1
|
Menon T, Gopal S, Rastogi Verma S. Targeted therapies in non-small cell lung cancer and the potential role of AI interventions in cancer treatment. Biotechnol Appl Biochem 2023; 70:344-356. [PMID: 35609005 DOI: 10.1002/bab.2356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 04/17/2022] [Indexed: 11/12/2022]
Abstract
Non-small cell lung cancer is the most prevalent lung cancer, and almost three-fourths of patients are diagnosed in the advanced stage directly. In this stage, chemotherapy gives only a 15% 5-year survival rate. As people have varied symptoms and reactions to a specific cancer type, treatment for the tumor is likely to fall short, complicating cancer therapy. Immunotherapy is a breakthrough treatment involving drugs targeting novel immune checkpoint inhibitors like CTLA-4 and PD-1/PD-L1, along with combination therapies. In addition, the utility of engineered CAR-T and CAR-NK cells can be an effective strategy to promote the immune response against tumors. The concept of personalized cancer vaccines with the discovery of neoantigens loaded on dendritic cell vectors can also be an effective approach to cure cancer. Advances in genetic engineering tools like CRISPR/Cas9-mediated gene editing of T cells to enhance their effector function is another ray of hope. This review aims to provide an overview of recent developments in cancer immunotherapy, which can be used in first- and second-line treatments in the clinical space. Further, the intervention of artificial intelligence to detect cancer tumors at an initial stage with the help of machine learning techniques is also explored.
Collapse
Affiliation(s)
- Tarunya Menon
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shubhang Gopal
- Department of Information Technology, Delhi Technological University, Delhi, India
| | | |
Collapse
|
2
|
Kwak HW, Hong SH, Park HJ, Park HJ, Bang YJ, Kim JY, Lee YS, Bae SH, Yoon H, Nam JH. Adjuvant effect of IRES-based single-stranded RNA on melanoma immunotherapy. BMC Cancer 2022; 22:1041. [PMID: 36199130 PMCID: PMC9533600 DOI: 10.1186/s12885-022-10140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Background Adjuvant therapies such as radiation therapy, chemotherapy, and immunotherapy are usually given after cancer surgery to improve the survival of cancer patients. However, despite advances in several adjuvant therapies, they are still limited in the prevention of recurrences. Methods We evaluated the immunological effects of RNA-based adjuvants in a murine melanoma model. Single-stranded RNA (ssRNA) were constructed based on the cricket paralysis virus (CrPV) internal ribosome entry site (IRES). Populations of immune cells in bone marrow cells and lymph node cells following immunization with CrPVIRES-ssRNA were determined using flow cytometry. Activated cytokine levels were measured using ELISA and ELISpot. The tumor protection efficacy of CrPVIRES-ssRNA was analyzed based on any reduction in tumor size or weight, and overall survival. Results CrPVIRES-ssRNA treatment stimulated antigen-presenting cells in the drain lymph nodes associated with activated antigen-specific dendritic cells. Next, we evaluated the expression of CD40, CD86, and XCR1, showing that immunization with CrPVIRES-ssRNA enhanced antigen presentation by CD8a+ conventional dendritic cell 1 (cDC1), as well as activated antigen-specific CD8 T cells. In addition, CrPVIRES-ssRNA treatment markedly increased the frequency of antigen-specific CD8 T cells and interferon-gamma (IFN-γ) producing cells, which promoted immune responses and reduced tumor burden in melanoma-bearing mice. Conclusions This study provides evidence that the CrPVIRES-ssRNA adjuvant has potential for use in therapeutic cancer vaccines. Moreover, CrPVIRES-ssRNA possesses protective effects on various cancer cell models. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10140-2.
Collapse
Affiliation(s)
- Hye Won Kwak
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.,, SML biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea
| | - So-Hee Hong
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Hyeong-Jun Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.,, SML biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea
| | - Yoo-Jin Bang
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.,, SML biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea
| | - Jae-Yong Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.,, SML biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea
| | - Yu-Sun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Seo-Hyeon Bae
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Hyunho Yoon
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea. .,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea. .,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea. .,, SML biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea.
| |
Collapse
|
3
|
Usero L, Miralles L, Esteban I, Pastor-Quiñones C, Maleno MJ, Leal L, García F, Plana M. Feasibility of using monocyte-derived dendritic cells obtained from cryopreserved cells for DC-based vaccines. J Immunol Methods 2021; 498:113133. [PMID: 34480950 DOI: 10.1016/j.jim.2021.113133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022]
Abstract
The study of the effect of cryopreservation on the functionality of monocyte-derived dendritic cells (MDDCs) and dendritic cells (DCs) is essential for their use in different clinical applications such as DCs-based vaccines. Its full maturation and its optimal functionality are crucial for DCs based immunotherapy. In this study, we compared MDDCs derived from fresh and cryopreserved PBMCs in the aspects of phenotype and its effect on T cells at the level of proliferation and cytokine secretion. We pulsed MDDCs obtained from fresh and cryopreserved PBMCs with two different stimuli, CEF and SEA, and the expression maturation markers and cytokine secretion were analyzed. Our results showed that the cryopreservation had no effects in the phenotype of the MDDCs obtained, cell viability, maturation markers expression and/or cytokines secretion, independently whether MDDCs had been generated from fresh or cryopreserved PBMCs. Thus, this study suggests that the use of cryopreserved cells is a good method to keep the cells before use in immunotherapy, avoiding the variability within same individual due to severe blood draws. Even so, the interpretation and comparison of different results should be done considering the different cryopreservation techniques and assays, and their effects on PBMCs, specifically on MDDC and DC cells.
Collapse
Affiliation(s)
- Lorena Usero
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clinic, University of Barcelona, Barcelona, Spain.
| | - Laia Miralles
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clinic, University of Barcelona, Barcelona, Spain.
| | - Ignasi Esteban
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | | | - Maria José Maleno
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clinic, University of Barcelona, Barcelona, Spain.
| | - Lorna Leal
- Infectious Diseases Service and AIDS Research Group, IDIBAPS - Hospital Clinic, University of Barcelona, Barcelona, Spain.
| | - Felipe García
- Infectious Diseases Service and AIDS Research Group, IDIBAPS - Hospital Clinic, University of Barcelona, Barcelona, Spain.
| | - Montserrat Plana
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clinic, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
4
|
Sharma R, Palanisamy A, Dhama K, Mal G, Singh B, Singh KP. Exploring the possible use of saponin adjuvants in COVID-19 vaccine. Hum Vaccin Immunother 2020; 16:2944-2953. [PMID: 33295829 PMCID: PMC7738204 DOI: 10.1080/21645515.2020.1833579] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
There is an urgent need for a safe, efficacious, and cost-effective vaccine for the coronavirus disease 2019 (COVID-19) pandemic caused by novel coronavirus strain, severe acute respiratory syndrome-2 (SARS-CoV-2). The protective immunity of certain types of vaccines can be enhanced by the addition of adjuvants. Many diverse classes of compounds have been identified as adjuvants, including mineral salts, microbial products, emulsions, saponins, cytokines, polymers, microparticles, and liposomes. Several saponins have been shown to stimulate both the Th1-type immune response and the production of cytotoxic T lymphocytes against endogenous antigens, making them very useful for subunit vaccines, especially those for intracellular pathogens. In this review, we discuss the structural characteristics, mechanisms of action, structure-activity relationship of saponins, biological activities, and use of saponins in various viral vaccines and their applicability to a SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Rinku Sharma
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Arivukarasu Palanisamy
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Gorakh Mal
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Birbal Singh
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
5
|
Gupta A, Das S, Schanen B, Seal S. Adjuvants in micro- to nanoscale: current state and future direction. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:61-84. [PMID: 26053286 DOI: 10.1002/wnan.1354] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 12/19/2022]
Abstract
Adjuvants have been used in vaccines for over 70 years to promote long-lived and sterilizing immunity. Since then, various adjuvant systems were developed by combining nanotechnology with natural and/or synthetic immunomodulatory molecules. These systems are biocompatible, immunogenic, and possess higher antigen carrying capacity. This article showcases advancements made in the adjuvant systems formulations, their synthesis routes, and the improvement of these adjuvants have brought in response to combat against ongoing global health threats such as malaria, hepatitis C, universal influenza, and human immunodeficiency virus. This review also highlights the interaction of adjuvants with the delivery of antigens to cells and unfolds mechanism of actions. In addition, this review discusses the physicochemical factors responsible for the efficient interaction of nanoadjuvants with antigen receptors to develop more effective, less reactogenic, and multifunctional systems for the next generation vaccines.
