1
|
Franco Acevedo A, Mack JJ, Valenzuela NM. The transcriptional repressor B cell lymphoma 6 regulates CXCR3 chemokine and human leukocyte antigen II expression in endothelial cells. Am J Transplant 2024:S1600-6135(24)00449-0. [PMID: 39074669 DOI: 10.1016/j.ajt.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Interferon gamma (IFN-γ) induces an endothelial proimmunogenic phenotype through the JAK/STAT1 pathway, which can shape the activation of alloreactive leukocytes in transplant rejection. In immune cells, the DNA-binding protein B cell lymphoma 6 (BCL6) controls the transcription of inflammatory genes. This study tested if BCL6 modulates IFN-γ-induced gene expression in endothelial cells. In vitro, BCL6 was IFN-γ-inducible in primary human endothelium, along with CXCR3 chemokines and human leukocyte antigen (HLA). BCL6, HLA II, and CXCL9 were also increased in human cardiac transplants during acute rejection. Knockdown of BCL6 augmented, whereas overexpression and BTB domain inhibitors (BCL6-BTBi) suppressed, HLA II and CXCR3 chemokine expression but not HLA I. Further, BCL6 had a greater effect on HLA-DR and DP but was less involved in regulating HLA-DQ expression. The effect correlated with BCL6 binding motifs in or near affected genes. The BCL6 DNA recognition sequence was highly similar to that of STAT1, and BTBi reduced STAT1's transcriptional activity in vitro. Our results show for the first time that BCL6 selectively controls IFN-γ-induced endothelial gene expression, advancing our understanding of the endogenous mechanisms regulating donor immunogenicity.
Collapse
Affiliation(s)
- Adriana Franco Acevedo
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, USA
| | - Julia J Mack
- Department of Cardiology, University of California, Los Angeles, USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
2
|
Khorki ME, Shi T, Cianciolo EE, Burg AR, Chukwuma PC, Picarsic JL, Morrice MK, Woodle ES, Maltzman JS, Ferguson A, Katz JD, Baker BM, Hildeman DA. Prior viral infection primes cross-reactive CD8+ T cells that respond to mouse heart allografts. Front Immunol 2023; 14:1287546. [PMID: 38143762 PMCID: PMC10748599 DOI: 10.3389/fimmu.2023.1287546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Significant evidence suggests a connection between transplant rejection and the presence of high levels of pre-existing memory T cells. Viral infection can elicit viral-specific memory T cells that cross-react with allo-MHC capable of driving allograft rejection in mice. Despite these advances, and despite their critical role in transplant rejection, a systematic study of allo-reactive memory T cells, their specificities, and the role of cross-reactivity with viral antigens has not been performed. Methods Here, we established a model to identify, isolate, and characterize cross-reactive T cells using Nur77 reporter mice (C57BL/6 background), which transiently express GFP exclusively upon TCR engagement. We infected Nur77 mice with lymphocytic choriomeningitis virus (LCMV-Armstrong) to generate a robust memory compartment, where quiescent LCMV-specific memory CD8+ T cells could be readily tracked with MHC tetramer staining. Then, we transplanted LCMV immune mice with allogeneic hearts and monitored expression of GFP within MHC-tetramer defined viral-specific T cells as an indicator of their ability to cross-react with alloantigens. Results Strikingly, prior LCMV infection significantly increased the kinetics and magnitude of rejection as well as CD8+ T cell recruitment into allogeneic, but not syngeneic, transplanted hearts, relative to non-infected controls. Interestingly, as early as day 1 after allogeneic heart transplant an average of ~8% of MHC-tetramer+ CD8+ T cells expressed GFP, in contrast to syngeneic heart transplants, where the frequency of viral-specific CD8+ T cells that were GFP+ was <1%. These data show that a significant percentage of viral-specific memory CD8+ T cells expressed T cell receptors that also recognized alloantigens in vivo. Notably, the frequency of cross-reactive CD8+ T cells differed depending upon the viral epitope. Further, TCR sequences derived from cross-reactive T cells harbored distinctive motifs that may provide insight into cross-reactivity and allo-specificity. Discussion In sum, we have established a mouse model to track viral-specific, allo-specific, and cross-reactive T cells; revealing that prior infection elicits substantial numbers of viral-specific T cells that cross-react to alloantigen, respond very early after transplant, and may promote rapid rejection.
Collapse
Affiliation(s)
- M. Eyad Khorki
- Division of Nephrology & Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tiffany Shi
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Eileen E. Cianciolo
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ashley R. Burg
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - P. Chukwunalu Chukwuma
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | - Jennifer L. Picarsic
- Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Mary K. Morrice
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - E. Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jonathan S. Maltzman
- Department of Medicine, Stanford University, Palo Alto, CA, United States
- Geriatric Research and Education Clinical Center, Veterans Affairs (VA) Palo Alto Health Care System, Palo Alto, CA, United States
| | - Autumn Ferguson
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brian M. Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | - David A. Hildeman
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
3
|
Spinelli FR, Berti R, Farina G, Ceccarelli F, Conti F, Crescioli C. Exercise-induced modulation of Interferon-signature: a therapeutic route toward management of Systemic Lupus Erythematosus. Autoimmun Rev 2023; 22:103412. [PMID: 37597604 DOI: 10.1016/j.autrev.2023.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is a multisystemic autoimmune disorder characterized by flares-ups/remissions with a complex clinical picture related to disease severity and organ/tissue injury, which, if left untreated, may result in permanent damage. Enhanced fatigue and pain perception, worsened quality of life (QoL) and outcome are constant, albeit symptoms may differ. An aberrant SLE immunoprofiling, note as "interferon (IFN)α-signature", is acknowledged to break immunotolerance. Recently, a deregulated "IFNγ-signature" is suggested to silently precede/trigger IFNα profile before clinical manifestations. IFNα- and IFNγ-over-signaling merge in cytokine/chemokine overexpression exacerbating autoimmunity. Remission achievement and QoL improvement are the main goals. The current therapy (i.e., corticosteroids, immunosuppressants) aims to downregulate immune over-response. Exercise could be a safe treatment due to its ever-emerging ability to shape and re-balance immune system without harmful side-effects; in addition, it improves cardiorespiratory capacity and musculoskeletal strength/power, usually impaired in SLE. Nevertheless, exercise is not yet included in SLE care plans. Furthermore, due to the fear to worsening pain/fatigue, SLE subjects experience kinesiophobia and sedentary lifestyle, worsening physical health. Training SLE patients to exercise is mandatory to fight inactive behavior and ameliorate health. This review aims to focus the attention on the role of exercise as a non-pharmacological therapy in SLE, considering its ability to mitigate IFN-signature and rebalance (auto)immune response. To this purpose, the significance of IFNα- and IFNγ-signaling in SLE etiopathogenesis will be addressed first and discussed thereafter as biotarget of exercise. Comments are addressed on the need to make aware all SLE care professional figures to promote exercise for health patients.
