1
|
Shi M, Wei Y, Huang H, Guo R, Luo F. Heparin-binding protein levels as an emerging key biomarker for accurate diagnosis of bacterial meningitis: a promising yet preliminary evaluation. Microb Pathog 2025:107417. [PMID: 40010653 DOI: 10.1016/j.micpath.2025.107417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/01/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
This systematic review aims to consolidate evidence on the potential of heparin-binding protein (HBP) as an emerging and promising biomarker for diagnosing bacterial meningitis (BM). We conducted a comprehensive search across PubMed, the Cochrane Library, Web of Science, and China National Knowledge Infrastructure (CNKI) databases, with no restrictions on publication date or language. Sixteen studies, encompassing a total of 2,032 participants, were included in the analysis. The results consistently demonstrated that HBP expression levels in both cerebrospinal fluid (CSF) and blood are markedly elevated in cases of BM compared to patients with non-central nervous system (CNS) infections or other types of meningitis, such as viral meningitis. The pooled sensitivity estimate for HBP measured in CSF was 0.94 [95% confidence interval (CI) 0.88-0.97], and the specificity was 0.96 [95% CI 0.90-0.98]. The diagnostic odds ratio (DOR) was calculated as 327 [95%CI, 96-1110]. According to Fagan's nomogram, an initial probability of 20% for a positive test result increased to 85% following a positive HBP test, while a negative test reduced the probability to just 2%. The diagnostic performance of CSF HBP surpassed that of procalcitonin in detecting BM. Furthermore, in cases where symptoms of CNS infection are present, HBP levels in blood also demonstrate notable diagnostic accuracy. These findings suggest that HBP holds significant potential as a biomarker for BM. However, further large-scale studies are required to establish optimal HBP thresholds for improved clinical applicability.
Collapse
Affiliation(s)
- Mingjie Shi
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, 528300, Guangdong, P.R. China; Matenal and Child Research Institute, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Yue Wei
- Department of Ultrasound, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Hongchao Huang
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, 528300, Guangdong, P.R. China; Matenal and Child Research Institute, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Runmin Guo
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, 528300, Guangdong, P.R. China; Matenal and Child Research Institute, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China; Department of Internal Medicine, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China.
| | - Fei Luo
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, 528300, Guangdong, P.R. China; Matenal and Child Research Institute, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China; Department of Traditional Chinese Medicine Gynaecology, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China.
| |
Collapse
|
2
|
Galkina SI, Fedorova NV, Golenkina EA, Ksenofontov AL, Serebryakova MV, Kordyukova LV, Stadnichuk VI, Baratova LA, Sud'ina GF. Differential effects of angiotensin II and aldosterone on human neutrophil adhesion and concomitant secretion of proteins, free amino acids and reactive oxygen and nitrogen species. Int Immunopharmacol 2024; 139:112687. [PMID: 39018693 DOI: 10.1016/j.intimp.2024.112687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Invasion and adhesion of neutrophils into tissues and their concomitant secretion play an important role in the development of vascular pathologies, including abdominal aortic aneurysm (AAA). Chronic administration of angiotensin II is used to initiate AAA formation in mice. The role of aldosterone in this process is being studied. We conducted for the first time a complex comparative study of the effects of angiotensin II and aldosterone on the adhesion of human neutrophils to fibronectin and the concomitant secretion of proteins, free amino acids as well as reactive oxygen (ROS) and nitrogen (NO) species. Neither angiotensin II nor aldosterone affected the attachment of neutrophils to fibronectin and the concomitant production of ROS. We showed for the first time that aldosterone stimulated the release of amino acid hydroxylysine, a product of lysyl hydroxylase, the activity of which is positively correlated with cell invasiveness. Aldosterone also initiates the secretion of matrix metalloproteinase 9 (MMP-9) and cathepsin G, which may reorganize the extracellular matrix and stimulate the recruitment and adhesion of neutrophils to the aortic walls. Angiotensin II did not affect protein secretion. It may contribute to neutrophil-induced vascular injury by inhibiting the production of NO or by increasing the secretion of isoleucine. Our results suggest that it is aldosterone-induced neutrophil secretion that may play a significant role in neutrophil-induced vascular wall destruction in angiotensin II-induced AAA or other vascular complications.
Collapse
Affiliation(s)
- Svetlana I Galkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Natalia V Fedorova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina A Golenkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander L Ksenofontov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Larisa V Kordyukova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Ludmila A Baratova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Galina F Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
3
|
Mao Y, Suryawanshi A, Patial S, Saini Y. Airspaces-derived exosomes contain disease-relevant protein signatures in a mouse model of cystic fibrosis (CF)-like mucoinflammatory lung disease. Front Pharmacol 2024; 15:1460692. [PMID: 39386033 PMCID: PMC11461968 DOI: 10.3389/fphar.2024.1460692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
Exosomes, membrane-bound extracellular vesicles, ranging from approximately 30-200 nm in diameter, are released by almost all cell types and play critical roles in intercellular communication. In response to the prevailing stress, the exosome-bound protein signatures vary in abundance and composition. To identify the bronchoalveolar lavage fluid (BALF) exosome-bound proteins associated with mucoinflammatory lung disease and to gain insights into their functional implications, we compared BALF exosomes-derived proteins from adult Scnn1b transgenic (Scnn1b-Tg+) and wild type (WT) mice. A total of 3,144 and 3,119 proteins were identified in BALF exosomes from Scnn1b-Tg+ and WT mice, respectively. Using cutoff criteria (Log2 fold-change > 1 and adjusted p-value < 0.05), the comparison of identified proteins revealed 127 and 30 proteins that were significantly upregulated and downregulated, respectively, in Scnn1b-Tg+ versus WT mice. In addition, 52 and 27 proteins were exclusively enriched in Scnn1b-Tg+ and WT mice, respectively. The identified exosome-bound proteins from the homeostatic airspaces of WT mice were mostly relevant to the normal physiological processes. The protein signatures enriched in the BALF exosomes of Scnn1b-Tg+ mice were relevant to macrophage activation and mucoinflammatory processes. Ingenuity pathway analyses revealed that the enriched proteins in Scnn1b-Tg+ mice contributed to the inflammatory responses and antimicrobial defense pathways. Selective proteins including, RETNLA/FIZZ1, LGALS3/Galectin-3, S100A8/MRP8, and CHIL3/YM1 were immunolocalized to specific cell types. The comparative analysis between enriched BALF exosome proteins and previously identified differentially upregulated genes in Scnn1b-Tg+ versus WT mice suggested that the compartment-/cell-specific upregulation in gene expression dictates the enrichment of their respective proteins in the lung airspaces. Taken together, this study demonstrates that the BALF exosome-bound protein signatures reflect disease-relevant disturbances. Our findings suggest that the exosomes carry disease-relevant protein signatures that can be used as a diagnostic as well as predictive biomarkers for mucoinflammatory lung disease.
Collapse
Affiliation(s)
- Yun Mao
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Sonika Patial
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Yogesh Saini
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
4
|
Galozzi P, Bindoli S, Baggio C, Battisti I, Leonardi A, Basso D, Arrigoni G, Sfriso P. Proteomic Profiling of Tears in Blau Syndrome Patients in Identification of Potential Disease Biomarkers. Int J Mol Sci 2024; 25:8387. [PMID: 39125957 PMCID: PMC11312868 DOI: 10.3390/ijms25158387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Blau syndrome (BS) is a rare autoinflammatory granulomatosis characterized by granulomatous arthritis, uveitis, and dermatitis. Ocular complications are particularly severe in BS, significantly contributing to morbidity. This study aims to identify potential biomarkers for BS ocular degeneration through proteomic profiling of tear samples from affected patients. Seven subjects from the same family, including four carriers of the BS-associated NOD2 mutation (p.E383K), were recruited alongside healthy controls. Tear samples were collected using Schirmer strips and analyzed via mass spectrometry. A total of 387 proteins were identified, with significant differences in protein expression between BS patients, healthy familial subjects, and healthy controls. Key findings include the overexpression of alpha-2-macroglobulin (A2M) and immunoglobulin heavy constant gamma 4 (IGHG4) in BS patients. Bioinformatic analysis revealed that differentially expressed proteins are involved in acute-phase response, extracellular exosome formation, and protein binding. Notably, neutrophils' azurophilic granule components, as azurocidin (AZU1), myeloperoxidases (MPO), and defensins (DEFA3), were highly expressed in the most severely affected subject, suggesting a potential role of neutrophils in BS ocular severity. These proteins might be promising biomarkers for ocular involvement in BS, facilitating early detection and tailored treatment strategies.
Collapse
Affiliation(s)
- Paola Galozzi
- Laboratory Medicine Unit, Department of Medicine DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Sara Bindoli
- Rheumatology Unit, Department of Medicine DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Chiara Baggio
- Rheumatology Unit, Department of Medicine DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Ilaria Battisti
- Department of Biomedical Sciences, University of Padova, 35128 Padova, Italy
| | - Andrea Leonardi
- Ophthalmology Unit, Department of Neuroscience, University of Padova, 35128 Padova, Italy
| | - Daniela Basso
- Laboratory Medicine Unit, Department of Medicine DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, 35128 Padova, Italy
| | - Paolo Sfriso
- Rheumatology Unit, Department of Medicine DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
5
|
Lee CN, Hall BA, Sanford L, Molehin AJ. Molecular Characterization and Functional Analysis of a Schistosoma mansoni Serine Protease Inhibitor, Smserpin-p46. Microorganisms 2024; 12:1164. [PMID: 38930546 PMCID: PMC11205507 DOI: 10.3390/microorganisms12061164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Serine protease inhibitors are a superfamily of proteins that regulate various physiological processes including fibrinolysis, inflammation and immune responses. In parasite systems, serpins are believed to play important roles in parasite colonization, inhibition of host immune serine proteases and penetration of defensive barriers. However, serpins are less well characterized in schistosomes. In this study, a Schistosoma mansoni serpin (Smserpin-p46) containing a 1360 base pair open reading frame, was cloned, expressed and functionally characterized. Bioinformatics analysis revealed that Smserpin-p46 contains the key residues, structural domains and motifs characteristic of inhibitory serpins. Gene expression profiling demonstrated stage-specific expression of Smserpin-p46 with the highest expression in adult male worms. Recombinant Smserpin-p46 (rSmserpin-p46) inhibited both human neutrophil cathepsin G and elastase, key serine proteases involved in NETosis, a program for the formation of neutrophil extracellular traps. Using specific rabbit antiserum, Smserpin-p46 was detected in soluble worm antigen preparation and was localized to the adult worm tegument. Cumulatively, the expression of Smserpin-p46 on the parasite tegument and its ability to inhibit proteases involved in NETosis highlights the importance of this serpin in parasite-host interactions and encourages its further investigation as a candidate vaccine antigen for the control of schistosomiasis.