Collapse
Affiliation(s)
- Ankur Gupta
- Advanced Materials Processing and Analysis Center, NanoScience Technology Center and Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Soumen Das
- Advanced Materials Processing and Analysis Center, NanoScience Technology Center and Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | | | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, NanoScience Technology Center and Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA.,College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
6
|
Rubtsov AV, Rubtsova K, Kappler JW, Jacobelli J, Friedman RS, Marrack P. CD11c-Expressing B Cells Are Located at the T Cell/B Cell Border in Spleen and Are Potent APCs. THE JOURNAL OF IMMUNOLOGY 2015; 195:71-9. [PMID: 26034175 DOI: 10.4049/jimmunol.1500055] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/04/2015] [Indexed: 12/16/2022]
Abstract
In addition to the secretion of Ag-specific Abs, B cells may play an important role in the generation of immune responses by efficiently presenting Ag to T cells. We and other investigators recently described a subpopulation of CD11c(+) B cells (Age/autoimmune-associated B cells [ABCs]) that appear with age, during virus infections, and at the onset of some autoimmune diseases and participate in autoimmune responses by secreting autoantibodies. In this study, we assessed the ability of these cells to present Ag and activate Ag-specific T cells. We demonstrated that ABCs present Ag to T cells, in vitro and in vivo, better than do follicular B cells (FO cells). Our data indicate that ABCs express higher levels of the chemokine receptor CCR7, have higher responsiveness to CCL21 and CCL19 than do FO cells, and are localized at the T/B cell border in spleen. Using multiphoton microscopy, we show that, in vivo, CD11c(+) B cells form significantly more stable interactions with T cells than do FO cells. Together, these data identify a previously undescribed role for ABCs as potent APCs and suggest another potential mechanism by which these cells can influence immune responses and/or the development of autoimmunity.
Collapse
Affiliation(s)
- Anatoly V Rubtsov
- Howard Hughes Medical Institute, Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206;
| | - Kira Rubtsova
- Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206
| | - John W Kappler
- Howard Hughes Medical Institute, Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206; Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045; Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206
| | - Philippa Marrack
- Howard Hughes Medical Institute, Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Denver, CO 80206; Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045; and Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
7
|
Cintolo JA, Datta J, Mathew SJ, Czerniecki BJ. Dendritic cell-based vaccines: barriers and opportunities. Future Oncol 2013; 8:1273-99. [PMID: 23130928 DOI: 10.2217/fon.12.125] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) have several characteristics that make them an ideal vehicle for tumor vaccines, and with the first US FDA-approved DC-based vaccine in use for the treatment of prostate cancer, this technology has become a promising new therapeutic option. However, DC-based vaccines face several barriers that have limited their effectiveness in clinical trials. A major barrier includes the activation state of the DC. Both DC lineage and maturation signals must be selected to optimize the antitumor response and overcome immunosuppressive effects of the tumor microenvironment. Another barrier to successful vaccination is the selection of target antigens that will activate both CD8(+) and CD4(+) T cells in a potent, immune-specific manner. Finally, tumor progression and immune dysfunction limit vaccine efficacy in advanced stages, which may make DC-based vaccines more efficacious in treating early-stage disease. This review underscores the scientific basis and advances in the development of DC-based vaccines, focuses on current barriers to success and highlights new research opportunities to address these obstacles.
Collapse
Affiliation(s)
- Jessica A Cintolo
- Department of Surgery & Harrison Department of Surgical Research, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
8
|
Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol 2013; 4:114. [PMID: 23720661 PMCID: PMC3655441 DOI: 10.3389/fimmu.2013.00114] [Citation(s) in RCA: 490] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/29/2013] [Indexed: 12/15/2022] Open
Abstract
Adjuvants are used in many vaccines, but their mechanisms of action are not fully understood. Studies from the past decade on adjuvant mechanisms are slowly revealing the secrets of adjuvant activity. In this review, we have summarized the recent progress in our understanding of the mechanisms of action of adjuvants. Adjuvants may act by a combination of various mechanisms including formation of depot, induction of cytokines and chemokines, recruitment of immune cells, enhancement of antigen uptake and presentation, and promoting antigen transport to draining lymph nodes. It appears that adjuvants activate innate immune responses to create a local immuno-competent environment at the injection site. Depending on the type of innate responses activated, adjuvants can alter the quality and quantity of adaptive immune responses. Understanding the mechanisms of action of adjuvants will provide critical information on how innate immunity influences the development of adaptive immunity, help in rational design of vaccines against various diseases, and can inform on adjuvant safety.
Collapse
Affiliation(s)
- Sunita Awate
- Vaccine and Infectious Disease Organization-International Vaccine Centre, School of Public Health, University of Saskatchewan Saskatoon, SK, Canada ; Vaccinology and Immunotherapeutics program, School of Public Health, University of Saskatchewan Saskatoon, SK, Canada
| | | | | |
Collapse
|
9
|
Murray SE, Toren KG, Parker DC. Peripheral CD4(+) T-cell tolerance is induced in vivo by rare antigen-bearing B cells in follicular, marginal zone, and B-1 subsets. Eur J Immunol 2013; 43:1818-27. [PMID: 23532986 DOI: 10.1002/eji.201242784] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 02/25/2013] [Accepted: 03/20/2013] [Indexed: 01/30/2023]
Abstract
B cells are efficient APCs when they internalize antigen via BCR-mediated uptake. Adoptively transferred antigen-presenting B cells can induce T-cell tolerance to foreign and self antigens; however, it is unknown whether endogenous B cells presenting self-peptides interact with naïve T cells and contribute to peripheral T-cell self-tolerance. Moreover, the relative abilities of mature B-cell subsets to induce T-cell tolerance have not been examined. To address these questions, we created a new mouse model wherein a very small fraction of B cells expresses an antigen transgene that cannot be transferred to other APCs. We limited antigen expression to follicular, marginal zone, or B-1 B-cell subsets and found that small numbers of each subset interacted with naïve antigen-specific T cells. Although antigen expressed by B-1 B cells induced the most T-cell division, divided T cells subsequently disappeared from secondary lymphoid tissues. Independent of which B-cell subset presented antigen, the remaining T cells were rendered hypo-responsive, and this effect was not associated with Foxp3 expression. Our data show that physiologically relevant proportions of B cells can mediate peripheral T-cell tolerance, and suggest that the mechanisms of tolerance induction might differ among follicular, marginal zone, and B-1 B-cell subsets.
Collapse
Affiliation(s)
- Susan E Murray
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
10
|
Kurche JS, Haluszczak C, McWilliams JA, Sanchez PJ, Kedl RM. Type I IFN-dependent T cell activation is mediated by IFN-dependent dendritic cell OX40 ligand expression and is independent of T cell IFNR expression. THE JOURNAL OF IMMUNOLOGY 2011; 188:585-93. [PMID: 22156349 DOI: 10.4049/jimmunol.1102550] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type I IFNs are important for direct control of viral infection and generation of adaptive immune responses. Recently, direct stimulation of CD4(+) T cells via type I IFNR has been shown to be necessary for the formation of functional CD4(+) T cell responses. In contrast, we find that CD4(+) T cells do not require intrinsic type I IFN signals in response to combined TLR/anti-CD40 vaccination. Rather, the CD4 response is dependent on the expression of type I IFNR (IFNαR) on innate cells. Further, we find that dendritic cell (DC) expression of the TNF superfamily member OX40 ligand was dependent on type I IFN signaling in the DC, resulting in a reduced CD4(+) T cell response that could be substantially rescued by an agonistic Ab to the receptor OX40. Taken together, we show that the IFNαR dependence of the CD4(+) T cell response is accounted for exclusively by defects in DC activation.
Collapse
Affiliation(s)
- Jonathan S Kurche
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
11
|
Takahashi D, Azuma H, Sakai H, Sou K, Wakita D, Abe H, Fujihara M, Horinouchi H, Nishimura T, Kobayashi K, Ikeda H. Phagocytosis of Liposome Particles by Rat Splenic Immature Monocytes Makes Them Transiently and Highly Immunosuppressive In Ex Vivo Culture Conditions. J Pharmacol Exp Ther 2011; 337:42-9. [DOI: 10.1124/jpet.110.172510] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Nicolò C, Sali M, Di Sante G, Geloso MC, Signori E, Penitente R, Uniyal S, Rinaldi M, Ingrosso L, Fazio VM, Chan BMC, Delogu G, Ria F. Mycobacterium smegmatisExpressing a Chimeric Protein MPT64-Proteolipid Protein (PLP) 139–151 Reorganizes the PLP-Specific T Cell Repertoire Favoring a CD8-Mediated Response and Induces a Relapsing Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2009; 184:222-35. [DOI: 10.4049/jimmunol.0804263] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Lindell DM, Berlin AA, Schaller MA, Lukacs NW. B cell antigen presentation promotes Th2 responses and immunopathology during chronic allergic lung disease. PLoS One 2008; 3:e3129. [PMID: 18769622 PMCID: PMC2518863 DOI: 10.1371/journal.pone.0003129] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 08/14/2008] [Indexed: 12/30/2022] Open
Abstract
Background The role of B cells in allergic asthma remains undefined. One mechanism by which B cells clearly contribute to allergic disease is via the production of specific immunoglobulin, and especially IgE. Cognate interactions with specific T cells result in T cell help for B cells, resulting in differentiation and immunoglobulin secretion. Proximal to (and required for) T cell-dependent immunoglobulin production, however, is antigen presentation by B cells. While interaction with T cells clearly has implications for B cell function and differentiation, this study investigated the role that B cells have in shaping the T cell response during chronic allergic lung disease. Methodology/Principal Findings In these studies, we used a clinically relevant mouse model of chronic allergic lung disease to study the role of B cells and B cell antigen presentation in this disease. In these studies we present several novel findings: 1) Lung B cells from chronically allergen challenged mice up-regulated MHC II and costimulatory molecules CD40, CD80 and CD86. 2) Using in vitro studies, B cells from the lungs of allergen challenged mice could present antigen to T cells, as assessed by T cell proliferation and the preferential production of Th2 cytokines. 3) Following chronic allergen challenge, the levels of Th2 cytokines IL-4 and IL-5 in the lungs and airways were significantly attenuated in B cell −/− mice, relative to controls. 4) B cell driven Th2 responses and mucus hyper secretion in the lungs were dependent upon MHC II expression by B cells. Conclusions/Significance Collectively, these results provide evidence for antigen presentation as a novel mechanism by which B cells contribute to chronic allergic disease. These findings give new insight into the mechanisms by which B cells promote asthma and other chronic diseases.
