1
|
Lella RK, Malarkannan S. IQGAP1 promotes early B cell development, is essential for the development of marginal zone (MZ) B cells, and is critical for both T-dependent and T-independent antibody responses. Cell Mol Life Sci 2024; 81:462. [PMID: 39585462 PMCID: PMC11589066 DOI: 10.1007/s00018-024-05509-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
IQGAP1 is a multi-functional scaffold protein. However, its role in B cell development and function is unknown. Here, we show IQGAP1 as an essential scaffold that regulates early B cell development and function. Iqgap1-/- mice contained significantly increased numbers of B220+ B, B220+IgM- pro/pre-B, and B220LowIgM+ immature-B cells in the bone marrow. In the spleens of the Iqgap1-/- mice, newly formed and follicular B cell numbers were increased, while the marginal zone B cell numbers were significantly reduced. Lack of IQGAP1 reduced T-dependent and T-independent humoral responses. Mechanistically, the lack of IQGAP1 considerably decreased the phosphorylation of Mek1/2, Erk1/2, and Jnk1/2. B cells from Iqgap1-/- mice failed to suppress IL-7R-mediated activation of Stat5a/b, an essential step for cell-cycle exit and initiate light-chain recombination, reducing RS rearrangement frequency. Our study provides the first evidence that IQGAP1-based signalosome is necessary for the development and functions of B cells.
Collapse
Affiliation(s)
- Ravi K Lella
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Abdi Bio, Abdi Ibrahim Pharmaceuticals, Orhan Gazi Mahallesi Tunc Caddesi No. 3, Esenyurt, Istanbul, Turkey
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.
- Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
- Departments of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Hill L, Wutz G, Jaritz M, Tagoh H, Calderón L, Peters JM, Goloborodko A, Busslinger M. Igh and Igk loci use different folding principles for V gene recombination due to distinct chromosomal architectures of pro-B and pre-B cells. Nat Commun 2023; 14:2316. [PMID: 37085514 PMCID: PMC10121685 DOI: 10.1038/s41467-023-37994-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/04/2023] [Indexed: 04/23/2023] Open
Abstract
Extended loop extrusion across the immunoglobulin heavy-chain (Igh) locus facilitates VH-DJH recombination following downregulation of the cohesin-release factor Wapl by Pax5, resulting in global changes in the chromosomal architecture of pro-B cells. Here, we demonstrate that chromatin looping and VK-JK recombination at the Igk locus were insensitive to Wapl upregulation in pre-B cells. Notably, the Wapl protein was expressed at a 2.2-fold higher level in pre-B cells compared with pro-B cells, which resulted in a distinct chromosomal architecture with normal loop sizes in pre-B cells. High-resolution chromosomal contact analysis of the Igk locus identified multiple internal loops, which likely juxtapose VK and JK elements to facilitate VK-JK recombination. The higher Wapl expression in Igμ-transgenic pre-B cells prevented extended loop extrusion at the Igh locus, leading to recombination of only the 6 most 3' proximal VH genes and likely to allelic exclusion of all other VH genes in pre-B cells. These results suggest that pro-B and pre-B cells with their distinct chromosomal architectures use different chromatin folding principles for V gene recombination, thereby enabling allelic exclusion at the Igh locus, when the Igk locus is recombined.
Collapse
Affiliation(s)
- Louisa Hill
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, A-1030, Vienna, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, A-1030, Vienna, Austria
| | - Markus Jaritz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, A-1030, Vienna, Austria
| | - Hiromi Tagoh
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, A-1030, Vienna, Austria
| | - Lesly Calderón
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, A-1030, Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, A-1030, Vienna, Austria
| | - Anton Goloborodko
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, A-1030, Vienna, Austria
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, A-1030, Vienna, Austria.
| |
Collapse
|
3
|
Barajas-Mora EM, Lee L, Lu H, Valderrama JA, Bjanes E, Nizet V, Feeney AJ, Hu M, Murre C. Enhancer-instructed epigenetic landscape and chromatin compartmentalization dictate a primary antibody repertoire protective against specific bacterial pathogens. Nat Immunol 2023; 24:320-336. [PMID: 36717722 PMCID: PMC10917333 DOI: 10.1038/s41590-022-01402-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/06/2022] [Indexed: 01/31/2023]
Abstract
Antigen receptor loci are organized into variable (V), diversity (D) and joining (J) gene segments that rearrange to generate antigen receptor repertoires. Here, we identified an enhancer (E34) in the murine immunoglobulin kappa (Igk) locus that instructed rearrangement of Vκ genes located in a sub-topologically associating domain, including a Vκ gene encoding for antibodies targeting bacterial phosphorylcholine. We show that E34 instructs the nuclear repositioning of the E34 sub-topologically associating domain from a recombination-repressive compartment to a recombination-permissive compartment that is marked by equivalent activating histone modifications. Finally, we found that E34-instructed Vκ-Jκ rearrangement was essential to combat Streptococcus pneumoniae but not methicillin-resistant Staphylococcus aureus or influenza infections. We propose that the merging of Vκ genes with Jκ elements is instructed by one-dimensional epigenetic information imposed by enhancers across Vκ and Jκ genomic regions. The data also reveal how enhancers generate distinct antibody repertoires that provide protection against lethal bacterial infection.
Collapse
Affiliation(s)
| | - Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hanbin Lu
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - J Andrés Valderrama
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Elisabet Bjanes
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA
| | - Ann J Feeney
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Sinkora M, Stepanova K, Butler JE, Sinkora M, Sinkora S, Sinkorova J. Comparative Aspects of Immunoglobulin Gene Rearrangement Arrays in Different Species. Front Immunol 2022; 13:823145. [PMID: 35222402 PMCID: PMC8873125 DOI: 10.3389/fimmu.2022.823145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Studies in humans and mice indicate the critical role of the surrogate light chain in the selection of the productive immunoglobulin repertoire during B cell development. However, subsequent studies using mutant mice have also demonstrated that alternative pathways are allowed. Our recent investigation has shown that some species, such as pig, physiologically use preferential rearrangement of authentic light chains, and become independent of surrogate light chains. Here we summarize the findings from swine and compare them with results in other species. In both groups, allelic and isotypic exclusions remain intact, so the different processes do not alter the paradigm of B-cell monospecificity. Both groups also retained some other essential processes, such as segregated and sequential rearrangement of heavy and light chain loci, preferential rearrangement of light chain kappa before lambda, and functional κ-deleting element recombination. On the other hand, the respective order of heavy and light chains rearrangement may vary, and rearrangement of the light chain kappa and lambda on different chromosomes may occur independently. Studies have also confirmed that the surrogate light chain is not required for the selection of the productive repertoire of heavy chains and can be substituted by authentic light chains. These findings are important for understanding evolutional approaches, redundancy and efficiency of B-cell generation, dependencies on other regulatory factors, and strategies for constructing therapeutic antibodies in unrelated species. The results may also be important for explaining interspecies differences in the proportional use of light chains and for the understanding of divergences in rearrangement processes. Therefore, the division into two groups may not be definitive and there may be more groups of intermediate species.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - John E. Butler
- Department of Microbiology, University of Iowa, Iowa City, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| |
Collapse
|
5
|
Sinkora M, Stepanova K, Sinkorova J. Immunoglobulin light chain κ precedes λ rearrangement in swine but a majority of λ + B cells are generated earlier. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103751. [PMID: 32454063 DOI: 10.1016/j.dci.2020.103751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Developmental pathways for B cell lymphogenesis are sufficiently known only in mice and humans. However, both of these species rearrange immunoglobulin heavy chains (IgH) before light chains (IgL) while IgL precedes IgH rearrangement in swine. We demonstrate here that this reversed order of rearrangements have some concealed consequences: (1) we confirmed that although IgLκ rearrangement is initial, most IgLλ+ B cells are generated earlier and before IgH rearrangements, while most IgLκ+ B cells later and after IgH rearrangements, (2) the second IgLκ rearrangement can occur after IgLλ rearrangement, (3) early formed B cells bear only single in-frame IgH rearrangements, (4) many IgLκ+ B cells carry IgLλ rearrangements that can be productive and occurring on both alleles in one cell, and (5) although VpreB and λ5 genes are present in swine, they are preferentially expressed in non-B cells. In summary, our findings reveal that swine use an alternative B cell developmental pathway as compared to mice and humans.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
6
|
Wong JB, Hewitt SL, Heltemes-Harris LM, Mandal M, Johnson K, Rajewsky K, Koralov SB, Clark MR, Farrar MA, Skok JA. B-1a cells acquire their unique characteristics by bypassing the pre-BCR selection stage. Nat Commun 2019; 10:4768. [PMID: 31628339 PMCID: PMC6802180 DOI: 10.1038/s41467-019-12824-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/24/2019] [Indexed: 12/23/2022] Open
Abstract
B-1a cells are long-lived, self-renewing innate-like B cells that predominantly inhabit the peritoneal and pleural cavities. In contrast to conventional B-2 cells, B-1a cells have a receptor repertoire that is biased towards bacterial and self-antigens, promoting a rapid response to infection and clearing of apoptotic cells. Although B-1a cells are known to primarily originate from fetal tissues, the mechanisms by which they arise has been a topic of debate for many years. Here we show that in the fetal liver versus bone marrow environment, reduced IL-7R/STAT5 levels promote immunoglobulin kappa gene recombination at the early pro-B cell stage. As a result, differentiating B cells can directly generate a mature B cell receptor (BCR) and bypass the requirement for a pre-BCR and pairing with surrogate light chain. This 'alternate pathway' of development enables the production of B cells with self-reactive, skewed specificity receptors that are peculiar to the B-1a compartment. Together our findings connect seemingly opposing lineage and selection models of B-1a cell development and explain how these cells acquire their unique properties.