Collapse
Affiliation(s)
- Christine N. Lee
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - Brooke Ashlyn Hall
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - Leah Sanford
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
| | - Adebayo J. Molehin
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
| |
Collapse
|
6
|
Hoffman A, Nizet V. The Prospect of Biomimetic Immune Cell Membrane-Coated Nanomedicines for Treatment of Serious Bacterial Infections and Sepsis. J Pharmacol Exp Ther 2024; 389:289-300. [PMID: 38580449 PMCID: PMC11125797 DOI: 10.1124/jpet.123.002095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/17/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024] Open
Abstract
Invasive bacterial infections and sepsis are persistent global health concerns, complicated further by the escalating threat of antibiotic resistance. Over the past 40 years, collaborative endeavors to improve the diagnosis and critical care of septic patients have improved outcomes, yet grappling with the intricate immune dysfunction underlying the septic condition remains a formidable challenge. Anti-inflammatory interventions that exhibited promise in murine models failed to manifest consistent survival benefits in clinical studies through recent decades. Novel therapeutic approaches that target bacterial virulence factors, for example with monoclonal antibodies, aim to thwart pathogen-driven damage and restore an advantage to the immune system. A pioneering technology addressing this challenge is biomimetic nanoparticles-a therapeutic platform featuring nanoscale particles enveloped in natural cell membranes. Borne from the quest for a durable drug delivery system, the original red blood cell-coated nanoparticles showcased a broad capacity to absorb bacterial and environmental toxins from serum. Tailoring the membrane coating to immune cell sources imparts unique characteristics to the nanoparticles suitable for broader application in infectious disease. Their capacity to bind both inflammatory signals and virulence factors assembles the most promising sepsis therapies into a singular, pathogen-agnostic therapeutic. This review explores the ongoing work on immune cell-coated nanoparticle therapeutics for infection and sepsis. SIGNIFICANCE STATEMENT: Invasive bacterial infections and sepsis are a major global health problem made worse by expanding antibiotic resistance, meaning better treatment options are urgently needed. Biomimetic cell-membrane-coated nanoparticles are an innovative therapeutic platform that deploys a multifaceted mechanism to action to neutralize microbial virulence factors, capture endotoxins, and bind excessive host proinflammatory cytokines, seeking to reduce host tissue injury, aid in microbial clearance, and improve patient outcomes.
Collapse
Affiliation(s)
- Alexandria Hoffman
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California (A.H., V.N.); and Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California (V.N.)
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California (A.H., V.N.); and Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California (V.N.)
| |
Collapse
|
7
|
Gao CF, Vaikuntanathan S, Riesenfeld SJ. Dissection and integration of bursty transcriptional dynamics for complex systems. Proc Natl Acad Sci U S A 2024; 121:e2306901121. [PMID: 38669186 PMCID: PMC11067469 DOI: 10.1073/pnas.2306901121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 03/06/2024] [Indexed: 04/28/2024] Open
Abstract
RNA velocity estimation is a potentially powerful tool to reveal the directionality of transcriptional changes in single-cell RNA-sequencing data, but it lacks accuracy, absent advanced metabolic labeling techniques. We developed an approach, TopicVelo, that disentangles simultaneous, yet distinct, dynamics by using a probabilistic topic model, a highly interpretable form of latent space factorization, to infer cells and genes associated with individual processes, thereby capturing cellular pluripotency or multifaceted functionality. Focusing on process-associated cells and genes enables accurate estimation of process-specific velocities via a master equation for a transcriptional burst model accounting for intrinsic stochasticity. The method obtains a global transition matrix by leveraging cell topic weights to integrate process-specific signals. In challenging systems, this method accurately recovers complex transitions and terminal states, while our use of first-passage time analysis provides insights into transient transitions. These results expand the limits of RNA velocity, empowering future studies of cell fate and functional responses.
Collapse
Affiliation(s)
- Cheng Frank Gao
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | - Suriyanarayanan Vaikuntanathan
- Department of Chemistry, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
| | - Samantha J. Riesenfeld
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- Department of Medicine, University of Chicago, Chicago, IL60637
- Committee on Immunology, Biological Sciences Division, University of Chicago, Chicago, IL60637
| |
Collapse
|
8
|
Koh YC, Chang YC, Lin WS, Leung SY, Chen WJ, Wu SH, Wei YS, Gung CL, Chou YC, Pan MH. Efficacy and Mechanism of the Action of Live and Heat-Killed Bacillus coagulans BC198 as Potential Probiotic in Ameliorating Dextran Sulfate Sodium-Induced Colitis in Mice. ACS OMEGA 2024; 9:10253-10266. [PMID: 38463297 PMCID: PMC10918820 DOI: 10.1021/acsomega.3c07529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
Inflammatory bowel disease alters the gut microbiota, causes defects in mucosal barrier function, and leads to dysregulation of the immune response to microbial stimulation. This study investigated and compared the efficacy of a candidate probiotic strain, Bacillus coagulans BC198, and its heat-killed form in treating dextran sulfate sodium-induced colitis. Both live and heat-killed B. coagulans BC198 increased gut barrier-associated protein expression, reduced neutrophil and M1 macrophage infiltration of colon tissue, and corrected gut microbial dysbiosis induced by colitis. However, only live B. coagulans BC198 could alleviate the general symptoms of colitis, prevent colon shortening, and suppress inflammation and tissue damage. At the molecular level, live B. coagulans BC198 was able to inhibit Th17 cells while promoting Treg cells in mice with colitis, reduce pro-inflammatory MCP-1 production, and increase anti-inflammatory IL-10 expression in the colonic mucosa. The live form of B. coagulans BC198 functioned more effectively than the heat-killed form in ameliorating colitis by enhancing the anti-inflammatory response and promoting Treg cell accumulation in the colon.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Ya-Chu Chang
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Wei-Sheng Lin
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Food Science, National Quemoy University, Quemoy 892, Taiwan
| | - Siu-Yi Leung
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Wei-Jen Chen
- Biotech
Department, Syngen Biotech Co., Ltd., Tainan 744094, Taiwan
| | - Shiuan-Huei Wu
- Biotech
Department, Syngen Biotech Co., Ltd., Tainan 744094, Taiwan
| | - Yu-Shan Wei
- Research
and Development Department, Syngen Biotech
Co., Ltd., Tainan 744094, Taiwan
| | - Chiau-Ling Gung
- Research
and Development Department, Syngen Biotech
Co., Ltd., Tainan 744094, Taiwan
| | - Ya-Chun Chou
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, Taichung City 40402, Taiwan
- Department
of Health and Nutrition Biotechnology, Asia
University, Taichung City 41354, Taiwan
| |
Collapse
|
9
|
Duszyc K, von Pein JB, Ramnath D, Currin-Ross D, Verma S, Lim F, Sweet MJ, Schroder K, Yap AS. Apical extrusion prevents apoptosis from activating an acute inflammatory program in epithelia. Dev Cell 2023; 58:2235-2248.e6. [PMID: 37647898 DOI: 10.1016/j.devcel.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Apoptosis is traditionally considered to be an immunologically silent form of cell death. Multiple mechanisms exist to ensure that apoptosis does not stimulate the immune system to cause inflammation or autoimmunity. Against this expectation, we now report that epithelia are programmed to provoke, rather than suppress, inflammation in response to apoptosis. We found that an acute inflammatory response led by neutrophils occurs in zebrafish and cell culture when apoptotic epithelial cells cannot be expelled from the monolayer by apical extrusion. This reflects an intrinsic circuit where ATP released from apoptotic cells stimulates epithelial cells in the immediate vicinity to produce interleukin-8 (IL-8). Apical extrusion therefore prevents inappropriate epithelial inflammation by physically eliminating apoptotic cells before they can activate this pro-inflammatory circuit. This carries the implication that epithelia may be predisposed to inflammation, elicited by sporadic or induced apoptosis, if apical extrusion is compromised.
Collapse
Affiliation(s)
- Kinga Duszyc
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| | - Jessica B von Pein
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Divya Ramnath
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Denni Currin-Ross
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Suzie Verma
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Fayth Lim
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Matthew J Sweet
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Kate Schroder
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
10
|
Bazgir F, Nau J, Nakhaei-Rad S, Amin E, Wolf MJ, Saucerman JJ, Lorenz K, Ahmadian MR. The Microenvironment of the Pathogenesis of Cardiac Hypertrophy. Cells 2023; 12:1780. [PMID: 37443814 PMCID: PMC10341218 DOI: 10.3390/cells12131780] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we highlight the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. This perspective article summarizes the last decades' advances in cardiac hypertrophy research and discusses the herein-involved complex myocardial microenvironment and signaling components.
Collapse
Affiliation(s)
- Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Julia Nau
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Ehsan Amin
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Matthew J. Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA;
| | - Jeffry J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Leibniz Institute for Analytical Sciences, 97078 Würzburg, Germany;
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| |
Collapse
|
11
|
Gao CF, Vaikuntanathan S, Riesenfeld SJ. Dissection and Integration of Bursty Transcriptional Dynamics for Complex Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544828. [PMID: 37398022 PMCID: PMC10312759 DOI: 10.1101/2023.06.13.544828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
RNA velocity estimation is a potentially powerful tool to reveal the directionality of transcriptional changes in single-cell RNA-seq data, but it lacks accuracy, absent advanced metabolic labeling techniques. We developed a novel approach, TopicVelo, that disentangles simultaneous, yet distinct, dynamics by using a probabilistic topic model, a highly interpretable form of latent space factorization, to infer cells and genes associated with individual processes, thereby capturing cellular pluripotency or multifaceted functionality. Focusing on process-associated cells and genes enables accurate estimation of process-specific velocities via a master equation for a transcriptional burst model accounting for intrinsic stochasticity. The method obtains a global transition matrix by leveraging cell topic weights to integrate process-specific signals. In challenging systems, this method accurately recovers complex transitions and terminal states, while our novel use of first-passage time analysis provides insights into transient transitions. These results expand the limits of RNA velocity, empowering future studies of cell fate and functional responses.
Collapse
Affiliation(s)
| | | | - Samantha J Riesenfeld
- Institute for Biophysical Dynamics, University of Chicago, IL
- Pritzker School of Molecular Engineering, University of Chicago, IL
- Department of Medicine, University of Chicago, IL
- Committee on Immunology, University of Chicago, IL
| |
Collapse
|
12
|
Monickaraj F, Acosta G, Cabrera AP, Das A. Transcriptomic Profiling Reveals Chemokine CXCL1 as a Mediator for Neutrophil Recruitment Associated With Blood-Retinal Barrier Alteration in Diabetic Retinopathy. Diabetes 2023; 72:781-794. [PMID: 36930735 PMCID: PMC10202768 DOI: 10.2337/db22-0619] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/12/2023] [Indexed: 03/19/2023]
Abstract
Inflammation plays an important role in the pathogenesis of diabetic retinopathy (DR). To precisely define the inflammatory mediators, we examined the transcriptomic profile of human retinal endothelial cells exposed to advanced glycation end products, which revealed the neutrophil chemoattractant chemokine CXCL1 as one of the top genes upregulated. The effect of neutrophils in the alteration of the blood-retinal barrier (BRB) was further assessed in wild-type C57BL/6J mice intravitreally injected with recombinant CXCL1 as well as in streptozotocin-induced diabetic mice. Both intravitreally CXCL1-injected and diabetic animals showed significantly increased retinal vascular permeability, with significant increase in infiltration of neutrophils and monocytes in retinas and increased expression of chemokines and their receptors, proteases, and adhesion molecules. Treatment with Ly6G antibody for neutrophil depletion in both diabetic mice as well as CXCL1-injected animals showed significantly decreased retinal vascular permeability accompanied by decreased infiltration of neutrophils and monocytes and decreased expression of cytokines and proteases. CXCL1 level was significantly increased in the serum samples of patients with DR compared with samples of those without diabetes. These data reveal a novel mechanism by which the chemokine CXCL1, through neutrophil recruitment, alters the BRB in DR and, thus, serves as a potential novel therapeutic target. ARTICLE HIGHLIGHTS Intravitreal CXCL1 injection and diabetes result in increased retinal vascular permeability with neutrophil and monocyte recruitment. Ly6G antibody treatment for neutrophil depletion in both animal models showed decreased retinal permeability and decreased cytokine expression. CXCL1 is produced by retinal endothelial cells, pericytes, and astrocytes. CXCL1 level is significantly increased in serum samples of patients with diabetic retinopathy. CXCL1, through neutrophil recruitment, alters the blood-retinal barrier in diabetic retinopathy and, thus, may be used as a therapeutic target.
