producing CD4(+) and CD8(+) T cell numbers were still significantly reduced 1 wk later. Moreover, viral peptide-specific CD4(+) and CD8(+) T cell numbers and effector cell development were significantly reduced in mice lacking B cells, whereas lymphocytic choriomeningitis virus titers were dramatically increased. Thus, T cell function is maintained in B cell-depleted mice, but B cells are required for optimal CD4(+) and CD8(+) T cell homeostasis, activation, and effector development in vivo, particularly during responses to acute viral infection.
Collapse
Affiliation(s)
- Jacquelyn M Lykken
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - David J DiLillo
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Eric T Weimer
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Susanne Roser-Page
- Atlanta Department of Veterans Affairs Medical Center, Decatur, GA 30033
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157; and
| | - M Neale Weitzmann
- Atlanta Department of Veterans Affairs Medical Center, Decatur, GA 30033; Division of Endocrinology, Metabolism and Lipids, Emory University School of Medicine, Atlanta, GA 30322
| | - Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
20
|
Barnett LG, Simkins HMA, Barnett BE, Korn LL, Johnson AL, Wherry EJ, Wu GF, Laufer TM. B cell antigen presentation in the initiation of follicular helper T cell and germinal center differentiation. THE JOURNAL OF IMMUNOLOGY 2014; 192:3607-17. [PMID: 24646739 DOI: 10.4049/jimmunol.1301284] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High-affinity class-switched Abs and memory B cells are products of the germinal center (GC). The CD4+ T cell help required for the development and maintenance of the GC is delivered by follicular Th cells (T(FH)), a CD4+ Th cell subset characterized by expression of Bcl-6 and secretion of IL-21. The cellular interactions that mediate differentiation of TFH and GC B cells remain an important area of investigation. We previously showed that MHC class II (MHCII)-dependent dendritic cell Ag presentation is sufficient for the differentiation of a T(FH) intermediate (termed pre-T(FH)), characterized by Bcl-6 expression but lacking IL-21 secretion. In this article, we examine the contributions of MHCII Ag presentation by B cells to T(FH) differentiation and GC responses in several contexts. B cells alone do not efficiently prime naive CD4+ T cells or induce T(FH) after protein immunization; however, during lymphocytic choriomeningitis virus infection, B cells induce T(FH) differentiation despite the lack of effector CD4+ T cell generation. Still, MHCII+ dendritic cells and B cells cooperate for optimal T(FH) and GC B cell differentiation in response to both model Ags and viral infection. This study highlights the roles for B cells in both CD4+ T cell priming and T(FH) differentiation, and demonstrates that different APC subsets work in tandem to mediate the GC response.
Collapse
Affiliation(s)
- Lisa G Barnett
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhu LY, Lin AF, Shao T, Nie L, Dong WR, Xiang LX, Shao JZ. B cells in teleost fish act as pivotal initiating APCs in priming adaptive immunity: an evolutionary perspective on the origin of the B-1 cell subset and B7 molecules. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:2699-714. [PMID: 24532580 DOI: 10.4049/jimmunol.1301312] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The long-held paradigm that B cells cannot uptake nonspecific particulate Ags for the initiation of primary adaptive immunity has been challenged by the recent discovery that teleost B cells have potent phagocytic and microbicidal abilities. This discovery provides preliminary clues that primitive B cells might act as initiating APCs in priming adaptive immunity. In this study, zebrafish B cells clearly showed a potent Ag-presenting ability to both soluble Ags and bacterial particles to prime naive CD4(+) T cell activation. This finding demonstrates the innate-like nature of teleost B cells in the interface of innate and adaptive immunity, indicating that they might consist of a major population of initiating APCs whose performance is similar to that of dendritic cells. Given the functional similarities between teleost B cells and the mammalian B-1 subset, we hypothesize that B-1 lineage and teleost B cells might originate from a common ancestor with potent phagocytic and initiating APC capacities. In addition, CD80/86 and CD83 costimulatory signals were identified as being essential for B cell-initiated adaptive immunity. This result suggests that the costimulatory mechanism originated as early as the origin of adaptive immunity and is conserved throughout vertebrate evolution. In fish, only a single CD80/86 copy exists, which is similar to mammalian CD86 rather than to CD80. Thus, CD86 might be a more primordial B7 family member that originated from fish. This study provides valuable insights into the evolutionary history of professional APCs, B cell lineages, and the costimulatory mechanism underlying adaptive immunity as a whole.
Collapse
Affiliation(s)
- Lv-yun Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Dalloul A. B-cell-mediated strategies to fight chronic allograft rejection. Front Immunol 2013; 4:444. [PMID: 24381571 PMCID: PMC3865384 DOI: 10.3389/fimmu.2013.00444] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/26/2013] [Indexed: 12/29/2022] Open
Abstract
Solid organs have been transplanted for decades. Since the improvement in graft selection and in medical and surgical procedures, the likelihood of graft function after 1 year is now close to 90%. Nonetheless even well-matched recipients continue to need medications for the rest of their lives hence adverse side effects and enhanced morbidity. Understanding Immune rejection mechanisms, is of increasing importance since the greater use of living-unrelated donors and genetically unmatched individuals. Chronic rejection is devoted to T-cells, however the role of B-cells in rejection has been appreciated recently by the observation that B-cell depletion improve graft survival. By contrast however, B-cells can be beneficial to the grafted tissue. This protective effect is secondary to either the secretion of protective antibodies or the induction of B-cells that restrain excessive inflammatory responses, chiefly by local provision of IL-10, or inhibit effector T-cells by direct cellular interactions. As a proof of concept B-cell-mediated infectious transplantation tolerance could be achieved in animal models, and evidence emerged that the presence of such B-cells in transplanted patients correlate with a favorable outcome. Among these populations, regulatory B-cells constitute a recently described population. These cells may develop as a feedback mechanism to prevent uncontrolled reactivity to antigens and inflammatory stimuli. The difficult task for the clinician, is to quantify the respective ratios and functions of “tolerant” vs. effector B-cells within a transplanted organ, at a given time point in order to modulate B-cell-directed therapy. Several receptors at the B-cell membrane as well as signaling molecules, can now be targeted for this purpose. Understanding the temporal expansion of regulatory B-cells in grafted patients and the stimuli that activate them will help in the future to implement specific strategies aimed at fighting chronic allograft rejection.
