1
|
Oh S, Liu X, Tomei S, Luo M, Skinner JP, Berzins SP, Naik SH, Gray DHD, Chong MMW. Distinct subpopulations of DN1 thymocytes exhibit preferential γδ T lineage potential. Front Immunol 2023; 14:1106652. [PMID: 37077921 PMCID: PMC10106834 DOI: 10.3389/fimmu.2023.1106652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
The αβ and γδ T cell lineages both differentiate in the thymus from common uncommitted progenitors. The earliest stage of T cell development is known as CD4-CD8- double negative 1 (DN1), which has previously been shown to be a heterogenous mixture of cells. Of these, only the CD117+ fraction has been proposed to be true T cell progenitors that progress to the DN2 and DN3 thymocyte stages, at which point the development of the αβ and γδ T cell lineages diverge. However, recently, it has been shown that at least some γδ T cells may be derived from a subset of CD117- DN thymocytes. Along with other ambiguities, this suggests that T cell development may not be as straightforward as previously thought. To better understand early T cell development, particularly the heterogeneity of DN1 thymocytes, we performed a single cell RNA sequence (scRNAseq) of mouse DN and γδ thymocytes and show that the various DN stages indeed comprise a transcriptionally diverse subpopulations of cells. We also show that multiple subpopulations of DN1 thymocytes exhibit preferential development towards the γδ lineage. Furthermore, specific γδ-primed DN1 subpopulations preferentially develop into IL-17 or IFNγ-producing γδ T cells. We show that DN1 subpopulations that only give rise to IL-17-producing γδ T cells already express many of the transcription factors associated with type 17 immune cell responses, while the DN1 subpopulations that can give rise to IFNγ-producing γδ T cell already express transcription factors associated with type 1 immune cell responses.
Collapse
Affiliation(s)
- Seungyoul Oh
- St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent’s), University of Melbourne, Fitzroy, VIC, Australia
| | - Xin Liu
- St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Sara Tomei
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Mengxiao Luo
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | | | - Stuart P. Berzins
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
- Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC, Australia
| | - Shalin H. Naik
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel H. D. Gray
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Mark M. W. Chong
- St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent’s), University of Melbourne, Fitzroy, VIC, Australia
- *Correspondence: Mark M. W. Chong,
| |
Collapse
|
2
|
Almotiri A, Alzahrani H, Menendez-Gonzalez JB, Abdelfattah A, Alotaibi B, Saleh L, Greene A, Georgiou M, Gibbs A, Alsayari A, Taha S, Thomas LA, Shah D, Edkins S, Giles P, Stemmler MP, Brabletz S, Brabletz T, Boyd AS, Siebzehnrubl FA, Rodrigues NP. Zeb1 modulates hematopoietic stem cell fates required for suppressing acute myeloid leukemia. J Clin Invest 2021; 131:129115. [PMID: 33108352 PMCID: PMC7773410 DOI: 10.1172/jci129115] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Zeb1, a zinc finger E-box binding homeobox epithelial-mesenchymal transition (EMT) transcription factor, confers properties of "stemness," such as self-renewal, in cancer. Yet little is known about the function of Zeb1 in adult stem cells. Here, we used the hematopoietic system as a well-established paradigm of stem cell biology to evaluate Zeb1-mediated regulation of adult stem cells. We employed a conditional genetic approach using the Mx1-Cre system to specifically knock out (KO) Zeb1 in adult hematopoietic stem cells (HSCs) and their downstream progeny. Acute genetic deletion of Zeb1 led to rapid-onset thymic atrophy and apoptosis-driven loss of thymocytes and T cells. A profound cell-autonomous self-renewal defect and multilineage differentiation block were observed in Zeb1-KO HSCs. Loss of Zeb1 in HSCs activated transcriptional programs of deregulated HSC maintenance and multilineage differentiation genes and of cell polarity consisting of cytoskeleton-, lipid metabolism/lipid membrane-, and cell adhesion-related genes. Notably, epithelial cell adhesion molecule (EpCAM) expression was prodigiously upregulated in Zeb1-KO HSCs, which correlated with enhanced cell survival, diminished mitochondrial metabolism, ribosome biogenesis, and differentiation capacity and an activated transcriptomic signature associated with acute myeloid leukemia (AML) signaling. ZEB1 expression was downregulated in AML patients, and Zeb1 KO in the malignant counterparts of HSCs - leukemic stem cells (LSCs) - accelerated MLL-AF9- and Meis1a/Hoxa9-driven AML progression, implicating Zeb1 as a tumor suppressor in AML LSCs. Thus, Zeb1 acts as a transcriptional regulator in hematopoiesis, critically coordinating HSC self-renewal, apoptotic, and multilineage differentiation fates required to suppress leukemic potential in AML.
Collapse
Affiliation(s)
- Alhomidi Almotiri
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom.,College of Applied Medical Sciences-Dawadmi, Shaqra University, Dawadmi, Saudi Arabia
| | - Hamed Alzahrani
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | | | - Ali Abdelfattah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Badi Alotaibi
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Lubaid Saleh
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Adelle Greene
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Mia Georgiou
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Alex Gibbs
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Amani Alsayari
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Sarab Taha
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Leigh-Anne Thomas
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Dhruv Shah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Sarah Edkins
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, United Kingdom
| | - Peter Giles
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, United Kingdom
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Ashleigh S Boyd
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, Royal Free Hospital, and.,Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Florian A Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, United Kingdom
| |
Collapse
|
3
|
Xiao S, Zhang W, Manley NR. Thymic B cell development is controlled by the B potential of progenitors via both hematopoietic-intrinsic and thymic microenvironment-intrinsic regulatory mechanisms. PLoS One 2018; 13:e0193189. [PMID: 29462202 PMCID: PMC5819817 DOI: 10.1371/journal.pone.0193189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hematopoietic stem cells (HSCs) derived from birth through adult possess differing differentiation potential for T or B cell fate in the thymus; neonatal bone marrow (BM) cells also have a higher potential for B cell production in BM compared to adult HSCs. We hypothesized that this hematopoietic-intrinsic B potential might also regulate B cell development in the thymus during ontogeny. METHODS Foxn1lacZ mutant mice are a model in which down regulation of a thymic epithelial cell (TEC) specific transcription factor beginning one week postnatal causes a dramatic reduction of thymocytes production. In this study, we found that while T cells were decreased, the frequency of thymic B cells was greatly increased in these mutants in the perinatal period. We used this model to characterize the mechanisms in the thymus controlling B cell development. RESULTS Foxn1lacZ mutants, T cell committed intrathymic progenitors (DN1a,b) were progressively reduced beginning one week after birth, while thymic B cells peaked at 3-4 weeks with pre-B-II progenitor phenotype, and originated in the thymus. Heterochronic chimeras showed that the capacity for thymic B cell production was due to a combination of higher B potential of neonatal HSCs, combined with a thymic microenvironment deficiency including reduction of DL4 and increase of IL-7 that promoted B cell fate. CONCLUSION Our findings indicate that the capacity and time course for thymic B-cell production are primarily controlled by the hematopoietic-intrinsic potential for B cells themselves during ontogeny, but that signals from TECs microenvironment also influence the frequency and differentiation potential of B cell development in the thymus.
Collapse
Affiliation(s)
- Shiyun Xiao
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia, United States of America
| | - Wen Zhang
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia, United States of America
| | - Nancy R. Manley
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
4
|
The development of T cells from stem cells in mice and humans. Future Sci OA 2017; 3:FSO186. [PMID: 28883990 PMCID: PMC5583695 DOI: 10.4155/fsoa-2016-0095] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
T cells develop from hematopoietic stem cells in the specialized microenvironment of the thymus. The main transcriptional players of T-cell differentiation such as Notch, Tcf-1, Gata3 and Bcl11b have been identified, but their role and regulation are not yet completely understood. In humans, functional experiments on T-cell development have traditionally been rather difficult to perform, but novel in vitro culture systems and in vivo xenograft models have allowed detailed studies on human T-cell development. Recent work has allowed the use of human severe combined immunodeficiency stem cells to unravel developmental checkpoints for human thymocyte development.