Collapse
Affiliation(s)
- Finny Monickaraj
- Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, NM
- New Mexico VA Health Care System, Albuquerque, NM
| | - Gabriella Acosta
- Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, NM
| | - Andrea P. Cabrera
- Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, NM
| | - Arup Das
- Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, NM
- New Mexico VA Health Care System, Albuquerque, NM
| |
Collapse
|
13
|
Paulsson M, Cardenas EI, Che KF, Brundin B, Smith M, Qvarfordt I, Lindén A. TLR4-mediated release of heparin-binding protein in human airways: a co-stimulatory role for IL-26. Front Immunol 2023; 14:1178135. [PMID: 37234157 PMCID: PMC10206387 DOI: 10.3389/fimmu.2023.1178135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Background Bacterial infection causes accumulation of neutrophils that release antimicrobial proteins including heparin-binding protein (HBP). In human airways, this neutrophil accumulation can be re-capitulated via intrabronchial exposure to lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist, that also causes a local increase in the neutrophil-mobilizing cytokine IL-26. Although LPS is considered a weak stimulus for HBP release ex vivo, its effect on HBP release in human airways in vivo has not been characterized. Methods We determined whether intrabronchial exposure to LPS causes concomitant release of HBP and IL-26 in human airways, and whether IL-26 can enhance LPS-induced release of HBP in isolated human neutrophils. Results We found that the concentration of HBP was markedly increased in bronchoalveolar lavage (BAL) fluid 12, 24, and 48 hours after LPS exposure, and that it displayed a strong and positive correlation with that of IL-26. Moreover, the concentration of HBP in conditioned media from isolated neutrophils was enhanced only after co-stimulation with LPS and IL-26. Conclusions Taken together, our findings indicate that TLR4 stimulation causes concomitant release of HBP and IL-26 in human airways, and that IL-26 may constitute a required co-stimulant for HBP release in neutrophils, thus enabling the concerted action of HBP and IL-26 in local host defense.
Collapse
Affiliation(s)
- Magnus Paulsson
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Microbiology, Laboratory Medicine, Skåne University Hospital, Lund, Sweden
| | - Eduardo I. Cardenas
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karlhans F. Che
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bettina Brundin
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Margaretha Smith
- Division of Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingemar Qvarfordt
- Division of Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindén
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
14
|
Bruserud Ø, Mosevoll KA, Bruserud Ø, Reikvam H, Wendelbo Ø. The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells 2023; 12:cells12071003. [PMID: 37048076 PMCID: PMC10093057 DOI: 10.3390/cells12071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Common causes include gram-negative and gram-positive bacteria as well as fungi. Neutrophils are among the first cells to arrive at an infection site where they function as important effector cells of the innate immune system and as regulators of the host immune response. The regulation of neutrophil migration is therefore important both for the infection-directed host response and for the development of organ dysfunctions in sepsis. Downregulation of CXCR4/CXCL12 stimulates neutrophil migration from the bone marrow. This is followed by transmigration/extravasation across the endothelial cell barrier at the infection site; this process is directed by adhesion molecules and various chemotactic gradients created by chemotactic cytokines, lipid mediators, bacterial peptides, and peptides from damaged cells. These mechanisms of neutrophil migration are modulated by sepsis, leading to reduced neutrophil migration and even reversed migration that contributes to distant organ failure. The sepsis-induced modulation seems to differ between neutrophil subsets. Furthermore, sepsis patients should be regarded as heterogeneous because neutrophil migration will possibly be further modulated by the infecting microorganisms, antimicrobial treatment, patient age/frailty/sex, other diseases (e.g., hematological malignancies and stem cell transplantation), and the metabolic status. The present review describes molecular mechanisms involved in the regulation of neutrophil migration; how these mechanisms are altered during sepsis; and how bacteria/fungi, antimicrobial treatment, and aging/frailty/comorbidity influence the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Øystein Bruserud
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| | - Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
15
|
Carai P, González LF, Van Bruggen S, Spalart V, De Giorgio D, Geuens N, Martinod K, Jones EAV, Heymans S. Neutrophil inhibition improves acute inflammation in a murine model of viral myocarditis. Cardiovasc Res 2023; 118:3331-3345. [PMID: 35426438 PMCID: PMC9847559 DOI: 10.1093/cvr/cvac052] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Viral myocarditis (VM) is an inflammatory pathology of the myocardium triggered by a viral infection that may cause sudden death or heart failure (HF), especially in the younger population. Current treatments only stabilize and improve cardiac function without resolving the underlying inflammatory cause. The factors that induce VM to progress to HF are still uncertain, but neutrophils have been increasingly associated with the negative evolution of cardiac pathologies. The present study investigates the contribution of neutrophils to VM disease progression in different ways. METHODS AND RESULTS In a coxsackievirus B3- (CVB3) induced mouse model of VM, neutrophils and neutrophil extracellular traps (NETs) were prominent in the acute phase of VM as revealed by enzyme-linked immunosorbent assay analysis and immunostaining. Anti-Ly6G-mediated neutrophil blockade starting at model induction decreased cardiac necrosis and leucocyte infiltration, preventing monocyte and Ly6CHigh pro-inflammatory macrophage recruitment. Furthermore, genetic peptidylarginine deiminase 4-dependent NET blockade reduced cardiac damage and leucocyte recruitment, significantly decreasing cardiac monocyte and macrophage presence. Depleting neutrophils with anti-Ly6G antibodies at 7 days post-infection, after the acute phase, did not decrease cardiac inflammation. CONCLUSION Collectively, these results indicate that the repression of neutrophils and the related NET response in the acute phase of VM improves the pathological phenotype by reducing cardiac inflammation.
Collapse
Affiliation(s)
- Paolo Carai
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Laura Florit González
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Cardiology, Experimental Cardiology Laboratory, Utrecht University, Utrecht, The Netherlands
| | - Stijn Van Bruggen
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Valerie Spalart
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Daria De Giorgio
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milan, Italy
| | - Nadéche Geuens
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Elizabeth Anne Vincent Jones
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| | - Stephane Heymans
- Centre for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- CARIM, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Qu-Yu-Jie-Du Decoction Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice by Modulation of Neutrophils and Macrophage Infiltration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3762591. [DOI: 10.1155/2022/3762591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
Background. Inflammatory bowel disease (IBD) is becoming a global disease. A percentage of IBD patients will not react to therapy or will lose their response. Qu-Yu-Jie-Du Decoction (QYJD) is a traditional Chinese medicine formula commonly used for intestinal diseases. It has been reported that QYJD has an anti-inflammatory effect, but the mechanism is not fully understood. In this study, we mainly evaluated the anti-inflammatory effect of QYJD and explored the possible mechanisms. Methods. Twenty-four BALB/c mice were randomly divided into 4 groups according to their body weight, namely, the control group, the dextran sulfate sodium (DSS) group, the DSS + QYJD group, and the QYJD group. Mice were given 3% DSS drinking water freely, and at the same time, mice were given normal saline or QYJD (4.44 mg/g/d), respectively. Mental state, faeces, and weight were recorded every day. On the 10th day, the mice were sacrificed and collected for investigation. The length of the mice colon was measured. Histological analysis was used to detect the morphological changes in the colon. Immunohistochemistry was used to measure the infiltration of macrophages (F4/80, CD163) and neutrophils (Ly6G). Colorimetry was used to detect the myeloperoxidase (MPO) activity of colon tissues. ELISA was utilized to detect associated inflammatory cytokines and chemokines in colon tissues. Results. QYJD alleviated the weight loss and colitis symptoms of mice caused by DSS. QYJD fought against the shortening of the intestine caused by DSS; that is, it improved the decline of intestinal compliance in mice and had a protective effect on colon tissues. The mechanisms were related to downregulating macrophages and neutrophils in colon tissues of infiltration. Besides, QYJD simultaneously reduced the activity of myeloperoxidase activity (MPO) and the contents of IL-1β, IL-6, TNF-α, TGF-β, CCL2, and CXCL2 in colon tissues. Conclusions. QYJD can ameliorate DSS-induced colitis in mice and the mechanism is connected with a reduction in neutrophil and macrophage infiltration.
Collapse
|
17
|
Dang W, Tao Y, Xu X, Zhao H, Zou L, Li Y. The role of lung macrophages in acute respiratory distress syndrome. Inflamm Res 2022; 71:1417-1432. [PMID: 36264361 PMCID: PMC9582389 DOI: 10.1007/s00011-022-01645-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute and diffuse inflammatory lung injury in a short time, one of the common severe manifestations of the respiratory system that endangers human life and health. As an innate immune cell, macrophages play a key role in the inflammatory response. For a long time, the role of pulmonary macrophages in ARDS has tended to revolve around the polarization of M1/M2. However, with the development of single-cell RNA sequencing, fate mapping, metabolomics, and other new technologies, a deeper understanding of the development process, classification, and function of macrophages in the lung are acquired. Here, we discuss the function of pulmonary macrophages in ARDS from the two dimensions of anatomical location and cell origin and describe the effects of cell metabolism and intercellular interaction on the function of macrophages. Besides, we explore the treatments for targeting macrophages, such as enhancing macrophage phagocytosis, regulating macrophage recruitment, and macrophage death. Considering the differences in responsiveness of different research groups to these treatments and the tremendous dynamic changes in the gene expression of monocyte/macrophage, we discussed the possibility of characterizing the gene expression of monocyte/macrophage as the biomarkers. We hope that this review will provide new insight into pulmonary macrophage function and therapeutic targets of ARDS.
Collapse
Affiliation(s)
- Wenpei Dang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xinxin Xu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Hui Zhao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Lijuan Zou
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
18
|
Herrera C, Olejniczak N, Noël-Romas L, Plummer F, Burgener A. Pre-clinical evaluation of antiproteases as potential candidates for HIV-1 pre-exposure prophylaxis. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:998913. [DOI: 10.3389/frph.2022.998913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Previous studies on highly HIV-1-exposed, yet persistently seronegative women from the Punwami Sex Worker cohort in Kenya, have shed light on putative protective mechanisms, suggesting that mucosal immunological factors, such as antiproteases, could be mediating resistance to HIV-1 transmission in the female reproductive tract. Nine protease inhibitors were selected for this study: serpin B4, serpin A1, serpin A3, serpin C1, cystatin A, cystatin B, serpin B13, serpin B1 and α-2-macroglobulin-like-protein 1. We assessed in a pilot study, the activity of these antiproteases with cellular assays and an ex vivo HIV-1 challenge model of human ecto-cervical tissue explants. Preliminary findings with both models, cellular and tissue explants, established an order of inhibitory potency for the mucosal proteins as candidates for pre-exposure prophylaxis when mimicking pre-coital use. Combination of all antiproteases considered in this study was more active than any of the individual mucosal proteins. Furthermore, the migration of cells out of ecto-cervical explants was blocked indicating potential prevention of viral dissemination following amplification of the founder population. These findings constitute the base for further development of these mucosal protease inhibitors for prevention strategies.