Collapse
Affiliation(s)
- Dennis M Lindell
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America.
| | | | | | | |
Collapse
|
14
|
Penitente R, Nicolò C, Van den Elzen P, Di Sante G, Agrati C, Aloisi F, Sercarz EE, Ria F. Administration of PLP139–151 Primes T Cells Distinct from Those Spontaneously Responsive In Vitro to This Antigen. THE JOURNAL OF IMMUNOLOGY 2008; 180:6611-22. [DOI: 10.4049/jimmunol.180.10.6611] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Thompson J, Millington OR, Garside P, Brewer JM. What can transgenic parasites tell us about the development of Plasmodium-specific immune responses? Parasite Immunol 2008; 30:223-33. [PMID: 18324925 DOI: 10.1111/j.1365-3024.2007.01011.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malaria infects 500 million people and kills an estimated 2.7 million annually, representing one of the most significant diseases in the world. However, efforts to develop effective vaccines have met with limited success. One reason is our lack of basic knowledge of how and where the immune system responds to parasite antigens. This is important as the early events during induction of an immune response influence the acquisition of effector function and development of memory responses. Our knowledge of the interactions of Plasmodia with the host immune system has largely been derived through in vitro study. This is a significant issue as the component parts of the immune system do not work in isolation and their interactions occur in distinct and specialized micro- and macro-anatomical locations that can only be assessed in the physiological context, in vivo. In this context, the availability of transgenic malaria parasites over the last 10 years has greatly enhanced our ability to understand and evaluate factors involved in host-parasite interactions in vivo. In this article, we review the current status of this area and speculate on what parasite transgenesis approaches will tell us about the development of Plasmodium-specific immune responses in the future.
Collapse
Affiliation(s)
- J Thompson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, UK
| | | | | | | |
Collapse
|
16
|
van der Stoep N, Quinten E, Alblas G, Plancke A, van Eggermond MCJA, Holling TM, van den Elsen PJ. Constitutive and IFNgamma-induced activation of MHC2TA promoter type III in human melanoma cell lines is governed by separate regulatory elements within the PIII upstream regulatory region. Mol Immunol 2006; 44:2036-46. [PMID: 17067677 DOI: 10.1016/j.molimm.2006.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/11/2006] [Accepted: 09/12/2006] [Indexed: 11/28/2022]
Abstract
Cell lines established from tumor tissue of cutaneous melanoma biopsies often display constitutive and IFNgamma-inducible expression of MHC class II molecules. The expression of MHC class II molecules in melanoma is associated with an overall poor prognosis and unfavorable clinical outcome. We have analyzed the DNA elements and interacting transcription factors that control the constitutive and IFNgamma-inducible expression of the class II transactivator (CIITA), a co-activator essential for transcription of all MHC class II genes. Our studies reveal the activation of multiple CIITA promoter regions (CIITA-PII, -PIII and -PIV) in melanoma cell lines for both the constitutive and IFNgamma-inducible expression of MHC class II molecules. Furthermore, we show that constitutive and IFNgamma-inducible expression of the CIITA-PIII isoform is governed by separate regulatory elements within the PIII upstream regulatory region (PURR). Similarly constitutive activation in melanoma of CIITA-PII, CIITA-PIII, and CIITA-PIV does not require components of the IFNgamma signaling pathway. However, these components are readily recruited to the PURR and CIITA-PIV after exposure of cells to IFNgamma and account for the IFNgamma-induced expression of CIITA. Together, our data reveal the contribution of distinct elements and factors in the constitutive and IFNgamma-inducible expression of CIITA in melanoma cell lines of the skin.
Collapse
Affiliation(s)
- Nienke van der Stoep
- Division of Molecular Biology, Department of Immunohematology and Blood Transfusion, Building 1, E3-Q, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Rodríguez-Pinto D. B cells as antigen presenting cells. Cell Immunol 2006; 238:67-75. [PMID: 16574086 DOI: 10.1016/j.cellimm.2006.02.005] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 02/18/2006] [Accepted: 02/21/2006] [Indexed: 01/09/2023]
Abstract
Several characteristics confer on B cells the ability to present antigen efficiently: (1) they can find T cells in secondary lymphoid organs shortly after antigen entrance, (2) BCR-mediated endocytosis allows them to concentrate small amounts of specific antigen, and (3) BCR signaling and HLA-DO expression direct their antigen processing machinery to favor presentation of antigens internalized through the BCR. When presenting antigen in a resting state, B cells can induce T cell tolerance. On the other hand, activation by antigen and T cell help converts them into APC capable of promoting immune responses. Presentation of self antigens by B cells is important in the development of autoimmune diseases, while presentation of tumor antigens is being used in vaccine strategies to generate immunity. Thus, detailed understanding of the antigen presenting function of B cells can lead to their use for the generation or inhibition of immune responses.
Collapse
Affiliation(s)
- Daniel Rodríguez-Pinto
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208020, New Haven, CT 06520, USA.
| |
Collapse
|
18
|
Nicolò C, Di Sante G, Orsini M, Rolla S, Columba-Cabezas S, Romano Spica V, Ricciardi G, Chan BMC, Ria F. Mycobacterium tuberculosis in the adjuvant modulates the balance of Th immune response to self-antigen of the CNS without influencing a “core” repertoire of specific T cells. Int Immunol 2006; 18:363-74. [PMID: 16415105 DOI: 10.1093/intimm/dxh376] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the present study, we use modified CDR3 beta-chain spectratyping (immunoscope) to dissect the effect of Mycobacterium tuberculosis (MT)-derived proteins on individual PLP139-151-specific cells in the SJL mouse strain. In this model, the immunoscope technique allows the characterization of a public TCR that involves rearrangement of Vbeta10 and Jbeta1.1 and a semi-private TCR characterized by rearrangement of Vbeta4 and Jbeta1.6. Both rearrangements are specific for PLP139-151 and sequences of the CDR3 region of the two beta-chains show a conserved motif for the public rearrangement and related but more variable sequences for the semi-private rearrangement. MT-derived proteins promote increase of IFN-gamma-secreting cells. However, we observe that the presence and amount of MT used during immunization have no effect on the frequency of usage, polarization and in vivo expansion of cells carrying the studied rearrangements. Rather, the strong Th1-promoting effect of adjuvant is possibly due to recruitment toward Th1 of a wider spectrum of TCR repertoires. Therefore, instead of having a comprehensive effect on the entire repertoire, MT modulates the immune response by affecting a subset of antigen-specific T cells whose polarization can be adapted to the environment. This step establishes the final balance between Th1 and Th2 and may be essential for the enhancement or protection of disease.
Collapse
Affiliation(s)
- Chiara Nicolò
- Institute of General Pathology, Catholic University, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nanda NK, Bikoff EK. DM peptide-editing function leads to immunodominance in CD4 T cell responses in vivo. THE JOURNAL OF IMMUNOLOGY 2006; 175:6473-80. [PMID: 16272301 DOI: 10.4049/jimmunol.175.10.6473] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DM functions as a peptide editor for MHC class II-bound peptides. We examined the hypothesis that DM peptide editing plays a key role in focusing the in vivo CD4 T cell responses against complex pathogens and protein Ags to only one, or at most a few, immunodominant peptides. Most CD4 T cells elicited in the wild-type BALB/c (H-2d) mice infected with Leishmania major predominantly recognize a single epitope 158-173 within Leishmania homologue of activated receptor for c-kinase (LACK), as is the case when these mice are immunized with rLACK. Using DM-deficient (DM-/-) H-2d mice, we now show that in the absence of DM, the in vivo CD4 T cell responses to rLACK are skewed away from the immunodominant epitopes and are diversified to include two novel epitopes (LACK 33-48 and 261-276). DM-/- B10.BR (H-2k) mice showed similar results. These results constitute the first demonstration of the role of DM peptide editing in sculpting the specificity and immunodominance in in vivo CD4 T cell responses.
Collapse
Affiliation(s)
- Navreet K Nanda
- Departments of Microbiology and Immunology, and Oncology, Lombardi Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA.
| | | |
Collapse
|
20
|
Abstract
Peptide loading of major histocompatibility class II molecules is catalyzed in late endosomal and lysosomal compartments of cells by the catalytic action of human leukocyte antigen (HLA)-DM (H-2M in mice). In B cells, dendritic cells and thymic epithelial cells, the peptide loading of class II molecules is modified by the expression of the non-classical class II molecule, HLA-DO (H-2O in mice). Collectively, studies to date support that DO/H-2O expression inhibits the presentation of antigens acquired by cells via fluid phase endocytosis. However, in B cells, the expression of H-2O promotes the presentation of antigens internalized by the B-cell receptor. In this review, we summarize the literature pertaining to DO assembly, transport, and function, with an emphasis on the function of DO/H-2O.