Collapse
MESH Headings
- Animals
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Bone Marrow/immunology
- Bone Marrow/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Immunoglobulin Light Chains, Surrogate/genetics
- Immunoglobulin Light Chains, Surrogate/immunology
- Immunoglobulin Light Chains, Surrogate/metabolism
- Liver/embryology
- Liver/immunology
- Liver/metabolism
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- Pre-B Cell Receptors/genetics
- Pre-B Cell Receptors/immunology
- Pre-B Cell Receptors/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Interleukin-7/genetics
- Receptors, Interleukin-7/immunology
- Receptors, Interleukin-7/metabolism
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/immunology
- STAT5 Transcription Factor/metabolism
Collapse
Affiliation(s)
- Jason B Wong
- Department of Pathology, New York University School of Medicine, New York University, New York, NY, USA
| | - Susannah L Hewitt
- Department of Pathology, New York University School of Medicine, New York University, New York, NY, USA
| | - Lynn M Heltemes-Harris
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Malay Mandal
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Kristen Johnson
- Department of Pathology, New York University School of Medicine, New York University, New York, NY, USA
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine, 13092, Berlin, Germany
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York University, New York, NY, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Michael A Farrar
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York University, New York, NY, USA.
| |
Collapse
|
7
|
Barajas-Mora EM, Kleiman E, Xu J, Carrico NC, Lu H, Oltz EM, Murre C, Feeney AJ. A B-Cell-Specific Enhancer Orchestrates Nuclear Architecture to Generate a Diverse Antigen Receptor Repertoire. Mol Cell 2018; 73:48-60.e5. [PMID: 30449725 DOI: 10.1016/j.molcel.2018.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/16/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
The genome is organized into topologically associated domains (TADs) that enclose smaller subTADs. Here, we identify and characterize an enhancer that is located in the middle of the V gene region of the immunoglobulin kappa light chain (Igκ) locus that becomes active preceding the stage at which this locus undergoes V(D)J recombination. This enhancer is a hub of long-range chromatin interactions connecting subTADs in the V gene region with the recombination center at the J genes. Deletion of this element results in a highly altered long-range chromatin interaction pattern across the locus and, importantly, affects individual V gene utilization locus-wide. These results indicate the existence of an enhancer-dependent framework in the Igκ locus and further suggest that the composition of the diverse antibody repertoire is regulated in a subTAD-specific manner. This enhancer thus plays a structural role in orchestrating the proper folding of the Igκ locus in preparation for V(D)J recombination.
Collapse
Affiliation(s)
- E Mauricio Barajas-Mora
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eden Kleiman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey Xu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nancy C Carrico
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hanbin Lu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cornelis Murre
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ann J Feeney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Kleiman E, Loguercio S, Feeney AJ. Epigenetic Enhancer Marks and Transcription Factor Binding Influence Vκ Gene Rearrangement in Pre-B Cells and Pro-B Cells. Front Immunol 2018; 9:2074. [PMID: 30271408 PMCID: PMC6146092 DOI: 10.3389/fimmu.2018.02074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022] Open
Abstract
To date there has not been a study directly comparing relative Igκ rearrangement frequencies obtained from genomic DNA (gDNA) and cDNA and since each approach has potential biases, this is an important issue to clarify. Here we used deep sequencing to compare the unbiased gDNA and RNA Igκ repertoire from the same pre-B cell pool. We find that ~20% of Vκ genes have rearrangement frequencies ≥2-fold up or down in RNA vs. DNA libraries, including many members of the Vκ3, Vκ4, and Vκ6 families. Regression analysis indicates Ikaros and E2A binding are associated with strong promoters. Within the pre-B cell repertoire, we observed that individual Vκ genes rearranged at very different frequencies, and also displayed very different Jκ usage. Regression analysis revealed that the greatly unequal Vκ gene rearrangement frequencies are best predicted by epigenetic marks of enhancers. In particular, the levels of newly arising H3K4me1 peaks associated with many Vκ genes in pre-B cells are most predictive of rearrangement levels. Since H3K4me1 is associated with long range chromatin interactions which are created during locus contraction, our data provides mechanistic insight into unequal rearrangement levels. Comparison of Igκ rearrangements occurring in pro-B cells and pre-B cells from the same mice reveal a pro-B cell bias toward usage of Jκ-distal Vκ genes, particularly Vκ10-96 and Vκ1-135. Regression analysis indicates that PU.1 binding is the highest predictor of Vκ gene rearrangement frequency in pro-B cells. Lastly, the repertoires of iEκ−/− pre-B cells reveal that iEκ actively influences Vκ gene usage, particularly Vκ3 family genes, overlapping with a zone of iEκ-regulated germline transcription. These represent new roles for iEκ in addition to its critical function in promoting overall Igκ rearrangement. Together, this study provides insight into many aspects of Igκ repertoire formation.
Collapse
Affiliation(s)
- Eden Kleiman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Salvatore Loguercio
- Molecular Experimental Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Ann J Feeney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
9
|
Khass M, Blackburn T, Elgavish A, Burrows PD, Schroeder HW. In the Absence of Central pre-B Cell Receptor Selection, Peripheral Selection Attempts to Optimize the Antibody Repertoire by Enriching for CDR-H3 Y101. Front Immunol 2018; 9:120. [PMID: 29472919 PMCID: PMC5810287 DOI: 10.3389/fimmu.2018.00120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/15/2018] [Indexed: 01/13/2023] Open
Abstract
Sequential developmental checkpoints are used to “optimize” the B cell antigen receptor repertoire by minimizing production of autoreactive or useless immunoglobulins and enriching for potentially protective antibodies. The first and apparently most impactful checkpoint requires μHC to form a functional pre-B cell receptor (preBCR) by associating with surrogate light chain, which is composed of VpreB and λ5. Absence of any of the preBCR components causes a block in B cell development that is characterized by severe immature B cell lymphopenia. Previously, we showed that preBCR controls the amino acid content of the third complementary determining region of the H chain (CDR-H3) by using a VpreB amino acid motif (RDR) to select for tyrosine at CDR-H3 position 101 (Y101). In antibodies bound to antigen, Y101 is commonly in direct contact with the antigen, thus preBCR selection impacts the antigen binding characteristics of the repertoire. In this work, we sought to determine the forces that shape the peripheral B cell repertoire when it is denied preBCR selection. Using bromodeoxyuridine incorporation and evaluation of apoptosis, we found that in the absence of preBCR there is increased turnover of B cells due to increased apoptosis. CDR-H3 sequencing revealed that this is accompanied by adjustments to DH identity, DH reading frame, JH, and CDR-H3 amino acid content. These adjustments in the periphery led to wild-type levels of CDR-H3 Y101 content among transitional (T1), mature recirculating, and marginal zone B cells. However, peripheral selection proved incomplete, with failure to restore Y101 levels in follicular B cells and increased production of dsDNA-binding IgM antibodies.
Collapse
Affiliation(s)
- Mohamed Khass
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Genetic Engineering and Biotechnology Division, National Research Center, Cairo, Egypt
| | - Tessa Blackburn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ada Elgavish
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Peter D Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harry W Schroeder
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Sinkora M, Sinkorova J, Stepanova K. Ig Light Chain Precedes Heavy Chain Gene Rearrangement during Development of B Cells in Swine. THE JOURNAL OF IMMUNOLOGY 2017; 198:1543-1552. [DOI: 10.4049/jimmunol.1601035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022]
|
11
|
Rother MB, Palstra RJ, Jhunjhunwala S, van Kester KAM, van IJcken WFJ, Hendriks RW, van Dongen JJM, Murre C, van Zelm MC. Nuclear positioning rather than contraction controls ordered rearrangements of immunoglobulin loci. Nucleic Acids Res 2016; 44:175-86. [PMID: 26384565 PMCID: PMC4705691 DOI: 10.1093/nar/gkv928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 12/31/2022] Open
Abstract
Progenitor-B cells recombine their immunoglobulin (Ig) loci to create unique antigen receptors. Despite a common recombination machinery, the Ig heavy and Ig light chain loci rearrange in a stepwise manner. We studied pre-pro-B cells and Rag(-/-) progenitor-B cells to determine whether Ig locus contraction or nuclear positioning is decisive for stepwise rearrangements. We found that both Ig loci were contracted in pro-B and pre-B cells. Igh relocated from the nuclear lamina to central domains only at the pro-B cell stage, whereas, Igκ remained sequestered at the lamina, and only at the pre-B cell stage located to central nuclear domains. Finally, in vitro induced re-positioning of Ig alleles away from the nuclear periphery increased germline transcription of Ig loci in pre-pro-B cells. Thus, Ig locus contraction juxtaposes genomically distant elements to mediate efficient recombination, however, sequential positioning of Ig loci away from the nuclear periphery determines stage-specific accessibility of Ig loci.
