1
|
Cheng J, Wang D, Geng M, Zheng Y, Cao Y, Liu S, Zhang J, Yang J, Wei X. Transcription factor networks drive perforin activity in the anti-bacterial immune response of tilapia. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109975. [PMID: 39427837 DOI: 10.1016/j.fsi.2024.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Perforin, produced by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), is one of the effectors of cell-mediated cytotoxicity (CMC) in vertebrates, playing a paramount role in killing target cells. However, whether and how perforin is involved in adaptive immune responses in early vertebrates remains unclear. Using Nile tilapia (Oreochromis niloticus) as a model, we investigated the characteristics of perforin in early vertebrates. Oreochromis niloticus perforin (OnPRF) possesses 2 conserved functional domains, membrane attack complex/perforin (MACPF) and protein kinase C conserved region 2 (C2) domains, although they share low amino acid sequence similarity with other homologs. OnPRF was widely expressed in various immune tissues and could respond to lymphocyte activation and T-cell activation in vitro at both the transcriptional and protein levels, indicating that it may be involved in adaptive immune responses. Furthermore, after infection with Edwardsiella piscicida and Aeromonas hydrophila, the mRNA and protein levels of OnPRF were significantly up-regulated within the adaptive immune response period. Additionally, we revealed that many transcription factors were involved in the transcriptional regulation of OnPRF, including p65, c-Fos, c-Jun, STAT1 and STAT4, and there was a synergy among these transcription factors. Overall, these findings demonstrate the involvement of OnPRF in T-cell activation and adaptive immune response in tilapia, thus providing new evidence for comprehending the evolution of immune response in early vertebrates.
Collapse
Affiliation(s)
- Jie Cheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuying Zheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shurong Liu
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
2
|
Jiao D, Sun R, Ren X, Wang Y, Tian P, Wang Y, Yuan D, Yue X, Wu Z, Li C, Gao L, Ma C, Liang X. Lipid accumulation-mediated histone hypoacetylation drives persistent NK cell dysfunction in anti-tumor immunity. Cell Rep 2023; 42:113211. [PMID: 37792534 DOI: 10.1016/j.celrep.2023.113211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
Hyperlipidemia impairs anti-tumor immune responses and is closely associated with increased human cancer incidence and mortality. However, the underlying mechanisms are not well understood. In the present study, we show that natural killer (NK) cells isolated from high-fat-diet mice or treated with oleic acid (OA) in vitro exhibit sustainable functional defects even after removal from hyperlipidemic milieu. This is accompanied by reduced chromatin accessibility in the promoter region of NK cell effector molecules. Mechanistically, OA exposure blunts P300-mediated c-Myc acetylation and shortens its protein half-life in NK cells, which in turn reduces P300 accumulation and H3K27 acetylation and leads to persistent NK cell dysfunction. NK cells engineered with hyperacetylated c-Myc mutants surmount the suppressive effect of hyperlipidemia and display superior anti-tumor activity. Our findings reveal the persistent dysfunction of NK cells in dyslipidemia milieu and extend engineered NK cells as a promising strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Deyan Jiao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Renhui Sun
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Xiaolei Ren
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Panpan Tian
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Yuzhen Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China.
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China.
| |
Collapse
|
3
|
Hossain MS, Mawatari S, Fujino T. Plasmalogen-Mediated Activation of GPCR21 Regulates Cytolytic Activity of NK Cells against the Target Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:310-325. [PMID: 35777853 DOI: 10.4049/jimmunol.2200183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
It is widely known that the immune system becomes slower to respond among elderly people, making them more susceptible to viral infection and cancer. The mechanism of aging-related immune deficiency remained mostly elusive. In this article, we report that plasmalogens (Pls), special phospholipids found to be reduced among the elderly population, critically control cytolytic activity of human NK cells, which is associated with activation of a cell surface receptor, G protein-coupled receptor 21 (GPCR21). We found the extracellular glycosylation site of GPCR21, which is conserved among the mammalian species, to be critically important for the activation of NK cells by Pls. The Pls-GPCR21 signaling cascade induces the expression of Perforin-1, a cytolytic pore-forming protein, via activation of STAT5 transcription factor. Inhibition of STAT5 abrogates GPCR21-mediated cytolytic activation of NK cells against the target cancer cells. In addition, oral ingestion of Pls inhibited cancer growth in SCID mice and inhibited the systemic spread of murine CMV in adult C57BL/6J mice. These findings advocate that Pls-GPCR21 signaling could be critical in maintaining NK cell function, and that the age-related reduction of this signaling cascade could be one of the factors behind immune deficiency in mammals, including humans.
Collapse
Affiliation(s)
- Md Shamim Hossain
- Institute of Rheological Functions of Food, Kasuya-gun, Fukuoka, Japan
| | - Shiro Mawatari
- Institute of Rheological Functions of Food, Kasuya-gun, Fukuoka, Japan
| | - Takehiko Fujino
- Institute of Rheological Functions of Food, Kasuya-gun, Fukuoka, Japan
| |
Collapse
|
4
|
Pașatu‑Cornea AM, Ciciu E, Tuță LA. Perforin: An intriguing protein in allograft rejection immunology (Review). Exp Ther Med 2022; 24:519. [DOI: 10.3892/etm.2022.11446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Elena Ciciu
- Department of Nephrology, Constanta County Emergency Hospital, 900591 Constanta, Romania
| | - Liliana-Ana Tuță
- Department of Nephrology, Constanta County Emergency Hospital, 900591 Constanta, Romania
| |
Collapse
|
5
|
Dashti Gerdabi N, Ghafourian M, Nakajima M, Iranparast S, Khodadadi A. Effect of 5-aminolevulinic acid on gene expression and presence of NKG2D receptor on NK cells. Int Immunopharmacol 2021; 97:107677. [PMID: 33933844 DOI: 10.1016/j.intimp.2021.107677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/04/2021] [Accepted: 04/11/2021] [Indexed: 11/24/2022]
Abstract
Natural killer (NK) cells are involved in innate and acquired immunity, stimulating and enhancing immune responses via secretion of IFN-γ and TNF-α. NKG2D is among the most important NK's stimulant receptors, the ligands of which are elevated on cancerous and virus-infected cells. We analyzed effect of 5-ALA on gene expression and receptor presentation of NKG2D, which is present on peripheral blood NK cells. Mononuclear cells were isolated from the venous blood samples of healthy individuals. RNA extraction and cDNA synthesis were performed after exposure of samples to 5-ALA, and gene expression was evaluated using Real-Time PCR, and the receptor presence rate on the cell surface was evaluated by flow-cytometry analysis. The results showed the gene expression of NKG2D and the presence of its receptor on NK cells were increased.5-ALA can be used to activate NK cells in their killing activity, preventing the growth and metastasis of cancerous cells.
Collapse
Affiliation(s)
- Nader Dashti Gerdabi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehri Ghafourian
- Department of Immunology, School of Medicine, Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Motowo Nakajima
- CEO, Executive Director, SBI Pharmaceuticals Co., Ltd, Tokyo, Japan; Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Sara Iranparast
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Pipkin ME. Runx proteins and transcriptional mechanisms that govern memory CD8 T cell development. Immunol Rev 2021; 300:100-124. [PMID: 33682165 DOI: 10.1111/imr.12954] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Adaptive immunity to intracellular pathogens and tumors is mediated by antigen-experienced CD8 T cells. Individual naive CD8 T cells have the potential to differentiate into a diverse array of antigen-experienced subsets that exhibit distinct effector functions, life spans, anatomic positioning, and potential for regenerating an entirely new immune response during iterative pathogenic exposures. The developmental process by which activated naive cells undergo diversification involves regulation of chromatin structure and transcription but is not entirely understood. This review examines how alterations in chromatin structure, transcription factor binding, extracellular signals, and single-cell gene expression explain the differential development of distinct effector (TEFF ) and memory (TMEM ) CD8 T cell subsets. Special emphasis is placed on how Runx proteins function with additional transcription factors to pioneer changes in chromatin accessibility and drive transcriptional programs that establish the core attributes of cytotoxic T lymphocytes, subdivide circulating and non-circulating TMEM cell subsets, and govern terminal differentiation. The discussion integrates the roles of specific cytokine signals, transcriptional circuits and how regulation of individual nucleosomes and RNA polymerase II activity can contribute to the process of differentiation. A model that integrates many of these features is discussed to conceptualize how activated CD8 T cells arrive at their fates.
Collapse
Affiliation(s)
- Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute - FL, Jupiter, FL, USA
| |
Collapse
|
7
|
Amini L, Wagner DL, Rössler U, Zarrinrad G, Wagner LF, Vollmer T, Wendering DJ, Kornak U, Volk HD, Reinke P, Schmueck-Henneresse M. CRISPR-Cas9-Edited Tacrolimus-Resistant Antiviral T Cells for Advanced Adoptive Immunotherapy in Transplant Recipients. Mol Ther 2021; 29:32-46. [PMID: 32956624 PMCID: PMC7791012 DOI: 10.1016/j.ymthe.2020.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Viral infections, such as with cytomegalovirus (CMV), remain a major risk factor for mortality and morbidity of transplant recipients because of their requirement for lifelong immunosuppression (IS). Antiviral drugs often cause toxicity and sometimes fail to control disease. Thus, regeneration of the antiviral immune response by adoptive antiviral T cell therapy is an attractive alternative. Our recent data, however, show only short-term efficacy in some solid organ recipients, possibly because of malfunction in transferred T cells caused by ongoing IS. We developed a vector-free clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-based good manufacturing practice (GMP)-compliant protocol that efficiently targets and knocks out the gene for the adaptor protein FK506-binding protein 12 (FKBP12), required for the immunosuppressive function of tacrolimus. This was achieved by transient delivery of ribonucleoprotein complexes into CMV-specific T cells by electroporation. We confirmed the tacrolimus resistance of our gene-edited T cell products in vitro and demonstrated performance comparable with non-tacrolimus-treated unmodified T cells. The alternative calcineurin inhibitor cyclosporine A can be administered as a safety switch to shut down tacrolimus-resistant T cell activity in case of adverse effects. Furthermore, we performed safety assessments as a prerequisite for translation to first-in-human applications.