Collapse
|
19
|
Neutrophil Extracellular Traps in Asthma: Friends or Foes? Cells 2022; 11:cells11213521. [PMID: 36359917 PMCID: PMC9654069 DOI: 10.3390/cells11213521] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by variable airflow limitation and airway hyperresponsiveness. A plethora of immune and structural cells are involved in asthma pathogenesis. The roles of neutrophils and their mediators in different asthma phenotypes are largely unknown. Neutrophil extracellular traps (NETs) are net-like structures composed of DNA scaffolds, histones and granular proteins released by activated neutrophils. NETs were originally described as a process to entrap and kill a variety of microorganisms. NET formation can be achieved through a cell-death process, termed NETosis, or in association with the release of DNA from viable neutrophils. NETs can also promote the resolution of inflammation by degrading cytokines and chemokines. NETs have been implicated in the pathogenesis of various non-infectious conditions, including autoimmunity, cancer and even allergic disorders. Putative surrogate NET biomarkers (e.g., double-strand DNA (dsDNA), myeloperoxidase-DNA (MPO-DNA), and citrullinated histone H3 (CitH3)) have been found in different sites/fluids of patients with asthma. Targeting NETs has been proposed as a therapeutic strategy in several diseases. However, different NETs and NET components may have alternate, even opposite, consequences on inflammation. Here we review recent findings emphasizing the pathogenic and therapeutic potential of NETs in asthma.
Collapse
|
20
|
Irwandi RA, Chiesa ST, Hajishengallis G, Papayannopoulos V, Deanfield JE, D’Aiuto F. The Roles of Neutrophils Linking Periodontitis and Atherosclerotic Cardiovascular Diseases. Front Immunol 2022; 13:915081. [PMID: 35874771 PMCID: PMC9300828 DOI: 10.3389/fimmu.2022.915081] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/13/2022] [Indexed: 01/02/2023] Open
Abstract
Inflammation plays a crucial role in the onset and development of atherosclerosis. Periodontitis is a common chronic disease linked to other chronic inflammatory diseases such as atherosclerotic cardiovascular disease (ASCVD). The mechanistic pathways underlying this association are yet to be fully understood. This critical review aims at discuss the role of neutrophils in mediating the relationship between periodontitis and ASCVD. Systemic inflammation triggered by periodontitis could lead to adaptations in hematopoietic stem and progenitor cells (HSPCs) resulting in trained granulopoiesis in the bone marrow, thereby increasing the production of neutrophils and driving the hyper-responsiveness of these abundant innate-immune cells. These alterations may contribute to the onset, progression, and complications of atherosclerosis. Despite the emerging evidence suggesting that the treatment of periodontitis improves surrogate markers of cardiovascular disease, the resolution of periodontitis may not necessarily reverse neutrophil hyper-responsiveness since the hyper-inflammatory re-programming of granulopoiesis can persist long after the inflammatory inducers are removed. Novel and targeted approaches to manipulate neutrophil numbers and functions are warranted within the context of the treatment of periodontitis and also to mitigate its potential impact on ASCVD.
Collapse
Affiliation(s)
- Rizky A. Irwandi
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Scott T. Chiesa
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - George Hajishengallis
- Department of Basic & Translational Sciences, Laboratory of Innate Immunity & Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - John E. Deanfield
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Francesco D’Aiuto
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, United Kingdom
- *Correspondence: Francesco D’Aiuto,
| |
Collapse
|
21
|
Protein and antigen profiles of third-stage larvae of Gnathostoma spinigerum assessed with next-generation sequencing transcriptomic information. Sci Rep 2022; 12:6915. [PMID: 35484317 PMCID: PMC9051128 DOI: 10.1038/s41598-022-10826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Gnathostomiasis is a food-borne zoonotic disease that can affect humans who eat improperly cooked meat containg infective third-stage larvae. Definitive diagnosis is through larval recovery. However, this is an invasive technique and is impractical if the larvae have encysted in inaccessible areas of the body. Antigen or antibody detection might be more interesting techniques for diagnosis. Proteomic could elucidate diagnostic markers and improve our understanding of parasite biology. However, proteomic studies on Gnathostoma spinigerum are hampered by the lack of a comprehensive database for protein identification. This study aimed to explore the protein and antigen profiles of advanced third-stage G. spinigerum larvae (aL3Gs) using interrogation of mass spectrometry data and an in-house transcriptomic database for protein identification. Immunoproteomic analysis found 74 proteins in 24-kDa SDS-PAGE bands, which is size-specific for the immunodiagnosis of gnathostomiasis. Moreover, 13 proteins were found in 2-DE 24-kDa bands. The data suggest that collagenase 3, cathepsin B, glutathione S-transferase 1, cuticle collagen 14, major antigen, zinc metalloproteinase nas-4, major egg antigen, peroxiredoxin, and superoxide dismutase [Cu–Zn] may be good candidates for novel human gnathostomiasis diagnostic assays. These findings improve our understanding of the parasite’s biology and provide additional potential targets for novel therapeutics, diagnostics, and vaccines.
Collapse
|
22
|
Neutrophil Functional Heterogeneity and Implications for Viral Infections and Treatments. Cells 2022; 11:cells11081322. [PMID: 35456003 PMCID: PMC9025666 DOI: 10.3390/cells11081322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/15/2022] Open
Abstract
Evidence suggests that neutrophils exert specialized effector functions during infection and inflammation, and that these cells can affect the duration, severity, and outcome of the infection. These functions are related to variations in phenotypes that have implications in immunoregulation during viral infections. Although the complexity of the heterogeneity of neutrophils is still in the process of being uncovered, evidence indicates that they display phenotypes and functions that can assist in viral clearance or augment and amplify the immunopathology of viruses. Therefore, deciphering and understanding neutrophil subsets and their polarization in viral infections is of importance. In this review, the different phenotypes of neutrophils and the roles they play in viral infections are discussed. We also examine the possible ways to target neutrophil subsets during viral infections as potential anti-viral treatments.
Collapse
|
23
|
Gärtner F, Gihring A, Roth A, Bischof J, Xu P, Elad L, Wabitsch M, Burster T, Knippschild U. Obesity Prolongs the Inflammatory Response in Mice After Severe Trauma and Attenuates the Splenic Response to the Inflammatory Reflex. Front Immunol 2021; 12:745132. [PMID: 34867969 PMCID: PMC8634681 DOI: 10.3389/fimmu.2021.745132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Thoracic traumas with extra-thoracic injuries result in an immediate, complex host response. The immune response requires tight regulation and can be influenced by additional risk factors such as obesity, which is considered a state of chronic inflammation. Utilizing high-dimensional mass and regular flow cytometry, we define key signatures of obesity-related alterations of the immune system during the response to the trauma. In this context, we report a modification in important components of the splenic response to the inflammatory reflex in obese mice. Furthermore, during the response to trauma, obese mice exhibit a prolonged increase of neutrophils and an early accumulation of inflammation associated CCR2+CD62L+Ly6Chi monocytes in the blood, contributing to a persistent inflammatory phase. Moreover, these mice exhibit differences in migration patterns of monocytes to the traumatized lung, resulting in decreased numbers of regenerative macrophages and an impaired M1/M2 switch in traumatized lungs. The findings presented in this study reveal an attenuation of the inflammatory reflex in obese mice, as well as a disturbance of the monocytic compartment contributing to a prolonged inflammation phase resulting in fewer phenotypically regenerative macrophages in the lung of obese mice.
Collapse
Affiliation(s)
- Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Adrian Gihring
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Aileen Roth
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Leonard Elad
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
24
|
Naito T, Jingushi K, Ueda K, Tsujikawa K. Azurocidin is loaded into small extracellular vesicles via its N-linked glycosylation and promotes intravasation of renal cell carcinoma cells. FEBS Lett 2021; 595:2522-2532. [PMID: 34418081 DOI: 10.1002/1873-3468.14183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023]
Abstract
Azurocidin (AZU1) is an antimicrobial protein secreted by neutrophils that acts as a chemoattractant for monocytes and macrophages and a permeabilizer of vascular endothelial cells. We previously identified AZU1 to be specifically present in extracellular vesicles (EVs) obtained from renal cell carcinoma (RCC) tissues. Here, we examined the relationship between N-linked glycosylation and AZU1 loading into small EVs (SEVs). Inhibition of N-linked glycosylation by introducing mutations in three glycosylation sites inhibited AZU1 loading into SEVs. Furthermore, SEVs released from AZU1-wild-type cells increased the Ca2+ concentration in endothelial cells and the endothelial permeability, whereas SEVs released from AZU1-mutant cells had no significant effect. Anti-AZU1 antibodies diminished the effect of SEVs on endothelial cell sheets. Collectively, we found that N-linked glycosylation of AZU1 directs its loading into SEVs, thereby enabling AZU1-positive SEVs to function as potent permeabilizers of endothelial cells and leading to enhanced transendothelial migration of RCC cells.
Collapse
Affiliation(s)
- Takuya Naito
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Koji Ueda
- Project for Personalized Cancer Medicine, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
25
|
Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021; 10:cells10092486. [PMID: 34572138 PMCID: PMC8465406 DOI: 10.3390/cells10092486] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant immune cell in the circulation of human and act as gatekeepers to discard foreign elements that have entered the body. They are essential in initiating immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils, other immune cells and stromal cells in the microenvironment modulates neutrophil function resulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is seen in other neutrophil properties, including differential secretory repertoire and membrane receptor display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely on the interaction between tumor-surface-expressed receptor for advanced glycation end products (RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils in cancer.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Hadassah Medical School, The Hebrew University of Jerusalem, Ein Kerem Campus, P.O.B. 12272, Jerusalem 9112102, Israel
| |
Collapse
|
26
|
Interplay between Extracellular Matrix and Neutrophils in Diseases. J Immunol Res 2021; 2021:8243378. [PMID: 34327245 PMCID: PMC8302397 DOI: 10.1155/2021/8243378] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/03/2021] [Indexed: 12/17/2022] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic and complex network structure, which exists in almost all tissues and is the microenvironment that cells rely on for survival. ECM interacts with cells to regulate diverse functions, including differentiation, proliferation, and migration. Neutrophils are the most abundant immune cells in circulation and play key roles in orchestrating a complex series of events during inflammation. Neutrophils can also mediate ECM remodeling by providing specific matrix-remodeling enzymes (such as neutrophil elastase and metalloproteinases), generating neutrophil extracellular traps, and releasing exosomes. In turn, ECM can remodel the inflammatory microenvironment by regulating the function of neutrophils, which drives disease progression. Both the presence of ECM and the interplay between neutrophils and their extracellular matrices are considered an important and outstanding mechanistic aspect of inflammation. In this review, the importance of ECM will be considered, together with the discussion of recent advances in understanding the underlying mechanisms of the intricate interplay between ECM and neutrophils. A better comprehension of immune cell-matrix reciprocal dependence has exciting implications for the development of new therapeutic options for neutrophil-associated infectious and inflammatory diseases.