Collapse
Affiliation(s)
- Lisa K Denzin
- Sloan-Kettering Institute, Immunology Program, Memorial Sloan-Kettering Cancer Center, NY 10021, USA.
| | | | | | | |
Collapse
|
21
|
Pozzi LAM, Maciaszek JW, Rock KL. Both Dendritic Cells and Macrophages Can Stimulate Naive CD8 T Cells In Vivo to Proliferate, Develop Effector Function, and Differentiate into Memory Cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:2071-81. [PMID: 16081773 DOI: 10.4049/jimmunol.175.4.2071] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The generation of T cell immunity requires the acquisition and presentation of Ag on bone marrow-derived APCs. Dendritic cells (DC) are believed to be the most potent bone marrow-derived APCs, and the only ones that can stimulate naive T cells to productively respond to Ags. Because macrophages (Mphi) are bone marrow-derived APCs that are also found in tissues and lymphoid organs, can acquire and present Ag, and can express costimulatory molecules, we have investigated their potential to stimulate primary T cell responses in vivo. We find that both injected Mphi and DCs can migrate from peripheral tissues or blood into lymphoid organs. Moreover, injection of peptide-pulsed Mphi or DCs into mice stimulates CD8 T cells to proliferate, express effector functions including cytokine production and cytolysis, and differentiate into long-lived memory cells. Mphi and DCs stimulate T cells directly without requiring cross-presentation of Ag on host APCs. Therefore, more than one type of bone marrow-derived APC has the potential to prime T cell immunity. In contrast, another bone marrow-derived cell, the T lymphocyte, although capable of presenting Ag and homing to the T cell areas of lymphoid organs, is unable to stimulate primary responses. Because Mphi can be very abundant cells, especially at sites of infection and inflammation, they have the potential to play an important role in immune surveillance and the initiation of T cell immunity.
Collapse
Affiliation(s)
- Lu-Ann M Pozzi
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
22
|
Peters NC, Hamilton DH, Bretscher PA. Analysis of cytokine-producing Th cells from hen egg lysozyme-immunized mice reveals large numbers specific for "cryptic" peptides and different repertoires among different Th populations. Eur J Immunol 2005; 35:56-65. [PMID: 15597327 DOI: 10.1002/eji.200425581] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We employed an optimized ex vivo enzyme-linked immunospot assay for enumerating and defining the peptide specificity of all the hen egg lysozyme (HEL)-specific Th cells producing IL-2, IFN-gamma, or IL-4, in different lymphoid organs of HEL-immunized BALB/c and CBA mice. Previous studies, employing T cell proliferation assays, demonstrated that lymph node cells from BALB/c mice immunized with HEL emulsified in complete Freund's adjuvant (CFA) are specific for HEL(105-120). In contrast, we found that the spleens of BALB/c mice immunized with HEL/CFA, or with heat-aggregated HEL on aluminum hydroxide adjuvant, contain IL-4-producing T cells specific for other HEL peptides, previously characterized as "cryptic", with consistent responses to HEL(11-25). The Th repertoire expressed in different lymphoid organs of the same immunized mouse can be different, as can the repertoire of Th cells producing different cytokines and present in one lymphoid organ. In addition, we found that the repertoire of Th cells generated depends upon the adjuvant employed. Lastly, the summation of responses elicited by a panel of non-overlapping HEL peptides is equal to that elicited by HEL. This high-resolution study thus illustrates that the Th repertoire generated upon HEL immunization depends upon diverse parameters, and that the natural processing of HEL gives rise to more diverse peptides then previously evident from studies employing T cell proliferation assays.
Collapse
Affiliation(s)
- Nathan C Peters
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon S7N 5E5, Canada.
| | | | | |
Collapse
|
23
|
Brewer JM, Pollock KGJ, Tetley L, Russell DG. Vesicle size influences the trafficking, processing, and presentation of antigens in lipid vesicles. THE JOURNAL OF IMMUNOLOGY 2004; 173:6143-50. [PMID: 15528351 DOI: 10.4049/jimmunol.173.10.6143] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although it is accepted that particulate Ags are more immunogenic than soluble Ags in vivo, it is unclear whether this effect can be explained solely through enhanced uptake by APCs. In this study we demonstrate that vesicle size modulated the efficiency of Ag presentation by murine macrophages and that this effect was accompanied by a profound change in trafficking of Ag. Ag prepared in large particles (560 nm) was delivered into early endosome-like, immature phagosomes, whereas smaller vesicles (155 nm) and soluble Ags localized rapidly to late endosomes/lysosomes. However, peptide/class II complexes could be detected in both compartments. Phagosomes formed on uptake of large vesicles recruit Ag-processing apparatus while retaining the characteristics of early endosomes. In contrast, smaller vesicles bypassed this compartment, appeared to go more rapidly to lysosomal compartments, and exhibited reduced Ag-presenting efficiency. We conclude that the ability of phagocytosed, particulate Ag to target early phagosomes results in more efficient Ag presentation.
Collapse
Affiliation(s)
- James M Brewer
- Division of Immunology, Infection, and Inflammation, University of Glasgow, Western Infirmary, Glasgow G11 6NT, Scotland, UK.
| | | | | | | |
Collapse
|
24
|
Byersdorfer CA, Dipaolo RJ, Petzold SJ, Unanue ER. Following Immunization Antigen Becomes Concentrated in a Limited Number of APCs Including B Cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:6627-34. [PMID: 15557153 DOI: 10.4049/jimmunol.173.11.6627] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunization with the hen egg-white lysozyme (HEL) protein induces T cells to various of its peptide determinants. The distribution of such T cells, however, does not correlate with the peptide level of each epitope on class II molecules. For this reason, we sought information on the cells responsible for Ag presentation following immunization, hoping to understand the lack of immunodominance in this system. By tracking HEL, and the ensuing peptide/MHC complexes, we find the following: 1) that HEL in the draining lymph node gets concentrated in a limited number of APC, particularly in dendritic cells and macrophages, 2) that these APC are functionally capable of presenting both major and minor determinants of HEL over a 100-fold range of Ag dose, and 3) that B cells present Ag gained at early times after immunization, but only following higher dose immunization. These data indicate that the breadth of a response is maintained over a wide dosage range by concentration of Ag in a limited number of cells presenting high levels and a great diversity of epitopes.
Collapse
Affiliation(s)
- Craig A Byersdorfer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
25
|
Ria F, Gallard A, Gabaglia CR, Guéry JC, Sercarz EE, Adorini L. Selection of similar naive T cell repertoires but induction of distinct T cell responses by native and modified antigen. THE JOURNAL OF IMMUNOLOGY 2004; 172:3447-53. [PMID: 15004144 DOI: 10.4049/jimmunol.172.6.3447] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To study the T cell responses induced by native and modified Ag, we have followed in vivo TCR selection and cytokine profile of T cells, as well as the isotype of induced Abs, in response to the model Ag hen egg-white lysozyme (HEL) and its reduced and carboxymethylated form (RCM-HEL). RCM-HEL induces in vivo a T cell response focused on the same immunodominant determinant characterizing the response to native HEL, but further skewed to the Th1 pathway. No difference between HEL and RCM-HEL could be observed in the efficiency of processing, nor in the type of APCs involved. In vivo experiments show that coimmunization with HEL and RCM-HEL generates distinct Th2 or Th1 responses in naive mice, but the two forms of Ag expand the same HEL-specific public clonotype, characterized by the Vbeta8.2-Jbeta1.5 rearrangement, indicating that the populations of naive T cells activated by the two Ag forms overlap. T cells primed by RCM-HEL are restimulated by soluble HEL in vivo, but divert the phenotype of the HEL-specific response to Th1, implying that priming of naive T cells by a structurally modified Ag can induce Th1-type memory/effector T cells more efficiently than native Ag.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antigen Presentation
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens/administration & dosage
- Antigens/immunology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Cell Differentiation/immunology
- Clone Cells
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/immunology
- Female
- Immunization
- Immunodominant Epitopes/biosynthesis
- Immunoglobulin Isotypes/biosynthesis
- Interphase/immunology
- Lymphocyte Activation/immunology
- Methylation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred CBA
- Muramidase/administration & dosage
- Muramidase/immunology
- Muramidase/metabolism
- Oxidation-Reduction
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Th1 Cells/immunology
- Th1 Cells/metabolism
Collapse
|
26
|
Srivastava AS, Kaido T, Carrier E. Immunological factors that affect the in vivo fate of T7 phage in the mouse. J Virol Methods 2004; 115:99-104. [PMID: 14656466 DOI: 10.1016/j.jviromet.2003.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phage display is a powerful method to study organ and tissue specific addresses. As part of our studies on the in vivo panning of tissue-homing peptide libraries, we examined the survival of T7 phage in the blood of C57BL/6J mice to estimate the half-life of T7 phage and the factors responsible for its inactivation. Amplified and purified T7 phage particles with or without random peptide library inserts were injected intravenously into the tail vein of wild-type (C57BL/6J) and immunocompromized (C57BL/6J) female mice. In wild-type mice, both the parent phage as well as phage carrying a peptide library were eliminated quickly from the blood, with only approximately 1% survival of detectable infectious phage after 60 min of injection. In SCID (C57BL/6J-Prkdc(scid)) mice, phage titers were stable over the same period of time with or without peptide library, suggesting a role for either B- or T cells or both in phage inactivation. The presumed role of B cell was indicated by demonstration of stable phage in the B-cell deficient mouse (C57BL/10-Igh-6(tm1Cgn)). In other immunocompromized mice, the phage titers were unstable, similar to that found in wild-type mice. In no case, was there a difference between phage with or without random peptide library. These data indicate that the presence of random C-X7-C peptides on the T7 phage coat protein does not affect the clearance of the phage in murine blood. Most likely, host immune factors play a role in the neutralization of T7 phage in blood by reacting with B-cell dependent immunoglobin.