Collapse
Affiliation(s)
- Leila Amini
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Dimitrios Laurin Wagner
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Uta Rössler
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Ghazaleh Zarrinrad
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Einstein Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Livia Felicitas Wagner
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Tino Vollmer
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Désirée Jacqueline Wendering
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Uwe Kornak
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
8
|
Freund-Brown J, Chirino L, Kambayashi T. Strategies to enhance NK cell function for the treatment of tumors and infections. Crit Rev Immunol 2019; 38:105-130. [PMID: 29953390 DOI: 10.1615/critrevimmunol.2018025248] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Natural killer (NK) cells are innate immune cells equipped with the ability to rapidly kill stressed cells that are neoplastic or virally infected. These cells are especially important in settings where these stressed cells downregulate MHC class I molecules and evade recognition by cytotoxic T cells. However, the activity of NK cells alone is often suboptimal to fully control tumor growth or to clear viral infections. Thus, the enhancement of NK cell function is necessary to fully harness their antitumor or antiviral potential. In this review, we discuss how NK cell function can be augmented by the modulation of signal transduction pathways, by the manipulation of inhibitory/activating receptors on NK cells, and by cytokine-induced activation. We also discuss how some of these strategies are currently impacting NK cells in the treatment of cancer and infections.
Collapse
Affiliation(s)
- Jacquelyn Freund-Brown
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Leilani Chirino
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
9
|
Dwyer CJ, Knochelmann HM, Smith AS, Wyatt MM, Rangel Rivera GO, Arhontoulis DC, Bartee E, Li Z, Rubinstein MP, Paulos CM. Fueling Cancer Immunotherapy With Common Gamma Chain Cytokines. Front Immunol 2019; 10:263. [PMID: 30842774 PMCID: PMC6391336 DOI: 10.3389/fimmu.2019.00263] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
Adoptive T cell transfer therapy (ACT) using tumor infiltrating lymphocytes or lymphocytes redirected with antigen receptors (CAR or TCR) has revolutionized the field of cancer immunotherapy. Although CAR T cell therapy mediates robust responses in patients with hematological malignancies, this approach has been less effective for treating patients with solid tumors. Additionally, toxicities post T cell infusion highlight the need for safer ACT protocols. Current protocols traditionally expand T lymphocytes isolated from patient tumors or from peripheral blood to large magnitudes in the presence of high dose IL-2 prior to infusion. Unfortunately, this expansion protocol differentiates T cells to a full effector or terminal phenotype in vitro, consequently reducing their long-term survival and antitumor effectiveness in vivo. Post-infusion, T cells face further obstacles limiting their persistence and function within the suppressive tumor microenvironment. Therapeutic manipulation of T cells with common γ chain cytokines, which are critical growth factors for T cells, may be the key to bypass such immunological hurdles. Herein, we discuss the primary functions of the common γ chain cytokines impacting T cell survival and memory and then elaborate on how these distinct cytokines have been used to augment T cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Connor J Dwyer
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Hannah M Knochelmann
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Aubrey S Smith
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Megan M Wyatt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Guillermo O Rangel Rivera
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Dimitrios C Arhontoulis
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Mark P Rubinstein
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
10
|
Ajith A, Portik-Dobos V, Nguyen-Lefebvre AT, Callaway C, Horuzsko DD, Kapoor R, Zayas C, Maenaka K, Mulloy LL, Horuzsko A. HLA-G dimer targets Granzyme B pathway to prolong human renal allograft survival. FASEB J 2019; 33:5220-5236. [PMID: 30620626 DOI: 10.1096/fj.201802017r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human leukocyte antigen G (HLA-G), a nonclassic HLA class Ib molecule involved in the maintenance of maternal tolerance to semiallogeneic fetal tissues during pregnancy, has emerged as a potential therapeutic target to control allograft rejection. We demonstrate here that the level of soluble HLA-G dimer was higher in a group of 90 patients with a functioning renal allograft compared with 40 patients who rejected (RJ) their transplants. The HLA-G dimer level was not affected by demographic status. One of the potential mechanisms in tissue-organ allograft rejection involves the induction of granzymes and perforin, which are the main effector molecules expressed by CD8+ cytotoxic T lymphocytes and function to destroy allogeneic transplants. Using genomics and molecular and cellular analyses of cells from T-cell-mediated RJ and nonrejected kidney transplant patients, cells from leukocyte Ig-like receptor B1 (LILRB1) transgenic mice, humanized mice, and genetically engineered HLA-G dimer, we demonstrated a novel mechanism by which HLA-G dimer inhibits activation and cytotoxic capabilities of human CD8+ T cells. This mechanism implicated the down-regulation of Granzyme B expression and the essential involvement of LILRB1. Thus, HLA-G dimer has the potential to be a specific and effective therapy for prevention of allograft rejection and prolongation of graft survival.-Ajith, A., Portik-Dobos, V., Nguyen-Lefebvre, A. T., Callaway, C., Horuzsko, D. D., Kapoor, R., Zayas, C., Maenaka, K., Mulloy, L. L., Horuzsko, A. HLA-G dimer targets Granzyme B pathway to prolong human renal allograft survival.
Collapse
Affiliation(s)
- Ashwin Ajith
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Vera Portik-Dobos
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Anh Thu Nguyen-Lefebvre
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Christine Callaway
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Daniel D Horuzsko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rajan Kapoor
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Carlos Zayas
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Laura L Mulloy
- Division of Nephrology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Anatolij Horuzsko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
11
|
Vargas-Hernández A, Mace EM, Zimmerman O, Zerbe CS, Freeman AF, Rosenzweig S, Leiding JW, Torgerson T, Altman MC, Schussler E, Cunningham-Rundles C, Chinn IK, Carisey AF, Hanson IC, Rider NL, Holland SM, Orange JS, Forbes LR. Ruxolitinib partially reverses functional natural killer cell deficiency in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol 2017; 141:2142-2155.e5. [PMID: 29111217 DOI: 10.1016/j.jaci.2017.08.040] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/09/2017] [Accepted: 08/19/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Natural killer (NK) cells are critical innate effector cells whose development is dependent on the Janus kinase-signal transducer and activator of transcription (STAT) pathway. NK cell deficiency can result in severe or refractory viral infections. Patients with STAT1 gain-of-function (GOF) mutations have increased viral susceptibility. OBJECTIVE We sought to investigate NK cell function in patients with STAT1 GOF mutations. METHODS NK cell phenotype and function were determined in 16 patients with STAT1 GOF mutations. NK cell lines expressing patients' mutations were generated with clustered regularly interspaced short palindromic repeats (CRISPR-Cas9)-mediated gene editing. NK cells from patients with STAT1 GOF mutations were treated in vitro with ruxolitinib. RESULTS Peripheral blood NK cells from patients with STAT1 GOF mutations had impaired terminal maturation. Specifically, patients with STAT1 GOF mutations have immature CD56dim NK cells with decreased expression of CD16, perforin, CD57, and impaired cytolytic function. STAT1 phosphorylation was increased, but STAT5 was aberrantly phosphorylated in response to IL-2 stimulation. Upstream inhibition of STAT1 signaling with the small-molecule Janus kinase 1/2 inhibitor ruxolitinib in vitro and in vivo restored perforin expression in CD56dim NK cells and partially restored NK cell cytotoxic function. CONCLUSIONS Properly regulated STAT1 signaling is critical for NK cell maturation and function. Modulation of increased STAT1 phosphorylation with ruxolitinib is an important option for therapeutic intervention in patients with STAT1 GOF mutations.
Collapse
Affiliation(s)
- Alexander Vargas-Hernández
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Emily M Mace
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Ofer Zimmerman
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Christa S Zerbe
- National Institute of Allergy and Infectious Diseases, Bethesda, Md; Clinical Center, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, Bethesda, Md; Clinical Center, National Institutes of Health, Bethesda, Md
| | - Sergio Rosenzweig
- National Institute of Allergy and Infectious Diseases, Bethesda, Md; Clinical Center, National Institutes of Health, Bethesda, Md
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida at Johns Hopkins-All Children's Hospital, St Petersburg, Fla
| | - Troy Torgerson
- Center for Allergy and Inflammation, University of Washington, Seattle, Wash
| | - Matthew C Altman
- Center for Allergy and Inflammation, University of Washington, Seattle, Wash
| | - Edith Schussler
- Division of Allergy and Immunology, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine and Pediatrics, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Immunology, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine and Pediatrics, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Alexandre F Carisey
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Imelda C Hanson
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Nicholas L Rider
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Steven M Holland
- National Institute of Allergy and Infectious Diseases, Bethesda, Md; Clinical Center, National Institutes of Health, Bethesda, Md
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex
| | - Lisa R Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, Tex.
| |
Collapse
|
12
|
Mirjačić Martinović KM, Vuletić AM, Lj. Babović N, Džodić RR, Konjević GM, Jurišić VB. Attenuated in vitro effects of IFN-α, IL-2 and IL-12 on functional and receptor characteristics of peripheral blood lymphocytes in metastatic melanoma patients. Cytokine 2017; 96:30-40. [DOI: 10.1016/j.cyto.2017.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/20/2017] [Accepted: 02/24/2017] [Indexed: 11/24/2022]
|
13
|
Shen H, Gu J, Xiao H, Liang S, Yang E, Yang R, Huang D, Chen C, Wang F, Shen L, Chen ZW. Selective Destruction of Interleukin 23-Induced Expansion of a Major Antigen-Specific γδ T-Cell Subset in Patients With Tuberculosis. J Infect Dis 2017; 215:420-430. [PMID: 27789724 DOI: 10.1093/infdis/jiw511] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 10/14/2016] [Indexed: 01/03/2023] Open
Abstract
A loss of antigen-specific T-cell responses due to defective cytokine signaling during infections has not been reported. We hypothesize that tuberculosis can destroy signaling effects of selective cytokine(s) and induce exhaustion of antigen-specific T cells. To test this hypothesis, mechanistic studies were performed to examine whether and how tuberculosis blocked interleukin 23 (IL-23) and interleukin 2 (IL-2) signaling effects on a major human γδ T-cell subpopulation, phosphoantigen HMBPP-specific Vγ2Vδ2 T cells. IL-23 and IL-2 significantly expanded HMBPP-stimulated Vγ2Vδ2 T cells from subjects with latent tuberculosis infection, and IL-2 synergized the effect of IL-23. IL-23-induced expansion of Vγ2Vδ2 T cells involved STAT3. Surprisingly, patients with tuberculosis exhibited a selective destruction of IL-23-induced expansion of these cells. The tuberculosis-driven destruction of IL-23 signaling coincided with decreases of expression and phosphorylation of STAT3. Interestingly, impairing of STAT3 was linked to marked increases in the microRNAs (miRNAs) hsa-miR-337-3p and hsa-miR-125b-5p in Vγ2Vδ2 T cells from patients with tuberculosis. Downregulation of hsa-miR-337-3p and hsa-miR-125b-5p by miRNA sponges improved IL-23-mediated expansion of Vγ2Vδ2 T cells and restored the ability of these cells to produce anti-tuberculosis cytokines. These results support our hypothesis that tuberculosis can selectively impair a cytokine effect while sparing another and can induce exhaustion of T cells in response to the respective cytokine.