Collapse
|
23
|
Mathieu M, Cotta-Grand N, Daudelin JF, Boulet S, Lapointe R, Labrecque N. CD40-activated B cells can efficiently prime antigen-specific naïve CD8+ T cells to generate effector but not memory T cells. PLoS One 2012; 7:e30139. [PMID: 22291907 PMCID: PMC3264565 DOI: 10.1371/journal.pone.0030139] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/10/2011] [Indexed: 11/28/2022] Open
Abstract
Background The identification of the signals that should be provided by antigen-presenting cells (APCs) to induce a CD8+ T cell response in vivo is essential to improve vaccination strategies using antigen-loaded APCs. Although dendritic cells have been extensively studied, the ability of other APC types, such as B cells, to induce a CD8+ T cell response have not been thoroughly evaluated. Methodology/Principal Findings In this manuscript, we have characterized the ability of CD40-activated B cells, stimulated or not with Toll-like receptor (TLR) agonists (CpG or lipopolysaccharide) to induce the response of mouse naïve CD8+ T cells in vivo. Our results show that CD40-activated B cells can directly present antigen to naïve CD8+ T cells to induce the generation of potent effectors able to secrete cytokines, kill target cells and control a Listeria monocytogenes infection. However, CD40-activated B cell immunization did not lead to the proper formation of CD8+ memory T cells and further maturation of CD40-activated B cells with TLR agonists did not promote the development of CD8+ memory T cells. Our results also suggest that inefficient generation of CD8+ memory T cells with CD40-activated B cell immunization is a consequence of reduced Bcl-6 expression by effectors and enhanced contraction of the CD8+ T cell response. Conclusions Understanding why CD40-activated B cell immunization is defective for the generation of memory T cells and gaining new insights about signals that should be provided by APCs are key steps before translating the use of CD40-B cell for therapeutic vaccination.
Collapse
Affiliation(s)
- Mélissa Mathieu
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Department of Microbiology and Immunology, University of Montreal, Montréal, Québec, Canada
| | - Natacha Cotta-Grand
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Department of Microbiology and Immunology, University of Montreal, Montréal, Québec, Canada
| | | | - Salix Boulet
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Department of Microbiology and Immunology, University of Montreal, Montréal, Québec, Canada
| | - Réjean Lapointe
- Centre Hospitalier de l'Université de Montréal-Hôpital Notre-Dame Research Center (CRCHUM), Montréal, Québec, Canada
- Department of Medicine, University of Montreal, Montréal, Québec, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Department of Microbiology and Immunology, University of Montreal, Montréal, Québec, Canada
- Department of Medicine, University of Montreal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
24
|
Henningsson F, Ding Z, Dahlin JS, Linkevicius M, Carlsson F, Grönvik KO, Hallgren J, Heyman B. IgE-mediated enhancement of CD4+ T cell responses in mice requires antigen presentation by CD11c+ cells and not by B cells. PLoS One 2011; 6:e21760. [PMID: 21765910 PMCID: PMC3130775 DOI: 10.1371/journal.pone.0021760] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/06/2011] [Indexed: 11/18/2022] Open
Abstract
IgE antibodies, administered to mice together with their specific antigen, enhance antibody and CD4(+) T cell responses to this antigen. The effect is dependent on the low affinity receptor for IgE, CD23, and the receptor must be expressed on B cells. In vitro, IgE-antigen complexes are endocytosed via CD23 on B cells, which subsequently present the antigen to CD4(+) T cells. This mechanism has been suggested to explain also IgE-mediated enhancement of immune responses in vivo. We recently found that CD23(+) B cells capture IgE-antigen complexes in peripheral blood and rapidly transport them to B cell follicles in the spleen. This provides an alternative explanation for the requirement for CD23(+) B cells. The aim of the present study was to determine whether B-cell mediated antigen presentation of IgE-antigen complexes explains the enhancing effect of IgE on immune responses in vivo. The ability of spleen cells, taken from mice 1-4 h after immunization with IgE-antigen, to present antigen to specific CD4(+) T cells was analyzed. Antigen presentation was intact when spleens were depleted of CD19(+) cells (i.e., primarily B cells) but was severely impaired after depletion of CD11c(+) cells (i.e., primarily dendritic cells). In agreement with this, the ability of IgE to enhance proliferation of CD4(+) T cells was abolished in CD11c-DTR mice conditionally depleted of CD11c(+) cells. Finally, the lack of IgE-mediated enhancemen of CD4(+) T cell responses in CD23(-/-) mice could be rescued by transfer of MHC-II-compatible as well as by MHC-II-incompatible CD23(+) B cells. These findings argue against the idea that IgE-mediated enhancement of specific CD4(+) T cell responses in vivo is caused by increased antigen presentation by B cells. A model where CD23(+) B cells act as antigen transporting cells, delivering antigen to CD11c(+) cells for presentation to T cells is consistent with available experimental data.
Collapse
Affiliation(s)
- Frida Henningsson
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Zhoujie Ding
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Joakim S. Dahlin
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Marius Linkevicius
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Fredrik Carlsson
- Department of Immunology, Pathology and Genetics, Uppsala University, Uppsala, Sweden
| | - Kjell-Olov Grönvik
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
- National Veterinary Institute, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
25
|
Ji H, Shen XD, Gao F, Busuttil RW, Zhai Y, Kupiec-Weglinski JW. Alloreactive CD8 T-cell primed/memory responses and accelerated graft rejection in B-cell-deficient sensitized mice. Transplantation 2011; 91:1075-81. [PMID: 21427633 PMCID: PMC3593653 DOI: 10.1097/tp.0b013e31821578da] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND The sensitized patients can develop an accelerated form of graft rejection mediated by humoral and T-cell-mediated responses, which are resistant to currently used immunosuppression. METHODS AND RESULTS In our model of fulminant cardiac allograft rejection in sensitized hosts, groups of wild-type (WT) and B-cell-deficient (BKO) mice (B6) were challenged with skin grafts (B/c). Alloreactive CD8 T effector (Teff) activation and T memory (Tmem) differentiation during a 60-day follow-up period were reduced in the absence of B-cell help. The expression of interleukin (IL)-2Rα, IL-7Rα, and IL-15Rα, which support/program CD8 Teff/Tmem expansion, differentiation, and survival, were selectively decreased in BKO hosts. Unlike in WT, in vivo cytotoxic activity analysis of alloreactive Tmem recall response has revealed decreased donor-type (B/c) but not third-party (C3H) cell lysis in sensitized BKO hosts. However, such impaired allo-Ag specific Tmem recall function was insufficient to markedly prolong cardiac allograft survival in sensitized BKO recipients. Indeed, despite quantitative and statistically significant differences between both animal groups, the biological impact of decreased CD8 Teff/Tmem activation and function in the sensitization phase was marginal. Indeed, cardiac allografts underwent fulminant rejection in sensitized BKO, albeit with somewhat delayed kinetics. Interestingly, unlike in naïve counterparts, the rejection cascade remained CD154 blockade-resistant, evidenced by comparable kinetics, and intra-graft cytokine gene profiles in MR1 monoclonal antibody-treated sensitized WT and BKO hosts. CONCLUSION Although B cells were important for optimal alloreactive CD8 Teff/Tmem function in the sensitization phase, the fulminant rejection of cardiac allografts was B-cell-independent, and CD154 blockade-resistant, as in WT hosts.