Collapse
Affiliation(s)
- Anand S Srivastava
- Blood and Marrow Transplantation Division, Department of Medicine, Pediatrics and Family and Preventive Medicine, School of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0062, USA
| | | | | |
Collapse
|
27
|
Filippi C, Hugues S, Cazareth J, Julia V, Glaichenhaus N, Ugolini S. CD4+ T cell polarization in mice is modulated by strain-specific major histocompatibility complex-independent differences within dendritic cells. J Exp Med 2003; 198:201-9. [PMID: 12860929 PMCID: PMC2194066 DOI: 10.1084/jem.20021893] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Resistance and susceptibility to Leishmania major in mice are determined by multiple genes and correlate with the preferential development of Th1 and Th2 responses, respectively. Here, we found that CD11b+ dendritic cells (DCs) prime parasite-specific CD4+ T cells in both susceptible BALB/c (H2-d) and resistant B10.D2 (H2-d) mice. However, BALB/c and B10.D2 DCs from L. major-infected mice differ in their ability to polarize naive T cells into Th1 or Th2 effector cells. This difference is cell-intrinsic, is not restricted to H2-d mice, and is observed with both parasite-specific and allospecific CD4+ T cells. Thus, strain-specific differences within CD11b+ DCs influence the ability of inbred mice to mount polarized CD4+ T cell responses.
Collapse
Affiliation(s)
- Christophe Filippi
- E03-44, Institut National de la Santé et de la Recherche Médicale, University of Nice-Sophia Antipolis, 660 Route des Lucioles, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
In this study we have shown that activation of arthritogenic splenocytes with antigen and agonistic anti-CD40 gives raise to a B cell population that produce high levels of interleukin (IL)-10 and low levels of interferon (IFN)-gamma. Transfer of these B cells into DBA/1-TcR-beta-Tg mice, immunized with bovine collagen (CII) emulsified in complete Freund's adjuvant inhibited T helper type 1 differentiation, prevented arthritis development, and was also effective in ameliorating established disease. IL-10 is essential for the regulatory function of this subset of B cells, as the B cells population isolated from IL-10 knockout mice failed to mediate this protective function. Furthermore, B cells isolated from arthritogenic splenocytes treated in vitro with anti-IL-10/anti-IL-10R were unable to protect recipient mice from developing arthritis. Our results suggest a new role of a subset of B cells in controlling T cell differentiation and autoimmune disorders.
Collapse
Affiliation(s)
- Claudia Mauri
- The Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science Technology and Medicine, London W6 8 LH, United Kingdom.
| | | | | | | |
Collapse
|
29
|
Balmelli C, Demotz S, Acha-Orbea H, De Grandi P, Nardelli-Haefliger D. Trachea, lung, and tracheobronchial lymph nodes are the major sites where antigen-presenting cells are detected after nasal vaccination of mice with human papillomavirus type 16 virus-like particles. J Virol 2002; 76:12596-602. [PMID: 12438585 PMCID: PMC136716 DOI: 10.1128/jvi.76.24.12596-12602.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccination by the nasal route has been successfully used for the induction of immune responses. Either the nasal-associated lymphoid tissue (NALT), the bronchus-associated lymphoid tissue, or lung dendritic cells have been mainly involved. Following nasal vaccination of mice with human papillomavirus type 16 (HPV16) virus-like-particles (VLPs), we have previously shown that interaction of the antigen with the lower respiratory tract was necessary to induce high titers of neutralizing antibodies in genital secretions. However, following a parenteral priming, nasal vaccination with HPV16 VLPs did not require interaction with the lung to induce a mucosal immune response. To evaluate the contribution of the upper and lower respiratory tissues and associated lymph nodes (LN) in the induction of humoral responses against HPV16 VLPs after nasal vaccination, we localized the immune inductive sites and identified the antigen-presenting cells involved using a specific CD4(+) T-cell hybridoma. Our results show that the trachea, the lung, and the tracheobronchial LN were the major sites responsible for the induction of the immune response against HPV16 VLP, while the NALT only played a minor role. Altogether, our data suggest that vaccination strategies aiming to induce efficient immune responses against HPV16 VLP in the female genital tract should target the lower respiratory tract.
Collapse
Affiliation(s)
- Carole Balmelli
- Department of Gynecology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Glazier KS, Hake SB, Tobin HM, Chadburn A, Schattner EJ, Denzin LK. Germinal center B cells regulate their capability to present antigen by modulation of HLA-DO. J Exp Med 2002; 195:1063-9. [PMID: 11956297 PMCID: PMC2193692 DOI: 10.1084/jem.20012059] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Peptide acquisition by MHC class II molecules is catalyzed by HLA-DM (DM). In B cells, HLA-DO (DO) inhibits or modifies the peptide exchange activity of DM. We show here that DO protein levels are modulated during B cell differentiation. Remarkably, germinal center (GC) B cells, which have low levels of DO relative to naive and memory B cells, are shown to have enhanced antigen presentation capabilities. DM protein levels also were somewhat reduced in GC B cells; however, the ratio of DM to DO in GC B cells was substantially increased, resulting in more free DM in GC B cells. We conclude that modulation of DM and DO in distinct stages of B cell differentiation represents a mechanism by which B cells regulate their capacity to function as antigen-presenting cells. Efficient antigen presentation in GC B cells would promote GC B cell-T cell interactions that are essential for B cells to survive positive selection in the GC.
Collapse
Affiliation(s)
- Kim S Glazier
- Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
31
|
Trembleau S, Gregori S, Penna G, Gorny I, Adorini L. IL-12 administration reveals diabetogenic T cells in genetically resistant I-Ealpha-transgenic nonobese diabetic mice: resistance to autoimmune diabetes is associated with binding of Ealpha-derived peptides to the I-A(g7) molecule. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4104-14. [PMID: 11564833 DOI: 10.4049/jimmunol.167.7.4104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nonobese diabetic (NOD) and NOD-DRalpha transgenic (tg) mice, expressing Aalpha(d):Abeta(g7) and Aalpha(d):Abeta(g7) plus DRalpha:Ebeta(g7) class II molecules, respectively, both develop insulin-dependent diabetes mellitus (IDDM), whereas NOD-Ealpha tg mice expressing Aalpha(d):Abeta(g7) plus Ealpha:Ebeta(g7) are protected. We show that IL-12 administration induces rapid IDDM onset in NOD-DRalpha but fails to provoke insulitis and diabetes in NOD-Ealpha tg mice. Nevertheless, T cells from IL-12-treated NOD-Ealpha tg mice secrete IFN-gamma and transfer IDDM to NOD-SCID and NOD-Ealpha-SCID recipients, demonstrating the presence of peripheral diabetogenic Th1 cells in the protected mice. Surprisingly, regulatory cells were undetectable. Moreover, Ealpha:Ebeta(g7) could substitute for DRalpha:Ebeta(g7) in Ag presentation, arguing against mechanisms of protection involving capture of diabetogenic I-A(g7)-restricted epitopes by Ealpha:Ebeta(g7)molecules. Interestingly, the expression of naturally processed epitopes derived from DRalpha- and Ealpha-chains bound to I-A(g7) is different in the two strains of tg mice, and the difference is enhanced by IL-12 administration. I-A(g7) molecules from both NOD-DRalpha and NOD-Ealpha tg mice present the conserved DRalpha/Ealpha 52-68 sequence, at high and low levels, respectively. In addition, only IDDM-resistant NOD-Ealpha tg mice possess APCs bearing Ealpha65-77/I-A(g7) complexes, which tolerize the specific T cells. This is associated with the selective inhibition of the response to insulinoma-associated protein 2 (IA-2), an autoantigen in IDDM. Our results support protective mechanisms based on I-A(g7) blockade by peptides unique to the Ealpha-chain, such as Ealpha65-77 and/or tolerance of diabetogenic T cells cross-reactive with Ealpha-peptide/I-A(g7) complexes.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigen-Presenting Cells/immunology
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Autoantigens
- Cells, Cultured
- Cytokines/biosynthesis
- Diabetes Mellitus, Type 1/immunology
- HLA-DR Antigens/genetics
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Interleukin-12/pharmacology
- Membrane Proteins/immunology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Pancreas/immunology
- Peptide Fragments
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatases/immunology
- Receptor-Like Protein Tyrosine Phosphatases, Class 8
- Receptors, Antigen, T-Cell
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Th1 Cells/immunology
Collapse
Affiliation(s)
- S Trembleau
- Roche Milan Ricerche, Via Olgettina 58, I-20132 Milan, Italy
| | | | | | | | | |
Collapse
|
32
|
Kirk AD, Blair PJ, Tadaki DK, Xu H, Harlan DM. The role of CD154 in organ transplant rejection and acceptance. Philos Trans R Soc Lond B Biol Sci 2001; 356:691-702. [PMID: 11375072 PMCID: PMC1088456 DOI: 10.1098/rstb.2001.0855] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CD154 plays a critical role in determining the outcome of a transplanted organ. This simple statement is amply supported by experimental evidence demonstrating that anti-CD154 antibodies are potent inhibitors of allograft rejection in many rigorous transplant models. Unfortunately, despite intensive investigation over the past ten years, the precise mechanisms by which antibodies against CD154 exert their anti-rejection effects have remained less obvious. Though originally classified with reference to B-cell function, CD154-CD40 interactions have also been shown to be important in T cell-antigen-presenting cell interactions. Accordingly, CD154 has been classified as a T-cell co-stimulatory molecule. However, mounting data suggest that treatment with anti-CD154 antibodies does not simply block costimulatory signals, but rather that the antibodies appear to induce signalling in receptor-bearing T cells. Other data suggest that anti-CD154 effects may be mediated by endothelial cells and possibly even platelets. In fact, the current literature suggests that CD154 can either stimulate or attenuate an immune response, depending upon the model system under study. CD154 has secured a fundamental place in transplant biology and general immunology that will no doubt be the source of considerable investigation and therapeutic manipulation in the coming decade.