Collapse
Affiliation(s)
- Francesca Romana Spinelli
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Riccardo Berti
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy
| | - Gabriele Farina
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy
| | - Fulvia Ceccarelli
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Fabrizio Conti
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Clara Crescioli
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy.
| |
Collapse
|
4
|
Franco-Acevedo A, Comes J, Mack JJ, Valenzuela NM. New insights into maladaptive vascular responses to donor specific HLA antibodies in organ transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1146040. [PMID: 38993843 PMCID: PMC11235244 DOI: 10.3389/frtra.2023.1146040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 07/13/2024]
Abstract
Transplant vasculopathy (TV) causes thickening of donor blood vessels in transplanted organs, and is a significant cause of graft loss and mortality in allograft recipients. It is known that patients with repeated acute rejection and/or donor specific antibodies are predisposed to TV. Nevertheless, the exact molecular mechanisms by which alloimmune injury culminates in this disease have not been fully delineated. As a result of this incomplete knowledge, there is currently a lack of effective therapies for this disease. The immediate intracellular signaling and the acute effects elicited by anti-donor HLA antibodies are well-described and continuing to be revealed in deeper detail. Further, advances in rejection diagnostics, including intragraft gene expression, provide clues to the inflammatory changes within allografts. However, mechanisms linking these events with long-term outcomes, particularly the maladaptive vascular remodeling seen in transplant vasculopathy, are still being delineated. New evidence demonstrates alterations in non-coding RNA profiles and the occurrence of endothelial to mesenchymal transition (EndMT) during acute antibody-mediated graft injury. EndMT is also readily apparent in numerous settings of non-transplant intimal hyperplasia, and lessons can be learned from advances in those fields. This review will provide an update on these recent developments and remaining questions in our understanding of HLA antibody-induced vascular damage, framed within a broader consideration of manifestations and implications across transplanted organ types.
Collapse
Affiliation(s)
- Adriana Franco-Acevedo
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Johanna Comes
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Julia J Mack
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA, United States
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Cheung J, Zahorowska B, Suranyi M, Wong JKW, Diep J, Spicer ST, Verma ND, Hodgkinson SJ, Hall BM. CD4 +CD25 + T regulatory cells in renal transplantation. Front Immunol 2022; 13:1017683. [PMID: 36426347 PMCID: PMC9681496 DOI: 10.3389/fimmu.2022.1017683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 09/14/2023] Open
Abstract
The immune response to an allograft activates lymphocytes with the capacity to cause rejection. Activation of CD4+CD25+Foxp3+T regulatory cells (Treg) can down-regulate allograft rejection and can induce immune tolerance to the allograft. Treg represent <10% of peripheral CD4+T cells and do not markedly increase in tolerant hosts. CD4+CD25+Foxp3+T cells include both resting and activated Treg that can be distinguished by several markers, many of which are also expressed by effector T cells. More detailed characterization of Treg to identify increased activated antigen-specific Treg may allow reduction of non-specific immunosuppression. Natural thymus derived resting Treg (tTreg) are CD4+CD25+Foxp3+T cells and only partially inhibit alloantigen presenting cell activation of effector cells. Cytokines produced by activated effector cells activate these tTreg to more potent alloantigen-activated Treg that may promote a state of operational tolerance. Activated Treg can be distinguished by several molecules they are induced to express, or whose expression they have suppressed. These include CD45RA/RO, cytokine receptors, chemokine receptors that alter pathways of migration and transcription factors, cytokines and suppression mediating molecules. As the total Treg population does not increase in operational tolerance, it is the activated Treg which may be the most informative to monitor. Here we review the methods used to monitor peripheral Treg, the effect of immunosuppressive regimens on Treg, and correlations with clinical outcomes such as graft survival and rejection. Experimental therapies involving ex vivo Treg expansion and administration in renal transplantation are not reviewed.