Collapse
Affiliation(s)
- Haofeng Ji
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Xiu-da Shen
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Feng Gao
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ronald W. Busuttil
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Yuan Zhai
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
26
|
Martini H, Enright V, Perro M, Workman S, Birmelin J, Giorda E, Quinti I, Lougaris V, Baronio M, Warnatz K, Grimbacher B. Importance of B cell co-stimulation in CD4(+) T cell differentiation: X-linked agammaglobulinaemia, a human model. Clin Exp Immunol 2011; 164:381-7. [PMID: 21488866 DOI: 10.1111/j.1365-2249.2011.04377.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We were interested in the question of whether the congenital lack of B cells actually had any influence on the development of the T cell compartment in patients with agammaglobulinaemia. Sixteen patients with X-linked agammaglobulinaemia (XLA) due to mutations in Btk, nine patients affected by common variable immune deficiency (CVID) with <2% of peripheral B cells and 20 healthy volunteers were enrolled. The T cell phenotype was determined with FACSCalibur and CellQuest Pro software. Mann-Whitney two-tailed analysis was used for statistical analysis. The CD4 T cell memory compartment was reduced in patients with XLA of all ages. This T cell subset encompasses both CD4(+)CD45RO(+) and CD4(+)CD45RO(+)CXCR5(+) cells and both subsets were decreased significantly when compared to healthy controls: P = 0·001 and P < 0·0001, respectively. This observation was confirmed in patients with CVID who had <2% B cells, suggesting that not the lack of Bruton's tyrosine kinase but the lack of B cells is most probably the cause of the impaired CD4 T cell maturation. We postulate that this defect is a correlate of the observed paucity of germinal centres in XLA. Our results support the importance of the interplay between B and T cells in the germinal centre for the activation of CD4 T cells in humans.
Collapse
Affiliation(s)
- H Martini
- Department of Immunology, Royal Free Hospital and University College London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Haas KM, Watanabe R, Matsushita T, Nakashima H, Ishiura N, Okochi H, Fujimoto M, Tedder TF. Protective and pathogenic roles for B cells during systemic autoimmunity in NZB/W F1 mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:4789-800. [PMID: 20368280 PMCID: PMC3734557 DOI: 10.4049/jimmunol.0902391] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Delineating the relative contributions of B lymphocytes during the course of autoimmune disease has been difficult. Therefore, the effects of depleting all mature B cells using a potent CD20 mAb, or of depleting circulating and marginal zone B cells using a ligand-blocking CD22 mAb, were compared in NZB/W F(1) mice, a model for human systemic lupus erythematosus. Single low-dose mAb treatments depleted B cells efficiently in both NZB/W F(1) and C57BL/6 mice. Prophylactic B cell depletion by repeated CD20 mAb treatments prolonged survival during pristane-accelerated lupus in NZB/W F(1) mice, whereas CD22 mAb had little effect. Despite effective B cell depletion, neither mAb treatment prevented autoantibody generation. In addition, CD20, CD22, and control mAb-treated NZB/W F(1) mice developed anti-mouse IgG autoantibodies in contrast to parental NZB and NZW strains, which may have reduced the effectiveness of B cell depletion. Despite this, low-dose CD20 mAb treatment initiated in 12-28-wk-old mice, and administered every 4 wk thereafter, significantly delayed spontaneous disease in NZB/W F(1) mice. By contrast, B cell depletion initiated in 4-wk-old mice hastened disease onset, which paralleled depletion of the IL-10-producing regulatory B cell subset called B10 cells. B10 cells were phenotypically similar in NZB/W F(1) and C57BL/6 mice, but were expanded significantly in young NZB/W F(1) mice. Thus, B cell depletion had significant effects on NZB/W F(1) mouse survival that were dependent on the timing of treatment initiation. Therefore, distinct B cell populations can have opposing protective and pathogenic roles during lupus progression.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Antigens, CD20/immunology
- Autoantibodies/biosynthesis
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- Crosses, Genetic
- Disease Models, Animal
- Female
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/mortality
- Lupus Erythematosus, Systemic/pathology
- Lupus Nephritis/immunology
- Lupus Nephritis/mortality
- Lupus Nephritis/pathology
- Lymphocyte Count
- Lymphocyte Depletion
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NZB
- Sialic Acid Binding Ig-like Lectin 2/immunology
- Survival Rate
- Terpenes/toxicity
Collapse
Affiliation(s)
- Karen M. Haas
- Department of Immunology, Duke University Medical Center, Durham, NC 27710 USA
| | - Rei Watanabe
- Department of Regenerative Medicine, Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - Takashi Matsushita
- Department of Immunology, Duke University Medical Center, Durham, NC 27710 USA
| | - Hiroko Nakashima
- Department of Regenerative Medicine, Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - Nobuko Ishiura
- Department of Regenerative Medicine, Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - Manabu Fujimoto
- Department of Regenerative Medicine, Research Institute, International Medical Center of Japan, Tokyo, Japan
- Department of Dermatology, Kanazawa University Graduate School of Medical Science, Ishikawa 920-8641, Japan
| | - Thomas F. Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
28
|
Korn T, Mitsdoerffer M, Kuchroo VK. Immunological basis for the development of tissue inflammation and organ-specific autoimmunity in animal models of multiple sclerosis. Results Probl Cell Differ 2010; 51:43-74. [PMID: 19513635 DOI: 10.1007/400_2008_17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model for multiple sclerosis (MS) that has shaped our understanding of autoimmune tissue inflammation in the central nervous system (CNS). Major therapeutic approaches to MS have been first validated in EAE. Nevertheless, EAE in all its modifications is not able to recapitulate the full range of clinical and histopathogenic aspects of MS. Furthermore, autoimmune reactions in EAE-prone rodent strains and MS patients may differ in terms of the relative involvement of various subsets of immune cells. However, the role of specific molecules that play a role in skewing the immune response towards pathogenic autoreactivity is very similar in mice and humans. Thus, in this chapter, we will focus on the identification of a novel subset of inflammatory T cells, called Th17 cells, in EAE and their interplay with other immune cells including protective regulatory T cells (T-regs). It is likely that the discovery of Th17 cells and their relationship with T-regs will change our understanding of organ-specific autoimmune diseases in the years to come.