Collapse
|
5
|
Kobayashi M, Nabinger SC, Bai Y, Yoshimoto M, Gao R, Chen S, Yao C, Dong Y, Zhang L, Rodriguez S, Yashiro-Ohtani Y, Pear WS, Carlesso N, Yoder MC, Kapur R, Kaplan MH, Daniel Lacorazza H, Zhang ZY, Liu Y. Protein Tyrosine Phosphatase PRL2 Mediates Notch and Kit Signals in Early T Cell Progenitors. Stem Cells 2017; 35:1053-1064. [PMID: 28009085 DOI: 10.1002/stem.2559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/23/2016] [Accepted: 12/08/2016] [Indexed: 01/18/2023]
Abstract
The molecular pathways regulating lymphoid priming, fate, and development of multipotent bone marrow hematopoietic stem and progenitor cells (HSPCs) that continuously feed thymic progenitors remain largely unknown. While Notch signal is indispensable for T cell specification and differentiation, the downstream effectors are not well understood. PRL2, a protein tyrosine phosphatase that regulates hematopoietic stem cell proliferation and self-renewal, is highly expressed in murine thymocyte progenitors. Here we demonstrate that protein tyrosine phosphatase PRL2 and receptor tyrosine kinase c-Kit are critical downstream targets and effectors of the canonical Notch/RBPJ pathway in early T cell progenitors. While PRL2 deficiency resulted in moderate defects of thymopoiesis in the steady state, de novo generation of T cells from Prl2 null hematopoietic stem cells was significantly reduced following transplantation. Prl2 null HSPCs also showed impaired T cell differentiation in vitro. We found that Notch/RBPJ signaling upregulated PRL2 as well as c-Kit expression in T cell progenitors. Further, PRL2 sustains Notch-mediated c-Kit expression and enhances stem cell factor/c-Kit signaling in T cell progenitors, promoting effective DN1-DN2 transition. Thus, we have identified a critical role for PRL2 phosphatase in mediating Notch and c-Kit signals in early T cell progenitors. Stem Cells 2017;35:1053-1064.
Collapse
Affiliation(s)
| | - Sarah C Nabinger
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Yunpeng Bai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Momoko Yoshimoto
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Rui Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Sisi Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chonghua Yao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Yuanshu Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lujuan Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sonia Rodriguez
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Yumi Yashiro-Ohtani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nadia Carlesso
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Mervin C Yoder
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Mark H Kaplan
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Hugo Daniel Lacorazza
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Yan Liu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Tuckett AZ, Zakrzewski JL, Li D, van den Brink MR, Thornton RH. Free-hand ultrasound guidance permits safe and efficient minimally invasive intrathymic injections in both young and aged mice. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1105-1111. [PMID: 25701534 PMCID: PMC4346466 DOI: 10.1016/j.ultrasmedbio.2014.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
The goal of this study was to evaluate whether use of an aseptic free-hand approach to ultrasound-guided injection facilitates injection into the thymic gland in mice. We used this interventional radiology technique in young, aged and immunodeficient mice and found that the thymus was visible in all cases. The mean injection period was 8 seconds in young mice and 19 seconds in aged or immunodeficient mice. Injection accuracy was confirmed by intrathymic location of an injected dye or by in vivo bioluminescence imaging of injected luciferase-expressing cells. Accurate intrathymic injection was confirmed in 97% of cases. No major complications were observed. We conclude that an aseptic freehand technique for ultrasound-guided intrathymic injection is safe and accurate and reduces the time required for intrathymic injections. This method facilitates large-scale experiments and injection of individual thymic lobes and is clinically relevant.
Collapse
Affiliation(s)
| | | | - Duan Li
- Memorial Sloan Kettering Cancer Center, Department of
Radiology
| | - Marcel R.M. van den Brink
- Memorial Sloan Kettering Cancer Center, Department of
Immunology
- Memorial Sloan Kettering Cancer Center, Department of
Medicine
| | | |
Collapse
|
7
|
Bose TO, Colpitts SL, Pham QM, Puddington L, Lefrançois L. CD11a is essential for normal development of hematopoietic intermediates. THE JOURNAL OF IMMUNOLOGY 2014; 193:2863-72. [PMID: 25108025 DOI: 10.4049/jimmunol.1301820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The process of lymphopoiesis begins in the bone marrow (BM) and requires multiple cellular intermediates. For T cell production, lymphoid progenitors exit the BM and home to the thymus where maturation and selection ensue. These processes are dependent on a number of factors, including chemokines and adhesion molecules. Although the β2 integrin CD11a plays an important role in the migration of lymphocytes to lymph nodes, the role of CD11a in T cell development is largely undefined. Our studies now show that, in CD11a(-/-) mice, thymic cellularity was decreased and early T cell development was partially impaired. Remarkably, CD11a was critical for generation of common lymphoid progenitors (CLPs) and lymphoid-primed multipotent progenitors. However, in intact CD11a(-/-) mice, peripheral B and T cell subsets were only modestly altered, suggesting that compensatory mechanisms were operating. In contrast, competitive BM-reconstitution assays revealed an essential role for CD11a in the generation of thymocytes and mature T and B cells. This defect was linked to the requirement for CD11a in the development of CLPs. Furthermore, our results identified CLPs, and not lymphoid-primed multipotent progenitors, as the requisite CD11a-dependent precursor for lymphocyte development. Thus, these findings established a key role for CD11a in lymphopoiesis.
Collapse
Affiliation(s)
- Tina O Bose
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030
| | - Sara L Colpitts
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030
| | - Quynh-Mai Pham
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030
| | - Lynn Puddington
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030
| | - Leo Lefrançois
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
8
|
Abstract
T, B, and NK lymphocytes are generated from pluripotent hematopoietic stem cells through a successive series of lineage restriction processes. Many regulatory components, such as transcription factors, cytokines/cytokine receptors, and signal transduction molecules orchestrate cell fate specification and determination. In particular, transcription factors play a key role in regulating lineage-associated gene programs. Recent findings suggest the involvement of epigenetic factors in the maintenance of cell fate. Here, we review the early developmental events during lymphocyte lineage determination, focusing on the transcriptional networks and epigenetic regulation. Finally, we also discuss the developmental relationship between acquired and innate lymphoid cells.
Collapse
Affiliation(s)
- Tomokatsu Ikawa
- Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan,
| |
Collapse
|
9
|
Abstract
The mouse thymus supports T-cell development, but also contains non-T-cell lineages such as dendritic cells, macrophages, and granulocytes that are necessary for T-cell repertoire selection and apoptotic thymocyte clearance. Early thymic progenitors (ETPs) are not committed to the T-cell lineage, as demonstrated by both in vitro and in vivo assays. Whether ETPs realize non-T-cell lineage potentials in vivo is not well understood and indeed is controversial. In the present study, we investigated whether ETPs are the major precursors of any non-T-lineage cells in the thymus. We analyzed the development of these populations under experimental circumstances in which ETPs are nearly absent due to either abrogated thymic settling or inhibition of early thymic development by genetic ablation of IL-7 receptorα or Hes1. Results obtained using multiple in vivo approaches indicate that the majority of thymic granulocytes derive from ETPs. These data indicate that myelolymphoid progenitors settle the thymus and thus clarify the pathways by which stem cells give rise to downstream blood cell lineages.
Collapse
|
10
|
Martins VC, Ruggiero E, Schlenner SM, Madan V, Schmidt M, Fink PJ, von Kalle C, Rodewald HR. Thymus-autonomous T cell development in the absence of progenitor import. ACTA ACUST UNITED AC 2012; 209:1409-17. [PMID: 22778389 PMCID: PMC3420332 DOI: 10.1084/jem.20120846] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To be added Thymus function is thought to depend on a steady supply of T cell progenitors from the bone marrow. The notion that the thymus lacks progenitors with self-renewal capacity is based on thymus transplantation experiments in which host-derived thymocytes replaced thymus-resident cells within 4 wk. Thymus grafting into T cell–deficient mice resulted in a wave of T cell export from the thymus, followed by colonization of the thymus by host-derived progenitors, and cessation of T cell development. Compound Rag2−/−γc−/−KitW/Wv mutants lack competitive hematopoietic stem cells (HSCs) and are devoid of T cell progenitors. In this study, using this strain as recipients for wild-type thymus grafts, we noticed thymus-autonomous T cell development lasting several months. However, we found no evidence for export of donor HSCs from thymus to bone marrow. A diverse T cell antigen receptor repertoire in progenitor-deprived thymus grafts implied that many thymocytes were capable of self-renewal. Although the process was most efficient in Rag2−/−γc−/−KitW/Wv hosts, γc-mediated signals alone played a key role in the competition between thymus-resident and bone marrow–derived progenitors. Hence, the turnover of each generation of thymocytes is not only based on short life span but is also driven via expulsion of resident thymocytes by fresh progenitors entering the thymus.