Collapse
Affiliation(s)
- A D Kirk
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health/Navy, Naval Medical Research Center, Building 10, Room 11S/219, Center Drive, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
33
|
Gajewska BU, Swirski FK, Alvarez D, Ritz SA, Goncharova S, Cundall M, Snider DP, Coyle AJ, Gutierrez-Ramos JC, Stämpfli MR, Jordana M. Temporal-spatial analysis of the immune response in a murine model of ovalbumin-induced airways inflammation. Am J Respir Cell Mol Biol 2001; 25:326-34. [PMID: 11588010 DOI: 10.1165/ajrcmb.25.3.4482] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to define phenotypic changes of antigen-presenting cells (APCs) and T cells in a murine model of antigen-induced airways inflammation that involves intraperitoneal sensitization with ovalbumin (OVA)/adjuvant followed by antigen aerosolization. We investigated the APC and T-cell compartments both after sensitization (primary immune response) and after challenge (secondary immune response) at the thoracic lymph nodes (initiation site) and the lung (effector site). Our findings document a major cellular expansion in the lymph nodes after both sensitization and challenge. After sensitization, this expansion was comprised mainly of B cells, a considerable proportion of which expressed B7.2. At this time, T cells were markedly expanded and activated as assessed by CD69 expression; further, although GATA-3 and signal transducer and activator of transcription-6 were expressed at this time point, expression of interleukin (IL)-4, IL-5, and IL-13 messenger RNA (mRNA) levels were marginal. However, in vitro stimulation of lymph-node cells with OVA led to cytokine production. In contrast, 24 h after challenge, but not after sensitization, there was a major expansion of dendritic cells and macrophages in the lungs. This expansion was associated with enhanced expression of both B7.1 and B7.2. We also observed expansion of activated CD3(+)/CD4(+) T cells expressing the T helper-2-associated marker T1/ST2 in the lung, most notably 5 d after challenge. Further, IL-4, IL-5, and IL-13, but not interferon-gamma mRNA were expressed at high levels 3 h after challenge. This study helps to elucidate the "geography" of immune responses generated in a conventional murine model of allergic airways inflammation.
Collapse
Affiliation(s)
- B U Gajewska
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Klein L, Roettinger B, Kyewski B. Sampling of complementing self-antigen pools by thymic stromal cells maximizes the scope of central T cell tolerance. Eur J Immunol 2001; 31:2476-86. [PMID: 11500832 DOI: 10.1002/1521-4141(200108)31:8<2476::aid-immu2476>3.0.co;2-t] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Expression of peripheral antigens in the thymus has been implicated in T cell tolerance and autoimmunity, yet the identity of cells involved remains elusive. Here we show that antigen expression in a minor fraction of medullary thymic epithelial cells leads to deletion of specific CD4 T cells. Strikingly, this deletion is not dependent on cross-presentation by hemopoietic antigen-presenting cells, which have been ascribed a predominant role in negative selection. By contrast, when the same antigen enters the thymus via the blood stream, negative selection is strictly dependent on antigen presentation by hemopoietic cells. These findings imply that the (re)-presentation of "self" by thymic stromal cells is non-redundant, and that different thymic antigen-presenting cells instead cover complementing sets of self-antigens, thus maximizing the scope of central tolerance
Collapse
Affiliation(s)
- L Klein
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
35
|
George-Chandy A, Mielcarek N, Nordström I, Holmgren J, Eriksson K. Vaccination with Bordetella pertussis-pulsed autologous or heterologous dendritic cells induces a mucosal antibody response in vivo and protects against infection. Infect Immun 2001; 69:4120-4. [PMID: 11349085 PMCID: PMC98478 DOI: 10.1128/iai.69.6.4120-4124.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study demonstrates for the first time that vaccination with either autologous or heterologous dendritic cells (DC) pulsed with specific antigen induces protective immune responses against noninvasive bacteria, namely Bordetella pertussis. The DC-mediated protection is associated with strong B. pertussis-specific immunoglobulin G (IgG) and IgA responses in the lung.
Collapse
Affiliation(s)
- A George-Chandy
- Department of Medical Microbiology & Immunology, Göteborg University, Sweden
| | | | | | | | | |
Collapse
|
36
|
Blackwell NM, Else KJ. B cells and antibodies are required for resistance to the parasitic gastrointestinal nematode Trichuris muris. Infect Immun 2001; 69:3860-8. [PMID: 11349052 PMCID: PMC98409 DOI: 10.1128/iai.69.6.3860-3868.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies using cell transfers and antibody receptor knockout mice have shown that B cells and antibodies are not essential components of the expulsion mechanism in Trichuris muris infections. Serum transfer experiments have given mixed results regarding the importance of antibodies in this infection model, and the role of B cells in initiating or maintaining T-cell responses has not been addressed. We used B-cell-deficient muMT mice to determine if B cells play a role in anti-T. muris immune responses. In contrast to wild-type C57BL/6 mice, muMT mice were susceptible to infection. Antigen-restimulated mesenteric lymph node cells from infected muMT mice produced only naive levels of Th2-associated cytokines but had increased levels of gamma interferon. However, these mice appeared capable of mounting a Th2-dependent mucosal mastocytosis, though this was significantly delayed compared to that seen in wild-type mice. Resistance to T. muris was restored following reconstitution with naive C57BL/6 splenic B cells, as was in vitro Th2 cytokine production in response to parasite antigen. Treatment of muMT mice with anti-interleukin-12 monoclonal antibody during the first 2 weeks of infection also restored immunity, suggesting that muMT mice can be manipulated to expel worms at the time of T-cell priming. Additionally, treatment of muMT mice with parasite-specific immunoglobulin G1 purified from the serum of resistant NIH mice prevented worm establishment, suggesting an important role for antibodies. Our results as a whole describe the first detailed report of a critical role for B cells in resistance to an intestinal nematode.
Collapse
Affiliation(s)
- N M Blackwell
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
37
|
Pichyangkul S, Saengkrai P, Yongvanitchit K, Limsomwong C, Gettayacamin M, Walsh DS, Stewart VA, Ballou WR, Heppner DG. Isolation and characterization of rhesus blood dendritic cells using flow cytometry. J Immunol Methods 2001; 252:15-23. [PMID: 11334961 DOI: 10.1016/s0022-1759(01)00327-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recognition of dendritic cells (DCs) as initiators and modulators of immune responses and growing use of rhesus monkeys for the preclinical optimization of vaccine formulations prompted characterization of the phenotype and function of isolated rhesus peripheral blood DCs. We developed a flow cytometric method to directly identify and isolate DCs from rhesus peripheral blood whereby a T cell depleted population negative for CD3, CD14, CD16 and CD20 but positive for CD83 yielded a cell population with surface markers, morphology, and a cytokine profile similar to human myeloid DCs. Rhesus blood DCs were more effective than monocytes and B cells in mixed lymphocyte reactions and in the presentation of recombinant malaria blood stage antigen MSP-1((42)) to autologous T cells. The ability to isolate rhesus blood DC from peripheral blood should be a useful tool for immunological investigations.
Collapse
Affiliation(s)
- S Pichyangkul
- Department of Immunology and Medicine, US Army Medical Component, US Armed Forces Research Institute of Medical Science (AFRIMS), 315/6 Rajvithi Road, 10400, Bangkok, Thailand.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Linton PJ, Harbertson J, Bradley LM. A critical role for B cells in the development of memory CD4 cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5558-65. [PMID: 11067910 DOI: 10.4049/jimmunol.165.10.5558] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Activated B cells express high levels of class II MHC and costimulatory molecules and are nearly as effective as dendritic cells in their APC ability. Yet, their importance as APC in vivo is controversial and their role, if any, in the development of CD4 memory is unknown. We compared responses of CD4 cells from normal and B cell-deficient mice to keyhole limpet hemocyanin over 6 mo and observed diminished IL-2 production by cells primed in the absence of B cells. This was due to lower frequencies of Ag-responsive cells and not to decreased levels of IL-2 secretion per cell. The absence of B cells did not affect the survival of memory CD4 cells since frequencies remained stable. Despite normal dendritic cell function, multiple immunizations of B cell-deficient mice did not restore frequencies of memory cells. However, the transfer of B cells restored memory cell development. Ag presentation was not essential since B cells activated in vitro with irrelevant Ag also restored frequencies of memory cells. The results provide unequivocal evidence that B cells play a critical role in regulating clonal expansion of CD4 cells and, as such, are requisite for the optimal priming of memory in the CD4 population.