Collapse
Affiliation(s)
- Hongbo Shen
- Unit of Antituberculosis Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences
| | - Jin Gu
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine
| | - Heping Xiao
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine
| | - Shanshan Liang
- Unit of Antituberculosis Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences
| | - Enzhuo Yang
- Unit of Antituberculosis Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences
| | - Rui Yang
- Unit of Antituberculosis Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences
| | - Dan Huang
- Department of Microbiology and Immunology.,Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago
| | - Crystal Chen
- Department of Microbiology and Immunology.,Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago
| | - Feifei Wang
- Department of Medical Microbiology and Parasitology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Shen
- Department of Microbiology and Immunology.,Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago
| | - Zheng W Chen
- Department of Microbiology and Immunology.,Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago.,Institut Pasteur of Shanghai, China
| |
Collapse
|
14
|
Elgizouli M, Logan C, Grychtol R, Rothenbacher D, Nieters A, Heinzmann A. Reduced PRF1 enhancer methylation in children with a history of severe RSV bronchiolitis in infancy: an association study. BMC Pediatr 2017; 17:65. [PMID: 28253869 PMCID: PMC5335730 DOI: 10.1186/s12887-017-0817-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 02/21/2017] [Indexed: 01/09/2023] Open
Abstract
Background Acute lower respiratory tract infection is the commonest disease affecting children under five worldwide. Respiratory syncytial virus (RSV) is among the most common causative pathogens. Epidemiological data suggest an association between severe viral respiratory infections in infancy and increased incidence of childhood wheeze and asthma. DNA methylation is involved in immune cell differentiation and identity. It provides an avenue for environmental influences on the genome and therefore has potential as a marker for sustained effects of infectious insults. In this study we investigated the association between DNA methylation patterns in the perforin gene (PRF1) in childhood and a history of hospitalisation for severe RSV disease in the first two years of life. Methods In this retrospective study, we explored patterns of whole blood DNA methylation at a methylation sensitive region of the proximal PRF1 enhancer in a group of children with a record of hospitalisation for severe RSV disease during infancy (n = 43) compared to healthy controls matched for age and sex with no similar hospitalisation history, no allergy and no persistent wheeze (n = 43). Univariate and bivariate conditional logistic regression analyses were conducted to test the association between PRF1 enhancer methylation and record of hospitalisation for RSV disease. Results Children with a record of hospitalisation for severe RSV bronchiolitis demonstrated markedly lower levels of DNA methylation at two cytosine-phosphate-guanine dinucleotide (CpG) loci of the PRF1 proximal enhancer, corresponding to a signal transducer and activator of transcription 5 (STAT5) responsive element, compared to controls, adjusted odds ratios of 0.82 (95% confidence interval [CI] 0.71, 0.94) and 0.73 (95% CI 0.58, 0.92) for each 1% increase in DNA methylation. Smoking in the household showed a significant influence on DNA methylation at the assayed positions. Conclusions Our findings support an association between childhood DNA methylation patterns in PRF1 and a record of severe RSV infection in infancy. Longitudinal studies are required to establish the utility of PRF1 methylation as a marker of severe RSV disease.
Collapse
Affiliation(s)
- Magdeldin Elgizouli
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 115 4, Freiburg, D-79106, Germany
| | - Chad Logan
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Ruth Grychtol
- Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Alexandra Nieters
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 115 4, Freiburg, D-79106, Germany.
| | - Andrea Heinzmann
- Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Abstract
Dysregulation of the immune system contributes to the breakdown of immune regulation, leading to autoimmune diseases, such as type 1 diabetes (T1D). Current therapies for T1D include daily insulin, due to pancreatic β-cell destruction to maintain blood glucose levels, suppressive immunotherapy to decrease the symptoms associated with autoimmunity, and islet transplantation. Genetic risks for T1D have been linked to IL-2 and IL-2R signaling pathways that lead to the breakdown of self-tolerance mechanisms, primarily through altered regulatory T cell (Treg) function and homeostasis. In attempt to correct such deficits, therapeutic administration of IL-2 at low doses has gained attention due to the capacity to boost Tregs without the unwanted stimulation of effector T cells. Preclinical and clinical studies utilizing low-dose IL-2 have shown promising results to expand Tregs due to their high selective sensitivity to respond to IL-2. These results suggest that low-dose IL-2 therapy represents a new class of immunotherapy for T1D by promoting immune regulation rather than broadly suppressing unwanted and beneficial immune responses.
Collapse
Affiliation(s)
- Connor J Dwyer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
| | - Natasha C Ward
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
| | - Alberto Pugliese
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA.
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, 33101, USA.
| |
Collapse
|
16
|
Gotthardt D, Putz EM, Grundschober E, Prchal-Murphy M, Straka E, Kudweis P, Heller G, Bago-Horvath Z, Witalisz-Siepracka A, Cumaraswamy AA, Gunning PT, Strobl B, Müller M, Moriggl R, Stockmann C, Sexl V. STAT5 Is a Key Regulator in NK Cells and Acts as a Molecular Switch from Tumor Surveillance to Tumor Promotion. Cancer Discov 2016; 6:414-29. [PMID: 26873347 DOI: 10.1158/2159-8290.cd-15-0732] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 02/09/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Natural killer (NK) cells are tightly regulated by the JAK-STAT signaling pathway and cannot survive in the absence of STAT5. We now report that STAT5-deficient NK cells can be rescued by overexpression of BCL2. Our experiments define STAT5 as a master regulator of NK-cell proliferation and lytic functions. Although NK cells are generally responsible for killing tumor cells, the rescued STAT5-deficient NK cells promote tumor formation by producing enhanced levels of the angiogenic factor VEGFA. The importance of VEGFA produced by NK cells was verified by experiments with a conditional knockout of VEGFA in NK cells. We show that STAT5 normally represses the transcription of VEGFA in NK cells, in both mice and humans. These findings reveal that STAT5-directed therapies may have negative effects: In addition to impairing NK-cell-mediated tumor surveillance, they may even promote tumor growth by enhancing angiogenesis. SIGNIFICANCE The importance of the immune system in effective cancer treatment is widely recognized. We show that the new signal interceptors targeting the JAK-STAT5 pathway may have dangerous side effects that must be taken into account in clinical trials: inhibiting JAK-STAT5 has the potential to promote tumor growth by enhancing NK-cell-mediated angiogenesis.
Collapse
Affiliation(s)
- Dagmar Gotthardt
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva M Putz
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Grundschober
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michaela Prchal-Murphy
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elisabeth Straka
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Petra Kudweis
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gerwin Heller
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria. Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Agnieszka Witalisz-Siepracka
- Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Abbarna A Cumaraswamy
- Department of Chemistry, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Patrick T Gunning
- Department of Chemistry, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Birgit Strobl
- Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Mathias Müller
- Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Richard Moriggl
- Department for Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria. Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
| | - Christian Stockmann
- PARCC Paris - Centre de recherche Cardiovasculaire à l'HEGP Inserm - UMR 970, Paris, France
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Cifaldi L, Prencipe G, Caiello I, Bracaglia C, Locatelli F, De Benedetti F, Strippoli R. Inhibition of natural killer cell cytotoxicity by interleukin-6: implications for the pathogenesis of macrophage activation syndrome. Arthritis Rheumatol 2016; 67:3037-46. [PMID: 26251193 DOI: 10.1002/art.39295] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/16/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Systemic juvenile idiopathic arthritis (JIA) is associated with high levels of interleukin-6 (IL-6) in the serum and synovial fluid, and impairment of natural killer (NK) cell function is often observed. This study was undertaken to evaluate a possible link between these 2 biologic findings and whether they may be associated with the development of macrophage activation syndrome, a condition frequently observed in systemic JIA. METHODS Splenocytes from wild-type (WT) or IL-6-transgenic (Tg) mice were evaluated for NK cell cytotoxicity using a (51) Cr-release assay. Numbers of NK cells and expression of perforin, granzyme B, CD69, and CD107a were evaluated by flow cytometry. Human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors were treated with IL-6 and cultured in the presence or absence of tocilizumab (TCZ), an IL-6 receptor blocker. Human polyclonal NK cells from healthy donor PBMCs were evaluated for cell cytotoxicity and expression of perforin, granzyme B, and CD107a. PBMCs harvested from patients with systemic JIA during periods of active or inactive disease were left untreated or treated with IL-6 in combination with soluble IL-6 receptor and analyzed for the expression of perforin and granzyme B. RESULTS Splenic NK cell cytotoxicity was reduced in IL-6-Tg mice compared to WT mice. Levels of CD69 and CD107a showed no significant differences, whereas expression of perforin and granzyme B was impaired in NK cells from IL-6-Tg mice. Exposure of human peripheral blood NK cells to IL-6 led to reduced expression of perforin and granzyme B. Culturing human polyclonal NK cells in the presence of TCZ significantly increased cell cytotoxicity, and also increased expression of perforin and granzyme B. In patients with systemic JIA, a reduction in IL-6 plasma levels during disease remission correlated with the rescue of perforin and granzyme B expression in NK cells from these patients. CONCLUSION In both mice and humans, IL-6 down-modulated the cytotoxic activity of NK cells. This decrease was associated with reduced perforin and granzyme B levels in the absence of altered granule exocytosis.