Collapse
Affiliation(s)
- Vera C Martins
- Institute for Immunology, University of Ulm, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Belyaev NN, Biró J, Athanasakis D, Fernandez-Reyes D, Potocnik AJ. Global transcriptional analysis of primitive thymocytes reveals accelerated dynamics of T cell specification in fetal stages. Immunogenetics 2012; 64:591-604. [PMID: 22581009 PMCID: PMC3395349 DOI: 10.1007/s00251-012-0620-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/24/2012] [Indexed: 11/24/2022]
Abstract
T cell development constitutes a multistage process allowing the dissection of events resulting in cellular commitment and functional specification in a specialized microenvironment. This process is guided by the appropriate expression of regulatory genetic factors like transcriptional activators or repressors which are, in part, dependent on instructive signals of the microenvironment. To date, it remains unclear whether exactly the same genetic mechanism acts in adult compared to fetal T cell development. In order to directly compare T cell commitment during adult and fetal differentiation, we isolated subsequent stages of intrathymic subpopulations starting with early canonical T cell progenitors up to irreversibly committed T cell precursors. The genome-wide analysis revealed several distinct gene clusters with a specific pattern of gene regulation for each subset. The largest cluster contained genes upregulated after transition through the most primitive pool into the next transitory population with a consistently elevated expression of elements associated with ongoing T cell fate specification, like Gata3 and Tcf7, in fetal progenitors. Furthermore, adult and fetal T cell progenitors occupied distinct "transcriptional territories" revealing a precise land map of the progression to final T cell commitment operating in different developmental windows. The presence and/or elevated expression of elements associated with an ongoing establishment of a T cell signature in the most primitive fetal subset is highly suggestive for an extrathymic initiation of T cell specification and underlines the fundamental differences in fetal versus adult lymphopoiesis.
Collapse
Affiliation(s)
- Nikolai N Belyaev
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, UK
| | | | | | | | | |
Collapse
|
12
|
Billiard F, Lobry C, Darrasse-Jèze G, Waite J, Liu X, Mouquet H, DaNave A, Tait M, Idoyaga J, Leboeuf M, Kyratsous CA, Burton J, Kalter J, Klinakis A, Zhang W, Thurston G, Merad M, Steinman RM, Murphy AJ, Yancopoulos GD, Aifantis I, Skokos D. Dll4-Notch signaling in Flt3-independent dendritic cell development and autoimmunity in mice. ACTA ACUST UNITED AC 2012; 209:1011-28. [PMID: 22547652 PMCID: PMC3348095 DOI: 10.1084/jem.20111615] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Delta-like ligand 4 (Dll4)-Notch signaling is essential for T cell development and alternative thymic lineage decisions. How Dll4-Notch signaling affects pro-T cell fate and thymic dendritic cell (tDC) development is unknown. We found that Dll4 pharmacological blockade induces accumulation of tDCs and CD4(+)CD25(+)FoxP3(+) regulatory T cells (T(reg) cells) in the thymic cortex. Both genetic inactivation models and anti-Dll4 antibody (Ab) treatment promote de novo natural T(reg) cell expansion by a DC-dependent mechanism that requires major histocompatibility complex II expression on DCs. Anti-Dll4 treatment converts CD4(-)CD8(-)c-kit(+)CD44(+)CD25(-) (DN1) T cell progenitors to immature DCs that induce ex vivo differentiation of naive CD4(+) T cells into T(reg) cells. Induction of these tolerogenic DN1-derived tDCs and the ensuing expansion of T(reg) cells are Fms-like tyrosine kinase 3 (Flt3) independent, occur in the context of transcriptional up-regulation of PU.1, Irf-4, Irf-8, and CSF-1, genes critical for DC differentiation, and are abrogated in thymectomized mice. Anti-Dll4 treatment fully prevents type 1 diabetes (T1D) via a T(reg) cell-mediated mechanism and inhibits CD8(+) T cell pancreatic islet infiltration. Furthermore, a single injection of anti-Dll4 Ab reverses established T1D. Disease remission and recurrence are correlated with increased T(reg) cell numbers in the pancreas-draining lymph nodes. These results identify Dll4-Notch as a novel Flt3-alternative pathway important for regulating tDC-mediated T(reg) cell homeostasis and autoimmunity.
Collapse
|
13
|
Haymaker CL, Guloglu FB, Cascio JA, Hardaway JC, Dhakal M, Wan X, Hoeman CM, Zaghouani S, Rowland LM, Tartar DM, VanMorlan AM, Zaghouani H. Bone marrow-derived IL-13Rα1-positive thymic progenitors are restricted to the myeloid lineage. THE JOURNAL OF IMMUNOLOGY 2012; 188:3208-16. [PMID: 22351937 DOI: 10.4049/jimmunol.1103316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The earliest thymic progenitors (ETPs) were recently shown to give rise to both lymphoid and myeloid cells. Whereas the majority of ETPs are derived from IL-7Rα-positive cells and give rise exclusively to T cells, the origin of the myeloid cells remains undefined. In this study, we show both in vitro and in vivo that IL-13Rα1(+) ETPs yield myeloid cells with no potential for maturation into T cells, whereas IL-13Rα1(-) ETPs lack myeloid potential. Moreover, transfer of lineage-negative IL-13Rα1(+) bone marrow stem cells into IL-13Rα1-deficient mice reconstituted thymic IL-13Rα1(+) myeloid ETPs. Myeloid cells or macrophages in the thymus are regarded as phagocytic cells whose function is to clear apoptotic debris generated during T cell development. However, the myeloid cells derived from IL-13Rα1(+) ETPs were found to perform Ag-presenting functions. Thus, IL-13Rα1 defines a new class of myeloid restricted ETPs yielding APCs that could contribute to development of T cells and the control of immunity and autoimmunity.
Collapse
Affiliation(s)
- Cara L Haymaker
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Billiard F, Kirshner JR, Tait M, Danave A, Taheri S, Zhang W, Waite JC, Olson K, Chen G, Coetzee S, Hylton D, Murphy AJ, Yancopoulos GD, Thurston G, Skokos D. Ongoing Dll4-Notch signaling is required for T-cell homeostasis in the adult thymus. Eur J Immunol 2011; 41:2207-16. [PMID: 21598246 DOI: 10.1002/eji.201041343] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/15/2011] [Accepted: 05/12/2011] [Indexed: 11/07/2022]
Abstract
The essential role of the Delta-like ligand 4 (Dll4)-Notch signaling pathway in T-lymphocyte development is well established. It has been shown that specific inactivation of Dll4 on thymic stromal cells during early post-natal development leads to a deregulation in T-cell differentiation. However, whether ongoing Dll4-Notch signaling is required for T-cell development in the adult thymus is unknown. The use of anti-Dll4 Abs allowed us to confirm and expand previous studies by examining the kinetics and the reversibility of Dll4-Notch signaling blockade in T-cell development in adult mice. We found that anti-Dll4 treatment reduced thymic cellularity after 7 days, as a consequence of a developmental delay in T-cell maturation at the pro-T-cell double negative 1 (CD4(-) CD8(-) c-kit(+) CD44(+) CD25(-) ) stage, leading to decreased numbers of immature double-positive (CD4(+) CD8(+) ) T cells without affecting the frequency of mature single positive CD4(+) and CD8(+) thymocytes, while promoting alternative thymic B-cell expansion. This cellular phenotype was similarly observed in both young adult and aged mice (>1.5 years), extending our understanding of the ongoing role for Dll4-Notch signaling during T-cell development in the adult thymus. Finally, after cessation of Dll4 Ab treatment, thymic cellularity and thymocyte subset ratios returned to normal levels, indicating reversibility of this phenotype in both adult and aged mice, which has important implications for potential clinical use of Dll4-Notch inhibitors.
Collapse
|
15
|
Abstract
T cells originate from hematopoietic stem cells (HSCs) in the bone marrow but complete their development in the thymus. HSCs give rise to a variety of non-renewing hematopoietic progenitors, among which a rare subset migrates to the thymus via the bloodstream. The earliest T-cell progenitors identified in the thymus are not T-lineage restricted but possess the ability to give rise to cells of many different lineages. Alternative lineage potentials are gradually lost as progenitors progress toward later developmental stages. Here, we review the early developmental events that might be involved in T-cell lineage fate determination, including the properties of possible thymus-settling progenitors, their homing into the thymus, and their T-cell lineage specification and commitment.