Collapse
|
27
|
Bohaud C, Johansen MD, Jorgensen C, Kremer L, Ipseiz N, Djouad F. The Role of Macrophages During Mammalian Tissue Remodeling and Regeneration Under Infectious and Non-Infectious Conditions. Front Immunol 2021; 12:707856. [PMID: 34335621 PMCID: PMC8317995 DOI: 10.3389/fimmu.2021.707856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
Several infectious pathologies in humans, such as tuberculosis or SARS-CoV-2, are responsible for tissue or lung damage, requiring regeneration. The regenerative capacity of adult mammals is limited to few organs. Critical injuries of non-regenerative organs trigger a repair process that leads to a definitive architectural and functional disruption, while superficial wounds result in scar formation. Tissue lesions in mammals, commonly studied under non-infectious conditions, trigger cell death at the site of the injury, as well as the production of danger signals favouring the massive recruitment of immune cells, particularly macrophages. Macrophages are also of paramount importance in infected injuries, characterized by the presence of pathogenic microorganisms, where they must respond to both infection and tissue damage. In this review, we compare the processes implicated in the tissue repair of non-infected versus infected injuries of two organs, the skeletal muscles and the lungs, focusing on the primary role of macrophages. We discuss also the negative impact of infection on the macrophage responses and the possible routes of investigation for new regenerative therapies to improve the recovery state as seen with COVID-19 patients.
Collapse
Affiliation(s)
| | - Matt D Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,INSERM, IRIM, Montpellier, France
| | - Natacha Ipseiz
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
28
|
Tani K, Kanamori M, Nagase Y, Okura Y, Kawaminami S, Kawahito K, Inaba K, Inaba K, Miyatake A, Kondo K, Tabata R, Suzuki Y, Yamaguchi H. Past infections are associated with low levels of anti-citrullinated protein autoantibodies in rheumatoid arthritis. THE JOURNAL OF MEDICAL INVESTIGATION 2021; 67:182-188. [PMID: 32378604 DOI: 10.2152/jmi.67.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Background : Rheumatoid arthritis (RA), an autoimmune disease of unknown etiology, is believed to occur as the result of actions of genetic and environmental factors. In this study, we examined the relation of past histories about infectious diseases with the levels anti-citrullinated protein autoantibodies (ACPA) in RA. Methods : Results of a questionnaire about histories of infectious diseases were obtained from 85 patients with RA, and were analyzed. Results : Significantly lower level of ACPA was detected in patients with the history of tonsillitis, otitis media or urinary cystitis than in those without it. There was no difference in the level of ACPA in RA patients between with and without cold / influenza, rubella, chickenpox, herpes labialis or herpes zoster. When RA patients were divided into two groups, high-level and low-level ACPA, multiple logistic regression analysis revealed that the history of otitis media was a significantly independent factor for the low level of ACPA. There was no significant relation between the level of rheumatoid factor and histories of infectious diseases. Conclusion : This study clarified that the past history of otitis media is associated with the low level of ACPA in RA. J. Med. Invest. 67 : 182-188, February, 2020.
Collapse
Affiliation(s)
- Kenji Tani
- General Medicine and Primary Care, Tokushima University Hospital, Tokushima, Japan
| | - Minaho Kanamori
- Student Lab, The University of Tokushima Faculty of Medicine, Tokushima, Japan.,Department of General Medicine, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Yutaro Nagase
- Student Lab, The University of Tokushima Faculty of Medicine, Tokushima, Japan.,Department of General Medicine, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Yoshihiro Okura
- General Medicine and Primary Care, Tokushima University Hospital, Tokushima, Japan
| | - Shingo Kawaminami
- Department of General Medicine, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | - Kaori Inaba
- Yoshinogawa Medical Center, Tokushima, Japan.,Tokushima Prefectural Central Hospital, Tokushima, Japan
| | | | - Keisuke Kondo
- Department of General Medicine, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Ryo Tabata
- Department of General Medicine, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Yoshihiro Suzuki
- Department of General Medicine, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Harutaka Yamaguchi
- Department of General Medicine, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
29
|
Cross-Talk among Polymorphonuclear Neutrophils, Immune, and Non-Immune Cells via Released Cytokines, Granule Proteins, Microvesicles, and Neutrophil Extracellular Trap Formation: A Novel Concept of Biology and Pathobiology for Neutrophils. Int J Mol Sci 2021; 22:ijms22063119. [PMID: 33803773 PMCID: PMC8003289 DOI: 10.3390/ijms22063119] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are traditionally regarded as professional phagocytic and acute inflammatory cells that engulf the microbial pathogens. However, accumulating data have suggested that PMNs are multi-potential cells exhibiting many important biological functions in addition to phagocytosis. These newly found novel activities of PMN include production of different kinds of cytokines/chemokines/growth factors, release of neutrophil extracellular traps (NET)/ectosomes/exosomes and trogocytosis (membrane exchange) with neighboring cells for modulating innate, and adaptive immune responses. Besides, PMNs exhibit potential heterogeneity and plasticity in involving antibody-dependent cellular cytotoxicity (ADCC), cancer immunity, autoimmunity, inflammatory rheumatic diseases, and cardiovascular diseases. Interestingly, PMNs may also play a role in ameliorating inflammatory reaction and wound healing by a subset of PMN myeloid-derived suppressor cells (PMN-MDSC). Furthermore, PMNs can interact with other non-immune cells including platelets, epithelial and endothelial cells to link hemostasis, mucosal inflammation, and atherogenesis. The release of low-density granulocytes (LDG) from bone marrow initiates systemic autoimmune reaction in systemic lupus erythematosus (SLE). In clinical application, identification of certain PMN phenotypes may become prognostic factors for severe traumatic patients. In the present review, we will discuss these newly discovered biological and pathobiological functions of the PMNs.
Collapse
|
30
|
Belchamber KBR, Walker EM, Stockley RA, Sapey E. Monocytes and Macrophages in Alpha-1 Antitrypsin Deficiency. Int J Chron Obstruct Pulmon Dis 2020; 15:3183-3192. [PMID: 33311976 PMCID: PMC7725100 DOI: 10.2147/copd.s276792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a genetic condition characterised by low circulating levels of alpha-1 antitrypsin (AAT), a serine proteinase inhibitor. The most common deficiency variants are the S and Z mutations, which cause the accumulation of misfolded AAT in hepatocytes resulting in endoplasmic reticular stress and insufficient release of AAT into the circulation (<11μmol/L). This leads to liver disease, as well as an increased risk of emphysema due to unopposed proteolytic activity of neutrophil-derived serine proteinases in the lungs. AATD has been traditionally viewed as an inflammatory disorder caused directly by a proteinase-antiproteinase imbalance in the lung, but increasing evidence suggests that low AAT levels may affect other cellular functions. Recently, AAT polymers have been identified in both monocytes and macrophages from AATD patients and evidence is building that these cells may also play a role in the development of AATD lung disease. Alveolar macrophages are phagocytic cells that are important in the lung immune response but are also implicated in driving inflammation. This review explores the potential implications of monocyte and macrophage involvement in non-liver AAT synthesis and the pathophysiology of AATD lung disease.
Collapse
Affiliation(s)
- Kylie B R Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Eloise M Walker
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Robert A Stockley
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Clinical Research Facility Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
31
|
De Marco Verissimo C, Jewhurst HL, Tikhonova IG, Urbanus RT, Maule AG, Dalton JP, Cwiklinski K. Fasciola hepatica serine protease inhibitor family (serpins): Purposely crafted for regulating host proteases. PLoS Negl Trop Dis 2020; 14:e0008510. [PMID: 32760059 PMCID: PMC7437470 DOI: 10.1371/journal.pntd.0008510] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/18/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
Serine protease inhibitors (serpins) regulate proteolytic events within diverse biological processes, including digestion, coagulation, inflammation and immune responses. The presence of serpins in Fasciola hepatica excretory-secretory products indicates that the parasite exploits these to regulate proteases encountered during its development within vertebrate hosts. Interrogation of the F. hepatica genome identified a multi-gene serpin family of seven members that has expanded by gene duplication and divergence to create an array of inhibitors with distinct specificities. We investigated the molecular properties and functions of two representatives, FhSrp1 and FhSrp2, highly expressed in the invasive newly excysted juvenile (NEJ). Consistent with marked differences in the reactive centre loop (RCL) that executes inhibitor-protease complexing, the two recombinant F. hepatica serpins displayed distinct inhibitory profiles against an array of mammalian serine proteases. In particular, rFhSrp1 efficiently inhibited kallikrein (Ki = 40 nM) whilst rFhSrp2 was a highly potent inhibitor of chymotrypsin (Ki = 0.07 nM). FhSrp1 and FhSrp2 are both expressed on the NEJ surface, predominantly around the oral and ventral suckers, suggesting that these inhibitors protect the parasites from the harmful proteolytic effects of host proteases, such as chymotrypsin, during invasion. Furthermore, the unusual inhibition of kallikrein suggests that rFhSrp1 modulates host responses such as inflammation and vascular permeability by interfering with the kallikrein-kinin system. A vaccine combination of rFhSrp1 and rFhSrp2 formulated in the adjuvant Montanide ISA 206VG elicited modest but non-significant protection against a challenge infection in a rat model, but did induce some protection against liver pathogenesis when compared to a control group and a group vaccinated with two well-studied vaccine candidates, F. hepatica cathepsin L2 and L3. This work highlights the importance of F. hepatica serpins to regulate host responses that enables parasite survival during infection and, coupled with the vaccine data, encourages future vaccine trials in ruminants. Serpins are protease inhibitors that regulate various biological processes, including digestion, blood coagulation, inflammation and immune responses. The liver fluke, Fasciola hepatica, produces an array of inhibitors to regulate proteolytic enzymes they encounter during development within the mammalian host. In this study, we identified seven different serpins that have evolved to inhibit a range of host proteases. In particular, we characterized two representatives, FhSrp1 and FhSrp2, that we found highly expressed on the surface of the invasive newly excysted juvenile (NEJ), suggesting that they protect the parasites from harmful proteolytic effects during invasion. Contrasting inhibitory profiles were observed; while recombinant FhSrp1 inhibited kallikrein, recombinant FhSrp2 was a highly potent inhibitor of chymotrypsin. The unusual inhibition of kallikrein suggests that rFhSrp1 influences host responses such as inflammation and vascular permeability by interfering with the kallikrein-kinin system. Conversely, chymotrypsin is typically inhibited by trematode-specific serpins, implying a conserved mechanism to regulate digestive enzymes. The ability of the liver fluke serpin family to inhibit such an array of proteases highlights the importance of these inhibitors in parasite-host interactions and encourages future investigations of serpins as candidate anti-parasite vaccine targets for the control of fasciolosis in ruminants.
Collapse
Affiliation(s)
- Carolina De Marco Verissimo
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| | - Heather L. Jewhurst
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Irina G. Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, United Kingdom
| | - Rolf T. Urbanus
- Thrombosis and Hemostasis Laboratory, Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Aaron G. Maule
- Microbe & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - John P. Dalton
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
32
|
Hilda JN, Das S, Tripathy SP, Hanna LE. Role of neutrophils in tuberculosis: A bird's eye view. Innate Immun 2020; 26:240-247. [PMID: 31735099 PMCID: PMC7251797 DOI: 10.1177/1753425919881176] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/17/2019] [Indexed: 01/06/2023] Open
Abstract
Neutrophils are innate immune cells implicated in the process of killing Mycobacterium tuberculosis early during infection. Once the mycobacteria enter the human system, neutrophils sense and engulf them. By secreting bactericidal enzymes and α-defensins like human neutrophil peptides loaded in their granule armory, neutrophils kill the pathogen. Peripheral blood neutrophils secrete a wide range of cytokines like IL-8, IL-1-β and IFN-γ in response to mycobacterial infection. Thus they signal and activate distant immune cells thereby informing them of prevailing infection. The activated monocytes, dendritic cells and T cells further continue the immune response. As a final call, neutrophils release neutrophil extracellular traps in circulation which can trap mycobacteria in patients with active pulmonary tuberculosis. Extensive neutrophilic response is associated with inflammation, pulmonary destruction, and pathology. For example, inappropriate phagocytosis of mycobacteria-infected neutrophils can damage host cells due to necrosis of neutrophils, leading to chronic inflammation and tissue damage. This dual nature of neutrophils makes them double-edged swords during tuberculosis, and hence data available on neutrophil functions against mycobacterium are controversial and non-uniform. This article reviews the role of neutrophils in tuberculosis infection and highlights research gaps that need to be addressed. We focus on our understanding of new research ideologies targeting neutrophils (a) in the early stages of infection for boosting specific immune functions or (b) in the later stages of infection to prevent inflammatory conditions mediated by activated neutrophils. This would plausibly lead to the development of better tuberculosis vaccines and therapeutics in the future.