Collapse
Affiliation(s)
- P J Linton
- Sidney Kimmel Cancer Center, San Diego, CA 92121, USA
| | | | | |
Collapse
|
39
|
Manickasingham S, Reis e Sousa C. Microbial and T cell-derived stimuli regulate antigen presentation by dendritic cells in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5027-34. [PMID: 11046031 DOI: 10.4049/jimmunol.165.9.5027] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cells and dendritic cells (DC) internalize and degrade exogenous Ags and present them as peptides bound to MHC class II molecules for scrutiny by CD4(+) T cells. Here we use an Ab specific for a processed form of the model Ag, hen egg lysozyme (HEL), to demonstrate that this protein is not efficiently presented by lymph node DC following s.c. immunization. HEL presentation by the DC can be dramatically enhanced upon coinjection of a microbial adjuvant, which appears to act by enhancing peptide loading onto MHC class II. CD40 cross-linking or the presence of a high frequency of T cells specific for HEL can similarly improve presentation by DC in vivo. For any of these activating stimuli, CD8alpha(+) DC consistently display the highest proportion of HEL-loaded MHC class II molecules. These data indicate that exogenous Ags can be displayed to T cells in lymphoid tissues by a large cohort of resident DC whose presentation is regulated by innate and adaptive stimuli. Our data further reveal the existence of a feedback mechanism that augments Ag presentation during cognate APC-T cell interactions.
Collapse
Affiliation(s)
- S Manickasingham
- Immunobiology Laboratory, Imperial Cancer Research Fund, London, United Kingdom
| | | |
Collapse
|
40
|
Bradley LM, Harbertson J, Freschi GC, Kondrack R, Linton PJ. Regulation of development and function of memory CD4 subsets. Immunol Res 2000; 21:149-58. [PMID: 10852112 DOI: 10.1385/ir:36:1:149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Immunologic memory refers to the dramatic response to previously encountered antigen (Ag) that is largely controlled by CD4 T cells. Understanding how CD4 memory is regulated is essential for exploiting the immune system to protect against disease and to dampen immunopathology in allergic responses and autoimmunity. Using defined adoptive-transfer models, we are studying parameters that affect differentiation of memory CD4 cells in vivo and have found that a complex interplay of T cell receptor signaling, costimulation, and cytokines can determine the extent of memory development and the balance of Th1 and Th2 memory subsets. On challenge, memory CD4 cells localize in sites of Ag exposure and develop into effectors that regulate memory responses. We are investigating the roles of adhesion molecules, cytokines, and chemokines in the selective recruitment of CD4 memory subsets to address mechanisms by which memory T cells provide long-lasting immunity and, in our recent studies, to determine how memory CD4 cells contribute to the development of autoimmune diabetes.
Collapse
Affiliation(s)
- L M Bradley
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Abstract
Lymphocyte-specific protein 1, recently renamed leukocyte-specific protein 1 (LSP1), is an F-actin binding protein expressed in lymphocytes, macrophages, and neutrophils in mice and humans. This study examines LSP1-deficient (Lsp1−/−) mice for the development of myeloid and lymphocytic cell populations and their response to the development of peritonitis induced by thioglycollate (TG) and to a T-dependent antigen.Lsp1−/− mice exhibit significantly higher levels of resident macrophages in the peritoneum compared to wild-type (wt) mice, whereas the development of myeloid cells is normal. This increase, which is specific for conventional CD5−macrophages appears to be tissue specific and does not result from differences in adhesion to the peritoneal mesothelium. The level of peritoneal lymphocytes is decreased inLsp1−/− mice without affecting a particular lymphocytic subset. The proportions of precursor and mature lymphocytes in the central and peripheral tissues of Lsp1−/−mice are similar to those of wt mice andLsp1−/−mice mount a normal response to the T-dependent antigen, ovalbumin (OVA). On injection of TG, theLsp1−/−mice exhibit an accelerated kinetics of changes in peritoneal macrophage and neutrophil numbers as compared to wt including increased influx of these cells. LSP1− neutrophils demonstrate an enhanced chemotactic response in vitro to N-formyl methionyl-leucyl-phenylalanine (FMLP) and to the C-X-C chemokine, KC, indicating that their enhanced influx into the peritoneum may be a result of increased motility. Our data demonstrate that LSP1 is a negative regulator of neutrophil chemotaxis.
Collapse
|
42
|
Abstract
Lymphocyte-specific protein 1, recently renamed leukocyte-specific protein 1 (LSP1), is an F-actin binding protein expressed in lymphocytes, macrophages, and neutrophils in mice and humans. This study examines LSP1-deficient (Lsp1−/−) mice for the development of myeloid and lymphocytic cell populations and their response to the development of peritonitis induced by thioglycollate (TG) and to a T-dependent antigen.Lsp1−/− mice exhibit significantly higher levels of resident macrophages in the peritoneum compared to wild-type (wt) mice, whereas the development of myeloid cells is normal. This increase, which is specific for conventional CD5−macrophages appears to be tissue specific and does not result from differences in adhesion to the peritoneal mesothelium. The level of peritoneal lymphocytes is decreased inLsp1−/− mice without affecting a particular lymphocytic subset. The proportions of precursor and mature lymphocytes in the central and peripheral tissues of Lsp1−/−mice are similar to those of wt mice andLsp1−/−mice mount a normal response to the T-dependent antigen, ovalbumin (OVA). On injection of TG, theLsp1−/−mice exhibit an accelerated kinetics of changes in peritoneal macrophage and neutrophil numbers as compared to wt including increased influx of these cells. LSP1− neutrophils demonstrate an enhanced chemotactic response in vitro to N-formyl methionyl-leucyl-phenylalanine (FMLP) and to the C-X-C chemokine, KC, indicating that their enhanced influx into the peritoneum may be a result of increased motility. Our data demonstrate that LSP1 is a negative regulator of neutrophil chemotaxis.
Collapse
|
43
|
Affiliation(s)
- V E Schijns
- Department of Vaccine Technology and Immunology, P.O. Box 31, Intervet International BV, The Netherlands.
| |
Collapse
|
44
|
Bauman SK, Nichols KL, Murphy JW. Dendritic cells in the induction of protective and nonprotective anticryptococcal cell-mediated immune responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:158-67. [PMID: 10861048 DOI: 10.4049/jimmunol.165.1.158] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DC) can be divided into three subsets, Langerhans cells, myeloid DC (MDC), and lymphoid DC (LDC), based upon phenotypic and functional differences. We hypothesized that different DC subsets are associated with the development of protective vs nonprotective cell-mediated immune (CMI) responses against the fungal pathogen, Cryptococcus neoformans. To test this, mice were immunized with protective and/or nonprotective immunogens, and DC subsets in draining lymph nodes were assessed by flow cytometry. The protective immunogen (cryptococcal culture filtrate Ag-CFA), in contrast to the nonprotective immunogen (heat-killed cryptococci-CFA), the nonprotective immunogen mixed with the protective immunogen (cryptococcal culture filtrate Ag + heat-killed cryptococci-CFA), or controls, stimulated significant increases in total leukocytes, Langerhans cells, MDC, LDC, and activated CD4+ T cells in draining lymph nodes. The protective immune response resulted in significantly increased levels of anticryptococcal delayed-type hypersensitivity reactivity and activated CD4+ T cells at the delayed-type hypersensitivity reaction site. Draining lymph node LDC:MDC ratios induced by the protective immunogen were significantly lower than the ratios induced by either immunization in which the nonprotective immunogen was present. In contrast, mice given the nonprotective immunogen had LDC:MDC ratios similar to those of naive mice. Our data indicate that lymph node Langerhans cells and MDC are APC needed for induction of the protective response. The predominance of LDC in mice undergoing nonprotective responses suggests that lymph node LDC, like splenic LDC, are negative regulators of CMI responses. In addition to showing DC subsets associated with functional differences, our data suggest that the LDC:MDC balance, which can be modulated by the Ag, determines whether protective or nonprotective anticryptococcal CMI responses develop.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Antigens, Fungal/administration & dosage
- Antigens, Fungal/immunology
- Apoptosis/immunology
- B7-1 Antigen/biosynthesis
- CD4 Lymphocyte Count
- CD4-Positive T-Lymphocytes/immunology
- CD40 Antigens/biosynthesis
- Cell Movement/immunology
- Cryptococcosis/immunology
- Cryptococcosis/mortality
- Cryptococcosis/prevention & control
- Cryptococcus neoformans/immunology
- Culture Media
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- Flow Cytometry
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/immunology
- Fungal Vaccines/administration & dosage
- Fungal Vaccines/immunology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Histocompatibility Antigens Class II/biosynthesis
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/prevention & control
- Immunity, Cellular
- Immunophenotyping
- Kinetics
- Langerhans Cells/cytology
- Langerhans Cells/immunology
- Langerhans Cells/metabolism
- Lectins, C-Type
- Leukocyte Count
- Leukocytes/immunology
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymphocyte Activation/immunology
- Lymphocyte Subsets/cytology
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/metabolism
- Membrane Glycoproteins/analysis
- Mice
- Mice, Inbred CBA
- Minor Histocompatibility Antigens
- Receptors, Cell Surface/analysis
- Survival Analysis
- T-Lymphocytes/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- S K Bauman
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA
| | | | | |
Collapse
|
45
|