Collapse
Affiliation(s)
- Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany.
| | | | | |
Collapse
|
29
|
Milne K, Köbel M, Kalloger SE, Barnes RO, Gao D, Gilks CB, Watson PH, Nelson BH. Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLoS One 2009; 4:e6412. [PMID: 19641607 PMCID: PMC2712762 DOI: 10.1371/journal.pone.0006412] [Citation(s) in RCA: 333] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 06/26/2009] [Indexed: 12/11/2022] Open
Abstract
Background Tumor-infiltrating T cells are associated with survival in epithelial ovarian cancer (EOC), but their functional status is poorly understood, especially relative to the different risk categories and histological subtypes of EOC. Methodology/Principal Findings Tissue microarrays containing high-grade serous, endometrioid, mucinous and clear cell tumors were analyzed immunohistochemically for the presence of lymphocytes, dendritic cells, neutrophils, macrophages, MHC class I and II, and various markers of activation and inflammation. In high-grade serous tumors from optimally debulked patients, positive associations were seen between intraepithelial cells expressing CD3, CD4, CD8, CD45RO, CD25, TIA-1, Granzyme B, FoxP3, CD20, and CD68, as well as expression of MHC class I and II by tumor cells. Disease-specific survival was positively associated with the markers CD8, CD3, FoxP3, TIA-1, CD20, MHC class I and class II. In other histological subtypes, immune infiltrates were less prevalent, and the only markers associated with survival were MHC class II (positive association in endometrioid cases) and myeloperoxidase (negative association in clear cell cases). Conclusions/Significance Host immune responses to EOC vary widely according to histological subtype and the extent of residual disease. TIA-1, FoxP3 and CD20 emerge as new positive prognostic factors in high-grade serous EOC from optimally debulked patients.
Collapse
Affiliation(s)
- Katy Milne
- Trev and Joyce Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia, Canada
| | - Martin Köbel
- Department of Anatomical Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Steven E. Kalloger
- Department of Anatomical Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Rebecca O. Barnes
- Trev and Joyce Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia, Canada
| | - Dongxia Gao
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - C. Blake Gilks
- Department of Anatomical Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Peter H. Watson
- Trev and Joyce Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia, Canada
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Brad H. Nelson
- Trev and Joyce Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
30
|
Lee BO, Tucker A, Frelin L, Sallberg M, Jones J, Peters C, Hughes J, Whitacre D, Darsow B, Peterson DL, Milich DR. Interaction of the hepatitis B core antigen and the innate immune system. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:6670-81. [PMID: 19454661 PMCID: PMC2685464 DOI: 10.4049/jimmunol.0803683] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies demonstrated that the primary APCs for the hepatitis B core Ag (HBcAg) were B cells and not dendritic cells (DC). We now report that splenic B1a and B1b cells more efficiently present soluble HBcAg to naive CD4(+) T cells than splenic B2 cells. This was demonstrated by direct HBcAg-biotin-binding studies and by HBcAg-specific T cell activation in vitro in cultures of naive HBcAg-specific T cells and resting B cell subpopulations. The inability of DC to function as APCs for exogenous HBcAg relates to lack of uptake of HBcAg, not to processing or presentation, because HBcAg/anti-HBc immune complexes can be efficiently presented by DC. Furthermore, HBcAg-specific CD4(+) and CD8(+) T cell priming with DNA encoding HBcAg does not require B cell APCs. TLR activation, another innate immune response, was also examined. Full-length (HBcAg(183)), truncated (HBcAg(149)), and the nonparticulate HBeAg were screened for TLR stimulation via NF-kappaB activation in HEK293 cells expressing human TLRs. None of the HBc/HBeAgs activated human TLRs. Therefore, the HBc/HBeAg proteins are not ligands for human TLRs. However, the ssRNA contained within HBcAg(183) does function as a TLR-7 ligand, as demonstrated at the T and B cell levels in TLR-7 knockout mice. Bacterial, yeast, and mammalian ssRNA encapsidated within HBcAg(183) all function as TLR-7 ligands. These studies indicate that innate immune mechanisms bridge to and enhance the adaptive immune response to HBcAg and have important implications for the use of hepadnavirus core proteins as vaccine carrier platforms.
Collapse
Affiliation(s)
- Byung O Lee
- Vaccine Research Institute of San Diego, San Diego, CA 92109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Impaired maintenance of naturally acquired T-cell memory to the meningococcus in patients with B-cell immunodeficiency. Blood 2009; 113:4206-12. [DOI: 10.1182/blood-2008-08-171587] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AbstractThe importance of T cells in the generation of antigen-specific B-cell immunity has been extensively described, but the role B cells play in shaping T-cell memory is uncertain. In healthy controls, exposure to Neisseria meningitidis in the upper respiratory tract is associated with the generation of memory T cells in the mucosal and systemic compartments. However, we demonstrate that in B cell–deficient subjects with X-linked agammaglobulinemia (XLA), naturally acquired T-cell memory responses to meningococcal antigens are reduced compared with healthy control patients. This difference is not found in T-cell memory to an obligate respiratory pathogen, influenza virus. Accordingly, we show that meningococcal antigens up-regulate major histocompatibility complex (MHC) class II, CD40, CD86/80 expression on mucosal and systemic associated B cells and that antigen presentation stimulates T-cell proliferation. A similar reduction in N meningitidis but not influenza antigen–specific T-cell memory was observed in subjects with X-linked hyper IgM syndrome (X-HIM), implicating the interaction of CD40-CD40L in this process. Together, these data implicate B cells in the induction and maintenance of T-cell memory to mucosal colonizing bacteria such as N meningitidis and highlight the importance of B cells beyond antibody production but as a target for immune reconstitution.