Collapse
Affiliation(s)
- J Nancy Hilda
- Department of HIV/AIDS, National Institute for Research in
Tuberculosis, Chetpet, Chennai, India
| | - Sulochana Das
- Department of Immunology, National Institute for Research in
Tuberculosis, Chetpet, Chennai, India
| | - Srikanth P Tripathy
- Department of HIV/AIDS, National Institute for Research in
Tuberculosis, Chetpet, Chennai, India
| | - Luke Elizabeth Hanna
- Department of HIV/AIDS, National Institute for Research in
Tuberculosis, Chetpet, Chennai, India
| |
Collapse
|
33
|
Crocetti L, Quinn MT, Schepetkin IA, Giovannoni MP. A patenting perspective on human neutrophil elastase (HNE) inhibitors (2014-2018) and their therapeutic applications. Expert Opin Ther Pat 2019; 29:555-578. [PMID: 31204543 PMCID: PMC9642779 DOI: 10.1080/13543776.2019.1630379] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Human neutrophil elastase (HNE) is involved in a variety of serious chronic diseases, especially cardiopulmonary pathologies. For this reason, the regulation of HNE activity represents a promising therapeutic approach, which is evident by the development of a number of new and selective HNE inhibitors, both in the academic and pharmaceutical environments. AREAS COVERED The present review analyzes and summarizes the patent literature regarding human neutrophil elastase inhibitors for the treatment of cardiopulmonary diseases over 2014-2018. EXPERT OPINION HNE is an interesting and defined target to treat various inflammatory diseases, including a number of cardiopulmonary pathologies. The research in this field is quite active, and a number of HNE inhibitors are currently in various stages of clinical development. In addition, new opportunities for HNE inhibitor development stem from recent studies demonstrating the involvement of HNE in many other inflammatory pathologies, including rheumatoid arthritis, inflammatory bowel disease, skin diseases, and cancer. Furthermore, the development of dual HNE/proteinase 3 inhibitors is being pursued as an innovative approach for the treatment of neutrophilic inflammatory diseases. Thus, these new developments will likely stimulate new and increased interest in this important therapeutic target and for the development of novel and selective HNE inhibitors.
Collapse
Affiliation(s)
- L Crocetti
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - MT Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - IA Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - MP Giovannoni
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
34
|
Intracardiac administration of neutrophil protease cathepsin G activates noncanonical inflammasome pathway and promotes inflammation and pathological remodeling in non-injured heart. J Mol Cell Cardiol 2019; 134:29-39. [PMID: 31252040 DOI: 10.1016/j.yjmcc.2019.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Inflammatory serine proteases (ISPs) play an important role in cardiac repair after injury through hydrolysis of dead cells and extracellular matrix (ECM) debris. Evidence also suggests an important role of ISPs in the coordination of the inflammatory response. However, the effect of ISPs on inflammation is obfuscated by the confounding factors associated with cell death and inflammatory cell infiltration induced after cardiac injury. This study investigated whether neutrophil-derived cathepsin G (Cat.G) influences inflammation and remodeling in the absence of prior cardiac injury and cell death. METHODS AND RESULTS Intracardiac catheter delivery of Cat.G (1 mg/kg) in rats induced significant left ventricular (LV) dilatation and cardiac contractile dysfunction at day 5, but not at day 2, post-delivery compared to vehicle-treated animals. Cat.G delivery also significantly increased matrix metalloprotease activity and collagen and fibronectin degradation at day 5 compared to vehicle-treated rats and these changes were associated with increased death signaling pathways and myocyte apoptosis. Mechanistic analysis shows that Cat.G-treatment induced potent chemotactic activity in hearts at day 2 and 5 post-delivery, characterized by processing and activation of interleukin (IL)-1β and IL-18, stimulation of inflammatory signaling pathways and accumulation of myeloid cells when compared to vehicle-treated rats. Cat.G-induced processing of IL-1β and IL-18 was independent of the canonical NLRP-3 inflammasome pathway and treatment of isolated cardiomyocytes with inhibitors of NLRP-3 or caspase-1 failed to reduce Cat.G-induced cardiomyocyte death. Notably, rats treated with IL-1 receptor antagonist (IL-1Ra) show reduced inflammation and improved cardiac remodeling and function following Cat.G delivery. CONCLUSIONS Cat.G exerts potent chemoattractant and pro-inflammatory effects in non-stressed or injured heart in part through processing and activation of IL-1 family cytokines, subsequently leading to adverse cardiac remodeling and function. Thus, targeting ISPs could be a novel therapeutic strategy to reduce cardiac inflammation and improve cardiac remodeling and function after injury or stress.
Collapse
|
35
|
Orchestration of Adaptive T Cell Responses by Neutrophil Granule Contents. Mediators Inflamm 2019; 2019:8968943. [PMID: 30983883 PMCID: PMC6431490 DOI: 10.1155/2019/8968943] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 01/05/2023] Open
Abstract
Neutrophils are the most abundant leukocytes in peripheral blood and respond rapidly to danger, infiltrating tissues within minutes of infectious or sterile injury. Neutrophils were long thought of as simple killers, but now we recognise them as responsive cells able to adapt to inflammation and orchestrate subsequent events with some sophistication. Here, we discuss how these rapid responders release mediators which influence later adaptive T cell immunity through influences on DC priming and directly on the T cells themselves. We consider how the release of granule contents by neutrophils—through NETosis or degranulation—is one way in which the innate immune system directs the phenotype of the adaptive immune response.
Collapse
|
36
|
Kish DD, Min S, Dvorina N, Baldwin WM, Stohlman SA, Fairchild RL. Neutrophil Cathepsin G Regulates Dendritic Cell Production of IL-12 during Development of CD4 T Cell Responses to Antigens in the Skin. THE JOURNAL OF IMMUNOLOGY 2019; 202:1045-1056. [PMID: 30617225 DOI: 10.4049/jimmunol.1800841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/05/2018] [Indexed: 01/11/2023]
Abstract
Contact hypersensitivity (CHS) is a CD8 T cell-mediated response to hapten skin sensitization and challenge. Sensitization of wild-type (WT) mice induces hapten-reactive effector CD8 T cells producing IFN-γ and IL-17- and IL-4-producing CD4 T cells that cannot mediate CHS. Although CXCR2-dependent Ly6G+ (neutrophil) cell recruitment into hapten-challenged skin is required to direct effector CD8 T cell infiltration into the challenge site to elicit CHS, 2,4-dinitrofluorobenezene (DNFB) sensitization of CXCR2-/- mice and neutrophil-depleted WT mice induced both hapten-reactive CD4 and CD8 T cells producing IFN-γ and IL-17. CD4 T cell-mediated CHS responses were not generated during DNFB sensitization of neutrophil-depleted WT mice treated with anti-IL-12 mAb or neutrophil-depleted IL-12-/- mice. Neutrophil depletion during DNFB sensitization of WT mice markedly increased IL-12-producing hapten-primed dendritic cell numbers in the skin-draining lymph nodes. Sensitization of mice lacking the neutrophil serine protease cathepsin G (CG)-induced hapten-reactive CD4 and CD8 T cells producing IFN-γ and IL-17 with elevated and elongated CHS responses to DNFB challenge. Induction of CHS effector CD4 T cells producing IFN-γ in neutrophil-depleted WT mice was eliminated by s.c. injection of active, but not inactivated, CG during sensitization. Thus, hapten skin sensitization induces neutrophil release of CG that systemically inhibits hapten-presenting dendritic cell production of IL-12 and the development of hapten-reactive CD4 T cells to IFN-γ-producing CHS effector cells.
Collapse
Affiliation(s)
- Danielle D Kish
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Susie Min
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Nina Dvorina
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | | | | | | |
Collapse
|
37
|
Snelgrove RJ, Patel DF, Patel T, Lloyd CM. The enigmatic role of the neutrophil in asthma: Friend, foe or indifferent? Clin Exp Allergy 2018; 48:1275-1285. [PMID: 29900603 DOI: 10.1111/cea.13191] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Whilst severe asthma has classically been categorized as a predominantly Th2-driven pathology, there has in recent years been a paradigm shift with the realization that it is a heterogeneous disease that may manifest with quite disparate underlying inflammatory and remodelling profiles. A subset of asthmatics, particularly those with a severe, corticosteroid refractory disease, present with a prominent neutrophilic component. Given the potential of neutrophils to impart extensive tissue damage and promote inflammation, it has been anticipated that these cells are closely implicated in the underlying pathophysiology of severe asthma. However, uncertainty persists as to why the neutrophil is present in the asthmatic lung and what precisely it is doing there, with evidence supporting its role as a protagonist of pathology being primarily circumstantial. Furthermore, our view of the neutrophil as a primitive, indiscriminate killer has evolved with the realization that neutrophils can exhibit a marked anti-inflammatory, pro-resolving and wound healing capacity. We suggest that the neutrophil likely exhibits pleiotropic and potentially conflicting roles in defining asthma pathophysiology-some almost certainly detrimental and some potentially beneficial-with context, timing and location all critical confounders. Accordingly, indiscriminate blockade of neutrophils with a broad sword approach is unlikely to be the answer, but rather we should first seek to understand their complex and multifaceted roles in the disease state and then target them with the same subtleties and specificity that they themselves exhibit.
Collapse
Affiliation(s)
- R J Snelgrove
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - D F Patel
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - T Patel
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - C M Lloyd
- Inflammation Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
38
|
Stock AJ, Kasus-Jacobi A, Pereira HA. The role of neutrophil granule proteins in neuroinflammation and Alzheimer's disease. J Neuroinflammation 2018; 15:240. [PMID: 30149799 PMCID: PMC6112130 DOI: 10.1186/s12974-018-1284-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023] Open
Abstract
Neutrophils are the innate immune system’s first line of defense. Neutrophils play a critical role in protecting the host against infectious pathogens, resolving sterile injuries, and mediating inflammatory responses. The granules of neutrophils and their constituent proteins are central to these functions. Although neutrophils may exert a protective role upon acute inflammatory conditions or insults, continued activity of neutrophils in chronic inflammatory diseases can contribute to tissue damage. Neutrophil granule proteins are involved in a number of chronic inflammatory conditions and diseases. However, the functions of these proteins in neuroinflammation and chronic neuroinflammatory diseases, including Alzheimer’s disease (AD), remain to be elucidated. In this review, we discuss recent findings from our lab and others that suggest possible functions for neutrophils and the neutrophil granule proteins, CAP37, neutrophil elastase, and cathepsin G, in neuroinflammation, with an emphasis on AD. These findings reveal that neutrophil granule proteins may exert both neuroprotective and neurotoxic effects. Further research should determine whether neutrophil granule proteins are valid targets for therapeutic interventions in chronic neuroinflammatory diseases.