Collapse
Affiliation(s)
- Qi Yang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
16
|
Schlenner SM, Rodewald HR. Early T cell development and the pitfalls of potential. Trends Immunol 2010; 31:303-10. [PMID: 20634137 DOI: 10.1016/j.it.2010.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/04/2010] [Accepted: 06/09/2010] [Indexed: 02/08/2023]
Abstract
The long-standing model for hematopoiesis, which features a dichotomy into separate lymphoid and myeloid branches, predicts that progenitor T cells arise from a lymphocyte-restricted pathway. However, experiments that have detected myeloid potential in progenitor T cells have been reported as evidence to question this model. Mapping physiological differentiation pathways has now led to opposite conclusions, by showing that T cells and thymic myeloid cells have distinct origins and that, in vivo, T cell progenitors lack significant potential for myeloid lineages including dendritic cells. Here, we review the underlying experiments that have led to such fundamentally different conclusions. The current controversy might reflect a need to distinguish between cell fates that are possible experimentally from physiological fate choices, to build a map of immunological differentiation pathways.
Collapse
Affiliation(s)
- Susan M Schlenner
- Department for Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
17
|
Lai JCY, Wlodarska M, Liu DJ, Abraham N, Johnson P. CD45 regulates migration, proliferation, and progression of double negative 1 thymocytes. THE JOURNAL OF IMMUNOLOGY 2010; 185:2059-70. [PMID: 20624943 DOI: 10.4049/jimmunol.0902693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD45 is a protein tyrosine phosphatase that is expressed on all nucleated hematopoietic cells, from stem cells to memory cells. Although its function in regulating the threshold of Ag receptor signaling is well established, its role in other leukocytes, particularly progenitor cells, is not well defined. In this study, we find CD45 affects early thymocyte development. Examination of the CD4(-)CD8(-) double negative (DN) populations revealed a significant reduction in the DN1 population, in both the numbers of CD117(+) DN1 cells (the early thymocyte progenitors) and the CD117(-) DN1 cells in the thymus of CD45(-/-) mice. There was also a reduced frequency of CCR9(+) Lin(-)Sca-1(+)c-Kit(+) cells and common lymphoid progenitors in the CD45(-/-) bone marrow. Competitive bone marrow reconstitution showed a reduced contribution of DN1 cells from CD45(-/-) cells, consistent with an intrinsic defect in these cells. CD45(-/-) DN1 cells exhibited reduced proliferation in vivo and reduced CXCL12-mediated migration in vitro. The loss of CD45 led to the accumulation of an intermediate DN1.5 thymocyte population in vivo that was dependent on Notch for progression. In vivo, CD117(-) DN1 cells gave rise to gammadelta T cells. In vitro, CD117(-) DN1 cells progressed to DN4 on OP9-DL1 cells but CD117(-) DN1 cells lacking CD45 did not. CD45(-/-) CD117(-) DN1 cells were also deficient in TCRbeta expression. Thus, CD45 deficiency affects the development and progression of DN1 thymocytes.
Collapse
Affiliation(s)
- Jacqueline C Y Lai
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
18
|
Sultana DA, Bell JJ, Zlotoff DA, De Obaldia ME, Bhandoola A. Eliciting the T cell fate with Notch. Semin Immunol 2010; 22:254-60. [PMID: 20627765 DOI: 10.1016/j.smim.2010.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
Multipotent progenitors arrive at the thymus via the blood. Constraining the non-T cell fates of these progenitors while promoting the T cell fate is a major task of the thymus. Notch appears to be the initial trigger for a developmental program that eventually results in T cell lineage commitment. Several downstream targets of Notch are known, but the specific roles of each are poorly understood. A greater understanding of how Notch and other thymic signals direct progenitors to a T cell fate could be useful for translational work. For example, such work could eventually allow for the generation of fully competent T cells in vitro that could supplement the waning T cell numbers and function in the elderly and boost T cell-mediated immunity in patients with immunodeficiency and after stem cell transplantation.
Collapse
Affiliation(s)
- Dil Afroz Sultana
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
19
|
Schlenner SM, Madan V, Busch K, Tietz A, Läufle C, Costa C, Blum C, Fehling HJ, Rodewald HR. Fate Mapping Reveals Separate Origins of T Cells and Myeloid Lineages in the Thymus. Immunity 2010; 32:426-36. [DOI: 10.1016/j.immuni.2010.03.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/18/2009] [Accepted: 01/27/2010] [Indexed: 12/21/2022]
|
20
|
Isolation of mouse thymic dendritic cell precursors. Methods Mol Biol 2009. [PMID: 19941119 DOI: 10.1007/978-1-60761-421-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Dendritic cells (DC) are efficient antigen-presenting cells. Their ability to present antigens via MHC class I and MHC class II molecules to T cells allows them not only to initiate an immune response to exogenous pathogens but also to induce immune tolerance to self-antigens. Thymic DC play important roles in the establishment of central immune tolerance by presenting self-antigens to developing thymocytes and subsequently deleting the self-reactive thymocytes and inducing naturally occurring regulatory T cells. DC in the thymus are comprised of plasmacytoid DC (pDC) and conventional DC (cDC) populations. The cDC can be divided into two populations based on the expression of CD8 alpha and Sirp alpha: CD8 alpha(+)Sirp alpha(l) degrees (approximately 70%) and CD8 alpha(l) degrees Sirp alpha(+) (approximately 30%). The CD8 alpha(+)Sirp alpha(l) degrees cDC are generated in the thymus by the earliest intrathymic oligo-potent progenitors that are also precursors for T-lineage cells and natural killer cells (NK cells). Whereas the CD8 alpha(l) degrees Sirp alpha(+)cDC and pDC are migratory DC and originate mainly from peripheral blood. The ability to isolate and purify the earliest intrathymic precursors allows us to generate thymic cDC in culture or in vivo upon intrathymic or intravenous injections. These experimental systems are crucial for studying the development and functions of thymic DC.
Collapse
|
21
|
Kawamoto H, Katsura Y. A new paradigm for hematopoietic cell lineages: revision of the classical concept of the myeloid-lymphoid dichotomy. Trends Immunol 2009; 30:193-200. [PMID: 19356980 DOI: 10.1016/j.it.2009.03.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 12/11/2022]
Abstract
The concept that blood cells arising from hematopoietic stem cells (HSC) can be subdivided into two major lineages, a myelo-erythroid and a lymphoid lineage, has long persisted. Indeed, it has become almost axiomatic that the first branch point from the HSC produces two progenitors, one for myelo-erythroid cells and the other for lymphoid cells. However, recent studies have provided a battery of findings that cannot be explained by this classical model. We will outline how this classical model arose before describing how we came to propose an alternative 'myeloid-based model', in which myeloid potential is retained in erythroid, T, and B cell branches even after these lineages have segregated from each other.
Collapse
Affiliation(s)
- Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| | | |
Collapse
|
22
|
Chi AW, Bell JJ, Zlotoff DA, Bhandoola A. Untangling the T branch of the hematopoiesis tree. Curr Opin Immunol 2009; 21:121-6. [PMID: 19269149 DOI: 10.1016/j.coi.2009.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/26/2009] [Indexed: 12/17/2022]
Abstract
T cells develop in the thymus. Previous work suggested an early separation of lymphoid from myeloerythroid lineages during hematopoiesis and hypothesized the thymus was settled exclusively by lymphoid-restricted hematopoietic progenitors. Recent data have instead established the existence of lymphoid-myeloid progenitors, which possess lymphoid and myeloid lineage potentials but lack erythroid potential. Myeloid and lymphoid potentials are present at the clonal level in early thymic progenitors, confirming that progenitors settling the thymus include lymphoid-myeloid progenitors. These results revise our view of the T lineage branch of hematopoiesis and focus attention on the generation, circulation, and homing of lymphoid-myeloid progenitors to the thymus.