Collapse
|
32
|
Jennings P, Yuan D. NK cell enhancement of antigen presentation by B lymphocytes. THE JOURNAL OF IMMUNOLOGY 2009; 182:2879-87. [PMID: 19234183 DOI: 10.4049/jimmunol.0803220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag presentation to CD4 T cells can be mediated by a number of cell types depending on the anatomical site in which Ag is first encountered. For blood borne Ags, cells localized in situ in the spleen should be major players. There is now much evidence that B cell Ag presentation may be particularly important in the priming of memory T cells. The majority of NK cells are also localized the spleen. Inasmuch as we have previously shown that NK cells can modulate various aspects of B cell differentiation, we entertained the possibility that NK cells can also influence Ag presentation by B cells. By specific depletion of NK cells before immunization, we show herein that NK cells play an important role in modulating the ability of B cells to process and present Ag to T cells. These effects are particularly important in the generation of memory T cells. The findings are further substantiated by in vitro experiments showing that the enhancement does not require IFN-gamma but is mediated by direct cell-cell interaction. These results show, for the first time, that the rapid activation of a component of the innate response can even exert effects on the Ag-specific memory response.
Collapse
Affiliation(s)
- Paula Jennings
- Graduate Program in Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
33
|
Dalai SK, Mirshahidi S, Morrot A, Zavala F, Sadegh-Nasseri S. Anergy in memory CD4+ T cells is induced by B cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:3221-31. [PMID: 18713993 DOI: 10.4049/jimmunol.181.5.3221] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Induction of tolerance in memory T cells has profound implications in the treatment of autoimmune diseases and transplant rejection. Previously, we reported that the presentation of low densities of agonist peptide/MHC class II complexes induced anergy in memory CD4(+) T cells. In the present study, we address the specific interaction of different types of APCs with memory CD4(+) T cells. A novel ex vivo anergy assay first suggested that B cells induce anergy in memory T cells, and an in vivo cell transfer assay further confirmed those observations. We demonstrated that B cells pulsed with defined doses of Ag anergize memory CD4 cells in vivo. We established that CD11c(+) dendritic cells do not contribute to anergy induction to CD4 memory T cells, because diphtheria toxin receptor-transgenic mice that were conditionally depleted of dendritic cells optimally induced anergy in memory CD4(+) T cells. Moreover, B cell-deficient muMT mice did not induce anergy in memory T cells. We showed that B2 follicular B cells are the specific subpopulation of B cells that render memory T cells anergic. Furthermore, we present data showing that anergy in this system is mediated by CTLA-4 up-regulation on T cells. This is the first study to demonstrate formally that B cells are the APCs that induce anergy in memory CD4(+) T cells.
Collapse
Affiliation(s)
- Sarat K Dalai
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore MD 21205, USA
| | | | | | | | | |
Collapse
|
34
|
Harp CT, Lovett-Racke AE, Racke MK, Frohman EM, Monson NL. Impact of myelin-specific antigen presenting B cells on T cell activation in multiple sclerosis. Clin Immunol 2008; 128:382-91. [DOI: 10.1016/j.clim.2008.05.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/24/2008] [Accepted: 05/02/2008] [Indexed: 11/24/2022]
|
35
|
Ronet C, Voigt H, Himmelrich H, Doucey MA, Hauyon-La Torre Y, Revaz-Breton M, Tacchini-Cottier F, Bron C, Louis J, Launois P. Leishmania major-specific B cells are necessary for Th2 cell development and susceptibility to L. major LV39 in BALB/c mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:4825-35. [PMID: 18354206 DOI: 10.4049/jimmunol.180.7.4825] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B lymphocytes are considered to play a minimal role in host defense against Leishmania major. In this study, the contribution of B cells to susceptibility to infection with different strains of L. major was investigated in BALB/c mice lacking mature B cells due to the disruption of the IgM transmembrane domain (microMT). Whereas BALB/c microMT remained susceptible to infection with L. major IR173 and IR75, they were partially resistant to infection with L. major LV39. Adoptive transfer of naive B cells into BALB/c microMT mice before infection restored susceptibility to infection with L. major LV39, demonstrating a role for B cells in susceptibility to infection with this parasite. In contrast, adoptive transfer of B cells that express an IgM/IgD specific for hen egg lysozyme (HEL), an irrelevant Ag, did not restore disease progression in BALB/c microMT mice infected with L. major LV39. This finding was likely due to the inability of HEL Tg B cells to internalize and present Leishmania Ags to specific T cells. Furthermore, specific Ig did not contribute to disease progression as assessed by transfer of immune serum in BALB/c microMT mice. These data suggest that direct Ag presentation by specific B cells and not Ig effector functions is involved in susceptibility of BALB/c mice to infection with L. major LV39.
Collapse
Affiliation(s)
- Catherine Ronet
- World Health Organization-Immunology Research and Training Centre, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hoehlig K, Lampropoulou V, Roch T, Neves P, Calderon-Gomez E, Anderton SM, Steinhoff U, Fillatreau S. Immune regulation by B cells and antibodies a view towards the clinic. Adv Immunol 2008; 98:1-38. [PMID: 18772002 DOI: 10.1016/s0065-2776(08)00401-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
B lymphocytes contribute to immunity in multiple ways, including production of antibodies, presentation of antigen to T cells, organogenesis of secondary lymphoid organs, and secretion of cytokines. Recent clinical trials have shown that depleting B cells can be highly beneficial for patients with autoimmune diseases, implicating B cells and antibodies as key drivers of pathology. However, it should be kept in mind that B cell responses and antibodies also have important regulatory roles in limiting autoimmune pathology. Here, we analyze clinical examples illustrating the potential of antibodies as treatment for immune-mediated disorders and discuss the underlying mechanisms. Furthermore, we examine the regulatory functions of activated B cells, their involvement in the termination of some experimental autoimmune diseases, and their use in cell-based therapy for such pathologies. These suppressive functions of B cells and antibodies do not only open new ways for harnessing autoimmune illnesses, but they also should be taken into account when designing new strategies for vaccination against microbes and tumors.