Collapse
Affiliation(s)
| | | | - Ivan Caiello
- IRCCS Bambino Gesú Children's Hospital, Rome, Italy
| | | | - Franco Locatelli
- IRCCS Bambino Gesú Children's Hospital, Rome, Italy, and University of Pavia, Pavia, Italy
| | | | - Raffaele Strippoli
- IRCCS Bambino Gesú Children's Hospital and Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Li Q, Sato A, Shimozato O, Shingyoji M, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. Administration of DNA Encoding the Interleukin-27 Gene Augments Antitumour Responses through Non-adaptive Immunity. Scand J Immunol 2015; 82:320-7. [PMID: 26095954 DOI: 10.1111/sji.12321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 05/05/2015] [Indexed: 01/05/2023]
Abstract
DNA-mediated immunization of a tumour antigen is a possible immunotherapy for cancer, and interleukin (IL)-27 has diverse functions in adaptive immunity. In this study, we examined whether IL-27 DNA administration enhanced antitumour effects in mice vaccinated with DNA encoding a putative tumour antigen, β-galactosidase (β-gal). An intramuscular injection of cardiotoxin before DNA administration facilitated the exogenous gene expression. In mice received β-gal and IL-27 DNA, growth of β-gal-positive P815 tumours was retarded and survival of the mice was prolonged. Development of β-gal-positive Colon 26 tumours was suppressed by vaccination of β-gal DNA and further inhibited by additional IL-27 DNA administration or IL-12 family cytokines. Nevertheless, a population of β-gal-specific CD8(+) T cells did not increase, and production of anti-β-gal antibody was not enhanced by IL-27 DNA administration. Spleen cells from mice bearing IL-27-expressing Colon 26 tumours showed greater YAC-1-targeted cytotoxicity although CD3(-)/DX5(+) natural killer (NK) cell numbers remained unchanged. Recombinant IL-27 enhanced YAC-1-targeted cytotoxicity of IL-2-primed splenic NK cells and augmented a phosphorylation of signal transducer and activator of transcription 3 and an expression of perforin. These data collectively indicate that IL-27 DNA administration activates NK cells and augments vaccination effects of DNA encoding a tumour antigen through non-adaptive immune responses.
Collapse
Affiliation(s)
- Q Li
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba, Japan.,Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Cell Therapy Center, The 1st Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - A Sato
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - O Shimozato
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba, Japan
| | - M Shingyoji
- Department of Thoracic Diseases, Chiba Cancer Center, Chuo-ku, Chiba, Japan
| | - Y Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - K Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - H Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - K Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Owada-Shinden, Yachiyo, Japan
| | - M Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
19
|
Elgizouli M, Logan C, Nieters A, Brenner H, Rothenbacher D. Cord blood PRF1 methylation patterns and risk of lower respiratory tract infections in infants: findings from the Ulm Birth Cohort. Medicine (Baltimore) 2015; 94:e332. [PMID: 25569648 PMCID: PMC4602833 DOI: 10.1097/md.0000000000000332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Lower respiratory tract infections (LRTIs) are a major cause of morbidity in children. DNA methylation provides a mechanism for transmitting environmental effects on the genome, but its potential role in LRTIs is not well studied. We investigated the methylation pattern of an enhancer region of the immune effector gene perforin-1 (PRF1), which encodes a cytolytic molecule of cytotoxic T lymphocytes (CTLs) and natural killer cells (NK), in cord blood DNA of children recruited in a German birth cohort in association with LRTIs in the first year of life.Pyrosequencing was used to determine the methylation levels of target cytosine-phosphate-guanines (CpGs) in a 2-stage case-control design. Cases were identified as children who developed ≥2 episodes of physician-recorded LRTIs during the first year of life and controls as children who had none. Discovery (n = 87) and replication (n = 90) sets were arranged in trios of 1 case and 2 controls matched for sex and season of birth.Logistic regression analysis revealed higher levels of methylation at a CpG that corresponds to a signal transducer and activator of transcription 5 (STAT5) responsive enhancer in the discovery (odds ratio [OR] per 1% methylation difference 1.24, 95% confidence interval [CI] 1.03-1.50) and replication (OR per 1% methylation difference 1.25, 95% CI 1.04-1.50) sets. Adjustment for having siblings <5 years old in the discovery and replication sets produced ORs of 1.19 (95% CI 0.98-1.45) and 1.25 (95% CI 1.04-1.50), respectively. Adjustment for gestational age in the replication set had no influence on the results. Methylation levels at adjacent CpGs varied with maternal age, smoking, education, and having siblings <5 years old.Our data support an association between cord blood PRF1 enhancer methylation patterns and subsequent risk of LRTIs in infants. Methylation levels at specific CpGs of the PRF1 enhancer varied according to maternal and family environmental factors suggesting a role for DNA methylation in mediating environmental influences on gene function.
Collapse
Affiliation(s)
- Magdeldin Elgizouli
- From the Center for Chronic Immunodeficiency (CCI) (ME, AN), University Medical Center Freiburg, Freiburg; Institute of Epidemiology and Medical Biometry (CL, DR), Ulm University, Ulm; and Division of Clinical Epidemiology and Aging Research (HB, DR), German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
20
|
Brennan AJ, House IG, Oliaro J, Ramsbottom KM, Hagn M, Yagita H, Trapani JA, Voskoboinik I. A method for detecting intracellular perforin in mouse lymphocytes. THE JOURNAL OF IMMUNOLOGY 2014; 193:5744-50. [PMID: 25348626 DOI: 10.4049/jimmunol.1402207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytotoxic lymphocytes destroy pathogen-infected and transformed cells through the cytotoxic granule exocytosis death pathway, which is dependent on the delivery of proapoptotic granzymes into the target cell cytosol by the pore-forming protein, perforin. Despite the importance of mouse models in understanding the role of cytotoxic lymphocytes in immune-mediated disease and their role in cancer immune surveillance, no reliable intracellular detection method exists for mouse perforin. Consequently, rapid, flow-based assessment of cytotoxic potential has been problematic, and complex assays of function are generally required. In this study, we have developed a novel method for detecting perforin in primary mouse cytotoxic T lymphocytes by immunofluorescence and flow cytometry. We used this new technique to validate perforin colocalization with granzyme B in cytotoxic granules polarized to the immunological synapse, and to assess the expression of perforin in cytotoxic T lymphocytes at various stages of activation. The sensitivity of this technique also allowed us to distinguish perforin levels in Prf1(+/+) and Prf1(+/-) mice. This new methodology will have broad applications and contribute to advances within the fields of lymphocyte biology, infectious disease, and cancer.
Collapse
Affiliation(s)
- Amelia J Brennan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia;
| | - Imran G House
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jane Oliaro
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kelly M Ramsbottom
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Magdalena Hagn
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ilia Voskoboinik
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia; and Department of Genetics, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
21
|
Abstract
Key Points
Loss of STAT3 in NK cells enhances the expression of granzyme B, perforin, and DNAM-1, resulting in enhanced tumor surveillance. STAT3 binds the IFN-γ promoter and interferes with cytokine-induced IFN-γ production in NK cells.
Collapse
|
22
|
Wu AML, Yang M, Dalvi P, Turinsky AL, Wang W, Butcher D, Egan SE, Weksberg R, Harper PA, Ito S. Role of STAT5 and epigenetics in lactation-associated upregulation of multidrug transporter ABCG2 in the mammary gland. Am J Physiol Endocrinol Metab 2014; 307:E596-610. [PMID: 25117410 DOI: 10.1152/ajpendo.00323.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The multidrug resistance efflux transporter ATP-binding cassette subfamily G member 2 (ABCG2) is not only overexpressed in certain drug-resistant cancers but is also highly expressed in the mammary gland during lactation, carrying xenobiotics and nutrients into milk. We sought to investigate the molecular mechanisms involved in the upregulation of ABCG2 during lactation. Expression profiling of different mouse Abcg2 mRNA isoforms (E1a, E1b, and E1c) revealed that E1b is predominantly expressed and induced in the lactating mouse mammary gland. Despite this induction, analyses of CpG methylation status and published ChIP-seq datasets reveal that E1b promoter sequences in the virgin gland are already hypomethylated and marked with the open chromatin histone mark H3K4me2. Using a forced-weaning model to shut down lactation, we found that within 24 h there was a significant reduction in Abcg2 mRNA expression and a loss of signal transducer and activator of transcription-5 (STAT5) occupancy at the mouse Abcg2 gene. Luciferase reporter assays further showed that some of these STAT5-binding regions that contained interferon-γ-activated sequence (GAS) motifs function as an enhancer after prolactin treatment. We conclude that Abcg2 is already poised for expression in the virgin mammary gland and that STAT5 plays an important role in Abcg2 expression during lactation.