Collapse
Affiliation(s)
- Anthony W Chi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
23
|
Reductive isolation from bone marrow and blood implicates common lymphoid progenitors as the major source of thymopoiesis. Blood 2008; 113:807-15. [PMID: 18927436 DOI: 10.1182/blood-2008-08-173682] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ongoing thymopoiesis requires continual seeding from progenitors that reside within the bone marrow (BM), but the identity of the most proximate prethymocytes has remained controversial. Here we take a comprehensive approach to prospectively identify the major source of thymocyte progenitors that reside within the BM and blood, and find that all thymocyte progenitor activity resides within a rare Flk2(+)CD27(+) population. The BM Flk2(+)CD27(+) subset is predominantly composed of common lymphoid progenitors (CLPs) and multipotent progenitors. Of these 2 populations, only CLPs reconstitute thymopoiesis rapidly after intravenous injection. In contrast, multipotent progenitor-derived cells reconstitute the thymus with delayed kinetics only after they have reseeded the BM, self-renewed, and generated CLPs. These results identify CLPs as the major source of thymocyte progenitors within the BM.
Collapse
|
24
|
Sambandam A, Bell JJ, Schwarz BA, Zediak VP, Chi AW, Zlotoff DA, Krishnamoorthy SL, Burg JM, Bhandoola A. Progenitor migration to the thymus and T cell lineage commitment. Immunol Res 2008; 42:65-74. [DOI: 10.1007/s12026-008-8035-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Abstract
The mammalian blood system contains a multitude of distinct mature cell lineages adapted to serving diverse functional roles. Mutations that abrogate the development or function of one or more of these lineages can lead to profound adverse consequences, such as immunodeficiency, autoimmunity, or anemia. Replacement of hematopoietic stem cells (HSC) that carry such mutations with HSC from a healthy donor can reverse such disorders, but because the risks associated with the procedure are often more serious than the blood disorders themselves, bone marrow transplantation is generally not used to treat a number of relatively common inherited blood diseases. Aside from a number of other problems, risks associated with cytoreductive treatments that create "space" for donor HSC, and the slow kinetics with which immune competence is restored following transplantation hamper progress. This review will focus on how recent studies using experimental model systems may direct future efforts to implement routine use of HSC transplantation to cure inherited blood disorders.
Collapse
|
26
|
The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature 2008; 452:764-7. [DOI: 10.1038/nature06840] [Citation(s) in RCA: 340] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 02/15/2008] [Indexed: 01/12/2023]
|
27
|
Bhandoola A, von Boehmer H, Petrie HT, Zúñiga-Pflücker JC. Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from. Immunity 2007; 26:678-89. [PMID: 17582341 DOI: 10.1016/j.immuni.2007.05.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
T cells developing in the thymus are derived from hematopoietic stem cells (HSCs) in the bone marrow (BM). Understanding the developmental steps linking multipotent HSCs to intrathymic T lineage-committed progenitors is important for understanding cancer in T lineage cells, improving T cell reconstitution after BM transplantation, and designing gene-therapy approaches to treat defective T cell development or function. Such an understanding may also help ameliorate immunological defects in aging. This review covers the differentiation steps between HSCs and committed T cell progenitors within the thymus.
Collapse
Affiliation(s)
- Avinash Bhandoola
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
28
|
Kyle-Cezar F, Echevarria-Lima J, Rumjanek VM. Independent Regulation of ABCB1 and ABCC Activities in Thymocytes and Bone Marrow Mononuclear Cells during Aging. Scand J Immunol 2007; 66:238-48. [PMID: 17635801 DOI: 10.1111/j.1365-3083.2007.01965.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aging modifies a number of functional and phenotypic parameters of cells from the immune system. In this study, the activities of two members of the superfamily of ATP-binding cassette (ABC) transport proteins, ABCB1 and ABCC (measured by rhodamine 123 efflux and Fluo-3 efflux respectively), were compared in murine bone marrow cells and thymocytes of young (3-4 weeks old), adult (2-3 months old) and old (18 months old) mice. ABCB1 activity was shown to be age regulated in murine bone marrow mononuclear cells and thymocytes. In the bone marrow, the increased amount of cells with ABCB1 activity observed in old mice was restricted to the c-kit(-)Sca-1(+) and c-kit(+)Sca-1(+) subpopulations. Only a small percentage of c-kit(+) cells in the thymus had ABCB1 activity, and this subpopulation increased with age. In the thymus, old age augmented this activity in the CD4(-) CD8(-) double-negative cells and in the CD4(+) and CD8(+) single-positive populations. The activity of another ABC transporter, the ABCC-related activity, was also modified by age in the bone marrow. However, the age-related increase was observed in the subpopulations were ABCB1 was not modified, namely the non-progenitor population (c-kit(-)Sca-1(-)cells) and c-kit(+)Sca-1(-) cells. Nearly, all thymocytes expressed the ABCC1 molecule in an active form and aging did not affect this pattern. This study demonstrates an independent upregulation of ABCB1 and ABCC activities during the aging process. The increases were observed in different subsets of cells but followed a developmentally regulated pattern. The functions played by these transporters and alterations in aging are discussed.
Collapse
Affiliation(s)
- F Kyle-Cezar
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
29
|
Lai AY, Kondo M. Identification of a bone marrow precursor of the earliest thymocytes in adult mouse. Proc Natl Acad Sci U S A 2007; 104:6311-6. [PMID: 17404232 PMCID: PMC1851047 DOI: 10.1073/pnas.0609608104] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The thymus requires continuous replenishment of progenitors from the bone marrow (BM) to sustain T cell development. However, it remains unclear which hematopoietic progenitors downstream from hematopoietic stem cells in the BM home to the thymus in adult mice. In this work, we demonstrate that although multiple BM populations have intrinsic T lineage differentiation potential, a small subset of multipotent progenitors (MPPs) expressing CCR9 preferentially homes to the thymus. These CCR9(+) MPPs are phenotypically similar to the most immature early T lineage progenitors (ETPs) in the thymus and are present in the peripheral blood. Similar to ETPs, CCR9(+) MPPs undergo Notch signaling, as indicated by higher expression of Notch1 and downstream target Hes1 genes compared with other MPP subsets. Furthermore, CCR9(+) MPPs possess differentiation potential similar to that of ETPs, with very limited granulocyte/macrophage differentiation potential, but they can differentiate into T, B, and dendritic cells. These characteristics implicate CCR9(+) MPPs as the BM precursors of the earliest thymic progenitors. In addition, our data suggest that before transition from BM to thymus, MPPs are lymphoid-specified and primed for T lineage differentiation.
Collapse
Affiliation(s)
- Anne Y. Lai
- Department of Immunology, Duke University Medical Center, 101 Jones Building, DUMC Box 3010, Research Drive, Durham, NC 27710
| | - Motonari Kondo
- Department of Immunology, Duke University Medical Center, 101 Jones Building, DUMC Box 3010, Research Drive, Durham, NC 27710
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Carotta S, Brady J, Wu L, Nutt SL. Transient Notch signaling induces NK cell potential in Pax5-deficient pro-B cells. Eur J Immunol 2007; 36:3294-304. [PMID: 17111353 DOI: 10.1002/eji.200636325] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Unlike early B/T cell development, NK cell lineage commitment is not well understood, with a major limitation being the lack of a robust culture system to assay NK cell progenitors. Here we have exploited the multi-lineage potential of Pax5(-/-) pro-B cells to establish an effective system to direct differentiation of progenitors into the NK cell lineage. Cultivation of Pax5(-/-) pro-B cells on OP9 cells expressing the Notch ligand Delta-Like1 (OP9-DL1) in the presence of IL-7 efficiently induced T and NK cell potential. For NK cells, Notch was only transiently required, as prolonged signaling decreased NK and increased T cell development. Pure NK cell populations could be obtained by the culture of these Notch signal-experienced cells onto OP9 stroma and IL-15. A similar transient exposure to Notch was also compatible with the differentiation of NK cells from hematopoietic progenitors, while sustained Notch signaling impaired NK cell generation. Pax5(-/-) pro-B cell-derived NK cells were cytotoxic, secreted cytokines and expressed all the expected NK cell-specific surface markers examined except the Ly49 family, a phenotype similar to fetal NK cells. These data indicate that Notch signaling induces T/NK cell differentiation in Pax5(-/-) pro-B cells that is strikingly similar to early thymopoiesis.