Collapse
Affiliation(s)
- Amanda J Stock
- The Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., BRC Rm 06B121, Baltimore, MD, 21224, USA.,Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA
| | - Anne Kasus-Jacobi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA
| | - H Anne Pereira
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA. .,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, 1105 N. Stonewall, Robert M. Bird Library, Rm 258, Oklahoma City, OK, 73117, USA. .,Department of Pathology, University of Oklahoma Health Sciences Center, 1105 N. Stonewall, Robert M. Bird Library, Rm 258, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
39
|
The roles of neutrophil serine proteinases in idiopathic inflammatory myopathies. Arthritis Res Ther 2018; 20:134. [PMID: 29976235 PMCID: PMC6034343 DOI: 10.1186/s13075-018-1632-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
Background Dermatomyositis and polymyositis are the best known idiopathic inflammatory myopathies (IIMs). Classic histopathologic findings include the infiltration of inflammatory cells into muscle tissues. Neutrophil serine proteinases (NSPs) are granule-associated enzymes and play roles in inflammatory cell migration by increasing the permeability of vascular endothelial cells. In this study, we aimed to find the roles of NSPs in pathogenesis of IIMs. Methods RNA and DNA were isolated to measure the relative expression of NSPs and their methylation levels. The expression of NSPs in serum and muscle tissues was tested by enzyme-linked immunosorbent assay, immunohistochemistry, and immunofluorescence, respectively. Serum from patients was used to culture the human dermal microvascular endothelial cells (HDMECs), and then we observed the influence of serum on expression of VE-cadherin, endothelial cell tube formation, and transendothelial migration of peripheral blood mononuclear cells (PBMCs). Results We found that the expression of NSPs was increased in PBMCs, serum, and muscle tissues of IIM patients; these NSPs were hypomethylated in the PBMCs of patients. Serum NSPs were positively correlated with clinical indicators of IIM patients, including lactic dehydrogenase, erythrocyte sedimentation rate, C-reactive protein, immunoglobulin G, immunoglobulin M, and immunoglobulin A. Patients with anti-Jo-1, with anti-Ro-52, or without interstitial lung disease had lower levels of proteinase 3. Serum NSPs degraded the VE-cadherin of HDMECs, and serum NSP application increased the permeability of HDMECs. Conclusions Our studies indicate, for the first time, that NSPs play an important role in muscle inflammatory cell infiltration by increasing the permeability of vascular endothelial cells in IIM patients. Electronic supplementary material The online version of this article (10.1186/s13075-018-1632-x) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Berard AR, Perner M, Mutch S, Farr Zuend C, McQueen P, Burgener AD. Understanding mucosal and microbial functionality of the female reproductive tract by metaproteomics: Implications for HIV transmission. Am J Reprod Immunol 2018; 80:e12977. [PMID: 29790240 DOI: 10.1111/aji.12977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/18/2018] [Indexed: 12/25/2022] Open
Abstract
The mucosal surface of the female genital tract contains physiological, immunological, and microbial components that collectively comprise a functioning "mucosal system" that is critical for reproductive health. Alterations or imbalances to any of these components can have significant consequences for susceptibility to sexually transmitted infections, such as HIV. In recent years the advent of advanced systems biology technologies, such as metaproteomics, has provided new toolsets to studying mucosal systems. Studies have linked an altered mucosal proteome to many HIV risk factors including mucosal inflammation, bacterial vaginosis, hormonal contraceptives, and reduced efficacy of antiretroviral drugs for HIV prevention. Herein we will discuss how metaproteomics has been used to study mucosal system components, including epithelial barriers, inflammation, and the microbiome, with a focus on what alterations may contribute to increased HIV transmission risk in women.
Collapse
Affiliation(s)
- Alicia R Berard
- National HIV and Retrovirology Labs, JCWilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada.,University of Manitoba, Winnipeg, MB, Canada
| | - Michelle Perner
- National HIV and Retrovirology Labs, JCWilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada.,University of Manitoba, Winnipeg, MB, Canada
| | - Sarah Mutch
- National HIV and Retrovirology Labs, JCWilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada.,University of Manitoba, Winnipeg, MB, Canada
| | - Christina Farr Zuend
- National HIV and Retrovirology Labs, JCWilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada.,University of Manitoba, Winnipeg, MB, Canada
| | - Peter McQueen
- National HIV and Retrovirology Labs, JCWilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada.,University of Manitoba, Winnipeg, MB, Canada
| | - Adam D Burgener
- National HIV and Retrovirology Labs, JCWilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada.,University of Manitoba, Winnipeg, MB, Canada.,Karolinska Institutet, Solna, Sweden
| |
Collapse
|
41
|
Maaninka K, Nguyen SD, Mäyränpää MI, Plihtari R, Rajamäki K, Lindsberg PJ, Kovanen PT, Öörni K. Human mast cell neutral proteases generate modified LDL particles with increased proteoglycan binding. Atherosclerosis 2018; 275:390-399. [PMID: 29703634 DOI: 10.1016/j.atherosclerosis.2018.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/06/2018] [Accepted: 04/12/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS Subendothelial interaction of LDL with extracellular matrix drives atherogenesis. This interaction can be strengthened by proteolytic modification of LDL. Mast cells (MCs) are present in atherosclerotic lesions, and upon activation, they degranulate and release a variety of neutral proteases. Here we studied the ability of MC proteases to cleave apoB-100 of LDL and affect the binding of LDL to proteoglycans. METHODS Mature human MCs were differentiated from human peripheral blood-derived CD34+ progenitors in vitro and activated with calcium ionophore to generate MC-conditioned medium. LDL was incubated in the MC-conditioned medium or with individual MC proteases, and the binding of native and modified LDL to isolated human aortic proteoglycans or to human atherosclerotic plaques ex vivo was determined. MC proteases in atherosclerotic human coronary artery lesions were detected by immunofluorescence and qPCR. RESULTS Activated human MCs released the neutral proteases tryptase, chymase, carboxypeptidase A3, cathepsin G, and granzyme B. Of these, cathepsin G degraded most efficiently apoB-100, induced LDL fusion, and enhanced binding of LDL to isolated human aortic proteoglycans and human atherosclerotic lesions ex vivo. Double immunofluoresence staining of human atherosclerotic coronary arteries for tryptase and cathepsin G indicated that lesional MCs contain cathepsin G. In the lesions, expression of cathepsin G correlated with the expression of tryptase and chymase, but not with that of neutrophil proteinase 3. CONCLUSIONS The present study suggests that cathepsin G in human atherosclerotic lesions is largely derived from MCs and that activated MCs may contribute to atherogenesis by enhancing LDL retention.
Collapse
Affiliation(s)
- Katariina Maaninka
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Su Duy Nguyen
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Mikko I Mäyränpää
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Pathology, University of Helsinki and Helsinki University Hospital, Finland
| | - Riia Plihtari
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Kristiina Rajamäki
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Clinicum Department, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Perttu J Lindsberg
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Katariina Öörni
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland.
| |
Collapse
|
42
|
Prame Kumar K, Nicholls AJ, Wong CHY. Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res 2018; 371:551-565. [PMID: 29387942 PMCID: PMC5820413 DOI: 10.1007/s00441-017-2753-2] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
Neutrophils are becoming recognized as highly versatile and sophisticated cells that display de novo synthetic capacity and potentially prolonged lifespan. Emerging concepts such as neutrophil heterogeneity and plasticity have revealed that, under pathological conditions, neutrophils may differentiate into discrete subsets defined by distinct phenotypic and functional characteristics. Indeed, these newly described neutrophil subsets will undoubtedly add to the already complex interactions between neutrophils and other immune cell types for an effective immune response. The interactions between neutrophils and monocytes/macrophages enable the host to efficiently defend against and eliminate foreign pathogens. However, it is also becoming increasingly clear that these interactions can be detrimental to the host if not tightly regulated. In this review, we will explore the functional cooperation of neutrophil and monocytes/macrophages in homeostasis, during acute inflammation and in various disease settings. We will discuss this in the context of cardiovascular disease in the form of atherosclerosis, an autoimmune disease mainly occurring in the kidneys, as well as the unique intestinal immune response of the gut that does not conform to the norms of the typical immune system.
Collapse
Affiliation(s)
- Kathryn Prame Kumar
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Alyce J Nicholls
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Connie H Y Wong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
43
|
Abstract
The occlusion of a coronary artery by a thrombus generated on a ruptured atherosclerotic plaque has been pursued in the last decades as a determining event for the clinical outcome after myocardial infarction (MI). Yet, MI causes a cell death wave front, which triggers an inflammatory response to clear cellular debris, and which in excess can double the myocardial lesion and influence the clinical prognosis in the short and long term. Accordingly, proper, timely regulated inflammatory response has now been considered a second pivotal player in cardiac recovery after MI justifying the search for pharmacological strategies to modulate inflammatory effectors. This chapter reviews the key events and the main effectors of inflammation after myocardial ischemic insult, as well as the contribution of this phenomenon to the progression of atherosclerosis.
Collapse
Affiliation(s)
- Joaquim B Oliveira
- Laboratory of Atherosclerosis and Vascular Biology, State University of Campinas, Campinas, Brazil
| | - Alexandre A S M Soares
- Laboratory of Atherosclerosis and Vascular Biology, State University of Campinas, Campinas, Brazil
| | - Andrei C Sposito
- Laboratory of Atherosclerosis and Vascular Biology, State University of Campinas, Campinas, Brazil.
| |
Collapse
|
44
|
Döring Y, Megens R, Soehnlein O, Drechsler M. Neutrophilic granulocytes – promiscuous accelerators of atherosclerosis. Thromb Haemost 2017; 106:839-48. [DOI: 10.1160/th11-07-0501] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/28/2011] [Indexed: 12/23/2022]
Abstract
SummaryNeutrophils, as part of the innate immune system, are classically described to be main actors during the onset of inflammation enforcing rapid neutralisation and clearance of pathogens. Besides their wellstudied role in acute inflammatory processes, recent advances strongly indicate a so far underappreciated importance of neutrophils in initiation and development of atherosclerosis. This review focuses on current findings on the role of neutrophils in atherosclerosis. As pro-inflammatory mechanisms of neutrophils have primarily been studied in the microvascular environment; we here aim at translating these into the context of macrovascular inflammation in atherosclerosis. Since much of the pro-inflammatory activities of neutrophils stem from instructing neighbouring cell types, we highlight the promiscuous interplay between neutrophils and platelets, monocytes, T lymphocytes, and dendritic cells and its possible relevance to atherosclerosis.