Ochsenbein AF, Pinschewer DD, Odermatt B, Ciurea A, Hengartner H, Zinkernagel RM. Correlation of T cell independence of antibody responses with antigen dose reaching secondary lymphoid organs: implications for splenectomized patients and vaccine design. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:6296-302. [PMID: 10843683 DOI: 10.4049/jimmunol.164.12.6296] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many natural viral and bacterial pathogens activate B cells independently of Th cells (TI Ags). This study analyzed the characteristics of the activation of B cells after immunization with various forms of viral Ags using different immunization routes and found a decreasing dependence on T help with increasing amounts of Ag recruited to the spleen. Repetitive antigenic structure facilitated TI B cell responses if Ag was present in lymphoid organs. These results suggest that 1) Ag dose and localization in secondary lymphoid organs are the key for B cell activation in the absence of T help; 2) early TI Ab responses are crucial to protect against systemically spreading acute cytopathic infectious agents; and 3) there may be new rationales for improved vaccine design.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/physiology
- Antigens, T-Independent/physiology
- Antigens, Viral/administration & dosage
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
- Dose-Response Relationship, Immunologic
- Immunohistochemistry
- Injections, Intravenous
- Injections, Subcutaneous
- Lymphoid Tissue/immunology
- Lymphoid Tissue/virology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Nude
- Rhabdoviridae Infections/immunology
- Rhabdoviridae Infections/prevention & control
- Splenectomy
- Structure-Activity Relationship
- Vesicular stomatitis Indiana virus/immunology
- Viral Vaccines/chemical synthesis
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- A F Ochsenbein
- Institute for Experimental Immunology, University Hospital, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
46
|
Lo-Man R, Langeveld JP, Dériaud E, Jehanno M, Rojas M, Clément JM, Meloen RH, Hofnung M, Leclerc C. Extending the CD4(+) T-cell epitope specificity of the Th1 immune response to an antigen using a Salmonella enterica serovar typhimurium delivery vehicle. Infect Immun 2000; 68:3079-89. [PMID: 10816447 PMCID: PMC97535 DOI: 10.1128/iai.68.6.3079-3089.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the CD4 T-cell immunodominance of the response to a model antigen (Ag), MalE, when delivered by an attenuated strain of Salmonella enterica serovar Typhimurium (SL3261*pMalE). Compared to purified MalE Ag administered with adjuvant, the mapping of the peptide-specific proliferative responses showed qualitative differences when we used the Salmonella vehicle. We observed the disappearance of one out of eight MalE peptides' T-cell reactivity upon SL3261*pMalE immunization, but this phenomenon was probably due to a low level of T-cell priming, since it could be overcome by further immunization. The most striking effect of SL3261*pMalE administration was the activation and stimulation of new MalE peptide-specific T-cell responses that were silent after administration of purified Ag with adjuvant. Ag presentation assays performed with MalE-specific T-cell hybridomas showed that infection of Ag-presenting cells by this intracellular attenuated bacterium did not affect the processing and presentation of the different MalE peptides by major histocompatibility complex (MHC) class II molecules and therefore did not account for immunodominance modulation. Thus, immunodominance of the T-cell response to microorganisms is governed not only by the frequency of the available T-cell repertoire or the processing steps in Ag-presenting cells that lead to MHC presentation but also by other parameters probably related to the infectious process and to the bacterial products. Our results indicate that, upon infection by a microorganism, the specificity of the T-cell response induced against its Ags can be much more effective than with purified Ags and that it cannot completely be mimicked by purified Ags administered with adjuvant.
Collapse
Affiliation(s)
- R Lo-Man
- Unité de Biologie des Régulations Immunitaires, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Drakesmith H, Chain B, Beverley P. How can dendritic cells cause autoimmune disease? IMMUNOLOGY TODAY 2000; 21:214-7. [PMID: 10782051 DOI: 10.1016/s0167-5699(00)01610-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Immune responses against foreign antigens are initiated and controlled by dendritic cells (DCs). Accumulating evidence suggests that autoimmunity, involving T cells directed against self, can also be primed by DCs. We propose that DCs could induce autoimmunity following their differentiation by certain cytokines, or because of intrinsic defects in genes controlling DC function. Both processes result in DCs that behave deviantly.
Collapse
Affiliation(s)
- H Drakesmith
- Molecular Immunology Group, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK.
| | | | | |
Collapse
|
48
|
Corinti S, Medaglini D, Prezzi C, Cavani A, Pozzi G, Girolomoni G. Human dendritic cells are superior to B cells at presenting a major histocompatibility complex class II-restricted heterologous antigen expressed on recombinant Streptococcus gordonii. Infect Immun 2000; 68:1879-83. [PMID: 10722577 PMCID: PMC97361 DOI: 10.1128/iai.68.4.1879-1883.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria are being actively investigated as vaccine carriers for inducing or boosting protective immune responses. In this study, human monocyte-derived dendritic cells (DCs) and normal B cells were compared for their capacity to present the C fragment of tetanus toxin (TTFC), expressed on the surface of recombinant Streptococcus gordonii, to specific CD4(+) T lymphocytes. DCs were more efficient than B cells at presenting soluble TTFC and remarkably more capable of presenting bacterium-associated TTFC both in terms of the amount of antigen required to obtain a given T-cell response and on a per-cell basis. This difference was associated with a much lower capacity of B cells to endocytose soluble TTFC and phagocytose recombinant S. gordonii. In addition, S. gordonii induced the phenotypic maturation of DCs but not of B cells. The results thus indicate that DCs but not B cells play a crucial role in the amplification of class II-restricted immune responses induced by immunization with recombinant gram-positive bacteria.
Collapse
Affiliation(s)
- S Corinti
- Laboratory of Immunology, Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Tascon RE, Soares CS, Ragno S, Stavropoulos E, Hirst EM, Colston MJ. Mycobacterium tuberculosis-activated dendritic cells induce protective immunity in mice. Immunology 2000; 99:473-80. [PMID: 10712679 PMCID: PMC2327172 DOI: 10.1046/j.1365-2567.2000.00963.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activated dendritic cells are critically important in the priming of T-cell responses. In this report we show that the infection of a conditionally immortalized dendritic cell line (tsDC) with Mycobacterium tuberculosis resulted in the up-regulation of B7-1 and B7-2 co-stimulatory molecules and the induction of several inflammatory cytokines, including tumour necrosis factor-alpha and interleukin-6, -1beta and -12. In addition, we show that these activated dendritic cells were capable of eliciting antigen-specific T-cell responses and potent anti-mycobacterial protective immunity in a murine model of experimental tuberculosis infection.
Collapse
Affiliation(s)
- R E Tascon
- Divisions of Mycobacterial Research and Neurobiology, National Institute for Medical Research, Mill Hill, London, UK
| | | | | | | | | | | |
Collapse
|
50
|
Foucras G, Gapin L, Coureau C, Kanellopoulos JM, Guéry JC. Interleukin 4-producing CD4 T cells arise from different precursors depending on the conditions of antigen exposure in vivo. J Exp Med 2000; 191:683-94. [PMID: 10684860 PMCID: PMC2195842 DOI: 10.1084/jem.191.4.683] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The precursor origin of T helper (Th) cell subsets in vivo has been difficult to study and remains poorly investigated. We have previously shown that chronic administration of soluble protein antigen induces selective development of antigen-specific CD4 Th2 cells in genetically predisposed mouse strains. To analyze the origin of effector T cells in this model, we designed a competitive polymerase chain reaction-based approach to track public BV-J rearrangement expressed by CD4 T cells specific for hen egg white lysozyme (HEL) in BALB/c mice. We show that public T cell clones are predominantly associated with type 1 or 2 effector Th cells recovered after primary immunization in complete or incomplete Freund's adjuvant, respectively. Conversely, continuous administration of soluble antigen, which induces strong memory Th2 response, is associated with a dose-dependent reduction of public clone size by a mechanism resembling clonal anergy. Thus, soluble HEL-induced Th2 cells do not express the public complementarity determining region 3 motifs characteristic of immunogenic challenge in the presence of adjuvant. These results demonstrate that there are multiple pathways of induction of Th2 responses depending on the condition of antigen exposure in vivo, i.e., clonal immune deviation versus recruitment of a different pool of precursor cells.
Collapse
Affiliation(s)
- Gilles Foucras
- Institut National de la Santé et de la Recherche Médicale (INSERM) U28, Institut Fédératif de Recherche 30, Hôpital Purpan, 31059 Toulouse Cedex, France
| | - Laurent Gapin
- Unité de Biologie Moléculaire du Gène, INSERM U277, Institut Pasteur, 75724 Paris cedex, France
| | - Christiane Coureau
- Institut National de la Santé et de la Recherche Médicale (INSERM) U28, Institut Fédératif de Recherche 30, Hôpital Purpan, 31059 Toulouse Cedex, France
| | - Jean M. Kanellopoulos
- Unité de Biologie Moléculaire du Gène, INSERM U277, Institut Pasteur, 75724 Paris cedex, France
| | - Jean-Charles Guéry
- Institut National de la Santé et de la Recherche Médicale (INSERM) U28, Institut Fédératif de Recherche 30, Hôpital Purpan, 31059 Toulouse Cedex, France
| |
Collapse
|