Collapse
Affiliation(s)
- Alex Man Lai Wu
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Mingdong Yang
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pooja Dalvi
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrei L Turinsky
- Centre for Computational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wei Wang
- Developmental and Stem Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Darci Butcher
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sean E Egan
- Developmental and Stem Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Patricia A Harper
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Shinya Ito
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
23
|
Rahma OE, Hamilton JM, Wojtowicz M, Dakheel O, Bernstein S, Liewehr DJ, Steinberg SM, Khleif SN. The immunological and clinical effects of mutated ras peptide vaccine in combination with IL-2, GM-CSF, or both in patients with solid tumors. J Transl Med 2014; 12:55. [PMID: 24565030 PMCID: PMC3942063 DOI: 10.1186/1479-5876-12-55] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/11/2014] [Indexed: 02/07/2023] Open
Abstract
Background Mutant Ras oncogenes produce proteins that are unique to cancer cells and represent attractive targets for vaccine therapy. We have shown previously that vaccinating cancer patients with mutant ras peptides is feasible and capable of inducing a specific immune response against the relevant mutant proteins. Here, we tested the mutant ras peptide vaccine administered in combination with low dose interleukin-2 (IL-2) or/and granulocyte-macrophage colony-stimulating factor (GM-CSF) in order to enhance the vaccine immune response. Methods 5000μg of the corresponding mutant ras peptide was given subcutaneously (SQ) along with IL-2 (Arm A), GM-CSF (Arm B) or both (Arm C). IL-2 was given SQ at 6.0 million IU/m2/day starting at day 5, 5 days/week for 2 weeks. GM-CSF was given SQ in a dose of 100μg/day one day prior to each ras peptide vaccination for 4 days. Vaccines were repeated every 5 weeks on arm A and C, and every 4 weeks on arm B, for a maximum of 15 cycles or until disease progression. Results We treated 53 advanced cancer patients (38 with colorectal, 11 with pancreatic, 1 with common bile duct and 3 with lung) on 3 different arms (16 on arm A, 18 on arm B, and 19 on arm C). The median progression free survival (PFS) and overall survival (OS) was 3.6 and 16.9 months, respectively, for all patients evaluable for clinical response (n = 48). There was no difference in PFS or OS between the three arms (P = 0.73 and 0.99, respectively). Most adverse events were grade 1-2 toxicities and resolved spontaneously. The vaccine induced an immune response to the relevant ras peptide in a total of 20 out of 37 evaluable patients (54%) by ELISPOT, proliferative assay, or both. While 92.3% of patients on arm B had a positive immune response, only 31% of patients on arm A and 36% of patients on arm C had positive immune responses (P = 0.003, Fisher’s exact test). Conclusions The reported data showed that IL-2 might have a negative effect on the specific immune response induced by the relevant mutant ras vaccine in patients with advanced cancer. This observation deserves further investigations. Trial registration NCI97C0141
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Samir N Khleif
- Cancer Vaccine Branch, CCR, NCI, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Workman AM, Jacobs AK, Vogel AJ, Condon S, Brown DM. Inflammation enhances IL-2 driven differentiation of cytolytic CD4 T cells. PLoS One 2014; 9:e89010. [PMID: 24586481 PMCID: PMC3930678 DOI: 10.1371/journal.pone.0089010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/14/2014] [Indexed: 12/24/2022] Open
Abstract
Cytolytic CD4 T cells (CD4 CTL) have been identified in vivo in response to viral infections; however, the factors necessary for driving the cytolytic phenotype have not been fully elucidated. Our previously published work suggests IL-2 may be the master regulator of perforin-mediated cytotoxicity in CD4 effectors. To further dissect the role of IL-2 in CD4 CTL generation, T cell receptor transgenic mice deficient in the ability to produce IL-2 or the high affinity IL-2 receptor (IL-2Rα, CD25) were used. Increasing concentrations of IL-2 were necessary to drive perforin (Prf) expression and maximal cytotoxicity. Granzyme B (GrB) expression and killing correlated with STAT5 activation and CD25 expression in vitro, suggesting that signaling through the high affinity IL-2R is critical for full cytotoxicity. IL-2 signaling was also necessary in vivo for inducing the Th1 phenotype and IFN-γ expression in CD4 T cells during influenza A (IAV) infection. In addition, GrB expression, as measured by mean fluorescent intensity, was decreased in CD25 deficient cells; however, the frequency of CD4 cells expressing GrB was unchanged. Similarly, analysis of cytolytic markers such as CD107a/b and Eomesodermin indicate high IL-2Rα expression is not necessary to drive the CD4 CTL phenotype during IAV infection. Thus, inflammatory signals induced by viral infection may overcome the need for strong IL-2 signals in driving cytotoxicity in CD4 cells.
Collapse
Affiliation(s)
- Aspen M Workman
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America ; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ashley K Jacobs
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Alexander J Vogel
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Shirley Condon
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America ; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America ; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
25
|
Thiery J, Lieberman J. Perforin: a key pore-forming protein for immune control of viruses and cancer. Subcell Biochem 2014; 80:197-220. [PMID: 24798013 DOI: 10.1007/978-94-017-8881-6_10] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Perforin (PFN) is the key pore-forming molecule in the cytotoxic granules of immune killer cells. Expressed only in killer cells, PFN is the rate-limiting molecule for cytotoxic function, delivering the death-inducing granule serine proteases (granzymes) into target cells marked for immune elimination. In this chapter we describe our current understanding of how PFN accomplishes this task. We discuss where PFN is expressed and how its expression is regulated, the biogenesis and storage of PFN in killer cells and how they are protected from potential damage, how it is released, how it delivers Granzymes into target cells and the consequences of PFN deficiency.
Collapse
Affiliation(s)
- Jerome Thiery
- INSERM U753, University Paris Sud and Gustave Roussy Cancer Campus, Villejuif, France,
| | | |
Collapse
|
26
|
Garcia FB, Kashima S, Rodrigues ES, Silva IT, Malta TM, Nicolete LDDF, Haddad R, Moraes-Souza H, Covas DT. Novel polymorphisms in the promoter region of the perforin gene among distinct Brazilian populations and their functional impact. Int J Immunogenet 2013; 41:198-205. [PMID: 24321052 DOI: 10.1111/iji.12103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/09/2013] [Accepted: 10/31/2013] [Indexed: 11/28/2022]
Abstract
Cytotoxic T lymphocytes and natural killer cells play a crucial role in eliminating tumour and virus-infected cells. The perforin is a key part of the arsenal that these cells use to destroy their targets. In this study, we characterized single-nucleotide polymorphisms (SNPs) located in the promoter region of the perforin gene among distinct Brazilian ethnic groups. The study was carried out by sequencing this region in three groups: European, African and Asian descents. We demonstrated for the first time the occurrence of three new polymorphisms in the promoter region of gene PRF1: 494A/G (rs78058707), 720G/A (rs75925789) and 1176C/T (rs75183511). Three other SNPs already described in the literature 63A/G (rs35401316), 112A/G (rs10999428) and 1012C/T (rs35069510) were also detected. The SNPs are distributed differently in the ethnic groups studied. The 112G allele was observed at high frequency, especially among Asian descents (48.1%). The 1012T allele was detected only among European descents, the 494G allele only among Asian descents and 1176T allele only in African descents. Based on the association between the polymorphisms described, ten new haplotypes were originated. In functional analysis, we noticed that SNPs present in most common haplotypes cannot induce significant differences in expression levels of perforin alone. In conclusion, this study demonstrates for the first time the existence of three new polymorphisms in perforin promoter and, contrary to what was stated, the presence of these SNPs does not alter the levels of protein expression.
Collapse
Affiliation(s)
- F B Garcia
- Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cichocki F, Miller JS, Anderson SK, Bryceson YT. Epigenetic regulation of NK cell differentiation and effector functions. Front Immunol 2013; 4:55. [PMID: 23450696 PMCID: PMC3584244 DOI: 10.3389/fimmu.2013.00055] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/11/2013] [Indexed: 12/24/2022] Open
Abstract
Upon maturation, natural killer (NK) cells acquire effector functions and regulatory receptors. New insights suggest a considerable functional heterogeneity and dynamic regulation of receptor expression in mature human NK cell subsets based on different developmental axes. Such processes include acquisition of lytic granules as well as regulation of cytokine production in response to exogenous cytokine stimulation or target cell interactions. One axis is regulated by expression of inhibitory receptors for self-MHC class I molecules, whereas other axes are less well defined but likely are driven by different activating receptor engagements or cytokines. Moreover, the recent identification of long-lived NK cell subsets in mice that are able to expand and respond rapidly following a secondary viral challenge suggest previously unappreciated plasticity in the programming of NK cell differentiation. Here, we review advances in our understanding of mature NK cell development and plasticity with regards to regulation of cellular function. Furthermore, we highlight some of the major questions that remain pertaining to the epigenetic changes that underlie the differentiation and functional specialization of NK cells and the regulation of their responses.
Collapse
Affiliation(s)
- Frank Cichocki
- Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital Huddinge Stockholm, Sweden ; Adult Division of Hematology, Oncology and Transplantation, University of Minnesota Cancer Center Minneapolis, MN, USA
| | | | | | | |
Collapse
|
28
|
Yigit E, Zhang Q, Xi L, Grilley D, Widom J, Wang JP, Rao A, Pipkin ME. High-resolution nucleosome mapping of targeted regions using BAC-based enrichment. Nucleic Acids Res 2013; 41:e87. [PMID: 23413004 PMCID: PMC3627574 DOI: 10.1093/nar/gkt081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We report a target enrichment method to map nucleosomes of large genomes at unprecedented coverage and resolution by deeply sequencing locus-specific mononucleosomal DNA enriched via hybridization with bacterial artificial chromosomes. We achieved ∼10 000-fold enrichment of specific loci, which enabled sequencing nucleosomes at up to ∼500-fold higher coverage than has been reported in a mammalian genome. We demonstrate the advantages of generating high-sequencing coverage for mapping the center of discrete nucleosomes, and we show the use of the method by mapping nucleosomes during T cell differentiation using nuclei from effector T-cells differentiated from clonal, isogenic, naïve, primary murine CD4 and CD8 T lymphocytes. The analysis reveals that discrete nucleosomes exhibit cell type-specific occupancy and positioning depending on differentiation status and transcription. This method is widely applicable to mapping many features of chromatin and discerning its landscape in large genomes at unprecedented resolution.
Collapse
Affiliation(s)
- Erbay Yigit
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Falkenberg VR, Whistler T, Murray JR, Unger ER, Rajeevan MS. Acute psychosocial stress-mediated changes in the expression and methylation of perforin in chronic fatigue syndrome. GENETICS & EPIGENETICS 2013; 5:1-9. [PMID: 25512702 PMCID: PMC4222335 DOI: 10.4137/geg.s10944] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Perforin (PRF1) is essential for immune surveillance and studies report decreased perforin in chronic fatigue syndrome (CFS), an illness potentially associated with stress and/or infection. We hypothesize that stress can influence regulation of PRF1 expression, and that this regulation will differ between CFS and non-fatigued (NF) controls. We used the Trier Social Stress Test (TSST) as a standardized acute psychosocial stress, and evaluated its effect on PRF1 expression and methylation in CFS (n = 34) compared with NF (n = 47) participants. During the TSST, natural killer (NK) cells increased significantly in both CFS (P = <0.0001) and NF subjects (P = <0.0001). Unlike previous reports, there was no significant difference in PRF1 expression at baseline or during TSST between CFS and NF. However, whole blood PRF1 expression increased 1.6 fold during the TSST in both CFS (P = 0.0003) and NF (P = <0.0001). Further, the peak response immediately following the TSST was lower in CFS compared with NF (P = 0.04). In addition, at 1.5 hours post TSST, PRF1 expression was elevated in CFS compared with NF (whole blood, P = 0.06; PBMC, P = 0.02). Methylation of seven CpG sites in the methylation sensitive region of the PRF1 promoter ranged from 38%–79% with no significant differences between CFS and NF. Although, the average baseline methylation of all seven CpG sites did not differ between CFS and NF groups, it showed a significant negative correlation with PRF1 expression at all TSST time points in both CFS (r = −0.56, P = <0.0001) and NF (r = −0.38, P = <0.0001). Among participants with high average methylation (≥65%), PRF1 expression was significantly lower in CFS than NF subjects immediately following TSST. These findings suggest methylation could be an important epigenetic determinant of inter-individual differences in PRF1 expression and that the differences in PRF1 expression and methylation between CFS and NF in the acute stress response require further investigation.