Collapse
Affiliation(s)
- Jason Cheung
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
| | | | - Michael Suranyi
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | - Jason Diep
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Stephen T. Spicer
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Nirupama D. Verma
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Suzanne J. Hodgkinson
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Bruce M. Hall
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
6
|
Chen Z, Xu H, Li Y, Zhang X, Cui J, Zou Y, Yu J, Wu J, Xia J. Single-Cell RNA sequencing reveals immune cell dynamics and local intercellular communication in acute murine cardiac allograft rejection. Theranostics 2022; 12:6242-6257. [PMID: 36168621 PMCID: PMC9475451 DOI: 10.7150/thno.75543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Rationale: Transplant rejection is a major impediment to long-term allograft survival, in which the actions of immune cells are of fundamental importance. However, the immune cell dynamics and local intercellular communication of acute cardiac allograft rejection are not completely clear. Methods: Here we performed single-cell RNA sequencing on CD45+ immune cells isolated from cardiac grafts and spleens in a model of murine heterotopic heart transplantation. Moreover, we applied unsupervised clustering, functional enrichment analysis, cell trajectory construction and intercellular communication analysis to explore the immune cell dynamics and local intercellular communication of acute cardiac allograft rejection at single-cell level. The effect of CXCR3 antagonist and neutralizing antibody against its ligand on allograft rejection and T cell function was evaluated in murine heart transplantation model. Results: We presented the immune cell landscape of acute murine cardiac allograft rejection at single-cell resolution, and uncovered the functional characteristics and differentiation trajectory of several alloreactive cell subpopulations, including Mki67hi CTLs, Ccl5hi CTLs, activated Tregs and alloreactive B cells. We demonstrated local intercellular communication and revealed the upregulation of CXCR3 and its ligands in cardiac allografts. Finally, CXCR3 blockade significantly suppressed acute cardiac allograft rejection and inhibited the alloreactive T cell function. Conclusions: These results provide a new insight into the immune cell dynamics and local intercellular communication of acute cardiac allograft rejection, and suggest CXCR3 pathway may serve as a potential therapeutic target for transplant rejection.
Collapse
Affiliation(s)
- Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
7
|
Anastasaki C, Chatterjee J, Cobb O, Sanapala S, Scheaffer SM, De Andrade Costa A, Wilson AF, Kernan CM, Zafar AH, Ge X, Garbow JR, Rodriguez FJ, Gutmann DH. Human induced pluripotent stem cell engineering establishes a humanized mouse platform for pediatric low-grade glioma modeling. Acta Neuropathol Commun 2022; 10:120. [PMID: 35986378 PMCID: PMC9392324 DOI: 10.1186/s40478-022-01428-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
A major obstacle to identifying improved treatments for pediatric low-grade brain tumors (gliomas) is the inability to reproducibly generate human xenografts. To surmount this barrier, we leveraged human induced pluripotent stem cell (hiPSC) engineering to generate low-grade gliomas (LGGs) harboring the two most common pediatric pilocytic astrocytoma-associated molecular alterations, NF1 loss and KIAA1549:BRAF fusion. Herein, we identified that hiPSC-derived neuroglial progenitor populations (neural progenitors, glial restricted progenitors and oligodendrocyte progenitors), but not terminally differentiated astrocytes, give rise to tumors retaining LGG histologic features for at least 6 months in vivo. Additionally, we demonstrated that hiPSC-LGG xenograft formation requires the absence of CD4 T cell-mediated induction of astrocytic Cxcl10 expression. Genetic Cxcl10 ablation is both necessary and sufficient for human LGG xenograft development, which additionally enables the successful long-term growth of patient-derived pediatric LGGs in vivo. Lastly, MEK inhibitor (PD0325901) treatment increased hiPSC-LGG cell apoptosis and reduced proliferation both in vitro and in vivo. Collectively, this study establishes a tractable experimental humanized platform to elucidate the pathogenesis of and potential therapeutic opportunities for childhood brain tumors.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Shilpa Sanapala
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Suzanne M Scheaffer
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Amanda De Andrade Costa
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Anna F Wilson
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Chloe M Kernan
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Ameera H Zafar
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fausto J Rodriguez
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Suryawanshi H, Yang H, Lubetzky M, Morozov P, Lagman M, Thareja G, Alonso A, Li C, Snopkowski C, Belkadi A, Mueller FB, Lee JR, Dadhania DM, Salvatore SP, Seshan SV, Sharma VK, Suhre K, Suthanthiran M, Tuschl T, Muthukumar T. Detection of infiltrating fibroblasts by single-cell transcriptomics in human kidney allografts. PLoS One 2022; 17:e0267704. [PMID: 35657798 PMCID: PMC9165878 DOI: 10.1371/journal.pone.0267704] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
We tested the hypothesis that single-cell RNA-sequencing (scRNA-seq) analysis of human kidney allograft biopsies will reveal distinct cell types and states and yield insights to decipher the complex heterogeneity of alloimmune injury. We selected 3 biopsies of kidney cortex from 3 individuals for scRNA-seq and processed them fresh using an identical protocol on the 10x Chromium platform; (i) HK: native kidney biopsy from a living donor, (ii) AK1: allograft kidney with transplant glomerulopathy, tubulointerstitial fibrosis, and worsening graft function, and (iii) AK2: allograft kidney after successful treatment of active antibody-mediated rejection. We did not study T-cell-mediated rejections. We generated 7217 high-quality single cell transcriptomes. Taking advantage of the recipient-donor sex mismatches revealed by X and Y chromosome autosomal gene expression, we determined that in AK1 with fibrosis, 42 months after transplantation, more than half of the kidney allograft fibroblasts were recipient-derived and therefore likely migratory and graft infiltrative, whereas in AK2 without fibrosis, 84 months after transplantation, most fibroblasts were donor-organ-derived. Furthermore, AK1 was enriched for tubular progenitor cells overexpressing profibrotic extracellular matrix genes. AK2, eight months after successful treatment of rejection, contained plasmablast cells with high expression of immunoglobulins, endothelial cell elaboration of T cell chemoattractant cytokines, and persistent presence of cytotoxic T cells. In addition to these key findings, our analysis revealed unique cell types and states in the kidney. Altogether, single-cell transcriptomics yielded novel mechanistic insights, which could pave the way for individualizing the care of transplant recipients.