Collapse
Affiliation(s)
- Magdalena B Rother
- Department of Immunology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Suchit Jhunjhunwala
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| | - Kevin A M van Kester
- Department of Immunology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Cornelis Murre
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
12
|
Srour N, Chemin G, Tinguely A, Ashi MO, Oruc Z, Péron S, Sirac C, Cogné M, Delpy L. A plasma cell differentiation quality control ablates B cell clones with biallelic Ig rearrangements and truncated Ig production. J Exp Med 2015; 213:109-22. [PMID: 26666261 PMCID: PMC4710196 DOI: 10.1084/jem.20131511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/12/2015] [Indexed: 01/26/2023] Open
Abstract
Aberrantly rearranged immunoglobulin (Ig) alleles are frequent. They are usually considered sterile and innocuous as a result of nonsense-mediated mRNA decay. However, alternative splicing can yield internally deleted proteins from such nonproductively V(D)J-rearranged loci. We show that nonsense codons from variable (V) Igκ exons promote exon-skipping and synthesis of V domain-less κ light chains (ΔV-κLCs). Unexpectedly, such ΔV-κLCs inhibit plasma cell (PC) differentiation. Accordingly, in wild-type mice, rearrangements encoding ΔV-κLCs are rare in PCs, but frequent in B cells. Likewise, enforcing expression of ΔV-κLCs impaired PC differentiation and antibody responses without disturbing germinal center reactions. In addition, PCs expressing ΔV-κLCs synthesize low levels of Ig and are mostly found among short-lived plasmablasts. ΔV-κLCs have intrinsic toxic effects in PCs unrelated to Ig assembly, but mediated by ER stress-associated apoptosis, making PCs producing ΔV-κLCs highly sensitive to proteasome inhibitors. Altogether, these findings demonstrate a quality control checkpoint blunting terminal PC differentiation by eliminating those cells expressing nonfunctionally rearranged Igκ alleles. This truncated Ig exclusion (TIE) checkpoint ablates PC clones with ΔV-κLCs production and exacerbated ER stress response. The TIE checkpoint thus mediates selection of long-lived PCs with limited ER stress supporting high Ig secretion, but with a cost in terms of antigen-independent narrowing of the repertoire.
Collapse
Affiliation(s)
- Nivine Srour
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Guillaume Chemin
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Aurélien Tinguely
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Mohamad Omar Ashi
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Zéliha Oruc
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Sophie Péron
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Christophe Sirac
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| | - Michel Cogné
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France Institut Universitaire de France, Université de Limoges, 87000 Limoges, France
| | - Laurent Delpy
- Centre National de la Recherche Scientifique UMR 7276, Université de Limoges, 87000 Limoges, France
| |
Collapse
|
13
|
Ebert A, Hill L, Busslinger M. Spatial Regulation of V-(D)J Recombination at Antigen Receptor Loci. Adv Immunol 2015; 128:93-121. [PMID: 26477366 DOI: 10.1016/bs.ai.2015.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lymphocytes express a diverse repertoire of antigen receptors, which are able to recognize a large variety of foreign pathogens. Functional antigen receptor genes are assembled by V(D)J recombination in immature B cells (Igh and Igk) and T cells (Tcr b and Tcra/d). V(D)J recombination takes place in the 3' proximal domain containing the D, J, and C gene segments, whereas 31 (Tcrb) to 200 (Igh) V genes are spread over a large region of 0.67 (Tcrb) to 3 (Igk) megabase pairs. The spatial regulation of V(D)J recombination has been best studied for the Igh locus, which undergoes reversible contraction by long-range looping in pro-B cells. This large-scale contraction brings distantly located VH genes into close proximity of the DJH-rearranged gene segment, which facilitates VH-DJH recombination. The B-cell-specific Pax5, ubiquitous YY1, and architectural CTCF/cohesin proteins regulate Igh locus contraction in pro-B cells by binding to multiple sites in the VH gene cluster. These regulators also control the pro-B-cell-specific activity of the distally located PAIR elements, which may be involved in the regulation of VH-DJH recombination by promoting locus contraction. Moreover, the large VH gene cluster of the Igh locus undergoes flexible long-range looping, which guarantees similar participation of all VH genes in VH-DJH recombination to generate a diverse antibody repertoire. Importantly, long-range looping is a more general regulatory principle, as other antigen receptor loci also undergo reversible contraction at the developmental stage, where they engage in V-(D)J recombination.
Collapse
Affiliation(s)
- Anja Ebert
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Louisa Hill
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
14
|
Manoharan A, Du Roure C, Rolink AG, Matthias P. De novo DNA Methyltransferases Dnmt3a and Dnmt3b regulate the onset of Igκ light chain rearrangement during early B-cell development. Eur J Immunol 2015; 45:2343-55. [PMID: 26059604 DOI: 10.1002/eji.201445035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 04/24/2015] [Accepted: 05/19/2015] [Indexed: 02/01/2023]
Abstract
Immunoglobulin genes V(D)J rearrangement during early lymphopoiesis is a critical process involving sequential recombination of the heavy and light chain loci. A number of transcription factors act together with temporally activated recombinases and chromatin accessibility changes to regulate this complex process. Here, we deleted the de novo DNA methyltransferases Dnmt3a and Dnmt3b in early B cells of conditionally targeted mice, and monitored the process of V(D)J recombination. Dnmt3a and Dnmt3b deletion resulted in precocious recombination of the immunoglobulin κ light chain without impairing the differentiation of mature B cells or overall B-cell development. Ex vivo culture of IL-7 restricted early B-cell progenitors lacking Dnmt3a and Dnmt3b showed precocious Vκ-Jκ rearrangements that are limited to the proximal Vκ genes. Furthermore, B-cell progenitors deficient in Dnmt3a and Dnmt3b showed elevated levels of germline transcripts at the proximal Vκ genes, alterations in methylation patterns at Igκ enhancer sites and increased expression of the transcription factor E2A. Our data suggest that Dnmt3a and Dnmt3b are critical to regulate the onset of Igκ light chain rearrangement during early B-cell development.