Collapse
Affiliation(s)
- Kai Hoehlig
- Laboratory of immune regulation, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Therapeutic B cell depletion impairs adaptive and autoreactive CD4+ T cell activation in mice. Proc Natl Acad Sci U S A 2007; 104:20878-83. [PMID: 18093919 DOI: 10.1073/pnas.0709205105] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
CD20 antibody depletion of B lymphocytes effectively ameliorates multiple T cell-mediated autoimmune diseases through mechanisms that remain unclear. To address this, a mouse CD20 antibody that depletes >95% of mature B cells in mice with otherwise intact immune systems was used to assess the role of B cells in CD4(+) and CD8(+) T cell activation and expansion in vivo. B cell depletion had no direct effect on T cell subsets or the activation status of CD4(+) and CD8(+) T cells in naive mice. However, B cell depletion impaired CD4(+) T cell activation and clonal expansion in response to protein antigens and pathogen challenge, whereas CD8(+) T cell activation was not affected. In vivo dendritic cell ablation, along with CD20 immunotherapy, revealed that optimal antigen-specific CD4(+) T cell priming required both B cells and dendritic cells. Most importantly, B cell depletion inhibited antigen-specific CD4(+) T cell expansion in both collagen-induced arthritis and autoimmune diabetes mouse models. These results provide direct evidence that B cells contribute to T cell activation and expansion in vivo and offer insights into the mechanism of action for B cell depletion therapy in the treatment of autoimmunity.
Collapse
|
38
|
Anderson SM, Tomayko MM, Ahuja A, Haberman AM, Shlomchik MJ. New markers for murine memory B cells that define mutated and unmutated subsets. ACTA ACUST UNITED AC 2007; 204:2103-14. [PMID: 17698588 PMCID: PMC2118690 DOI: 10.1084/jem.20062571] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The study of murine memory B cells has been limited by small cell numbers and the lack of a definitive marker. We have addressed some of these difficulties with hapten-specific transgenic (Tg) mouse models that yield relatively large numbers of antigen-specific memory B cells upon immunization. Using these models, along with a 5-bromo-2′-deoxyuridine (BrdU) pulse-label strategy, we compared memory cells to their naive precursors in a comprehensive flow cytometric survey, thus revealing several new murine memory B cell markers. Most interestingly, memory cells were phenotypically heterogeneous. Particularly surprising was the finding of an unmutated memory B cell subset identified by the expression of CD80 and CD35. We confirmed these findings in an analogous V region knock-in mouse and/or in non-Tg mice. There also was anatomic heterogeneity, with BrdU+ memory cells residing not just in the marginal zone, as had been thought, but also in splenic follicles. These studies impact the current understanding of murine memory B cells by identifying new phenotypes and by challenging assumptions about the location and V region mutation status of memory cells. The apparent heterogeneity in the memory compartment implies either different origins and/or different functions, which we discuss.
Collapse
Affiliation(s)
- Shannon M Anderson
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
39
|
Carlsson F, Hjelm F, Conrad DH, Heyman B. IgE Enhances Specific Antibody and T-cell Responses in Mice Overexpressing CD23. Scand J Immunol 2007; 66:261-70. [PMID: 17635803 DOI: 10.1111/j.1365-3083.2007.01953.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
IgE administered with its specific antigen in vivo induces enhanced proliferation of specific T cells as well as enhanced production of specific antibodies. Both effects are dependent on the low-affinity receptor for IgE (CD23) and the underlying mechanism is thought to be increased antigen presentation following uptake of IgE/antigen complexes via CD23(+) B cells. By contrast, CD23 negatively regulates antibody responses to antigens administered with alum, i.e. without IgE. This effect has been observed as low IgG1 and IgE responses in transgenic mice overexpressing CD23 (CD23Tg). The present study was designed to test whether IgE could enhance antibody and T-cell responses in CD23Tg animals or whether CD23's downregulatory effect precludes IgE-mediated enhancement. IgE-anti-TNP administered with OVA-TNP enhances the OVA-specific antibody responses in wild-type (wt) and CD23Tg mice equally well. Interestingly, the total magnitude of antibody responses to IgE + OVA-TNP and to uncomplexed OVA-TNP, as well as to sheep erythrocytes and keyhole limpet haemocyanine, were lower in the CD23Tg mice. IgE induced proliferation of OVA-specific CD4(+) T cells to the same degree in wt and CD23Tg mice. The effect on T cells was dependent on CD23(+) B cells as demonstrated in in vitro proliferation assays. In conclusion, CD23 does indeed have dual immunoregulatory effects in the same animal. The receptor mediates enhancement of antibody and T-cell responses to IgE-complexed antigen, most likely via increased presentation of complexed antigen, while it negatively regulates the total antibody response to a variety of antigens.
Collapse
Affiliation(s)
- F Carlsson
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
40
|
Bakács T, Mehrishi JN, Szabados T, Varga L, Szabó M, Tusnády G. T Cells Survey the Stability of the Self: A Testable Hypothesis on the Homeostatic Role of TCR-MHC Interactions. Int Arch Allergy Immunol 2007; 144:171-82. [PMID: 17541288 DOI: 10.1159/000103282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 04/11/2007] [Indexed: 01/20/2023] Open
Abstract
In the lifetime of an individual, every single gene will have undergone mutation on about 10(10) separate occasions. Nevertheless, cancer occurs mainly with advancing age. Here, we hypothesize that the evolutionary pressure driving the creation of the T cell receptor (TCR) repertoire was primarily the homeostatic surveillance of the genome. The subtly variable T cells may in fact constitute an evolutionary link between the invariable innate and hypervariable B cell systems. The new model is based on the homeostatic role of T cells, suggesting that molecular complementarity between the positively selected TCR and the self peptide-presenting major histocompatibility complex molecules establishes and regulates homeostasis, strictly limiting variations of its components. Notwithstanding, the 'homeostatic role of T cells' model offers a more realistic explanation as to how a naïve clonal immune system can cope with the much faster replicating pathogens, despite a limited repertoire that is capable of facing only a small fraction of the vast antigenic universe at a time.
Collapse
Affiliation(s)
- Tibor Bakács
- Department of Probability, Alfred Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
41
|
Christensen SR, Shlomchik MJ. Regulation of lupus-related autoantibody production and clinical disease by Toll-like receptors. Semin Immunol 2007; 19:11-23. [PMID: 17276080 PMCID: PMC2709770 DOI: 10.1016/j.smim.2006.12.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 12/10/2006] [Indexed: 12/23/2022]
Abstract
Autoantigens that contain DNA, RNA, or self-IgG are preferred targets for autoantibodies in systemic lupus erythematosus (SLE). B cells promote SLE pathogenesis by producing autoantibodies, activating autoreactive T cells, and secreting cytokines. We discuss how certain autoreactive B cells are selectively activated, with emphasis on the roles of key Toll-like receptors (TLRs). Although TLR7, which recognizes ssRNA, promotes autoimmune disease, TLR9, which recognizes DNA, unexpectedly regulates disease, despite being required for the secretion of anti-chromatin autoantibodies. We describe positive feedback loops involving B cells, T cells, DCs, and soluble mediators, and how these networks are regulated by TLR signals.