Collapse
|
45
|
Stapels DAC, Woehl JL, Milder FJ, Tromp AT, van Batenburg AA, de Graaf WC, Broll SC, White NM, Rooijakkers SHM, Geisbrecht BV. Evidence for multiple modes of neutrophil serine protease recognition by the EAP family of Staphylococcal innate immune evasion proteins. Protein Sci 2017; 27:509-522. [PMID: 29114958 DOI: 10.1002/pro.3342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022]
Abstract
Neutrophils contain high levels of chymotrypsin-like serine proteases (NSPs) within their azurophilic granules that have a multitude of functions within the immune system. In response, the pathogen Staphylococcus aureus has evolved three potent inhibitors (Eap, EapH1, and EapH2) that protect the bacterium as well as several of its secreted virulence factors from the degradative action of NSPs. We previously showed that these so-called EAP domain proteins represent a novel class of NSP inhibitors characterized by a non-covalent inhibitory mechanism and a distinct target specificity profile. Based upon high levels of structural homology amongst the EAP proteins and the NSPs, as well as supporting biochemical data, we predicted that the inhibited complex would be similar for all EAP/NSP pairs. However, we present here evidence that EapH1 and EapH2 bind the canonical NSP, Neutrophil Elastase (NE), in distinct orientations. We discovered that alteration of EapH1 residues at the EapH1/NE interface caused a dramatic loss of affinity and inhibition of NE, while mutation of equivalent positions in EapH2 had no effect on NE binding or inhibition. Surprisingly, mutation of residues in an altogether different region of EapH2 severely impacted both the NE binding and inhibitory properties of EapH2. Even though EapH1 and EapH2 bind and inhibit NE and a second NSP, Cathepsin G, equally well, neither of these proteins interacts with the structurally related, but non-proteolytic granule protein, azurocidin. These studies expand our understanding of EAP/NSP interactions and suggest that members of this immune evasion protein family are capable of diverse target recognition modes.
Collapse
Affiliation(s)
- Daphne A C Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Jordan L Woehl
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Fin J Milder
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Angelino T Tromp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Aernoud A van Batenburg
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Wilco C de Graaf
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Samuel C Broll
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Natalie M White
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| |
Collapse
|
46
|
Heparin-binding protein (HBP) improves prediction of sepsis-related acute kidney injury. Ann Intensive Care 2017; 7:105. [PMID: 29047023 PMCID: PMC5647316 DOI: 10.1186/s13613-017-0330-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sepsis-related acute kidney injury (AKI) accounts for major morbidity and mortality among the critically ill. Heparin-binding protein (HBP) is a promising biomarker in predicting development and prognosis of severe sepsis and septic shock that has recently been proposed to be involved in the pathophysiology of AKI. The objective of this study was to investigate the added predictive value of measuring plasma HBP on admission to the intensive care unit (ICU) regarding the development of septic AKI. METHODS We included 601 patients with severe sepsis or septic shock from the prospective, observational FINNAKI study conducted in seventeen Finnish ICUs during a 5-month period (1 September 2011-1 February 2012). The main outcome measure was the development of KDIGO AKI stages 2-3 from 12 h after admission up to 5 days. Statistical analysis for the primary endpoint included construction of a clinical risk model, area under the receiver operating curve (ROC area), category-free net reclassification index (cfNRI) and integrated discrimination improvement (IDI) with 95% confidence intervals (95% CI). RESULTS Out of 511 eligible patients, 101 (20%) reached the primary endpoint. The addition of plasma HBP to a clinical risk model significantly increased ROC area (0.82 vs. 0.78, p = 0.03) and risk classification scores: cfNRI 62.0% (95% CI 40.5-82.4%) and IDI 0.053 (95% CI 0.029-0.075). CONCLUSIONS Plasma HBP adds predictive value to known clinical risk factors in septic AKI. Further studies are warranted to compare the predictive performance of plasma HBP to other novel AKI biomarkers.
Collapse
|
47
|
Gao S, Zhu H, Yang H, Zhang H, Li Q, Luo H. The role and mechanism of cathepsin G in dermatomyositis. Biomed Pharmacother 2017; 94:697-704. [PMID: 28797985 DOI: 10.1016/j.biopha.2017.07.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/20/2022] Open
Abstract
Dermatomyositis (DM) is an idiopathic inflammatory myopathy characterized by CD4+ T cells and B cells infiltration in perivascular and muscle tissue. Although the infiltration of inflammatory cells plays a key role in muscle damage, the exact mechanism is not clear. Cathepsin G (CTSG) is a member of the serine proteases family and can increase the permeability of vascular endothelial cells and the chemotaxis of inflammatory cells. In this study, we found that the expression of CTSG was increased in peripheral blood mononuclear cells and muscle tissues of DM patients. The activity of CTSG was significantly increased in DM patients and correlated with disease activity. Serum CTSG induced the expression of protease activated receptor 2 (PAR2) and altered the cytoskeleton of human dermal microvascular endothelial cells. Our studies indicate, for the first time, that CTSG may play an important role in muscle inflammatory cells infiltration by increasing the permeability of vascular endothelial cells.
Collapse
Affiliation(s)
- Siming Gao
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Huali Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Qiuxiang Li
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China.
| |
Collapse
|
48
|
Lázaro-Díez M, Chapartegui-González I, Redondo-Salvo S, Leigh C, Merino D, Segundo DS, Fernández A, Navas J, Icardo JM, Acosta F, Ocampo-Sosa A, Martínez-Martínez L, Ramos-Vivas J. Human neutrophils phagocytose and kill Acinetobacter baumannii and A. pittii. Sci Rep 2017; 7:4571. [PMID: 28676640 PMCID: PMC5496873 DOI: 10.1038/s41598-017-04870-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/22/2017] [Indexed: 12/23/2022] Open
Abstract
Acinetobacter baumannii is a common cause of health care associated infections worldwide. A. pittii is an opportunistic pathogen also frequently isolated from Acinetobacter infections other than those from A. baumannii. Knowledge of Acinetobacter virulence factors and their role in pathogenesis is scarce. Also, there are no detailed published reports on the interactions between A. pittii and human phagocytic cells. Using confocal laser and scanning electron microscopy, immunofluorescence, and live-cell imaging, our study shows that immediately after bacteria-cell contact, neutrophils rapidly and continuously engulf and kill bacteria during at least 4 hours of infection in vitro. After 3 h of infection, neutrophils start to release neutrophil extracellular traps (NETs) against Acinetobacter. DNA in NETs colocalizes well with human histone H3 and with the specific neutrophil elastase. We have observed that human neutrophils use large filopodia as cellular tentacles to sense local environment but also to detect and retain bacteria during phagocytosis. Furthermore, co-cultivation of neutrophils with human differentiated macrophages before infections shows that human neutrophils, but not macrophages, are key immune cells to control Acinetobacter. Although macrophages were largely activated by both bacterial species, they lack the phagocytic activity demonstrated by neutrophils.
Collapse
Affiliation(s)
- María Lázaro-Díez
- Instituto de Investigación Valdecilla IDIVAL, Santander, 39011, Spain
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, 39008, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Itziar Chapartegui-González
- Instituto de Investigación Valdecilla IDIVAL, Santander, 39011, Spain
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, 39008, Spain
| | | | - Chike Leigh
- New York University School of Medicine, New York, 10003, USA
| | - David Merino
- Instituto de Investigación Valdecilla IDIVAL, Santander, 39011, Spain
- Servicio de Inmunología, Hospital Universitario Marqués de Valdecilla, Santander, 39008, Spain
| | - David San Segundo
- Instituto de Investigación Valdecilla IDIVAL, Santander, 39011, Spain
- Servicio de Inmunología, Hospital Universitario Marqués de Valdecilla, Santander, 39008, Spain
| | - Adrián Fernández
- Instituto de Investigación Valdecilla IDIVAL, Santander, 39011, Spain
| | - Jesús Navas
- Instituto de Investigación Valdecilla IDIVAL, Santander, 39011, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, 39011, Spain
| | - José Manuel Icardo
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, 39011, Spain
| | - Félix Acosta
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, Gran Canaria, 35214, Spain
| | - Alain Ocampo-Sosa
- Instituto de Investigación Valdecilla IDIVAL, Santander, 39011, Spain
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, 39008, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Luis Martínez-Martínez
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Unidad de Gestión Clínica de Microbiología, Hospital Universitario Reina Sofía, Córdoba, 14004, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, 14004, Spain
| | - José Ramos-Vivas
- Instituto de Investigación Valdecilla IDIVAL, Santander, 39011, Spain.
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, 39008, Spain.
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
49
|
Griffith GL, Kasus-Jacobi A, Pereira HA. Bioactive Antimicrobial Peptides as Therapeutics for Corneal Wounds and Infections. Adv Wound Care (New Rochelle) 2017; 6:175-190. [PMID: 28616359 PMCID: PMC5467138 DOI: 10.1089/wound.2016.0713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/30/2017] [Indexed: 02/06/2023] Open
Abstract
Significance: More than 2 million eye injuries and infections occur each year in the United States that leave civilians and military members with reduced or complete vision loss due to the lack of effective therapeutics. Severe ocular injuries and infections occur in varied settings including the home, workplace, and battlefields. In this review, we discuss the potential of developing antimicrobial peptides (AMPs) as therapeutics for the treatment of corneal wounds and infections for which the current treatment options are inadequate. Recent Advances: Standard-of-care employs the use of fluorescein dye for the diagnosis of ocular defects and is followed by the use of antibiotics and/or steroids to treat the infection and reduce inflammation. Recent advances for treating corneal wounds include the development of amniotic membrane therapies, wound chambers, and drug-loaded hydrogels. In this review, we will discuss an innovative approach using AMPs with the dual effect of promoting corneal wound healing and clearing infections. Critical Issues: An important aspect of treating ocular injuries is that treatments need to be effective and administered expeditiously. This is especially important for injuries that occur during combat and in individuals who demonstrate delayed wound healing. To overcome gaps in current treatment modalities, bioactive peptides based on naturally occurring cationic antimicrobial proteins are being investigated as new therapeutics. Future Directions: The development of new therapeutics that can treat ocular infections and promote corneal wound healing, including the healing of persistent corneal epithelial defects, would be of great clinical benefit.
Collapse
Affiliation(s)
- Gina L. Griffith
- Ocular Trauma and Vision Restoration, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Anne Kasus-Jacobi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center Oklahoma City, Oklahoma
| | - H. Anne Pereira
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center Oklahoma City, Oklahoma
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| |
Collapse
|
50
|
Fisher J, Linder A. Heparin-binding protein: a key player in the pathophysiology of organ dysfunction in sepsis. J Intern Med 2017; 281:562-574. [PMID: 28370601 DOI: 10.1111/joim.12604] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infectious diseases remain a major health problem, and sepsis and other severe infectious diseases are common causes of morbidity and mortality. There is a need for clinical and laboratory tools to identify patients with severe infections early and to distinguish between bacterial and nonbacterial conditions. Heparin-binding protein (HBP), also known as azurocidin or cationic antimicrobial protein of 37 KDa, is a promising biomarker to distinguish between patients with these conditions. It is biologically plausible that HBP is an early and predictive biomarker because it is prefabricated and rapidly mobilized from migrating neutrophils in response to bacterial infections. HBP induces vascular leakage and oedema formation and has a pro-inflammatory effect on a variety of white blood cells and epithelial cells. The dysregulation of vascular barrier function and cellular inflammatory responses can then lead to organ dysfunction. Indeed, it has been shown that patients with sepsis express elevated levels of HBP in plasma several hours before they develop hypotension or organ dysfunction. HBP has a major role in the pathophysiology of severe bacterial infections and thus represents a potential diagnostic marker and a target for the treatment of sepsis.
Collapse
Affiliation(s)
- J Fisher
- Division of Infection Medicine, Department of Clinical Sciences, University of Lund, Lund, Sweden
| | - A Linder
- Division of Infection Medicine, Department of Clinical Sciences, University of Lund, Lund, Sweden
| |
Collapse
|