Collapse
Affiliation(s)
- Sebastian Carotta
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
31
|
Kawamoto H. A close developmental relationship between the lymphoid and myeloid lineages. Trends Immunol 2006; 27:169-75. [PMID: 16515884 DOI: 10.1016/j.it.2006.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 01/24/2006] [Accepted: 02/16/2006] [Indexed: 02/03/2023]
Abstract
The classic dichotomy model of hematopoiesis postulates that the first step of differentiation beyond the multipotent hematopoietic stem cell generates the common myelo-erythroid progenitors and common lymphoid progenitors (CLPs). Previous studies in fetal mice showed, however, that myeloid potential persists in the T- and B-cell branches even after these lineages have diverged, indicating that the simple dichotomy model is invalid, at least for fetal hematopoiesis. Nevertheless, CLPs have persisted in models of adult hematopoiesis; results from several groups support the presence of CLPs in bone marrow. Recent evidence challenges the dichotomy model in the adult, and it is proposed here that the alternative myeloid-based model is applicable to both fetal and adult hematopoiesis.
Collapse
Affiliation(s)
- Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
32
|
Abstract
T cells developing in the adult thymus ultimately derive from haematopoietic stem cells in the bone marrow. Here, we summarize research into the identity of the haematopoietic progenitors that leave the bone marrow, migrate through the blood and settle in the thymus to generate T cells. Accumulating data indicate that various different bone-marrow progenitors are T-cell-lineage competent and might contribute to intrathymic T-cell development. Such developmental flexibility implies a mechanism of T-cell-lineage commitment that can operate on a range of T-cell-lineage-competent progenitors, and further indicates that only those T-cell-lineage-competent progenitors able to migrate to, and settle in, the thymus should be considered physiological T-cell progenitors.
Collapse
Affiliation(s)
- Avinash Bhandoola
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, 3400 Spruce Street, Pennsylvania 19104-6160, USA.
| | | |
Collapse
|
33
|
Weerkamp F, Pike-Overzet K, Staal FJT. T-sing progenitors to commit. Trends Immunol 2006; 27:125-31. [PMID: 16473042 DOI: 10.1016/j.it.2006.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/22/2005] [Accepted: 01/19/2006] [Indexed: 01/04/2023]
Abstract
T-cell development in the thymus is a complex and highly regulated process. During the process of differentiation from multipotent progenitor cells to mature T cells, proliferation, restriction of lineage potential, TCR gene rearrangements and selection events occur, all accompanied by changes in gene expression. A comprehensive understanding of thymocyte differentiation remains to be established. Two related, key issues have received much attention recently: the nature of the thymus seeding cell and the regulation of T-cell lineage commitment. Here we review the perspectives of different researchers working both on murine and human T-cell development and argue that a true T-cell commitment factor might not be required because of the unique properties of the thymus.
Collapse
Affiliation(s)
- Floor Weerkamp
- Department of Immunology, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | |
Collapse
|
34
|
Wu L. T lineage progenitors: the earliest steps en route to T lymphocytes. Curr Opin Immunol 2006; 18:121-6. [PMID: 16459068 DOI: 10.1016/j.coi.2006.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 01/25/2006] [Indexed: 12/11/2022]
Abstract
T lymphocyte development in the thymus is a tightly regulated stepwise process. The identification and characterization of the earliest T lineage progenitors and their downstream progeny now enables the study of important cellular and molecular mechanisms that control and regulate T lineage commitment and differentiation. Significant progress has been made recently on the developmental relationships of the various cells with T cell progenitor activity identified in mouse bone marrow, blood and thymus, and on the molecular regulation of progenitor homing to the thymus. The essential role of Notch-1 signalling in intrathymic T lineage commitment and subsequent T cell development has been clearly documented.
Collapse
Affiliation(s)
- Li Wu
- The Walter and Eliza Hall Institute of Medical Research, 1G, Royal Parade, Parkville, Victoria, 3050, Australia.
| |
Collapse
|
35
|
Lai AY, Lin SM, Kondo M. Heterogeneity of Flt3-expressing multipotent progenitors in mouse bone marrow. THE JOURNAL OF IMMUNOLOGY 2005; 175:5016-23. [PMID: 16210604 DOI: 10.4049/jimmunol.175.8.5016] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mechanisms of lymphoid and myeloid lineage choice by hemopoietic stem cells remain unclear. In this study we show that the multipotent progenitor (MPP) population, which is immediately downstream of hemopoietic stem cells, is heterogeneous and can be subdivided in terms of VCAM-1 expression. VCAM-1(+) MPPs were fully capable of differentiating into both lymphoid and myeloid lineages. In contrast, VCAM-1(-) MPPs gave rise to lymphocytes predominately in vivo. T and B cell development from VCAM-1(-) MPPs was 1 wk faster than that from VCAM-1(+) MPPs. Furthermore, VCAM-1(+) MPPs gave rise to common myeloid progenitors and VCAM-1(-) MPPs in vivo, indicating that VCAM-1(-) MPPs are progenies of VCAM-1(+) MPPs. VCAM-1(-) MPPs, in turn, developed into lymphoid lineage-restricted common lymphoid progenitors. These results establish a hierarchy of developmental relationship between MPP subsets and lymphoid and myeloid progenitors. In addition, VCAM-1(+) MPPs may represent the branching point between the lymphoid and myeloid lineages.
Collapse
Affiliation(s)
- Anne Y Lai
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
36
|
Masuda K, Kubagawa H, Ikawa T, Chen CC, Kakugawa K, Hattori M, Kageyama R, Cooper MD, Minato N, Katsura Y, Kawamoto H. Prethymic T-cell development defined by the expression of paired immunoglobulin-like receptors. EMBO J 2005; 24:4052-60. [PMID: 16292344 PMCID: PMC1356317 DOI: 10.1038/sj.emboj.7600878] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 10/25/2005] [Indexed: 12/19/2022] Open
Abstract
T cells are produced in the thymus from progenitors of extrathymic origin. As no specific markers are available, the developmental pathway of progenitors preceding thymic colonization remains unclear. Here we show that progenitors in murine fetal liver and blood, which are capable of giving rise to T cells, NK cells and dendritic cells, but not B cells, can be isolated by their surface expression of paired immunoglobulin-like receptors (PIR). PIR expression is maintained until the earliest intrathymic stage, then downregulated before the onset of CD25 expression. Unlike intrathymic progenitors, generation of prethymic PIR(+) progenitors does not require Hes1-mediated Notch signaling. These findings disclose a prethymic stage of T-cell development programmed for immigration of the thymus, which is genetically separable from intrathymic stages.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/physiology
- Cell Differentiation/immunology
- Cell Lineage/immunology
- Cells, Cultured
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Homeodomain Proteins/physiology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Liver/cytology
- Liver/embryology
- Liver/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Transgenic
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Notch/physiology
- Signal Transduction/physiology
- Stem Cells/cytology
- Stem Cells/immunology
- Stem Cells/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Transcription Factor HES-1
Collapse
Affiliation(s)
- Kyoko Masuda
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Hiromi Kubagawa
- Department of Pathology, Division of Developmental and Clinical Immunology, University of Alabama, Birmingham, AL, USA
| | - Tomokatsu Ikawa
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ching-Cheng Chen
- Department of Pathology, Division of Developmental and Clinical Immunology, University of Alabama, Birmingham, AL, USA
| | - Kiyokazu Kakugawa
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Masakazu Hattori
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryoichiro Kageyama
- Laboratory of Growth Regulation, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Max D Cooper
- Department of Pathology, Division of Developmental and Clinical Immunology, University of Alabama, Birmingham, AL, USA
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoshimoto Katsura
- Division of Cell Regeneration and Transplantation, Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| |
Collapse
|
37
|
Lu M, Tayu R, Ikawa T, Masuda K, Matsumoto I, Mugishima H, Kawamoto H, Katsura Y. The earliest thymic progenitors in adults are restricted to T, NK, and dendritic cell lineage and have a potential to form more diverse TCRbeta chains than fetal progenitors. THE JOURNAL OF IMMUNOLOGY 2005; 175:5848-56. [PMID: 16237077 DOI: 10.4049/jimmunol.175.9.5848] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell progenitors in the adult thymus (AT) are not well characterized. In the present study, we show that the earliest progenitors in the murine AT are, like those in fetal thymus (FT), unable to generate B or myeloid cells, but still retain the ability to generate NK cells and dendritic cells. However, AT progenitors are distinct from those in FT or fetal liver, in that they are able to produce approximately 100 times larger numbers of T cells than progenitors in fetuses. Such a capability to generate a large number of T cells was mainly attributed to their potential to extensively proliferate before the TCRbeta chain gene rearrangement. We propose that the AT is colonized by T/NK/dendritic cell tripotential progenitors with much higher potential to form diversity in TCRbeta chains than FT progenitors.