Collapse
Affiliation(s)
- Hemant Suryawanshi
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, United States of America
| | - Hua Yang
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Michelle Lubetzky
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| | - Pavel Morozov
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, United States of America
| | - Mila Lagman
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Gaurav Thareja
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Alicia Alonso
- Epigenomics Core Facility, Weill Cornell Medical College, New York, NY, United States of America
| | - Carol Li
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Catherine Snopkowski
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Aziz Belkadi
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Franco B. Mueller
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - John R. Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| | - Darshana M. Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| | - Steven P. Salvatore
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Surya V. Seshan
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Vijay K. Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, United States of America
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| |
Collapse
|
9
|
Ledwoch N, Wiegmann B, Chichelnitskiy E, Wandrer F, Kühne JF, Beushausen K, Keil J, Radomsky L, Sommer W, Knöfel AK, Rojas SV, Ius F, Haverich A, Warnecke G, Falk CS. Identification of distinct secretory patterns and their regulatory networks of ischemia versus reperfusion phases in clinical heart transplantation. Cytokine 2021; 149:155744. [PMID: 34649160 DOI: 10.1016/j.cyto.2021.155744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ischemia/reperfusion injury (IRI) is associated with inflammatory responses contributing to the development of primary graft dysfunction (PGD) and rejection. Here, we investigated the pathophysiology of IRI and the early phase after heart transplantation (HTx) regarding its cytokine/chemokine and endothelial networks. METHODS Using multiplex technology, we assessed protein concentrations in plasma samples of HTx recipients (n = 11) pre-, postoperatively, 24 h and 3 weeks after HTx. The same proteins were quantified in organ storage solutions at the end of heart storage (n = 10). Unsupervised cluster, principal component analysis (PCA), K-nearest neighbor (KNN) network classifier analysis, ANOVA and Spearman correlation analyses were performed to identify specific patterns for IRI and individual kinetics of important soluble factors in HTx. RESULTS Unique patterns of soluble factors were identified in plasma of HTx patients. KNN analysis defined IL-10, IL-6, sIL-6Rα, IL-1RA, IL-16, sVEGFR-1, IGFBP-1, HGF and sHer-2 as strongest signals directly post-Tx declining 24 hrs after HTx. By contrast, MIF, osteopontin (OPN), sVCAM-1 and sICAM-1, IGFBP-1, SCGF-ß, HGF were highly enriched in organ storage solutions, reflecting distinct ischemic (storage solution) vs. reperfusion (plasma) signatures. CONCLUSIONS We identified specific inflammatory signatures for ischemic vs. reperfusion phases of HTx, associated with pro- as well as anti-inflammatory and endothelial biomarker candidates for IRI. These signatures might help to identify potential danger factors and their networks at both the ex situ (ischemic) as well as the reperfusion phase in the recipient after implantation.
Collapse
Affiliation(s)
- Nadine Ledwoch
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany; German Centre for Lung Research, DZL, BREATH Site, Germany
| | | | - Franziska Wandrer
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Jenny F Kühne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Kerstin Beushausen
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Jana Keil
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Lena Radomsky
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany; German Centre for Infection Research, DZIF, TTU-IICH Hannover-Braunschweig Site, Germany
| | - Wiebke Sommer
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Lung Research, DZL, BREATH Site, Germany
| | - Ann-Kathrin Knöfel
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany; German Centre for Lung Research, DZL, BREATH Site, Germany
| | - Sebastian V Rojas
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinikum der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Fabio Ius
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Lung Research, DZL, BREATH Site, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany; German Centre for Lung Research, DZL, BREATH Site, Germany; German Centre for Infection Research, DZIF, TTU-IICH Hannover-Braunschweig Site, Germany.
| |
Collapse
|
10
|
Conart JB, Augustin S, Remen T, Sahel JA, Guillonneau X, Delarasse C, Sennlaub F, Berrod JP. Vitreous cytokine expression profiles in patients with retinal detachment. J Fr Ophtalmol 2021; 44:1349-1357. [PMID: 34544594 DOI: 10.1016/j.jfo.2021.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE To compare the expression profiles of various cytokines and chemokines in vitreous samples from patients with retinal detachment (RD) to those from controls and to analyze their association with various clinical features. METHODS In this prospective study, undiluted vitreous fluid was obtained from 41 patients with primary RD and 33 controls with macular hole or vitreomacular traction. A multiplex bead immunoassay was performed to determine the expression of 27 inflammatory mediators. RESULTS Eleven mediators were significantly upregulated in the vitreous of RD patients compared with controls, including the following: cytokines IL-1ra, IL-6, IL-7, IL-8, IFN-γ; chemokines CCL2, CCL3, CCL4, CXCL10 and CCL11 and growth factor G-CSF. Correlation analyses showed that levels of IL-1ra, CXCL10, CCL11 and G-CSF were positively correlated to the extent of detachment, while those of IL-1ra and CXCL10 were associated with the duration of detachment. There was also a positive association between the concentrations of CXCL10 and CCL11 and preoperative flare values. Additional analysis revealed that flare values and both CXCL10 and CCL11 levels were significantly higher in eyes with grade B or C proliferative vitreoretinopathy (PVR). CONCLUSION Our results confirm that RD induces a marked inflammatory response with a complex cytokine network. We identified proteins specifically linked to several clinical features that might contribute to photoreceptor degeneration and PVR-related redetachment. These proteins may represent potential therapeutic targets for improving the anatomical and functional outcomes of RD surgery.