Collapse
Affiliation(s)
- Virginia R Falkenberg
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Toni Whistler
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Janna R Murray
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elizabeth R Unger
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mangalathu S Rajeevan
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
30
|
Xu X, Wang Q, Deng B, Wang H, Dong Z, Qu X, Kong B. Monocyte chemoattractant protein-1 secreted by decidual stromal cells inhibits NK cells cytotoxicity by up-regulating expression of SOCS3. PLoS One 2012; 7:e41869. [PMID: 22848642 PMCID: PMC3407114 DOI: 10.1371/journal.pone.0041869] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/29/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Decidual stromal cells (DSCs) are of particular importance due to their pleiotropic functions during pregnancy. Although previous research has demonstrated that DSCs participated in the regulation of immune cells during pregnancy, the crosstalk between DSCs and NK cells has not been fully elucidated. To address this issue, we investigated the effect of DSCs on perforin expression in CD56(+) NK cells and explored the underlying mechanism. METHODOLOGY/PRINCIPAL FINDINGS Flow cytometry analysis showed perforin production in NK cells was attenuated by DSC media, and it was further suppressed by media from DSCs pretreated with lipopolysaccharide (LPS). However, the expression of granzyme A and apoptosis of NK cells were not influenced by DSC media. ELISA assays to detect cytokine production indicated that monocyte chemoattractant protein-1 (MCP-1) in the supernatant of DSCs conditioned culture significantly increased after LPS stimulation. The inhibitory effect of DSC media on perforin was abolished by the administration of anti-MCP-1 neutralizing antibody. Notably, reduced perforin expression attenuated the cytotoxic potential of CD56(+) NK cells to K562 cells. Moreover, Suppressor of cytokine signaling 3 (SOCS3) expression in NK cells was enhanced by treatment with MCP-1, as measured by RT-PCR and western blot. Interestingly, MCP-1-induced perforin expression was partly abolished by the siRNA induced SOCS3 knockdown. Western blot analysis suggested that both NF-κB and ERK/MAPKs pathway were involved in the LPS-induced upregulation of MCP-1 in DSCs. CONCLUSIONS/SIGNIFICANCE Our results demonstrate that LPS induces upregulation of MCP-1 in DSCs, which may play a critical role in inhibiting the cytotoxicity of NK cells partly by promoting SOCS3 expression. These findings suggest that the crosstalk between DSCs and NK cells may be crucial to maintain pregnancy homeostasis.
Collapse
Affiliation(s)
- Xiaofei Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Qingjie Wang
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Biping Deng
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Huayang Wang
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
31
|
Wu RC, Liu S, Chacon JA, Wu S, Li Y, Sukhumalchandra P, Murray JL, Molldrem JJ, Hwu P, Pircher H, Lizée G, Radvanyi LG. Detection and characterization of a novel subset of CD8⁺CD57⁺ T cells in metastatic melanoma with an incompletely differentiated phenotype. Clin Cancer Res 2012; 18:2465-77. [PMID: 22307139 DOI: 10.1158/1078-0432.ccr-11-2034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Tumor-specific T cells are frequently induced naturally in melanoma patients and infiltrate tumors. It is enigmatic why these patients fail to experience tumor regression. Given that CD8(+) T cells mediate antigen-specific killing of tumor cells, the focus of this study was to identify alterations in the differentiation of CD8(+) residing at the tumor site, with emphasis on a population expressing CD57, a marker for terminal differentiation. EXPERIMENTAL DESIGN We conducted flow cytometric analysis of CD8(+) tumor-infiltrating lymphocytes (TIL) isolated from 44 resected melanoma metastases with known T-cell differentiation markers. For comparison, peripheral blood mononuclear cells were isolated from matched melanoma patients. We sorted different CD8(+) subsets found in TIL and determined their effector functions. In addition, we carried out Vβ clonotype expression analysis of T-cell receptors to determine lineage relationship between the CD8(+) TIL subsets. RESULTS The majority of CD8(+) TIL was in the early-effector memory stage of differentiation. A significant population consisted of an oligoclonal subset of cells coexpressing CD27, CD28, CD57, and Granzyme B, with little or no perforin. These cells could be induced to proliferate, produce a high level of IFN-γ, and differentiate into CD27(-)CD57(+), perforin(high) mature CTL in vitro. Addition of TGF-β1 prevented further differentiation. CONCLUSIONS Our studies identified a novel subset of incompletely differentiated CD8(+) CTL coexpressing early effector memory and late CTL markers. This population resembles that found in patients with uncontrolled chronic viral infections. TGF-β1, frequently produced by melanoma tumors, may be a key cytokine inhibiting further maturation of this subset.
Collapse
Affiliation(s)
- Richard C Wu
- Department of Melanoma Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cytotoxic CD4 T cells in antiviral immunity. J Biomed Biotechnol 2011; 2011:954602. [PMID: 22174559 PMCID: PMC3228492 DOI: 10.1155/2011/954602] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 09/09/2011] [Indexed: 01/08/2023] Open
Abstract
CD4 T cells that acquire cytotoxic phenotype and function have been repeatedly identified in humans, mice, and other species in response to many diverse pathogens. Since CD4 cytotoxic T cells are able to recognize antigenic determinants unique from those recognized by the parallel CD8 cytotoxic T cells, they can potentially contribute additional immune surveillance and direct effector function by lysing infected or malignant cells. Here, we briefly review much of what is known about the generation of cytotoxic CD4 T cells and describe our current understanding of their role in antiviral immunity. Furthering our understanding of the many roles of CD4 T cells during an anti-viral response is important for developing effective vaccine strategies that promote long-lasting protective immunity.
Collapse
|
33
|
Mujaj SA, Spanevello MM, Gandhi MK, Nourse JP. Molecular mechanisms influencing NK cell development: implications for NK cell malignancies. AMERICAN JOURNAL OF BLOOD RESEARCH 2011; 1:34-45. [PMID: 22432064 PMCID: PMC3301417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/18/2011] [Indexed: 05/31/2023]
Abstract
Natural Killer (NK) cells are important effector cells in both the innate and adaptive immune responses. Although they were identified almost 40 years ago, our understanding of how and where NK cells develop is rudimentary. In particular, we have only a limited understanding of the signaling pathways that need to be activated to cause NK cell commitment and maturation. Knowledge of this process is important as disruptions can lead to the development of highly aggressive NK cell malignancies. In this review, we discuss the known molecular mechanisms that trigger NK cell commitment, prompt them to mature and finally allow them to become functional killers. Known disruptions in this developmental process, and how they may contribute to malignancy, are also addressed.
Collapse
|
34
|
Penafuerte C, Bautista-Lopez N, Bouchentouf M, Birman E, Forner K, Galipeau J. Novel TGF-β Antagonist Inhibits Tumor Growth and Angiogenesis by Inducing IL-2 Receptor-Driven STAT1 Activation. THE JOURNAL OF IMMUNOLOGY 2011; 186:6933-44. [DOI: 10.4049/jimmunol.1003816] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Abstract
It is generally believed that the role of CD4(+) T cells is to coordinate the different arms of the adaptive immune system to shape an effective response against a pathogen and regulate nonessential or deleterious activities. However, a growing body of evidence suggests that effector CD4(+) T cells can directly display potent antiviral activity themselves. The presence of cytolytic CD4(+) T cells has been demonstrated in the immune response to numerous viral infections in both humans and in animal models and it is likely that they play a critical role in the control of viral replication in vivo. This article describes the current research on virus-specific cytolytic CD4(+) T cells, with a focus on HIV-1 infection and the implications that this immune response has for vaccine design.
Collapse
Affiliation(s)
- Damien Z Soghoian
- Ragon Institute of MGH, MIT and Harvard Massachusetts General Hospital, Harvard Medical School Building 149, 13th Street, 5th floor, #5217, Charlestown, Boston, MA 02129, USA
| | | |
Collapse
|
36
|
Liou HC, Smith KA. The roles of c-rel and interleukin-2 in tolerance: a molecular explanation of self-nonself discrimination. Immunol Cell Biol 2010; 89:27-32. [PMID: 20975733 DOI: 10.1038/icb.2010.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The molecular mechanisms responsible for the exquisite discrimination between self and nonself molecules have remained enigmatic despite intense investigation. However, with the availability of adequate amounts of anergic lymphocytes produced by double transgenic mice, large numbers of immature B cells from sublethaly irradiated, hematopoietically-synchronized mice, as well as critical gene-deleted mice, it has been possible for the first time to uncover plausible molecular mechanisms that lead to tolerance versus immunity. The Rel family of transcription factors is expressed at different stages of lymphocyte maturation and differentiation. C-Rel is not activated by immature lymphocytes, which undergo either anergy or apoptosis when triggered by antigen receptors, but c-Rel is activated in mature lymphocytes. Antigen receptor triggering induces c-Rel-dependent survival and proliferative genetic programs. In T cells, a critical c-Rel-dependent gene encodes the T-cell growth factor interleukin-2 (IL-2). Thus, T cells from c-Rel gene-deleted mice produce inadequate quantities of IL-2, which renders them immunocompromised and unable to mount normal T-cell proliferative and differentiative responses. In the face of absolute IL-2 deficiency from birth, severe, multiorgan autoimmunity gradually ensues. Also, with more subtle IL-2 deficiency, organ/tissue-specific autoimmune disease becomes evident. Accordingly, both c-Rel and IL-2 appear to be key molecules for tolerance versus immunity, and doubtless will become foci for continued investigation, as well as future therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Hsiou-Chi Liou
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | | |
Collapse
|
37
|
Parmigiani A, Pallin MF, Schmidtmayerova H, Lichtenheld MG, Pahwa S. Interleukin-21 and cellular activation concurrently induce potent cytotoxic function and promote antiviral activity in human CD8 T cells. Hum Immunol 2010; 72:115-23. [PMID: 20977918 DOI: 10.1016/j.humimm.2010.10.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 09/17/2010] [Accepted: 10/19/2010] [Indexed: 11/29/2022]
Abstract
Infection with human immunodeficiency virus (HIV)-1 induces a progressive deterioration of the immune system that ultimately leads to acquired immune deficiency syndrome (AIDS). Murine models indicate that the common γ-chain (γ(c))-sharing cytokine interleukin (IL)-21 and its receptor (IL-21R) play a crucial role in maintaining polyfunctional T cell responses during chronic viral infections. Therefore, we analyzed the ability of this cytokine to modulate the properties of human CD8 T cells in comparison with other γ(c)-sharing cytokines (IL-2, IL-7, and IL-15). CD8 T cells from healthy volunteers were stimulated in vitro via T cell receptor signals to mimic the heightened status of immune activation of HIV-infected patients. The administration of IL-21 upregulated cytotoxic effector function and the expression of the costimulatory molecule CD28. Notably, this outcome was not accompanied by increased cellular proliferation or activation. Moreover, IL-21 promoted antiviral activity while not inducing HIV-1 replication in vitro. Thus, IL-21 may be a favorable molecule for immunotherapy and a suitable vaccine adjuvant in HIV-infected individuals.