Collapse
Affiliation(s)
- Sean R Christensen
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8035, United States.
| | | |
Collapse
|
42
|
Yan J, Harvey BP, Gee RJ, Shlomchik MJ, Mamula MJ. B cells drive early T cell autoimmunity in vivo prior to dendritic cell-mediated autoantigen presentation. THE JOURNAL OF IMMUNOLOGY 2006; 177:4481-7. [PMID: 16982884 DOI: 10.4049/jimmunol.177.7.4481] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Both B cells and dendritic cells (DCs) have been implicated as autoantigen-presenting cells in the activation of self-reactive T cells. However, most self-proteins are ubiquitously and/or developmentally expressed, making it difficult to determine the source and the exposure of autoantigens to APCs in a controlled manner. In this study, we have used an Ig transgenic mouse model to examine the mechanisms by which B cells and other APCs acquire and present lupus autoantigens in vivo. Targeting a lupus autoantigen, the small nuclear ribonucleoprotein particle D protein, to the BCR activates autoreactive T cells in the periphery. Our in vivo studies demonstrate that autoantigen-specific B cells, when present in the repertoire, are the first subset of APCs to capture and present self-proteins for activating T cells. Thereafter, DCs acquire self-Ag and become effective APCs for stimulating the same subsets of autoreactive T cells. This mechanism provides one explanation of how early steps in autoimmunity can focus responses, via BCR, at a small group of self-proteins among the total milieu of intracellular self-proteins. Subsequently, DCs and other professional APCs may then amplify and perpetuate the autoimmune T cell response.
Collapse
Affiliation(s)
- Jun Yan
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | | | | | | | | |
Collapse
|
43
|
Horna P, Cuenca A, Cheng F, Brayer J, Wang HW, Borrello I, Levitsky H, Sotomayor EM. In vivo disruption of tolerogenic cross-presentation mechanisms uncovers an effective T-cell activation by B-cell lymphomas leading to antitumor immunity. Blood 2006; 107:2871-8. [PMID: 16339406 PMCID: PMC1895389 DOI: 10.1182/blood-2005-07-3014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bone marrow-derived antigen-presenting cells (APCs) play a central role in the induction of tolerance to tumor antigens expressed by B-cell lymphomas. Here we show that in vivo disruption of this APC-mediated tolerogenic mechanism unveils an intrinsic ability of malignant B cells to efficiently present tumor antigens to antigen-specific CD4+ T cells, resulting in a strong antitumor effect. This intrinsic antigen-presenting ability of malignant B cells is, however, overridden by tolerogenic bone marrow-derived APCs, leading instead to T-cell unresponsiveness and lack of antitumor effect. These results highlight the concept that therapeutic strategies aimed at enhancing the antigen-presenting function of B-cell lymphomas might not succeed unless the tolerogenic mechanisms mediated by bone marrow-derived APCs are disrupted in the first place.
Collapse
Affiliation(s)
- Pedro Horna
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, MRC 4 East, Rm 4072-H, 12902 Magnolia Dr, Tampa, FL 33612-9497, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lang ML, Glatman-Freedman A. Do CD1-restricted T cells contribute to antibody-mediated immunity against Mycobacterium tuberculosis? Infect Immun 2006; 74:803-9. [PMID: 16428722 PMCID: PMC1360325 DOI: 10.1128/iai.74.2.803-809.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mark L Lang
- Department of Microbiology and Immunology, 632W Borwell Building, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA.
| | | |
Collapse
|
45
|
Getahun A, Heyman B. How antibodies act as natural adjuvants. Immunol Lett 2005; 104:38-45. [PMID: 16364455 DOI: 10.1016/j.imlet.2005.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 11/05/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
Antibodies can act like adjuvants. They can potently enhance the antibody response, and in the case of IgG and IgE also the T cell response, to the very antigen they are specific for. In this review we will discuss the recent advances made in our understanding of the underlying mechanisms of antibody-mediated feedback enhancement. The immuno-stimulatory properties of IgM, IgG1, IgG2a, IgG2b, IgG3 and IgE will be reviewed in relationship to the complement system and Fc receptors and the physiological relevance will be discussed.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden.
| | | |
Collapse
|
46
|
Horne PH, Lunsford KE, Eiring AM, Wang Y, Gao D, Bumgardner GL. CD4+ T-cell-dependent immune damage of liver parenchymal cells is mediated by alloantibody. Transplantation 2005; 80:514-21. [PMID: 16123727 DOI: 10.1097/01.tp.0000168342.57948.68] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Allogeneic hepatocytes initiate both CD4- and CD8-dependent rejection responses. The current studies address the hypothesis that acute damage of allogeneic liver parenchymal cells by the CD4-dependent pathway is alloantibody-mediated and examines immune conditions which promote activation of this pathway. METHODS The role of alloantibody in CD4-dependent hepatocyte rejection was evaluated by assessing hepatocyte (FVB/N, H-2q) survival in CD8-depleted B-cell knockout (KO) (H-2b) recipients and by monitoring hepatocyte survival in C57BL/6.SCID (H-2b) recipients transfused with donor-reactive alloantibody. The development of donor-reactive alloantibody in C57BL/6 (H-2b), CD8-depleted C57BL/6, CD8 KO (H-2b), IFN-gamma KO (H-2b), perforin KO (H-2b), and FasL mutant gld/gld (H-2b) hepatocyte recipients was assessed. RESULTS Hepatocyte rejection in B-cell KO mice was significantly delayed by CD8+ T-cell depletion (median survival time [MST], 35 days) when compared to untreated (MST, 8 days) and CD4-depleted (MST, 10 days) recipient mice. Transfusion of donor-reactive alloantibody into SCID recipients with functional hepatocellular allografts was sufficient to precipitate rejection in a dose-dependent fashion. Donor-reactive alloantibody was minimal in the serum of C57BL/6 hepatocyte recipients, but was produced in significant quantities in hepatocyte recipients genetically deficient in or depleted of CD8+ T cells and in recipients with impaired cytotoxic effector mechanisms. In addition, recipients with defects in Th1 immunity, such as IFN-gamma KO recipients, also produced readily detectable alloantibody. CONCLUSIONS Collectively, these data support the hypothesis that acute immune damage of allogeneic hepatocytes by the CD4-dependent pathway is mediated by alloantibody and that this pathway is favored when Th1- or cell-mediated cytotoxic effector immune mechanisms are impaired.