Collapse
Affiliation(s)
- J-B Conart
- Department of Ophthalmology, Nancy University Hospital, Vandœuvre-lès-Nancy, France; Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, 17, rue Moreau, 75012 Paris, France.
| | - S Augustin
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, 17, rue Moreau, 75012 Paris, France
| | - T Remen
- ESPRI-BioBase Unit, Platform of PARC, Nancy University Hospital, Vandœuvre-lès-Nancy, France
| | - J-A Sahel
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, 17, rue Moreau, 75012 Paris, France
| | - X Guillonneau
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, 17, rue Moreau, 75012 Paris, France
| | - C Delarasse
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, 17, rue Moreau, 75012 Paris, France
| | - F Sennlaub
- Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, 17, rue Moreau, 75012 Paris, France
| | - J-P Berrod
- Department of Ophthalmology, Nancy University Hospital, Vandœuvre-lès-Nancy, France
| |
Collapse
|
11
|
Wigner P, Grębowski R, Bijak M, Szemraj J, Saluk-Bijak J. The Molecular Aspect of Nephrolithiasis Development. Cells 2021; 10:1926. [PMID: 34440695 PMCID: PMC8393760 DOI: 10.3390/cells10081926] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 01/06/2023] Open
Abstract
Urolithiasis is the third most common urological disease after urinary tract infections and prostate diseases, and it is characterised by an occurrence rate of about 15%, which continues to rise. The increase in the incidence of kidney stones observed in recent decades, is most likely caused by modifications in dietary habits (high content of protein, sodium and sugar diet) and lifestyle (reduced physical activity) in all industrialised countries. Moreover, men are more likely than women to be diagnosed with kidney stones. A growing body of evidence suggests that inflammation, oxidant-antioxidant imbalance, angiogenesis, purine metabolism and urea cycle disorders may play a crucial role in nephrolithiasis development. Patients with urolithiasis were characterised by an increased level of reactive oxygen species (ROS), the products of lipid peroxidation, proinflammatory cytokines as well as proangiogenic factors, compared to controls. Furthermore, it has been shown that deficiency and disorders of enzymes involved in purine metabolism and the urea cycle might be causes of deposit formation. ROS generation suggests that the course of kidney stones might be additionally potentiated by inflammation, purine metabolism and the urea cycle. On the other hand, ROS overproduction may induce activation of angiogenesis, and thus, allows deposit aggregation.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Radosław Grębowski
- Department of Urology, Provincial Integrated Hospital in Plock, Medyczna 19, 09-400 Plock, Poland;
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| |
Collapse
|
12
|
Antiretroviral therapy-treated HIV-infected adults with coronary artery disease are characterized by a distinctive regulatory T-cell signature. AIDS 2021; 35:1003-1014. [PMID: 33587446 DOI: 10.1097/qad.0000000000002842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Despite the success of antiretroviral therapy (ART) to control viral replication, people living with HIV (PWH) have high levels of chronic systemic inflammation and immune dysregulation which drives accelerated co-morbidities including coronary artery disease (CAD). Regulatory T cells (Tregs) and ectonucleotidases CD39/CD73 are known to be athero-protective via their immunosuppressive and anti-inflammatory functions. DESIGN We assessed the dynamics of Treg subsets in ART-treated PWH with or without CAD vs. HIV-uninfected individuals. METHODS Blood specimens were obtained from 142 participants including ART-treated HIV-infected adults with (n = 43) or without CAD (n = 41), as well as HIV-uninfected controls with (n = 31) or without CAD (n = 27). CAD was determined by the presence of atherosclerotic features on computed tomography angiography of the coronary arteries performed on all study participants. Treg subsets frequencies were assessed by flow cytometry. RESULTS Regardless of statin treatment or ART regimen, HIV+CAD+ individuals had the highest total Treg frequencies and increased thymic generation and output of Tregs (Helios/CD31 expression), while athero-protective CD39+/CD73+ Tregs were significantly depleted in this group. Tregs from PWH had higher expression of CCR6/CXCR3 than uninfected individuals regardless of CAD, while in HIV+CAD+ individuals Tregs expressed the highest levels of CCR4, which limits their maintenance. The lowest levels of CD4+ and CD8+ T-cell immune activation has been observed in HIV+CAD+ within study groups. CONCLUSION ART-treated PWH with diagnosed CAD are characterized by profound alterations in populations of anti-inflammatory and athero-protective Treg subsets. These changes may contribute to atherosclerotic plaque formation and progression during chronic HIV infection in the ART era.
Collapse
|
13
|
Mikolajczyk TP, Szczepaniak P, Vidler F, Maffia P, Graham GJ, Guzik TJ. Role of inflammatory chemokines in hypertension. Pharmacol Ther 2020; 223:107799. [PMID: 33359600 DOI: 10.1016/j.pharmthera.2020.107799] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Hypertension is associated with immune cells activation and their migration into the kidney, vasculature, heart and brain. These inflammatory mechanisms are critical for blood pressure regulation and mediate target organ damage, creating unique novel targets for pharmacological modulation. In response to angiotensin II and other pro-hypertensive stimuli, the expression of several inflammatory chemokines and their receptors is increased in the target organs, mediating homing of immune cells. In this review, we summarize the contribution of key inflammatory chemokines and their receptors to increased accumulation of immune cells in target organs and effects on vascular dysfunction, remodeling, oxidative stress and fibrosis, all of which contribute to blood pressure elevation. In particular, the role of CCL2, CCL5, CXCL8, CXCL9, CXCL10, CXCL11, CXCL16, CXCL1, CX3CL1, XCL1 and their receptors in the context of hypertension is discussed. Recent studies have tested the efficacy of pharmacological or genetic targeting of chemokines and their receptors on the development of hypertension. Promising results indicate that some of these pathways may serve as future therapeutic targets to improve blood pressure control and prevent target organ consequences including kidney failure, heart failure, atherosclerosis or cognitive impairment.