Collapse
Affiliation(s)
- Anand Manoharan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Camille Du Roure
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
de Almeida CR, Hendriks RW, Stadhouders R. Dynamic Control of Long-Range Genomic Interactions at the Immunoglobulin κ Light-Chain Locus. Adv Immunol 2015; 128:183-271. [DOI: 10.1016/bs.ai.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Stadhouders R, de Bruijn MJW, Rother MB, Yuvaraj S, de Almeida CR, Kolovos P, Van Zelm MC, van Ijcken W, Grosveld F, Soler E, Hendriks RW. Pre-B cell receptor signaling induces immunoglobulin κ locus accessibility by functional redistribution of enhancer-mediated chromatin interactions. PLoS Biol 2014; 12:e1001791. [PMID: 24558349 PMCID: PMC3928034 DOI: 10.1371/journal.pbio.1001791] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 01/08/2014] [Indexed: 12/13/2022] Open
Abstract
Chromatin conformation analyses provide novel insights into how variable segments in the immunoglobulin light chain gene become accessible for recombination in precursor B lymphocytes. During B cell development, the precursor B cell receptor (pre-BCR) checkpoint is thought to increase immunoglobulin κ light chain (Igκ) locus accessibility to the V(D)J recombinase. Accordingly, pre-B cells lacking the pre-BCR signaling molecules Btk or Slp65 showed reduced germline Vκ transcription. To investigate whether pre-BCR signaling modulates Vκ accessibility through enhancer-mediated Igκ locus topology, we performed chromosome conformation capture and sequencing analyses. These revealed that already in pro-B cells the κ enhancers robustly interact with the ∼3.2 Mb Vκ region and its flanking sequences. Analyses in wild-type, Btk, and Slp65 single- and double-deficient pre-B cells demonstrated that pre-BCR signaling reduces interactions of both enhancers with Igκ locus flanking sequences and increases interactions of the 3′κ enhancer with Vκ genes. Remarkably, pre-BCR signaling does not significantly affect interactions between the intronic enhancer and Vκ genes, which are already robust in pro-B cells. Both enhancers interact most frequently with highly used Vκ genes, which are often marked by transcription factor E2a. We conclude that the κ enhancers interact with the Vκ region already in pro-B cells and that pre-BCR signaling induces accessibility through a functional redistribution of long-range chromatin interactions within the Vκ region, whereby the two enhancers play distinct roles. B lymphocyte development involves the generation of a functional antigen receptor, comprising two heavy chains and two light chains arranged in a characteristic “Y” shape. To do this, the receptor genes must first be assembled by ordered genomic recombination events, starting with the immunoglobulin heavy chain (IgH) gene segments. On successful rearrangement, the resulting IgH μ protein is presented on the cell surface as part of a preliminary version of the B cell receptor—the “pre-BCR.” Pre-BCR signaling then redirects recombination activity to the immunoglobulin κ light chain gene. The activity of two regulatory κ enhancer elements is known to be crucial for opening up the gene, but it remains largely unknown how the hundred or so Variable (V) segments in the κ locus gain access to the recombination system. Here, we studied a panel of pre-B cells from mice lacking specific signaling molecules, reflecting absent, partial, or complete pre-BCR signaling. We identify gene regulatory changes that are dependent on pre-BCR signaling and occur via long-range chromatin interactions between the κ enhancers and the V segments. Surprisingly the light chain gene initially contracts, but the interactions then become more functionally redistributed when pre-BCR signaling occurs. Interestingly, we find that the two enhancers play distinct roles in the process of coordinating chromatin interactions towards the V segments. Our study combines chromatin conformation techniques with data on transcription factor binding to gain unique insights into the functional role of chromatin dynamics.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Assembly and Disassembly
- Enhancer Elements, Genetic
- Epistasis, Genetic
- Histones/metabolism
- Immunoglobulin kappa-Chains/genetics
- Immunoglobulin kappa-Chains/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Precursor Cells, B-Lymphoid/metabolism
- Protein Processing, Post-Translational
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- Transcriptome
- V(D)J Recombination
Collapse
Affiliation(s)
| | | | | | - Saravanan Yuvaraj
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, The Netherlands
| | | | - Petros Kolovos
- Department of Cell Biology, Erasmus MC Rotterdam, The Netherlands
| | | | | | - Frank Grosveld
- Department of Cell Biology, Erasmus MC Rotterdam, The Netherlands
- The Cancer Genomics Center, Erasmus MC Rotterdam, The Netherlands
| | - Eric Soler
- Department of Cell Biology, Erasmus MC Rotterdam, The Netherlands
- The Cancer Genomics Center, Erasmus MC Rotterdam, The Netherlands
- INSERM UMR967 and French Alternative Energies and Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
17
|
Abstract
The development and function of B lymphocytes critically depend on the non-germline B-cell antigen receptor (BCR). In addition to the diverse antigen-recognition regions, whose coding sequences are generated by the somatic DNA rearrangement, the variety of the constant domains of the Heavy Chain (HC) portion contributes to the multiplicity of the BCR types. The functions of particular classes of the HC, particularly in the context of the membrane BCR, are not completely understood. The expression of the various classes of the HC correlates with the distinct stages of B-cell development, types of B-cell subsets, and their effector functions. In this chapter, we summarize and discuss the accumulated knowledge on the role of the μ, δ, and γ HC isotypes of the conventional and precursor BCR in B-cell differentiation, selection, and engagement with (auto)antigens.
Collapse
Affiliation(s)
- Elena Surova
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany; Department of Molecular immunology, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Hassan Jumaa
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany; Department of Molecular immunology, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Department of Immunology, Ulm University, Ulm, Germany.
| |
Collapse
|
18
|
Bevington S, Boyes J. Transcription-coupled eviction of histones H2A/H2B governs V(D)J recombination. EMBO J 2013; 32:1381-92. [PMID: 23463099 PMCID: PMC3655464 DOI: 10.1038/emboj.2013.42] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 02/05/2013] [Indexed: 12/23/2022] Open
Abstract
Initiation of V(D)J recombination critically relies on the formation of an accessible chromatin structure at recombination signal sequences (RSSs) but how this accessibility is generated is poorly understood. Immunoglobulin light-chain loci normally undergo recombination in pre-B cells. We show here that equipping (earlier) pro-B cells with the increased pre-B-cell levels of just one transcription factor, IRF4, triggers the entire cascade of events leading to premature light-chain recombination. We then used this finding to dissect the critical events that generate RSS accessibility and show that the chromatin modifications previously associated with recombination are insufficient. Instead, we establish that non-coding transcription triggers IgL RSS accessibility and find that the accessibility is transient. Transcription transiently evicts H2A/H2B dimers, releasing 35-40 bp of nucleosomal DNA, and we demonstrate that H2A/H2B loss can explain the RSS accessibility observed in vivo. We therefore propose that the transcription-mediated eviction of H2A/H2B dimers is an important mechanism that makes RSSs accessible for the initiation of recombination.
Collapse
Affiliation(s)
- Sarah Bevington
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joan Boyes
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
19
|
Affiliation(s)
- Klaus Rajewsky
- Program in Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
20
|
Clonal allelic predetermination of immunoglobulin-κ rearrangement. Nature 2012; 490:561-5. [PMID: 23023124 DOI: 10.1038/nature11496] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/09/2012] [Indexed: 01/10/2023]
Abstract
Although most genes are expressed biallelically, a number of key genomic sites--including immune and olfactory receptor regions--are controlled monoallelically in a stochastic manner, with some cells expressing the maternal allele and others the paternal allele in the target tissue. Very little is known about how this phenomenon is regulated and programmed during development. Here, using mouse immunoglobulin-κ (Igκ) as a model system, we demonstrate that although individual haematopoietic stem cells are characterized by allelic plasticity, early lymphoid lineage cells become committed to the choice of a single allele, and this decision is then stably maintained in a clonal manner that predetermines monoallelic rearrangement in B cells. This is accompanied at the molecular level by underlying allelic changes in asynchronous replication timing patterns at the κ locus. These experiments may serve to define a new concept of stem cell plasticity.
Collapse
|
21
|
|
22
|
Bossen C, Mansson R, Murre C. Chromatin topology and the regulation of antigen receptor assembly. Annu Rev Immunol 2012; 30:337-56. [PMID: 22224771 DOI: 10.1146/annurev-immunol-020711-075003] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During an organism's ontogeny and in the adult, each B and T lymphocyte generates a unique antigen receptor, thereby creating the organism's ability to respond to a vast number of different antigens. The antigen receptor loci are organized into distinct regions that contain multiple variable (V), diversity (D), and/or joining (J) and constant (C) coding elements that are scattered across large genomic regions. In this review, we discuss the epigenetic modifications that take place in the different antigen receptor loci, the chromatin structure adopted by the antigen receptor loci to allow recombination of elements separated by large genomic distances, and the relationship between epigenetics and chromatin structure and how they relate to the generation of antigen receptor diversity.
Collapse
Affiliation(s)
- Claudia Bossen
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093-0377, USA
| | | | | |
Collapse
|
23
|
Robbins GR, Knight KL. Mechanism for pre-B cell loss in VH-mutant rabbits. THE JOURNAL OF IMMUNOLOGY 2011; 187:4714-20. [PMID: 21957145 DOI: 10.4049/jimmunol.1101778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pre-BCR signaling is a critical checkpoint in B cell development in which B-lineage cells expressing functional IgH μ-chain are selectively expanded. B cell development is delayed in mutant ali/ali rabbits because the a-allotype encoding V(H)1 gene, which is normally used in VDJ gene rearrangements in wt rabbits, is deleted, and instead, most B-lineage cells use the a-allotype encoding V(H)4 gene [V(H)4(a)], which results in a severe developmental block at the pre-B cell stage. We found that V(H)4(a)-utilizing pre-B cells exhibit reduced pre-BCR signaling and do not undergo normal expansion in vitro. Transduction of murine 38B9 pre-B cells with chimeric rabbit-VDJ mouse-Cμ encoding retroviruses showed V(H)4(a)-encoded μ-chains do not readily form signal-competent pre-BCR, thereby explaining the reduction in pre-BCR signaling and pre-B cell expansion. Development of V(H)4(a)-utilizing B cells can be rescued in vivo by the expression of an Igκ transgene, indicating that V(H)4(a)-μ chains are not defective for conventional BCR formation and signaling. The ali/ali rabbit model system is unique because V(H)4(a)-μ chains have the capacity to pair with a variety of conventional IgL chains and yet lack the capacity to form a signal-competent pre-BCR. This system could allow for identification of critical structural parameters that govern pre-BCR formation/signaling.