Collapse
Affiliation(s)
- Anita Parmigiani
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | |
Collapse
|
38
|
Xing J, Wu F, Wang S, Krensky AM, Mody CH, Zheng C. Granulysin production and anticryptococcal activity is dependent upon a far upstream enhancer that binds STAT5 in human peripheral blood CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:5074-81. [PMID: 20889547 DOI: 10.4049/jimmunol.1001725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous studies have demonstrated that STAT5 is critical for expression of granulysin and antimicrobial activity. Because the signaling pathway and the resultant microbicidal activity are defective in HIV-infected patients, the mechanism by which STAT5 leads to granulysin expression is of great interest. In the current study, IL-2-stimulated CRL-2105 CD4(+) T cells expressed granulysin and killed Cryptococcus neoformans similar to primary CD4(+) T cells. The enhancer activity of the upstream element of the granulysin promoter was analyzed in primary CD4(+) T cells and CRL-2105 T cells with a luciferase reporter assay, and a STAT5 binding site, 18,302 to 18,177 bp upstream of the transcription start site, was identified as an enhancer. Additionally, the enhancer functioned in the context of heterologous SV40 promoter irrespective of its transcriptional orientation. Chromatin immunoprecipitation and EMSAs demonstrated that the enhancer element bound STAT5 both in vivo and in vitro, and mutation of the STAT5 binding site abrogated its enhancer activity. Furthermore, overexpression of a dominant negative STAT5a abolished the enhancer activity of the STAT5 binding site and abrogated the anticryptococcal activity of IL-2-stimulated primary CD4(+) T cells. Taken together, these data provide details about the complex regulation leading to granulysin expression and anticryptococcal activity in primary CD4(+) T cells.
Collapse
Affiliation(s)
- Junji Xing
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | |
Collapse
|
39
|
Tripathi P, Kurtulus S, Wojciechowski S, Sholl A, Hoebe K, Morris SC, Finkelman FD, Grimes HL, Hildeman DA. STAT5 is critical to maintain effector CD8+ T cell responses. THE JOURNAL OF IMMUNOLOGY 2010; 185:2116-24. [PMID: 20644163 DOI: 10.4049/jimmunol.1000842] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During an immune response, most effector T cells die, whereas some are maintained and become memory T cells. Factors controlling the survival of effector CD4(+) and CD8(+) T cells remain unclear. In this study, we assessed the role of IL-7, IL-15, and their common signal transducer, STAT5, in maintaining effector CD4(+) and CD8(+) T cell responses. Following viral infection, IL-15 was required to maintain a subpopulation of effector CD8(+) T cells expressing high levels of killer cell lectin-like receptor subfamily G, member 1 (KLRG1), and lower levels of CD127, whereas IL-7 and IL-15 acted together to maintain KLRG1(low)CD127(high) CD8(+) effector T cells. In contrast, effector CD4(+) T cell numbers were not affected by the individual or combined loss of IL-15 and IL-7. Both IL-7 and IL-15 drove phosphorylation of STAT5 within effector CD4(+) and CD8(+) T cells. When STAT5 was deleted during the course of infection, both KLRG1(high)CD127(low) and KLRG1(low)CD127(high) CD8(+) T cells were lost, although effector CD4(+) T cell populations were maintained. Furthermore, STAT5 was required to maintain expression of Bcl-2 in effector CD8(+), but not CD4(+), T cells. Finally, IL-7 and IL-15 required STAT5 to induce Bcl-2 expression and to maintain effector CD8(+) T cells. Together, these data demonstrate that IL-7 and IL-15 signaling converge on STAT5 to maintain effector CD8(+) T cell responses.
Collapse
Affiliation(s)
- Pulak Tripathi
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Initially described as effectors of natural cytotoxicity and critical players for the control of viral infections and tumor growth, recent investigations unraveled more widespread functions for the natural killer (NK) cells. Through the establishment of a crosstalk with dendritic cells, NK cells promote T helper-1- and cytotoxic T lymphocyte-mediated immunity, whereas through the establishment of a crosstalk with macrophages, NK cells contribute to the activation of their microbicidal functions. Recent evidence has shown that NK cells also display memory, a characteristic thought to be privative of T and B cells, and that NK cells acquire their mature phenotype during a complex ontogeny program which tunes their activation threshold. Cytokines play critical roles in regulating all aspects of immune responses, including lymphoid development, homeostasis, differentiation, tolerance, and memory. Cytokines such as interleukin (IL)-2, IL-12, IL-15, IL-18, IL-21, and type I interferons constitute pivotal factors involved in the maturation, activation, and survival of NK cells. In addition, the discovery of novel cytokines is increasing the spectrum of soluble mediators that regulate NK cell immunobiology. In this review, we summarize and integrate novel concepts about the role of different cytokines in the regulation of NK cell function. We believe that a full understanding of how NK cells become activated and develop their effector functions in response to cytokines and other stimuli may lead to the development of novel immunotherapeutic strategies for the treatment of different types of cancer, viral infections, and chronic autoimmune diseases.
Collapse
|
41
|
Abstract
SUMMARY Natural killer (NK) cells and cytotoxic T lymphocytes (CTLs) use cytotoxic granules containing perforin and granzymes to lyse infected or malignant host cells, thereby providing immunity to intracellular microbes and tumors. Perforin is essential for cytotoxic granule-mediated killing. Perforin expression is regulated transcriptionally and correlates tightly with the development of cells that can exhibit cytotoxic activity. Although a number of genes transcribed by T cells and NK cells have been studied, the cell-specificity of perforin gene expression makes it an ideal model system in which to clarify the transcriptional mechanisms that guide the development and activation of cytotoxic lymphocytes. In this review, we discuss what is known about perforin expression and its regulation, then elaborate on recent studies that utilized chromosome transfer and bacterial artificial chromosome transgenics to define a comprehensive set of cis-regulatory regions that control transcription of the human PRF1 gene in a near-physiologic context. In addition, we compare the human and murine Prf1 loci and discuss how transcription factors known to be important for driving CTL differentiation might also directly regulate the cis-acting domains that control Prf1. Our review emphasizes how studies of PRF1/Prf1 gene transcription can illuminate not only the mechanisms of cytotoxic lymphocyte differentiation but also some basic principles of transcriptional regulation.
Collapse
Affiliation(s)
- Matthew E Pipkin
- Department of Signaling and Gene Expression, The La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
42
|
Brown DM. Cytolytic CD4 cells: Direct mediators in infectious disease and malignancy. Cell Immunol 2010; 262:89-95. [PMID: 20236628 DOI: 10.1016/j.cellimm.2010.02.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/16/2010] [Accepted: 02/19/2010] [Indexed: 12/22/2022]
Abstract
CD4 T cells have traditionally been regarded as helpers and regulators of adaptive immune responses; however, a novel role for CD4 T cells as direct mediators of protection against viral infections has emerged. CD4 T cells with cytolytic potential have been described for almost 40 years, but their role in host protection against infectious disease is only beginning to be realized. In this review, we describe the current literature identifying these cells in patients with various infections, mouse models of viral infection and our own work investigating the development of cytolytic CD4 cells in vivo and in vitro. CD4 CTL are no longer considered an artefact of cell culture and may play a physiological role in viral infections such as EBV, CMV, HIV and influenza. Therefore, vaccine strategies aimed at targeting CD4 CTL should be developed in conjunction with vaccines incorporating B cell and CD8 CTL epitopes.
Collapse
Affiliation(s)
- Deborah M Brown
- University of Nebraska-Lincoln, School of Biological Sciences and Nebraska Center for Virology, Lincoln, NE 68583-0900, USA.
| |
Collapse
|
43
|
Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 2010; 32:79-90. [PMID: 20096607 DOI: 10.1016/j.immuni.2009.11.012] [Citation(s) in RCA: 604] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 08/12/2009] [Accepted: 11/03/2009] [Indexed: 12/24/2022]
Abstract
Interleukin(IL)-2 and inflammation regulate effector and memory cytolytic T-lymphocyte (CTL) generation during infection. We demonstrate a complex interplay between IL-2 and inflammatory signals during CTL differentiation. IL-2 stimulation induced the transcription factor eomesodermin (Eomes), upregulated perforin (Prf1) transcription, and repressed re-expression of memory CTL markers Bcl6 and IL-7Ralpha. Binding of Eomes and STAT5 to Prf1 cis-regulatory regions correlated with transcriptional initiation (increased recruitment of RNA polymerase II to the Prf1 promoter). Inflammation (CpG, IL-12) enhanced expression of IL-2Ralpha and the transcription factor T-bet, but countered late Eomes and perforin induction while preventing IL-7Ralpha repression by IL-2. After infection of mice with lymphocytic choriomeningitis virus, IL-2Ralpha-deficient effector CD8(+) T cells expressed more Bcl6 but less perforin and granzyme B, formed fewer KLRG-1(+) and T-bet-expressing CTL, and killed poorly. Thus, inflammation influences both effector and memory CTL differentiation, whereas persistent IL-2 stimulation promotes effector at the expense of memory CTL development.