Collapse
Affiliation(s)
- Tomasz P Mikolajczyk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Piotr Szczepaniak
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Francesca Vidler
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK; BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gerard J Graham
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland; BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Expression profile of proinflammatory mediators in the placenta of mares during physiological detachment and retention of fetal membranes. Cytokine 2020; 137:155307. [PMID: 33011402 DOI: 10.1016/j.cyto.2020.155307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/01/2020] [Accepted: 09/18/2020] [Indexed: 01/03/2023]
Abstract
Physiological parturition is characterized by sterile, inflammatory-like processes. During parturition, the placenta expresses various proinflammatory mediators, such as chemokines and IL-17. Nevertheless, inflammatory processes present in the parturient mare are poorly characterized. The aim of this study was to investigate the expression of selected chemokines and IL-17 in the allantochorion and the endometrium of mares that retained fetal membranes (RFM) and expelled them physiologically. We hypothesized that the expression of these mediators may be altered in the placenta of mares with RFM and result in RFM occurrence. Differences in mRNA expression in the placenta of investigated groups of mares were detected for CCL2, CCL3, CCL4, CCL8, CXCL1, CXCL8, CXCL10, CX3CL1 and IL-17. There were no differences in mRNA expression of CCL5 and CXCL6. Gene ontology network analysis showed enrichment in genes related to leukocyte migration, cell chemotaxis and response to chemokine in tissues of RFM mares. Analysis of association network suggested denotations between CXCL6, CXCL8, CXCL1, CCL5, CCL4, CX3CL1 and CXCL10. Moreover, possible inhibition of CXCL10 by IL-17A and prostaglandin peroxide synthase 2 (PTGS2) by CXCL1 was detected. Our results suggest that, based on differences in chemokines and IL-17 expression, recruited subsets of leukocytes might differ between the analyzed groups of mares, which in turn may impair the separation of fetal membranes in the group of RFM mares. In addition, the results of the expression analysis suggest that macrophages might be one of the most abundant cells infiltrating the equine placenta during the expulsion of fetal membranes. Furthermore, we suspect that the synthesis of PTGS2 might be inhibited in mares with RFM.
Collapse
|
15
|
Abji F, Lee KA, Pollock RA, Machhar R, Cook RJ, Chandran V, Gladman DD. Declining levels of serum chemokine (C-X-C motif) ligand 10 over time are associated with new onset of psoriatic arthritis in patients with psoriasis: a new biomarker? Br J Dermatol 2020; 183:920-927. [PMID: 32037514 DOI: 10.1111/bjd.18940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND We previously found that serum levels of chemokine (C-X-C motif) ligand 10 (CXCL10) decreased after the onset of psoriatic arthritis (PsA). OBJECTIVES We measured CXCL10 levels over time in patients with psoriasis who developed PsA to determine whether the drop in CXCL10 was specific to these patients and further assess its association with PsA development. METHODS Prospectively followed patients with psoriasis without arthritis [cutaneous psoriasis (PsC)] were assessed yearly by rheumatologists for the presence of PsA. Patients with PsC who developed PsA (converters) were matched to those that did not develop PsA (nonconverters) based on psoriasis duration and the interval between follow-up visits. The duration between baseline and the first visit postconversion in converters was used to assign a pseudoconversion date in nonconverters. Linear mixed-effects models were used to model the expression of CXCL10 over time. RESULTS CXCL10 significantly declined over time in converters prior to PsA development with a significant difference in the trend over time between converters (n = 29) and nonconverters (n = 52; P < 0·001). CXCL10 continued to decline after PsA onset in a subset of converters. There was a significant difference in the trend of CXCL10 levels between converters (n = 24) and nonconverters (n = 16; P = 0·01) preconversion/pseudoconversion. This difference remained postconversion (P = 0·006) and was not different from the preconversion period (P = 0·75). CONCLUSIONS A large difference in CXCL10 was identified in patients with PsC that are destined to develop PsA over time. This exploratory analysis supports the association of CXCL10 with PsA development in patients with PsC and warrants further study of the predictive ability of this chemokine. What is already known about this topic? Chemokine (C-X-C motif) ligand 10 (CXCL10) is elevated in psoriatic affected tissues and serum and/or plasma. Patients with psoriasis that develop psoriatic arthritis (PsA) have elevated CXCL10 levels at baseline and these levels drop after arthritis onset. What does this study add? By monitoring levels of CXCL10 in serum over multiple visits in patients with psoriasis that develop PsA as well as those that do not develop PsA, an association was identified between CXCL10 and PsA development. What is the translational message? CXCL10 is a strong candidate for use by physicians for the detection of patients with psoriasis that are at risk of developing PsA. Linked Comment: Kirby and Fitzgerald. Br J Dermatol 2020; 183:805-806.
Collapse
Affiliation(s)
- F Abji
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - K-A Lee
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - R A Pollock
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - R Machhar
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - R J Cook
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - V Chandran
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - D D Gladman
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Arger NK, Ho ME, Allen IE, Benn BS, Woodruff PG, Koth LL. CXCL9 and CXCL10 are differentially associated with systemic organ involvement and pulmonary disease severity in sarcoidosis. Respir Med 2019; 161:105822. [PMID: 31783271 DOI: 10.1016/j.rmed.2019.105822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Sarcoidosis is a granulomatous inflammatory disease with limited blood markers to predict outcomes. The interferon-gamma (IFN-γ)-inducible chemotactic cytokines (chemokines), CXCL9 and CXCL10, are both increased in sarcoidosis patients, yet they possess important molecular differences. Our study determined if serum chemokines correlated with different aspects of disease severity. METHODS We measured CXCL9 and CXCL10 serum levels at initial study visits and longitudinally in sarcoidosis subjects using ELISA. We examined these chemokines' relationships with pulmonary and organ involvement outcomes, their gene expression, peripheral blood immune cell populations, and immunosuppression use. RESULTS Higher CXCL10 levels negatively correlated with FVC, TLC, and DLCO at subjects' initial visit and when measured repeatedly over two years. CXCL10 also positively correlated with longitudinal respiratory symptom severity. Additionally, for every log10(CXCL10) increase, the risk of longitudinal pulmonary function decline increased 8.8 times over the 5-year study period (95% CI 1.6-50, p = 0.014, log10(CXCL0) range 0.84-2.7). In contrast, CXCL9 levels positively correlated with systemic organ involvement at initial study visit (1.5 additional organs involved for every log10(CXCL9) increase, 95% CI 1.1-2.0, p = 0.022, log10(CXCL9) range 1.3-3.3). CXCL10, not CXCL9, positively correlated with its own blood gene expression and monocyte level. Immunosuppressive treatment was associated with lower levels of both chemokines. CONCLUSIONS In sarcoidosis subjects, serum CXCL9 levels correlated with systemic organ involvement and CXCL10 levels strongly correlated with respiratory outcomes, which may ultimately prove helpful in clinical management. These differing associations may be due to differences in cellular regulation and tissue origin.