Collapse
Affiliation(s)
- Gregory R Robbins
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | | |
Collapse
|
24
|
IL-7R expression and IL-7 signaling confer a distinct phenotype on developing human B-lineage cells. Blood 2011; 118:2116-27. [PMID: 21680796 DOI: 10.1182/blood-2010-08-302513] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
IL-7 is an important cytokine for lymphocyte differentiation. Similar to what occurs in vivo, human CD19⁺ cells developing in human/murine xenogeneic cultures show differential expression of the IL-7 receptor α (IL-7Rα) chain (CD127). We now describe the relationship between CD127 expression/signaling and Ig gene rearrangement. In the present study, < 10% of CD19⁺CD127⁺ and CD19⁺CD127⁻ populations had complete VDJ(H) rearrangements. IGH locus conformation measurements by 3D FISH revealed that CD127⁺ and CD127⁻ cells were less contracted than pediatric BM pro-B cells that actively rearrange the IGH locus. Complete IGH rearrangements in CD127⁺ and CD127⁻ cells had smaller CDR3 lengths and fewer N-nucleotide insertions than pediatric BM B-lineage cells. Despite the paucity of VDJ(H) rearrangements, microarray analysis indicated that CD127⁺ cells resembled large pre-B cells, which is consistent with their low level of Ig light-chain rearrangements. Unexpectedly, CD127⁻ cells showed extensive Ig light-chain rearrangements in the absence of IGH rearrangements and resembled small pre-B cells. Neutralization of IL-7 in xenogeneic cultures led to an increase in Ig light-chain rearrangements in CD127⁺ cells, but no change in complete IGH rearrangements. We conclude that IL-7-mediated suppression of premature Ig light-chain rearrangement is the most definitive function yet described for IL-7 in human B-cell development.
Collapse
|
25
|
Luning Prak ET, Monestier M, Eisenberg RA. B cell receptor editing in tolerance and autoimmunity. Ann N Y Acad Sci 2011; 1217:96-121. [PMID: 21251012 DOI: 10.1111/j.1749-6632.2010.05877.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Receptor editing is the process of ongoing antibody gene rearrangement in a lymphocyte that already has a functional antigen receptor. The expression of a functional antigen receptor will normally terminate further rearrangement (allelic exclusion). However, lymphocytes with autoreactive receptors have a chance at escaping negative regulation by "editing" the specificities of their receptors with additional antibody gene rearrangements. As such, editing complicates the Clonal Selection Hypothesis because edited cells are not simply endowed for life with a single, invariant antigen receptor. Furthermore, if the initial immunoglobulin gene is not inactivated during the editing process, allelic exclusion is violated and the B cell can exhibit two specificities. Here, we describe the discovery of editing, the pathways of receptor editing at the heavy (H) and light (L) chain loci, and current evidence regarding how and where editing happens and what effects it has on the antibody repertoire.
Collapse
Affiliation(s)
- Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
26
|
Malin S, McManus S, Cobaleda C, Novatchkova M, Delogu A, Bouillet P, Strasser A, Busslinger M. Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat Immunol 2009; 11:171-9. [PMID: 19946273 DOI: 10.1038/ni.1827] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 10/20/2009] [Indexed: 12/11/2022]
Abstract
STAT5 and interleukin 7 (IL-7) signaling are thought to control B lymphopoiesis by regulating the expression of key transcription factors and by activating variable (V(H)) gene segments at the immunoglobulin heavy-chain (Igh) locus. Using conditional mutagenesis to delete the gene encoding the transcription factor STAT5, we demonstrate that the development of pro-B cells was restored by transgenic expression of the prosurvival protein Bcl-2, which compensated for loss of the antiapoptotic protein Mcl-1. Expression of the genes encoding the B cell-specification factor EBF1 and the B cell-commitment protein Pax5 as well as V(H) gene recombination were normal in STAT5- or IL-7 receptor alpha-chain (IL-7Ralpha)-deficient pro-B cells rescued by Bcl-2. STAT5-expressing pro-B cells contained little or no active chromatin at most V(H) genes. In contrast, rearrangements of the immunoglobulin-kappa light-chain locus (Igk) were more abundant in STAT5- or IL-7Ralpha-deficient pro-B cells. Hence, STAT5 and IL-7 signaling control cell survival and the developmental ordering of immunoglobulin gene rearrangements by suppressing premature Igk recombination in pro-B cells.
Collapse
Affiliation(s)
- Stephen Malin
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Production of healthy cloned mice from bodies frozen at -20 degrees C for 16 years. Proc Natl Acad Sci U S A 2008; 105:17318-22. [PMID: 18981419 DOI: 10.1073/pnas.0806166105] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cloning animals by nuclear transfer provides an opportunity to preserve endangered mammalian species. However, it has been suggested that the "resurrection" of frozen extinct species (such as the woolly mammoth) is impracticable, as no live cells are available, and the genomic material that remains is inevitably degraded. Here we report production of cloned mice from bodies kept frozen at -20 degrees C for up to 16 years without any cryoprotection. As all of the cells were ruptured after thawing, we used a modified cloning method and examined nuclei from several organs for use in nuclear transfer attempts. Using brain nuclei as nuclear donors, we established embryonic stem cell lines from the cloned embryos. Healthy cloned mice were then produced from these nuclear transferred embryonic stem cells by serial nuclear transfer. Thus, nuclear transfer techniques could be used to "resurrect" animals or maintain valuable genomic stocks from tissues frozen for prolonged periods without any cryopreservation.
Collapse
|
28
|
Wang H, Feng J, Qi CF, Li Z, Morse HC, Clarke SH. Transitional B Cells Lose Their Ability to Receptor Edit but Retain Their Potential for Positive and Negative Selection. THE JOURNAL OF IMMUNOLOGY 2007; 179:7544-52. [DOI: 10.4049/jimmunol.179.11.7544] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Grange S, Boyes J. Chromatin opening is tightly linked to enhancer activation at the kappa light chain locus. Biochem Biophys Res Commun 2007; 363:223-8. [PMID: 17868643 DOI: 10.1016/j.bbrc.2007.08.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 08/27/2007] [Indexed: 12/27/2022]
Abstract
Enhancers play an important role in chromatin opening but the temporal relationship between enhancer activation and the generation of an accessible chromatin structure is poorly defined. Recombination enhancers are essential for chromatin opening and subsequent V(D)J recombination at immunoglobulin loci. In mice, the kappa light chain locus displays an open chromatin structure before the lambda locus yet the same proteins, PU.1/PIP, trigger full enhancer activation of both loci. Using primary B cells isolated from distinct developmental stages and an improved method to quantitatively determine hypersensitive site formation, we find the kappa and lambda recombination enhancers become fully hypersensitive soon after transition to large and small pre-B-II cells, respectively. This correlates strictly with the stages at which these loci are activated. Since these cells are short-lived, these data imply that there is a close temporal relationship between full enhancer hypersensitive site formation and locus chromatin opening.
Collapse
Affiliation(s)
- Sarah Grange
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | |
Collapse
|
30
|
Abstract
The pre-B-cell receptor (pre-BCR) is composed of two immunoglobulin mu heavy chains and two surrogate light chains, which associate with the signaling molecules Igalpha and Igbeta (Igalpha/beta). The production of a functional pre-BCR is the first checkpoint in the current model of B-cell development. The pre-BCR mediates signals resulting in heavy chain allelic exclusion, down-regulation of the recombination machinery, developmental progression, V(H) repertoire selection, proliferation and down-regulation of the surrogate light chain genes. Recent studies suggest that some of these processes could take place at an earlier stage in B-cell development than previously thought, and might not result from signals mediated by the pre-BCR.
Collapse
|
31
|
Inlay MA, Lin T, Gao HH, Xu Y. Critical roles of the immunoglobulin intronic enhancers in maintaining the sequential rearrangement of IgH and Igk loci. ACTA ACUST UNITED AC 2006; 203:1721-32. [PMID: 16785310 PMCID: PMC2118354 DOI: 10.1084/jem.20052310] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
V(D)J recombination of immunoglobulin (Ig) heavy (IgH) and light chain genes occurs sequentially in the pro– and pre–B cells. To identify cis-elements that dictate this order of rearrangement, we replaced the endogenous matrix attachment region/Igk intronic enhancer (MiEκ) with its heavy chain counterpart (Eμ) in mice. This replacement, denoted EμR, substantially increases the accessibility of both Vκ and Jκ loci to V(D)J recombinase in pro–B cells and induces Igk rearrangement in these cells. However, EμR does not support Igk rearrangement in pre–B cells. Similar to that in MiEκ−/− pre–B cells, the accessibility of Vκ segments to V(D)J recombinase is considerably reduced in EμR pre–B cells when compared with wild-type pre–B cells. Therefore, Eμ and MiEκ play developmental stage-specific roles in maintaining the sequential rearrangement of IgH and Igk loci by promoting the accessibility of V, D, and J loci to the V(D)J recombinase.
Collapse
Affiliation(s)
- Matthew A Inlay
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
32
|
Nijnik A, Ferry H, Lewis G, Rapsomaniki E, Leung JCH, Daser A, Lambe T, Goodnow CC, Cornall RJ. Spontaneous B cell hyperactivity in autoimmune-prone MRL mice. Int Immunol 2006; 18:1127-37. [PMID: 16735376 DOI: 10.1093/intimm/dxl047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The MRL-lpr/lpr mouse strain is a commonly used model of the human autoimmune disease systemic lupus erythematosus (SLE). Although much is known about the contribution of the lpr Fas mutation to B cell tolerance breakdown, the role of the genetic background of the MRL strain itself is less well explored. In this study, we use the MD4 anti-hen egg lysozyme Ig (IgHEL) transgenic system to explore B cell function in MRL+/+ and non-autoimmune mice. We demonstrate that MRL IgHEL B cells show spontaneous hyperactivity in the absence of self-antigen, which is associated with low total B cell numbers but an expansion of the marginal zone B cell population. However, B cell anergy is normal in the presence of soluble lysozyme [soluble hen egg lysozyme (sHEL)], and MRL IgHEL B cells undergo normal elimination in the presence of sHEL when competing with a polyclonal C57BL/6 B cell repertoire. We conclude that B cell hyperactivity may contribute to the autoimmune phenotype of MRL+/+ and MRL-lpr/lpr strains when it initiates antibody responses to rare or sequestered antigens that are below the threshold for tolerance induction, but that there is no B cell intrinsic defect in anergy in MRL mice.