Collapse
Affiliation(s)
- Min Lu
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
García-Ojeda ME, Dejbakhsh-Jones S, Chatterjea-Matthes D, Mukhopadhyay A, BitMansour A, Weissman IL, Brown JMY, Strober S. Stepwise Development of Committed Progenitors in the Bone Marrow That Generate Functional T Cells in the Absence of the Thymus. THE JOURNAL OF IMMUNOLOGY 2005; 175:4363-73. [PMID: 16177077 DOI: 10.4049/jimmunol.175.7.4363] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We identified committed T cell progenitors (CTPs) in the mouse bone marrow that have not rearranged the TCRbeta gene; express a variety of genes associated with commitment to the T cell lineage, including GATA-3, T cell-specific factor-1, Cbeta, and Id2; and show a surface marker pattern (CD44+ CD25- CD24+ CD5-) that is similar to the earliest T cell progenitors in the thymus. More mature committed intermediate progenitors in the marrow have rearranged the TCR gene loci, express Valpha and Vbeta genes as well as CD3epsilon, but do not express surface TCR or CD3 receptors. CTPs, but not progenitors from the thymus, reconstituted the alphabeta T cells in the lymphoid tissues of athymic nu/nu mice. These reconstituted T cells vigorously secreted IFN-gamma after stimulation in vitro, and protected the mice against lethal infection with murine CMV. In conclusion, CTPs in wild-type bone marrow can generate functional T cells via an extrathymic pathway in athymic nu/nu mice.
Collapse
|
39
|
Tan JB, Visan I, Yuan JS, Guidos CJ. Requirement for Notch1 signals at sequential early stages of intrathymic T cell development. Nat Immunol 2005; 6:671-9. [PMID: 15951812 DOI: 10.1038/ni1217] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 05/23/2005] [Indexed: 11/08/2022]
Abstract
Signaling through the transmembrane Notch1 receptor directs thymus-seeding progenitors (TSPs) to suppress their B cell potential and 'choose' the T cell fate. Present paradigms suggest that TSPs are contained in the multipotent early T lineage precursor (ETP) subset of thymocytes. However, we show here that the B cell potential of ETPs was not augmented in microenvironments that limited Notch1 activation. Furthermore, low-threshold Notch1 signals suppressed B cell production by TSPs before they reached the ETP stage. Notch1 signals of a higher threshold were needed to drive proliferation of ETPs and development into CD4(+)CD8(+) double-positive thymocytes. Thus, TSPs can be differentiated from all previously identified early T cell progenitors by their robust B cell potential and exquisite sensitivity to Notch1 signals.
Collapse
Affiliation(s)
- Joanne B Tan
- Program in Developmental Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
40
|
Masuda K, Itoi M, Amagai T, Minato N, Katsura Y, Kawamoto H. Thymic Anlage Is Colonized by Progenitors Restricted to T, NK, and Dendritic Cell Lineages. THE JOURNAL OF IMMUNOLOGY 2005; 174:2525-32. [PMID: 15728458 DOI: 10.4049/jimmunol.174.5.2525] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It remains controversial whether the thymus-colonizing progenitors are committed to the T cell lineage. A major problem that has impeded the characterization of thymic immigrants has been that the earliest intrathymic progenitors thus far identified do not necessarily represent the genuine thymic immigrants, because their developmental potential should have been influenced by contact with the thymic microenvironment. In the present study, we examined the developmental potential of the ontogenically earliest thymic progenitors of day 11 murine fetus. These cells reside in the surrounding mesenchymal region and have not encountered thymic epithelial components. Flow cytometric and immunohistochemical analyses demonstrated that these cells are exclusively Lin(-)c-kit(+)IL-7R(+). Limiting dilution analyses disclosed that the progenitors with T cell potential were abundant, while those with B cell potential were virtually absent in the region of day 11 thymic anlage. Clonal analyses reveled that they are restricted to T, NK, and dendritic cell lineages. Each progenitor was capable of forming a large number of precursors that may clonally accommodate highly diverse TCRbeta chains. These results provide direct evidence that the progenitors restricted to the T/NK/dendritic cell lineage selectively immigrate into the thymus.
Collapse
Affiliation(s)
- Kyoko Masuda
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Porritt HE, Rumfelt LL, Tabrizifard S, Schmitt TM, Zúñiga-Pflücker JC, Petrie HT. Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 2004; 20:735-45. [PMID: 15189738 DOI: 10.1016/j.immuni.2004.05.004] [Citation(s) in RCA: 320] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 04/01/2004] [Accepted: 04/14/2004] [Indexed: 01/26/2023]
Abstract
The nature of early T lineage progenitors in the thymus or bone marrow remains controversial. Here we assess lineage capacity and proliferative potential among five distinct components of the earliest intrathymic stage (DN1, CD25(-)44(+)). All of these express one or more hemato-lymphoid lineage markers. All can produce T lineage cells, but only two of them display kinetics of differentiation, proliferative capacity, and other traits consistent with being canonical T progenitors. The latter also appeared limited to producing cells of the T or NK lineages, while B lineage potential derived mainly from the other, less typical T progenitors. In addition to precisely defining canonical early progenitors in the thymus, this work reconciles conflicting results from numerous groups by showing that multiple progenitors with a DN1 phenotype home to the thymus and make T cells, but possess different proliferative potentials and lineage capacities.
Collapse
Affiliation(s)
- Helen E Porritt
- The University of Miami School of Medicine, Department of Microbiology and Immunology, Miami, FL 33101, USA
| | | | | | | | | | | |
Collapse
|
42
|
El Kassar N, Lucas PJ, Klug DB, Zamisch M, Merchant M, Bare CV, Choudhury B, Sharrow SO, Richie E, Mackall CL, Gress RE. A dose effect of IL-7 on thymocyte development. Blood 2004; 104:1419-27. [PMID: 15155461 DOI: 10.1182/blood-2004-01-0201] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study interleukin-7 (IL-7) in early thymocyte development, we generated mice transgenic (Tg) for the IL-7 gene under control of the lck proximal promoter. Founder line TgA, with the lowest level of IL-7 overexpression, showed enhanced alphabeta T-cell development. In contrast, in the highest overexpressing founder line, TgB, alphabeta T-cell development was disturbed with a block at the earliest intrathymic precursor stage. This was due to decreased progenitor proliferation as assessed by Ki-67 staining and in vivo bromodeoxyuridine (BrdU) incorporation. Bcl-2 was up-regulated in T-cell-committed progenitors in all Tg lines, and accounted for greater numbers of double positive (DP), CD4 single positive (SP), and CD8SP thymocytes in TgA mice where, in contrast to TgB mice, thymocyte progenitor proliferation was normal. Mixed marrow chimeras using TgB(+) and congenic mice as donors, and experiments using anti-IL-7 monoclonal antibody (MAb) in vivo, confirmed the role of IL-7 protein in the observed TgB phenotype. In conclusion, at low Tg overexpression, IL-7 enhanced alphabeta T-cell development by increasing thymocyte progenitor survival, while at high overexpression IL-7 reduces their proliferation, inducing a dramatic block in DP production. These results show for the first time in vivo a dose effect of IL-7 on alphabeta T-cell development and have implications for IL-7 in the clinical setting.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/physiology
- Cell Division/immunology
- Gene Expression Regulation, Developmental/immunology
- Interleukin-7/genetics
- Killer Cells, Natural/cytology
- Killer Cells, Natural/physiology
- Leukocyte Common Antigens/metabolism
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Stem Cells/cytology
- Stem Cells/physiology
- T-Lymphocytes/cytology
- T-Lymphocytes/physiology
- Thymus Gland/cytology
- Thymus Gland/embryology
- Thymus Gland/physiology
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Nahed El Kassar
- Experimental Immunology Branch, National Institutes of Health, 10 Center Drive, Bldg 10 Rm 4B36, Bethesda, MD 20892-1360, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Toki J, Adachi Y, Jin T, Fan T, Takase K, Lian Z, Hayashi H, Gershwin ME, Ikehara S. Enhancement of IL-7 following irradiation of fetal thymus. Immunobiology 2004; 207:247-58. [PMID: 12952347 DOI: 10.1078/0171-2985-00242] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effect of ionizing radiation on intra-thymic T cell development was investigated using a fetal thymic organ culture (FTOC) method in vitro. When double-negative (DN) fetal (day 15) thymocytes were co-cultured with an irradiated (25 Gy) fetal (day 15) thymus in the absence of direct contact or mitogenic stimulation, the induction of TCRgammadelta+ T cells was observed. About 50% of the TCRgammadelta+ T cells developed after 4-day-co-culture with the irradiated fetal thymus, whereas only a few TCRgammadelta+ T cells developed after co-culture with the non-irradiated fetal thymus. About 50% of the TCRgammadelta+ T cells were CD8+ cells with alphabeta heterodimeric chains. Cultured supernatants of the irradiated fetal thymi also induced the differentiation from DN thymocytes to CD8+ TCRgammadelta+ T cells after 3-day-culture. To clarify the factor in the cultured supernatants, several neutralizing antibodies (Abs) were used. Only anti-IL-7-Ab inhibited the differentiation from DN thymocytes to CD8+ TCRgammadelta+ T cells. RT-PCR revealed the increased expression of IL-7 mRNA in the fetal thymus 24 hours after radiation. Electron microscope studies demonstrated proliferative epithelial cells in the irradiated fetal thymus. These findings strongly suggest that fetal thymic epithelial cells affected by irradiation proliferate and enhance the production of IL-7, which induces the differentiation of CD8+ TCRgammadelta+ T cells from DN thymocytes.