Collapse
Affiliation(s)
- Nicholas K Arger
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA, 94143, USA.
| | - Melissa E Ho
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Isabel E Allen
- University of California, San Francisco, Department of Epidemiology and Biostatistics, 550 16thSt, San Francisco, CA, 94158, USA
| | - Bryan S Benn
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Prescott G Woodruff
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Laura L Koth
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| |
Collapse
|
17
|
Zammit NW, Walters SN, Seeberger KL, O'Connell PJ, Korbutt GS, Grey ST. A20 as an immune tolerance factor can determine islet transplant outcomes. JCI Insight 2019; 4:131028. [PMID: 31581152 DOI: 10.1172/jci.insight.131028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/25/2019] [Indexed: 01/05/2023] Open
Abstract
Islet transplantation can restore lost glycemic control in type 1 diabetes subjects but is restricted in its clinical application by a limiting supply of islets and the need for heavy immune suppression to prevent rejection. TNFAIP3, encoding the ubiquitin editing enzyme A20, regulates the activation of immune cells by raising NF-κB signaling thresholds. Here, we show that increasing A20 expression in allogeneic islet grafts resulted in permanent survival for ~45% of recipients, and > 80% survival when combined with subtherapeutic rapamycin. Allograft survival was dependent upon Tregs and was antigen specific, and grafts showed reduced expression of inflammatory factors. Transplantation of islets with A20 containing a loss-of-function variant (I325N) resulted in increased RIPK1 ubiquitination and NF-κB signaling, graft hyperinflammation, and acute allograft rejection. Overexpression of A20 in human islets potently reduced expression of inflammatory mediators, with no impact on glucose-stimulated insulin secretion. Therapeutic administration of A20 raises inflammatory signaling thresholds to favor immune tolerance and promotes islet allogeneic survival. Clinically, this would allow for reduced immunosuppression and support the use of alternate islet sources.
Collapse
Affiliation(s)
- Nathan W Zammit
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Stacey N Walters
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Karen L Seeberger
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney at Westmead Hospital, NSW Australia
| | - Gregory S Korbutt
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Shane T Grey
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| |
Collapse
|
18
|
Filardi T, Ghinassi B, Di Baldassarre A, Tanzilli G, Morano S, Lenzi A, Basili S, Crescioli C. Cardiomyopathy Associated with Diabetes: The Central Role of the Cardiomyocyte. Int J Mol Sci 2019; 20:ijms20133299. [PMID: 31284374 PMCID: PMC6651183 DOI: 10.3390/ijms20133299] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022] Open
Abstract
The term diabetic cardiomyopathy (DCM) labels an abnormal cardiac structure and performance due to intrinsic heart muscle malfunction, independently of other vascular co-morbidity. DCM, accounting for 50%–80% of deaths in diabetic patients, represents a worldwide problem for human health and related economics. Optimal glycemic control is not sufficient to prevent DCM, which derives from heart remodeling and geometrical changes, with both consequences of critical events initially occurring at the cardiomyocyte level. Cardiac cells, under hyperglycemia, very early undergo metabolic abnormalities and contribute to T helper (Th)-driven inflammatory perturbation, behaving as immunoactive units capable of releasing critical biomediators, such as cytokines and chemokines. This paper aims to focus onto the role of cardiomyocytes, no longer considered as “passive” targets but as “active” units participating in the inflammatory dialogue between local and systemic counterparts underlying DCM development and maintenance. Some of the main biomolecular/metabolic/inflammatory processes triggered within cardiac cells by high glucose are overviewed; particular attention is addressed to early inflammatory cytokines and chemokines, representing potential therapeutic targets for a prompt early intervention when no signs or symptoms of DCM are manifesting yet. DCM clinical management still represents a challenge and further translational investigations, including studies at female/male cell level, are warranted.
Collapse
Affiliation(s)
- Tiziana Filardi
- Department of Experimental Medicine, "Sapienza" University, Viale del Policlinico 155, 00161 Rome, Italy
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti and Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti and Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Gaetano Tanzilli
- Department of Cardiovascular Sciences, "Sapienza" University, Viale del Policlinico 155, 00161 Rome, Italy
| | - Susanna Morano
- Department of Experimental Medicine, "Sapienza" University, Viale del Policlinico 155, 00161 Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, "Sapienza" University, Viale del Policlinico 155, 00161 Rome, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Clara Crescioli
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", Piazza L. de Bosis 6, 00135 Rome, Italy.
| |
Collapse
|
19
|
Chow MT, Ozga AJ, Servis RL, Frederick DT, Lo JA, Fisher DE, Freeman GJ, Boland GM, Luster AD. Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy. Immunity 2019; 50:1498-1512.e5. [PMID: 31097342 PMCID: PMC6527362 DOI: 10.1016/j.immuni.2019.04.010] [Citation(s) in RCA: 410] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 02/19/2019] [Accepted: 04/23/2019] [Indexed: 01/01/2023]
Abstract
Despite compelling rates of durable clinical responses to programmed cell death-1 (PD-1) blockade, advances are needed to extend these benefits to resistant tumors. We found that tumor-bearing mice deficient in the chemokine receptor CXCR3 responded poorly to anti-PD-1 treatment. CXCR3 and its ligand CXCL9 were critical for a productive CD8+ T cell response in tumor-bearing mice treated with anti-PD-1 but were not required for the infiltration of CD8+ T cells into tumors. The anti-PD-1-induced anti-tumor response was facilitated by CXCL9 production from intratumoral CD103+ dendritic cells, suggesting that CXCR3 facilitates dendritic cell-T cell interactions within the tumor microenvironment. CXCR3 ligands in murine tumors and in plasma of melanoma patients were an indicator of clinical response to anti-PD-1, and their induction in non-responsive murine tumors promoted responsiveness to anti-PD-1. Our data suggest that the CXCR3 chemokine system is a biomarker for sensitivity to PD-1 blockade and that augmenting the intratumoral function of this chemokine system could improve clinical outcomes.