Collapse
Affiliation(s)
- Anastasia Nijnik
- Henry Wellcome Building of Molecular Physiology, Oxford University, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kersseboom R, Ta VBT, Zijlstra AJE, Middendorp S, Jumaa H, van Loo PF, Hendriks RW. Bruton's tyrosine kinase and SLP-65 regulate pre-B cell differentiation and the induction of Ig light chain gene rearrangement. THE JOURNAL OF IMMUNOLOGY 2006; 176:4543-52. [PMID: 16585544 DOI: 10.4049/jimmunol.176.8.4543] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bruton's tyrosine kinase (Btk) and the adapter protein SLP-65 (Src homology 2 domain-containing leukocyte-specific phosphoprotein of 65 kDa) transmit precursor BCR (pre-BCR) signals that are essential for efficient developmental progression of large cycling into small resting pre-B cells. We show that Btk- and SLP-65-deficient pre-B cells have a specific defect in Ig lambda L chain germline transcription. In Btk/SLP-65 double-deficient pre-B cells, both kappa and lambda germline transcripts are severely reduced. Although these observations point to an important role for Btk and SLP-65 in the initiation of L chain gene rearrangement, the possibility remained that these signaling molecules are only required for termination of pre-B cell proliferation or for pre-B cell survival, whereby differentiation and L chain rearrangement is subsequently initiated in a Btk/SLP-65-independent fashion. Because transgenic expression of the antiapoptotic protein Bcl-2 did not rescue the developmental arrest of Btk/SLP-65 double-deficient pre-B cells, we conclude that defective L chain opening in Btk/SLP-65-deficient small resting pre-B cells is not due to their reduced survival. Next, we analyzed transgenic mice expressing the constitutively active Btk mutant E41K. The expression of E41K-Btk in Ig H chain-negative pro-B cells induced 1) surface marker changes that signify cellular differentiation, including down-regulation of surrogate L chain and up-regulation of CD2, CD25, and MHC class II; and 2) premature rearrangement and expression of kappa and lambda light chains. These findings demonstrate that Btk and SLP-65 transmit signals that induce cellular maturation and Ig L chain rearrangement independently of their role in termination of pre-B cell expansion.
Collapse
Affiliation(s)
- Rogier Kersseboom
- Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Vettermann C, Herrmann K, Jäck HM. Powered by pairing: The surrogate light chain amplifies immunoglobulin heavy chain signaling and pre-selects the antibody repertoire. Semin Immunol 2006; 18:44-55. [PMID: 16464608 DOI: 10.1016/j.smim.2006.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Selective expansion of functional pre-B cells is accomplished by the assembly of a signaling-competent pre-B cell receptor (pre-BCR) consisting of immunoglobulin mu heavy chains (muHC), surrogate light chains (SLC) and Igalpha/Igbeta. Here, we review recent data showing that muHCs, in the absence of SLC, deliver autonomous differentiation signals. However, enhanced signaling necessary for pre-B cell expansion requires cross-linking of pre-BCRs via the non-immunoglobulin tail of SLC's subunit lambda5. We also discuss how SLC's ability to modulate the strength of pre-BCR signals is controlled by a muHC's idiotype and its affinity to the chaperone BiP. In this model, BiP in concert with SLC functions as a pre-selector of the antibody repertoire.
Collapse
Affiliation(s)
- Christian Vettermann
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | | | | |
Collapse
|
35
|
Hendriks RW, Kersseboom R. Involvement of SLP-65 and Btk in tumor suppression and malignant transformation of pre-B cells. Semin Immunol 2006; 18:67-76. [PMID: 16300960 DOI: 10.1016/j.smim.2005.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Signals from the precursor-B cell receptor (pre-BCR) are essential for selection and clonal expansion of pre-B cells that have performed productive immunoglobulin heavy chain V(D)J recombination. In the mouse, the downstream signaling molecules SLP-65 and Btk cooperate to limit proliferation and induce differentiation of pre-B cells, thereby acting as tumor suppressors to prevent pre-B cell leukemia. In contrast, recent observations in human BCR-ABL1(+) pre-B lymphoblastic leukemia cells demonstrate that Btk is constitutively phosphorylated and activated by the BCR-ABL1 fusion protein. As a result, activated Btk transmits survival signals that are essential for the transforming activity of oncogenic Abl tyrosine kinase.
Collapse
Affiliation(s)
- Rudi W Hendriks
- Department of Immunology, Erasmus MC Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands.
| | | |
Collapse
|
36
|
Abstract
Progenitor B lymphocytes that successfully assemble a heavy chain gene encoding an immunoglobulin capable of pairing with surrogate light chain proteins trigger their own further differentiation by signaling via the pre-BCR complex. The pre-BCR signals several rounds of proliferation and, in this expanded population, directs a complex, B cell-specific set of epigenetic changes resulting in allelic exclusion of the heavy chain locus and activation of the light chain loci for V(D)J recombination.
Collapse
Affiliation(s)
- Jamie K Geier
- UC-Berkeley, Department of Molecular & Cell Biology, Division of Immunology, 439 Life Sciences Addition, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
37
|
McDevit DC, Perkins L, Atchison ML, Nikolajczyk BS. The Ig kappa 3' enhancer is activated by gradients of chromatin accessibility and protein association. THE JOURNAL OF IMMUNOLOGY 2005; 174:2834-42. [PMID: 15728493 DOI: 10.4049/jimmunol.174.5.2834] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Igkappa locus is recombined following initiation of a signaling cascade during the early pre-B stage of B cell development. The Ig kappa3' enhancer plays an important role in normal B cell development by regulating kappa locus activation. Quantitative analyses of kappa3' enhancer chromatin structure by restriction endonuclease accessibility and protein association by chromatin immunoprecipitation in a developmental series of primary murine B cells and murine B cell lines demonstrate that the enhancer is activated progressively through multiple steps as cells mature. Moderate kappa3' chromatin accessibility and low levels of protein association in pro-B cells are increased substantially as the cells progress from pro- to pre-B, then eventually mature B cell stages. Chromatin immunoprecipitation assays suggest transcriptional regulators of the kappa3' enhancer, specifically PU.1 and IFN regulatory factor-4, exploit enhanced accessibility by increasing association as cells mature. Characterization of histone acetylation patterns at the kappa3' enhancer and experimental inhibition of histone deacetylation suggest changes therein may determine changes in enzyme and transcription factor accessibility. This analysis demonstrates kappa activation is a multistep process initiated in early B cell precursors before Igmu recombination and finalized only after the pre-B cell stage.
Collapse
Affiliation(s)
- Daniel C McDevit
- Department of Medicine, Immunobiology Unit, Evans Memorial Department of Clinical Research, Boston Medical Center, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
38
|
Kracker S, Bergmann Y, Demuth I, Frappart PO, Hildebrand G, Christine R, Wang ZQ, Sperling K, Digweed M, Radbruch A. Nibrin functions in Ig class-switch recombination. Proc Natl Acad Sci U S A 2005; 102:1584-9. [PMID: 15668383 PMCID: PMC547877 DOI: 10.1073/pnas.0409191102] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder characterized by predisposition to hematopoietic malignancy, cell-cycle checkpoint defects, and ionizing radiation sensitivity. NBS is caused by a hypomorphic mutation of the NBS1 gene, encoding nibrin, which forms a protein complex with Mre11 and Rad50, both involved in DNA repair. Nibrin localizes to chromosomal sites of class switching, and B cells from NBS patients show an enhanced presence of microhomologies at the sites of switch recombination. Because nibrin is crucial for embryonic survival, direct demonstration by targeted deletion that nibrin functions in class switch recombination has been lacking. Here, we show by cell-type-specific conditional inactivation of Nbn, the murine homologue of NBS1, that nibrin plays a role in the repair of gamma-irradiation damage, maintenance of chromosomal stability, and the recombination of Ig constant region genes in B lymphocytes.
Collapse
Affiliation(s)
- Sven Kracker
- German Rheumatism Research Center, Schumannstrasse 21-22, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The murine immunoglobulin (Ig) kappa locus has been intensively studied in an attempt to understand its developmentally regulated activation for both transcription and V(D)J recombination. A variety of signaling proteins, cis-acting DNA elements, and trans-acting DNA-binding proteins have been discovered and shown to be involved in the regulated changes in chromatin structure, which are associated with recombinase accessibility. In addition, key roles have been suggested for DNA methylation and replication in kappa-locus expression and rearrangement. This review summarizes data in this area and considers what studies of the murine kappa locus have revealed about the lineage specificity, order, and allelic exclusion of lymphoid V(D)J recombination.