Collapse
Affiliation(s)
- Phillip H Horne
- Integrated Biomedical Science Graduate Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210-1250, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kleindienst P, Brocker T. Concerted antigen presentation by dendritic cells and B cells is necessary for optimal CD4 T-cell immunity in vivo. Immunology 2005; 115:556-64. [PMID: 16011524 PMCID: PMC1782172 DOI: 10.1111/j.1365-2567.2005.02196.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The relative contributions of different types of antigen presenting cells to T-cell activation, expansion and induction of effector functions are still not fully understood. In order to evaluate the roles of dendritic versus B cells during these phases of a CD4 T-cell response in vivo, we adoptively transferred major histocompatibility complex class II restricted, T-cell receptor-transgenic CD4+ T cells into transgenic mice expressing selectively the T-cell restricting class II molecules on either dendritic cells, B cells or both. Upon immunization with peptide antigen, we observed that dendritic cells were sufficient to induce activation, expansion, interleukin-2 production and germinal centre migration of antigen-specific T cells, independently of other antigen-presenting cells. In contrast, neither resting nor activated B cells had similar antigen-presenting capacities in vivo. However, in double transgenic mice where both B cells and dendritic cells were capable of presenting antigen, T cells showed increased proliferation, expansion and cytokine production in vivo. Moreover, higher antigen-specific CD4 T-cell numbers accumulated in germinal centres. Our data demonstrate that dendritic cells are sufficient to activate naive CD4 T cells in vivo, but B cells subsequently can enhance CD4 T-cell expansion further.
Collapse
Affiliation(s)
- Petra Kleindienst
- Institute for Immunology, Ludwig- Maximilians-University Munich, Munich, Germany
| | | |
Collapse
|
48
|
Getahun A, Hjelm F, Heyman B. IgE Enhances Antibody and T Cell Responses In Vivo via CD23+ B Cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:1473-82. [PMID: 16034084 DOI: 10.4049/jimmunol.175.3.1473] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IgE Abs, passively administered together with their specific Ag, can enhance the production of Abs recognizing this Ag by >100-fold. IgE-mediated feedback enhancement requires the low affinity receptor for IgE, CD23. One possible mechanism is that B cells take up IgE-Ag via CD23 and efficiently present Ag to Th cells, resulting in better Ab responses. To test whether IgE Abs have an effect on Th cells in vivo, mice were adoptively transferred with CD4+ T cells expressing a transgenic OVA-specific TCR, before immunization with IgE anti-TNP (2,4,6-trinitrophenyl) plus OVA-TNP or with OVA-TNP alone. IgE induced a 6- to 21-fold increase in the number of OVA-specific T cells. These cells acquired an activated phenotype and were visible in splenic T cell zones. The T cell response peaked 3 days after immunization and preceded the OVA-specific Ab response by a few days. Transfer of CD23+ B cells to CD23-deficient mice rescued their ability to respond to IgE-Ag. Interestingly, in this situation also CD23-negative B cells produce enhanced levels of OVA-specific Abs. The data are compatible with the Ag presentation model and suggest that B cells can take up Ag via "unspecific" receptors and activate naive T cells in vivo.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/physiology
- Animals
- Antibody Formation/genetics
- Antigen Presentation/genetics
- Antigen-Antibody Complex/administration & dosage
- Antigen-Antibody Complex/physiology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- B-Lymphocyte Subsets/transplantation
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/transplantation
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Haptens/administration & dosage
- Haptens/immunology
- Immunoglobulin E/administration & dosage
- Immunoglobulin E/metabolism
- Immunoglobulin E/physiology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Congenic
- Mice, Inbred BALB C
- Mice, Transgenic
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- Receptors, IgE/biosynthesis
- Receptors, IgE/deficiency
- Receptors, IgE/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Trinitrobenzenes/administration & dosage
- Trinitrobenzenes/immunology
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
49
|
Wahid R, Cannon MJ, Chow M. Virus-specific CD4+ and CD8+ cytotoxic T-cell responses and long-term T-cell memory in individuals vaccinated against polio. J Virol 2005; 79:5988-95. [PMID: 15857985 PMCID: PMC1091702 DOI: 10.1128/jvi.79.10.5988-5995.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The presence of poliovirus (PV)-specific CD4(+) T cells in individuals vaccinated against polio has been shown, but CD8(+) T-cell responses have not been described. Here, we functionally characterize the CD4(+) T-cell response and show for the first time that dendritic cells and macrophages can stimulate PV-specific CD8(+) T-cell responses in vitro from vaccinees. Both CD4(+) T and CD8(+) T cells secrete gamma interferon in response to PV antigens and are cytotoxic via the perforin/granzyme B-mediated pathway. Furthermore, the T cells also recognize and kill Sabin 1 vaccine-infected targets. The macrophage-stimulated CD4(+) T and CD8(+) T cells most likely represent memory T cells that persist for long periods in vaccinated individuals. Thus, immunity to PV vaccination involves not only an effective neutralizing antibody titer but also long-term CD4(+) and CD8(+) cytotoxic T-cell responses.
Collapse
Affiliation(s)
- Rahnuma Wahid
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 511, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
50
|
Ritchie DS, Yang J, Hermans IF, Ronchese F. B-Lymphocytes activated by CD40 ligand induce an antigen-specific anti-tumour immune response by direct and indirect activation of CD8(+) T-cells. Scand J Immunol 2005; 60:543-51. [PMID: 15584965 DOI: 10.1111/j.0300-9475.2004.01517.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this report, we describe the ability of CD40-ligand (CD40L)-activated, antigen-loaded B-cells to initiate antigen-specific anti-tumour immune responses in vivo. Mice immunized by means of intravenous administration of CD40L-activated B-cells loaded with an MHC class-I-binding peptide, and challenged with a tumour cell line expressing the same class-I epitope, showed a marked delay in tumour growth, compared to non-immunized controls or to mice receiving either freshly isolated B-cells or B-cells activated with lipopolysaccharide or interleukin-4. The ability of CD40L-activated B-cells to induce antigen-specific T-cell activation appeared to be through a combination of cross-presentation of antigen from activated B-cells to resident antigen-presenting cells and direct T-cell activation by the administered B-cells themselves. Immunization with CD40L-activated B-cells may, therefore, represent a means by which to stimulate anti-tumour CD8(+) T-cell responses in vivo.
Collapse
Affiliation(s)
- D S Ritchie
- Malaghan Institute of Medical Research, Wellington School of Medicine, Wellington, New Zealand.
| | | | | | | |
Collapse
|