Collapse
Affiliation(s)
- Junko Toki
- First Department of Pathology, Kansai Medical University, Moriguchi City, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The antigen presenting dendritic cells (DCs) are bone marrow (BM) derived cells. Despite their common functions of antigen-processing and T-lymphocyte activation, DCs are diverse in surface markers, migratory patterns and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human, but tracing the origin of these specialised DC subsets has not been a trivial task. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from conventional myeloid precursors, some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown that both myeloid-restricted and lymphoid-restricted precursors were able to generate DC subsets with similar surface phenotype. These observations demonstrate the existence of both myeloid- and lymphoid-derived DC lineages and suggest an early developmental flexibility of DC precursors. The downstream points where the DC sub-lineages branch off from the conventional myeloid and lymphoid precursors, and the cytokines and environmental factors required for inducing their specialised functions are yet to be determined.
Collapse
Affiliation(s)
- Aleksandar Dakic
- The Walter and Eliza Hall Institute of Medical Research, 1G, Royal Parade, Parkville, Vic. 3050, Australia
| | | |
Collapse
|
45
|
Traver D, Akashi K. Lineage commitment and developmental plasticity in early lymphoid progenitor subsets. Adv Immunol 2004; 83:1-54. [PMID: 15135627 DOI: 10.1016/s0065-2776(04)83001-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- David Traver
- Dana-Farber Cancer Institute, Boston Massachusetts 02115, USA
| | | |
Collapse
|
46
|
Perry SS, Wang H, Pierce LJ, Yang AM, Tsai S, Spangrude GJ. L-selectin defines a bone marrow analog to the thymic early T-lineage progenitor. Blood 2003; 103:2990-6. [PMID: 15070675 DOI: 10.1182/blood-2003-09-3030] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent description of an early T-lineage progenitor (ETP) population in adult mouse thymus implies the presence of a bone marrow predecessor that has not yet been identified. Here we describe a Lin(Neg) Sca-1(Pos) c-kit(Hi) Thy-1.1(Neg) L-selectin(Pos) adult mouse bone marrow population that resembles the thymic ETP in both antigen expression phenotype and posttransplantation lineage potential. These cells produce wavelike kinetics of thymic seeding and reconstitute the irradiated thymus with kinetics comparable to a thymocyte graft after intravenous transplantation. Transient B-lineage reconstitution is also observed, but little myeloid potential can be detected in transplant experiments. A second subset of progenitors is L-selectin(Neg) and is highly enriched for rapid and persistent T- and B-lineage potential, as well as some myeloid potential. L-selectin (CD62L) is therefore an effective marker for separating lymphoid progenitors from myeloid progenitors and hematopoietic stem cells in mouse bone marrow.
Collapse
Affiliation(s)
- S Scott Perry
- Department of Medicine, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | | | | | | | | | |
Collapse
|
47
|
Bhandoola A, Sambandam A, Allman D, Meraz A, Schwarz B. Early T Lineage Progenitors: New Insights, but Old Questions Remain. THE JOURNAL OF IMMUNOLOGY 2003; 171:5653-8. [PMID: 14634069 DOI: 10.4049/jimmunol.171.11.5653] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Avinash Bhandoola
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
48
|
Abstract
The thymus is a complex epithelial organ in which thymocyte development is dependent upon the sequential contribution of morphologically and phenotypically distinct stromal cell compartments. It is these microenvironments that provide the unique combination of cellular interactions, cytokines, and chemokines to induce thymocyte precursors to undergo a differentiation program that leads to the generation of functional T cells. Despite the indispensable role of thymic epithelium in the generation of T cells, the mediators of this process and the differentiation pathway undertaken by the primordial thymic epithelial cells are not well defined. There is a lack of lineage-specific cell-surface-associated markers, which are needed to characterize putative thymic epithelial stem cell populations. This review explores the role of thymic stromal cells in T-cell development and thymic organogenesis, as well as the molecular signals that contribute to the growth and expansion of primordial thymic epithelial cells. It highlights recent advances in these areas, which have allowed for a lineage relationship amongst thymic epithelial cell subsets to be proposed. While many fundamental questions remain to be addressed, collectively these works have broadened our understanding of how the thymic epithelium becomes specialized in the ability to support thymocyte differentiation. They should also facilitate the development of novel, rationally based therapeutic strategies for the regeneration and manipulation of thymic function in the treatment of many clinical conditions in which defective T cells have an important etiological role.
Collapse
Affiliation(s)
- Jason Gill
- Department of Pathology and Immunology, Monash University, Faculty of Medicine, Nursing and Health Sciences, Alfred Medical Research and Education Precinct, Prahran, Australia.
| | | | | | | | | | | |
Collapse
|
49
|
Shen HQ, Lu M, Ikawa T, Masuda K, Ohmura K, Minato N, Katsura Y, Kawamoto H. T/NK Bipotent Progenitors in the Thymus Retain the Potential to Generate Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2003; 171:3401-6. [PMID: 14500634 DOI: 10.4049/jimmunol.171.7.3401] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that the earliest thymic progenitors retain the potential to generate T and NK cells and that they lose the bipotentiality to give rise to unipotent T and NK progenitors during the progression of intrathymic developmental stages. The present study examines the ability of these thymic progenitors for generation of dendritic cells (DC) with a new clonal assay that is capable of determining the developmental potential for DC in addition to T cells and NK cells. We found that the large majority of the T/NK bipotential progenitors in the earliest population of fetal thymus was able to generate DC. Although the DC potential is lost with the progression of the differentiation stage, some of the T/NK bipotential progenitors still retain their DC potential even at the CD44(+)CD25(+) stage.
Collapse
Affiliation(s)
- Hui Qing Shen
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Anastassova-Kristeva M. The origin and development of the immune system with a view to stem cell therapy. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2003; 12:137-54. [PMID: 12804173 DOI: 10.1089/152581603321628287] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Careful study of the phylogeny and ontogeny of the three components of the immune system reveals that the macrophage, lymphatic, and hematopoietic systems originate independently of each other. Chronologically, the most ancient is the macrophage system, which arises in the coelomic cavity as mesenchymal ameboid cells having the properties to recognize self from non-self and to ingest foreign particles. The lymphatic system later develops from the endoderm of pharyngeal pouches, where the thymic anlage differentiates. The lymphocytes that originate here seed all lymphatic organs and retain the ability to divide and thereby form multiple colonies (lymphatic nodules) in the respiratory and digestive tract; further diversification of lymphocytes follows after confrontation with antigens. The last component of the immune system to appear is the hematopoietic system, which originates from the splanchnic mesoderm of the yolk sac as hematogenic tissue, containing hemangioblasts. The hematogenic tissue remains attached to the outer wall of the vitelline vessels, which provides an efficient mechanism for introducing the hematogenic tissue into the embryo. In an appropriate microenvironment, the hemangioblasts give rise to sinusoidal endothelium and to hemocytoblasts - the bone marrow stem cells for erythrocytes, myeloid cells, and megakaryocytes. The facts and opinions presented in this article are not in agreement with the currently accepted dogma that a common "hematolymphatic stem cell" localized in the marrow generates all of the cellular components of blood and the immune system.
Collapse
|