Collapse
|
40
|
Roldán E, Fuxa M, Chong W, Martinez D, Novatchkova M, Busslinger M, Skok JA. Locus 'decontraction' and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat Immunol 2004; 6:31-41. [PMID: 15580273 PMCID: PMC1592471 DOI: 10.1038/ni1150] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Accepted: 11/16/2004] [Indexed: 12/22/2022]
Abstract
Allelic exclusion of immunoglobulin genes ensures the expression of a single antibody molecule in B cells through mostly unknown mechanisms. Large-scale contraction of the immunoglobulin heavy-chain (Igh) locus facilitates rearrangements between Igh variable (V(H)) and diversity gene segments in pro-B cells. Here we show that these long-range interactions are mediated by 'looping' of individual Igh subdomains. The Igk locus also underwent contraction by looping in small pre-B and immature B cells, demonstrating that immunoglobulin loci are in a contracted state in rearranging cells. Successful Igh recombination induced the rapid reversal of locus contraction in response to pre-B cell receptor signaling, which physically separated the distal V(H) genes from the proximal Igh domain, thus preventing further rearrangements. In the absence of locus contraction, only the four most proximal V(H) genes escaped allelic exclusion in immature mu-transgenic B lymphocytes. Pre-B cell receptor signaling also led to rapid repositioning of one Igh allele to repressive centromeric domains in response to downregulation of interleukin 7 signaling. These data link both locus 'decontraction' and centromeric recruitment to the establishment of allelic exclusion at the Igh locus.
Collapse
Affiliation(s)
- Esther Roldán
- Department of Immunology and Molecular Pathology, Division of Infection and Immunity, University College London, London W1T 4JF, UK
| | - Martin Fuxa
- Research Institute of Molecular Pathology, Vienna Biocenter, A-1030 Vienna, Austria
| | - Winnie Chong
- Department of Immunology and Molecular Pathology, Division of Infection and Immunity, University College London, London W1T 4JF, UK
| | - Dolores Martinez
- The Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Maria Novatchkova
- Research Institute of Molecular Pathology, Vienna Biocenter, A-1030 Vienna, Austria
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, A-1030 Vienna, Austria
| | - Jane A Skok
- Department of Immunology and Molecular Pathology, Division of Infection and Immunity, University College London, London W1T 4JF, UK
- Correspondence should be addressed to J.A.S. () or M.B. ()
| |
Collapse
|
41
|
Ren L, Zou X, Smith JA, Brüggemann M. Silencing of the immunoglobulin heavy chain locus by removal of all eight constant-region genes in a 200-kb region. Genomics 2004; 84:686-95. [PMID: 15475246 DOI: 10.1016/j.ygeno.2004.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Accepted: 06/16/2004] [Indexed: 11/19/2022]
Abstract
Silencing or removal of individual C (constant)-region genes and/or adjacent control sequences did not generate fully deficient Ig (immunoglobulin)- mice. A reason is that different C genes share many functional tasks and most importantly are individually capable of ensuring lymphocyte differentiation. Nevertheless, incomplete arrests in B-cell development were found, most pronounced at the onset of H-chain expression. Here we show that removal of 200 kb accommodating all C genes, Cmu-Cdelta-Cgamma3-Cgamma1-Cgamma2b-Cgamma2a-Cepsilon-Calpha, stops antibody production. For this two loxP targeting constructs were introduced into the most 5' C gene and the distal alpha 3' enhancer. Cre-loxP-mediated in vivo deletion was accompanied by extensive germ-line mosaicism, which could be separated by breeding. Homozygous C-gene deletion mice did not express Ig H or L chains and flow cytometry revealed a complete block in B-cell development. However, C-gene removal did not affect DNA rearrangement processes following locus activation, as recombination efficacy appears to be similar to what is found in normal mice.
Collapse
Affiliation(s)
- Liming Ren
- Laboratory of Developmental Immunology, The Babraham Institute, Babraham, Cambridge CB2 4AT, United Kingdom
| | | | | | | |
Collapse
|
42
|
Fuentes-Pananá EM, Bannish G, Shah N, Monroe JG. Basal Igalpha/Igbeta signals trigger the coordinated initiation of pre-B cell antigen receptor-dependent processes. THE JOURNAL OF IMMUNOLOGY 2004; 173:1000-11. [PMID: 15240688 DOI: 10.4049/jimmunol.173.2.1000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pro-B to pre-B transition during B cell development is dependent upon surface expression of a signaling competent pre-B cell Ag receptor (pre-BCR). Although the mature form of the BCR requires ligand-induced aggregation to trigger responses, the requirement for ligand-induced pre-BCR aggregation in promoting B cell development remains a matter of significant debate. In this study, we used transmission electron microscopy on murine primary pro-B cells and pre-B cells to analyze the aggregation state of the pre-BCR. Although aggregation can be induced and visualized following cross-linking by Abs to the pre-BCR complex, our analyses indicate that the pre-BCR is expressed on the surface of resting cells primarily in a nonaggregated state. To evaluate the degree to which basal signals mediated through nonaggregated pre-BCR complexes can promote pre-BCR-dependent processes, we used a surrogate pre-BCR consisting of the cytoplasmic regions of Igalpha/Igbeta that is targeted to the inner leaflet of the plasma membrane of primary pro-B cells. We observed enhanced proliferation in the presence of low IL-7, suppression of V(H)(D)J(H) recombination, and induced kappa light (L) chain recombination and cytoplasmic kappa L chain protein expression. Interestingly, Igalpha/Igbeta-mediated allelic exclusion was restricted to the B cell lineage as we observed normal TCRalphabeta expression on CD8-expressing splenocytes. This study directly demonstrates that basal signaling initiated through Igalpha/Igbeta-containing complexes facilitates the coordinated control of differentiation events that are associated with the pre-BCR-dependent transition through the pro-B to pre-B checkpoint. Furthermore, these results argue that pre-BCR aggregation is not a requirement for pre-BCR function.
Collapse
Affiliation(s)
- Ezequiel M Fuentes-Pananá
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
43
|
Galler GR, Mundt C, Parker M, Pelanda R, Mårtensson IL, Winkler TH. Surface mu heavy chain signals down-regulation of the V(D)J-recombinase machinery in the absence of surrogate light chain components. ACTA ACUST UNITED AC 2004; 199:1523-32. [PMID: 15173209 PMCID: PMC2211789 DOI: 10.1084/jem.20031523] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Early B cell development is characterized by stepwise, ordered rearrangement of the immunoglobulin (Ig) heavy (HC) and light (LC) chain genes. Only one of the two alleles of these genes is used to produce a receptor, a phenomenon referred to as allelic exclusion. It has been suggested that pre–B cell receptor (pre-BCR) signals are responsible for down-regulation of the VDJH-recombinase machinery (Rag1, Rag2, and terminal deoxynucleotidyl transferase [TdT]), thereby preventing further rearrangement on the second HC allele. Using a mouse model, we show that expression of an inducible μHC transgene in Rag2−/− pro–B cells induces down-regulation of the following: (a) TdT protein, (b) a transgenic green fluorescent protein reporter reflecting endogenous Rag2 expression, and (c) Rag1 primary transcripts. Similar effects were also observed in the absence of surrogate LC (SLC) components, but not in the absence of the signaling subunit Ig-α. Furthermore, in wild-type mice and in mice lacking either λ5, VpreB1/2, or the entire SLC, the TdT protein is down-regulated in μHC+LC− pre–B cells. Surprisingly, μHC without LC is expressed on the surface of pro–/pre–B cells from λ5−/−, VpreB1−/−VpreB2−/−, and SLC−/− mice. Thus, SLC or LC is not required for μHC cell surface expression and signaling in these cells. Therefore, these findings offer an explanation for the occurrence of HC allelic exclusion in mice lacking SLC components.
Collapse
Affiliation(s)
- Gunther R Galler
- Hematopoiesis Unit, Nikolaus-Fiebiger-Center, Friedrich-Alexander University, Glueckstrasse 6, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Chowdhury D, Sen R. Mechanisms for feedback inhibition of the immunoglobulin heavy chain locus. Curr Opin Immunol 2004; 16:235-40. [PMID: 15023418 DOI: 10.1016/j.coi.2004.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The production of immunoglobulin heavy chain (IgH) protein in pro-B cells provides feedback to terminate further V(H) gene recombination. This phenomenon is referred to as allelic exclusion. The chromatin structure of the V(H) genes regulates their recombination potential, hence alterations in chromatin are a key factor in allelic exclusion. In pro-B cells, IL-7/IL-7R signaling induces histone hyperacetylation and nuclease accessibility of the largest family of V(H) genes (J558) and potentially activates these genes for recombination. Loss of these signals in the later stages of B-cell development reverts the V(H)J558 gene segments to a less accessible state, making them recombinationally refractive. This provides a molecular mechanism for allelic exclusion of these genes. Similar transient signals may be responsible for enforcing allelic exclusion in other V(H) gene families. D-proximal V(H) genes, however, appear to be less susceptible to feedback inhibition.