Collapse
|
44
|
Hoves S, Trapani JA, Voskoboinik I. The battlefield of perforin/granzyme cell death pathways. J Leukoc Biol 2009; 87:237-43. [DOI: 10.1189/jlb.0909608] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
45
|
Itsumi M, Yoshikai Y, Yamada H. IL-15 is critical for the maintenance and innate functions of self-specific CD8(+) T cells. Eur J Immunol 2009; 39:1784-93. [PMID: 19544306 DOI: 10.1002/eji.200839106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
IL-15 is a pleiotropic cytokine involved in host defense as well as autoimmunity. IL-15-deficient mice show a decrease of memory phenotype (MP) CD8(+) T cells, which develop naturally in naïve mice and whose origin is unclear. It has been shown that self-specific CD8(+) T cells developed in male H-Y antigen-specific TCR transgenic mice share many similarities with naturally occurring MP CD8(+) T cells in normal mice. In this study, we found that H-Y antigen-specific CD8(+) T cells in male but not female mice decreased when they were crossed with IL-15-deficient mice, mainly due to impaired peripheral maintenance. The self-specific TCR transgenic CD8(+) T cells developed in IL-15-deficient mice showed altered surface phenotypes and reduced effector functions ex vivo. Bystander activation of the self-specific CD8(+) T cells was induced in vivo during infection with Listeria monocytogenes, in which proliferation but not IFN-gamma production was IL-15-dependent. These results indicated important roles for IL-15 in the maintenance and functions of self-specific CD8(+) T cells, which may be included in the naturally occurring MP CD8(+) T-cell population in naïve normal mice and participate in innate host defense responses.
Collapse
Affiliation(s)
- Momoe Itsumi
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
46
|
Hogg AE, Bowick GC, Herzog NK, Cloyd MW, Endsley JJ. Induction of granulysin in CD8+ T cells by IL-21 and IL-15 is suppressed by human immunodeficiency virus-1. J Leukoc Biol 2009; 86:1191-203. [PMID: 19687290 DOI: 10.1189/jlb.0409222] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immunosuppression following infection with HIV-1 predisposes patients to a myriad of opportunistic pathogens, one of the most important of which is Mtb. Granulysin, expressed by NK cells and CTL, exhibits potent antimicrobial activity against Mtb and several other opportunistic pathogens associated with HIV-1 infection. The immune signals that promote granulysin expression in human CTL are not fully understood. Using primary human CD8+ T cells, in this study, we identify IL-21 as a strong inducer of granulysin, demonstrate that IL-21 and IL-15 activate granulysin expression within CD8+ CD45RO+ T cells, and establish a role for Jak/STAT signaling in the regulation of granulysin within CD8+ T cells. We show that infection of PBMC from healthy donors in vitro with HIV-1 suppresses granulysin expression by CD8+ T cells, concomitant with reduced p-STAT3 and p-STAT5, following activation with IL-15 and IL-21. Of note, simultaneous signaling through IL-15 and IL-21 could partially overcome the immunosuppressive effects of HIV-1 on granulysin expression by CD8+ T cells. These results suggest that HIV-1 infection of PBMC may reduce the antimicrobial profile of activated CD8+ T cells by disrupting signaling events that are critical for the induction of granulysin. Understanding the effects of HIV-1 on CD8+ T cell activation is essential to understanding the physiological basis for inadequate cytotoxic lymphocyte activity in HIV+ patients and for informed guidance of cytokine-based therapy to restore T cell function.
Collapse
Affiliation(s)
- A E Hogg
- Department of Microbiology and Immunology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | |
Collapse
|
47
|
DNA demethylation of the perforin promoter in CD4(+) T cells from patients with subacute cutaneous lupus erythematosus. J Dermatol Sci 2009; 56:33-6. [PMID: 19651491 DOI: 10.1016/j.jdermsci.2009.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 06/23/2009] [Accepted: 06/28/2009] [Indexed: 01/24/2023]
Abstract
BACKGROUND Recent evidence indicates that human lupus is an epigenetic disease characterized by impaired T cell DNA methylation. Perforin, a cytotoxic effector molecule, is overexpressed due to hypomethylation of its promoter regulatory elements in CD4(+) T cells from patients with systemic erythematosus lupus (SLE). However, it is unknown whether aberrant expression and methylation of perforin occur in CD4(+) T cells from patients with subacute cutaneous lupus erythematosus (SCLE). OBJECTIVE We aimed to compare the perforin expression level and the methylation status of the perforin promoter region in CD4(+) T cells from SCLE patients and healthy controls. METHODS We used real-time RT-PCR to compare the perforin mRNA levels, and Western-blot to compare perforin protein levels in CD4(+) and CD8(+) T cells from SCLE patients and healthy controls. Bisulfite sequencing was used to determine the methylation status of the perforin promoter region. RESULTS Perforin is overexpressed in SCLE CD4(+) T cells. Demethylation of the perforin promoter region was seen in CD4(+) T cells from patients with SCLE. CONCLUSIONS DNA demethylation at the perforin locus contributes to perforin overexpression in SCLE CD4(+) T cells.
Collapse
|
48
|
Burt BM, Plitas G, Zhao Z, Bamboat ZM, Nguyen HM, Dupont B, DeMatteo RP. The lytic potential of human liver NK cells is restricted by their limited expression of inhibitory killer Ig-like receptors. THE JOURNAL OF IMMUNOLOGY 2009; 183:1789-96. [PMID: 19587011 DOI: 10.4049/jimmunol.0900541] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human liver is enriched in NK cells which are potent effectors of the innate immune system. We have determined that liver NK cells freshly isolated from surgical specimens from patients with hepatic malignancy have less cytolytic activity than autologous blood NK cells. This difference was due to a higher proportion of CD16(-) NK cells in the liver and reduced cytotoxicity by CD16(+) liver NK cells compared with their blood counterparts. CD16(+) liver NK cells had similar expression of activating NK receptors and had similar intracellular granzyme B and perforin content compared with CD16(+) blood NK cells. CD16(+) liver NK cells contained a reduced fraction of cells with inhibitory killer Ig-like receptors specific for self-MHC class I (self-killer Ig-related receptor (KIR)) and an increased fraction of self-KIR(neg)NKG2A(pos) and self-KIR(neg)NKG2A(neg) cells. Using single-cell analysis of intracellular IFN-gamma production and cytotoxicity assays, we determined that CD16(+) liver NK cells expressing self-KIR were more responsive to target cells than those cells that did not express self-KIR molecules. CD16(+) liver NK cells gained cytolytic function when stimulated with IL-2 or cultured with LPS or poly(I:C)-activated autologous liver Kupffer cells. Thus, the human liver contains NK cell subsets which have reduced effector function, but under appropriate inflammatory conditions become potent killers.
Collapse
Affiliation(s)
- Bryan M Burt
- Hepatopancreatobiliary Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Narasimhan S, Falkenberg VR, Khin MM, Rajeevan MS. Determination of quantitative and site-specific DNA methylation of perforin by pyrosequencing. BMC Res Notes 2009; 2:104. [PMID: 19523225 PMCID: PMC2704226 DOI: 10.1186/1756-0500-2-104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 06/12/2009] [Indexed: 11/15/2022] Open
Abstract
Background Differential expression of perforin (PRF1), a gene with a pivotal role in immune surveillance, can be attributed to differential methylation of CpG sites in its promoter region. A reproducible method for quantitative and CpG site-specific determination of perforin methylation is required for molecular epidemiologic studies of chronic diseases with immune dysfunction. Findings We developed a pyrosequencing based method to quantify site-specific methylation levels in 32 out of 34 CpG sites in the PRF1 promoter, and also compared methylation pattern in DNAs extracted from whole blood drawn into PAXgene blood DNA tubes (whole blood DNA) or DNA extracted from peripheral blood mononuclear cells (PBMC DNA) from the same normal subjects. Sodium bisulfite treatment of DNA and touchdown PCR were highly reproducible (coefficient of variation 1.63 to 2.18%) to preserve methylation information. Application of optimized pyrosequencing protocol to whole blood DNA revealed that methylation level varied along the promoter in normal subjects with extremely high methylation (mean 86%; range 82–92%) in the distal enhancer region (CpG sites 1–10), a variable methylation (range 49%–83%) in the methylation sensitive region (CpG sites 11–17), and a progressively declining methylation level (range 12%–80%) in the proximal promoter region (CpG sites 18–32) of PRF1. This pattern of methylation remained the same between whole blood and PBMC DNAs, but the absolute values of methylation in 30 out of 32 CpG sites differed significantly, with higher values for all CpG sites in the whole blood DNA. Conclusion This reproducible, site-specific and quantitative method for methylation determination of PRF1 based on pyrosequencing without cloning is well suited for large-scale molecular epidemiologic studies of diseases with immune dysfunction. PBMC DNA may be better suited than whole blood DNA for examining methylation levels in genes associated with immune function.
Collapse
Affiliation(s)
- Supraja Narasimhan
- Division of Viral and Rickettsial Diseases, National Center for Zoonotic Vector-Borne and Enteric Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | |
Collapse
|
50
|
Brown DM, Kamperschroer C, Dilzer AM, Roberts DM, Swain SL. IL-2 and antigen dose differentially regulate perforin- and FasL-mediated cytolytic activity in antigen specific CD4+ T cells. Cell Immunol 2009; 257:69-79. [PMID: 19338979 DOI: 10.1016/j.cellimm.2009.03.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Revised: 02/25/2009] [Accepted: 03/02/2009] [Indexed: 12/14/2022]
Abstract
CD4 T cell effectors can promote survival against lethal influenza virus via perforin mediated cytolytic mechanisms; however, our understanding of how naïve CD4 cells differentiate into class II restricted killers remains obscure. To address this, TCR Tg CD4 cells were activated in vitro and examined for their ability to lyse target cells. We found that cytokine polarized CD4 T cell effectors displayed cytolytic activity with the hierarchy Th0>Th1>Th2. Further, IL-4 inhibited the generation of cytotoxic CD4 cells. LPS stimulated B cells and bone marrow derived dendritic cells (BMDC) both induced potent cytolytic activity; however, IL-6, TGF-beta, IL-10, IL-12 or TNF-alpha were not required for inducing cytolytic activity in CD4 effectors. Antigen dose had a marked effect on cytotoxicity: low concentrations of peptide induced more potent cytolytic activity than relatively high concentrations. At low peptide concentration, exogenous IL-2 was necessary to drive granzyme B (GrB) expression and perforin mediated lysis. Thus, low antigen dose and early activation signals via IL-2 direct the CD4 T cell response toward effectors with perforin mediated cytolytic potential. These data have implications for the design of vaccines that may induce cytolytic CD4 cells in vivo and improve cell-mediated immunity to viral and bacterial infections.
Collapse
|