Collapse
|
45
|
Jasper PJ, Zhai SK, Kalis SL, Kingzette M, Knight KL. B Lymphocyte Development in Rabbit: Progenitor B Cells and Waning of B Lymphopoiesis. THE JOURNAL OF IMMUNOLOGY 2003; 171:6372-80. [PMID: 14662835 DOI: 10.4049/jimmunol.171.12.6372] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In mammals that use gut-associated lymphoid tissues for expansion and somatic diversification of the B cell repertoire, B lymphopoiesis occurs early in ontogeny and does not appear to continue throughout life. In these species, including sheep, rabbit, and cattle, little is known about the pathway of B cell development and the time at which B lymphopoiesis wanes. We examined rabbit bone marrow by immunofluorescence with anti-CD79a and anti-mu and identified both proB and preB cells. The proB cells represent the vast majority of B-lineage cells in the bone marrow at birth and by incorporation of 5-bromo-2'-deoxyuridine, they appear to be a dynamic population. PreB cells reach maximum levels in the bone marrow at 3 wk of age, and B cells begin to accumulate at 7 wk of age. We cloned two VpreB and one lambda5 gene and demonstrated that they are expressed within B-lineage cells in bone marrow. VpreB and lambda5 coimmunoprecipitated with the mu-chain in lysates of 293T cells transfected with VpreB, lambda5, and mu, indicating that VpreB, lambda5, and mu-chains associate in a preB cell receptor-like complex. By 16 wk of age, essentially no proB or preB cells are found in bone marrow and by PCR amplification, B cell recombination excision circles were reduced 200-fold. By 18 mo of age, B cell recombination excision circles were reduced 500- to 1000-fold. We suggest that B cell development in the rabbit occurs primarily through the classical, or ordered, pathway and show that B lymphopoiesis is reduced over 99% by 16 wk of age.
Collapse
Affiliation(s)
- Paul J Jasper
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
46
|
Oberdoerffer P, Novobrantseva TI, Rajewsky K. Expression of a targeted lambda 1 light chain gene is developmentally regulated and independent of Ig kappa rearrangements. J Exp Med 2003; 197:1165-72. [PMID: 12719477 PMCID: PMC2193966 DOI: 10.1084/jem.20030402] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Immunoglobulin light chain (IgL) rearrangements occur more frequently at Ig kappa than at Ig lambda. Previous results suggested that the unrearranged Ig kappa locus negatively regulates Ig lambda transcription and/or rearrangement. Here, we demonstrate that expression of a VJ lambda 1-joint inserted into its physiological position in the Ig lambda locus is independent of Ig kappa rearrangements. Expression of the inserted VJ lambda 1 gene segment is developmentally controlled like that of a VJ kappa-joint inserted into the Ig kappa locus and furthermore coincides developmentally with the occurrence of Ig kappa rearrangements in wild-type mice. We conclude that developmentally controlled transcription of a gene rearrangement in the Ig lambda locus occurs in the presence of an unrearranged Ig kappa locus and is therefore not negatively regulated by the latter. Our data also indicate light chain editing in approximately 30% of lambda 1 expressing B cell progenitors.
Collapse
Affiliation(s)
- Philipp Oberdoerffer
- Center for Blood Research, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
47
|
Kalmanovich G, Mehr R. Models for antigen receptor gene rearrangement. III. Heavy and light chain allelic exclusion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:182-93. [PMID: 12496399 DOI: 10.4049/jimmunol.170.1.182] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The extent of allelic exclusion in Ig genes is very high, although not absolute. Thus far, it has not been clearly established whether rapid selection of the developing B cell as soon as it has achieved the first productively rearranged, functional heavy chain is the only mechanism responsible for allelic exclusion. Our computational models of Ag receptor gene rearrangement in B lymphocytes are hereby extended to calculate the expected fractions of heavy chain allelically included newly generated B cells as a function of the probability of heavy chain pairing with the surrogate light chain, and the probability that the cell would test this pairing immediately after the first rearrangement. The expected fractions for most values of these probabilities significantly exceed the levels of allelic inclusion in peripheral B cells, implying that in most cases productive rearrangement and subsequent cell surface expression of one allele of the heavy chain gene probably leads to prevention of rearrangement completion on the other allele, and that additional mechanisms, such as peripheral selection disfavoring cells with two productively rearranged heavy chain genes, may also play a role. Furthermore, we revisit light chain allelic exclusion by utilizing the first (to our knowledge) computational model which addresses and enumerates B cells maturing with two productively rearranged kappa light chain genes. We show that, assuming that there are no selection mechanisms responsible for abolishing cells expressing two light chains, the repertoire of newly generated B lymphocytes exiting the bone marrow must contain a significant fraction of such kappa double-productive B cells.
Collapse
Affiliation(s)
- Gil Kalmanovich
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
48
|
Mårtensson IL, Rolink A, Melchers F, Mundt C, Licence S, Shimizu T. The pre-B cell receptor and its role in proliferation and Ig heavy chain allelic exclusion. Semin Immunol 2002; 14:335-42. [PMID: 12220934 DOI: 10.1016/s1044-5323(02)00066-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The pre-B cell receptor (pre-BCR) is composed of the immunoglobulin (Ig) heavy (microH) chain and the surrogate light chain encoded by VpreB and lambda5. The pre-BCR has been implicated in precursor B cell proliferation, differentiation and IgH chain allelic exclusion. B cell development in mice lacking the transmembrane form of microH chain is blocked at the precursor B cell stage: the cells cannot proliferate or differentiate further and the IgH locus is allelically included. In mice lacking lambda5, the precursor B cells, although unable to proliferate, can nonetheless differentiate, whereas the IgH locus is allelically excluded. It was, therefore, postulated that microH chain together with VpreB could form a pre-BCR-like receptor that would allow IgH allelic exclusion but not proliferation. In mice lacking both VpreB genes, precursor B cells do not proliferate but are able to differentiate. Surprisingly, the IgH locus is allelically excluded. This suggests that microH chains find other partner proteins to signal allelic exclusion.
Collapse
|
49
|
Hayden TA, Riegert P, Kline GH. Detection of functional V(H)81X heavy chains in adult mice with an assessment of complementarity-determining region 3 diversity and capacity to form pre-B cell receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1970-7. [PMID: 12165522 DOI: 10.4049/jimmunol.169.4.1970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent reports have indicated that up to 50% of all H chain proteins formed cannot associate with the surrogate L chain complex and therefore fail to form a pre-B cell receptor (pBCR), which is required for allelic exclusion and, in most cases, verifies that the H chain can assemble with the L chain to form an Ab molecule. Certain V(H) genes, such as V(H)81X, appear to be particularly prone to encoding for nonpairing (dysfunctional) H chains. It has been suggested that sequence variability at complementarity-determining region 3, especially when increased by the enzyme TdT, often precludes the ability of V(H)81X-using H chains to form pBCR. To determine whether a motif exists that accounts for the ability of H chains to pair with surrogate L chain complex/L chain, we have bred a mouse line in which H chain recombination can only occur on one allele, allowing us to compile a pool of H chains capable of forming Ab molecules in the absence of dysfunctional H chains. Somewhat unexpectedly, we have found V(H)81X H chains capable of Ab formation and cell surface expression in the presence of TdT. Scrutiny of these H chains has revealed that, although highly prone to encode for dysfunctional H chains, sequence variability is not severely limited among functional V(H)81X H chains. We also demonstrate that surface Ig expression is highly indicative of the capacity of a H chain to form pBCR.
Collapse
|
50
|
Hochedlinger K, Jaenisch R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 2002; 415:1035-8. [PMID: 11875572 DOI: 10.1038/nature718] [Citation(s) in RCA: 416] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cloning from somatic cells is inefficient, with most clones dying during gestation. Cloning from embryonic stem (ES) cells is much more effective, suggesting that the nucleus of an embryonic cell is easier to reprogram. It is thus possible that most surviving clones are, in fact, derived from the nuclei of rare somatic stem cells present in adult tissues, rather than from the nuclei of differentiated cells, as has been assumed. Here we report the generation of monoclonal mice by nuclear transfer from mature lymphocytes. In a modified two-step cloning procedure, we established ES cells from cloned blastocysts and injected them into tetraploid blastocysts to generate mice. In this approach, the embryo is derived from the ES cells and the extra-embryonic tissues from the tetraploid host. Animals cloned from a B-cell nucleus were viable and carried fully rearranged immunoglobulin alleles in all tissues. Similarly, a mouse cloned from a T-cell nucleus carried rearranged T-cell-receptor genes in all tissues. This is an unequivocal demonstration that a terminally differentiated cell can be reprogrammed to produce an adult cloned animal.
Collapse
Affiliation(s)
- Konrad Hochedlinger
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|