Collapse
Affiliation(s)
- Melvyn T Chow
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Aleksandra J Ozga
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rachel L Servis
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dennie T Frederick
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jennifer A Lo
- Cutaneous Biology Research Center, Department of Dermatology and MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology and MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew D Luster
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
20
|
Chen J, Gao H, Chen L, Wang X, Song Z, Cooper DKC, Qu Z, Cai Z, Mou L. A potential role of TLR2 in xenograft rejection of porcine iliac endothelial cells: An in vitro study. Xenotransplantation 2019; 26:e12526. [PMID: 31127671 DOI: 10.1111/xen.12526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 03/26/2019] [Accepted: 04/18/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Porcine vascular endothelial cells are a major participant in xenograft rejection. The Toll-like receptor 2 (TLR2) pathway plays an important role in both innate and adaptive immunity. The specific role of TLR2 in the response to a xenograft has not been reported. Whether the TLR2 pathway in pig vascular endothelial cells is involved in acute rejection needs to be investigated, and the mechanism is explored. METHODS We used a modified antibody-dependent complement-mediated cytotoxicity (ADCC) assay to conduct in vitro experiments. In porcine iliac artery endothelial cells (PIECs), siRNA was used to knock down the expression of TLR2, CXCL8, and CCL2. The effect of human serum or inactivated human serum on the expression of TLR2 was analyzed by real-time PCR and Western blotting, and transwell assays were used to assess the chemotactic efficiency of PIECs on human monocyte-macrophages (THP-1 cells) and human neutrophils. The downstream signaling pathways activated by human serum were detected by Western blotting, and the regulation of proinflammatory chemokines and cytokines by TLR2 signaling was assessed by real-time PCR and ELISA. RESULTS TLR2 was significantly upregulated in PIECs after exposure to human serum, and porcine proinflammatory chemokines, CXCL8 and CCL2, were induced, at least partially, in a TLR2-dependent pattern; the upregulated chemokines participated in the chemotaxis of human neutrophils and THP-1 cells across the species barrier. CONCLUSIONS (i) TLR2 is significantly upregulated in PIECs by human serum, (ii) the elevated TLR2 participates in the chemotaxis of inflammatory cells through the secretion of chemokine CCL2 and CXCL8, and (iii) blockade of TLR2 would be beneficial for xenograft survival.
Collapse
Affiliation(s)
- Jicheng Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Hanchao Gao
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - LinLin Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xisheng Wang
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Zongpei Song
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - David K C Cooper
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zepeng Qu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
21
|
Urine biomarkers informative of human kidney allograft rejection and tolerance. Hum Immunol 2018; 79:343-355. [DOI: 10.1016/j.humimm.2018.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
|
22
|
Wu XB, He LN, Jiang BC, Shi H, Bai XQ, Zhang WW, Gao YJ. Spinal CXCL9 and CXCL11 are not involved in neuropathic pain despite an upregulation in the spinal cord following spinal nerve injury. Mol Pain 2018; 14:1744806918777401. [PMID: 29712506 PMCID: PMC5967156 DOI: 10.1177/1744806918777401] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chemokines-mediated neuroinflammation in the spinal cord plays a critical role in the pathogenesis of neuropathic pain. Chemokine CXCL9, CXCL10, and CXCL11 have been identified as a same subfamily chemokine which bind to CXC chemokine receptor 3 to exert functions. Our recent work found that CXCL10 is upregulated in spinal astrocytes after spinal nerve ligation (SNL) and acts on chemokine receptor CXCR3 on neurons to contribute to central sensitization and neuropathic pain, but less is known about CXCL9 and CXCL11 in the maintenance of neuropathic pain. Here, we report that CXCL9 and CXCL11, same as CXCL10, were increased in spinal astrocytes after SNL. Surprisingly, inhibition of CXCL9 or CXCL11 by spinal injection of shRNA lentivirus did not attenuate SNL-induced neuropathic pain. In addition, intrathecal injection of CXCL9 and CXCL11 did not produce hyperalgesia or allodynia behaviors, and neither of them induced ERK activation, a marker of central sensitization. Whole-cell patch clamp recording on spinal neurons showed that CXCL9 and CXCL11 enhanced both excitatory synaptic transmission and inhibitory synaptic transmission, whereas CXCL10 only produced an increase in excitatory synaptic transmission. These results suggest that, although the expression of CXCL9 and CXCL11 are increased after SNL, they may not contribute to the maintenance of neuropathic pain.
Collapse
Affiliation(s)
- Xiao-Bo Wu
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Li-Na He
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Bao-Chun Jiang
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Hui Shi
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xue-Qiang Bai
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Wen-Wen Zhang
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yong-Jing Gao
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,2 Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
23
|
Caballero A, Palma E, Ruiz-Esteban P, Vazquez T, Sola E, Torio A, Cabello M, Lopez V, Jironda C, Duarte A, Alonso-Titos J, Hernández D. CXCR3 + Monocytes Increase Significantly in Graft Blood Compared to Peripheral Blood in Patients With Stable Kidney Graft Function. Transplant Proc 2018; 50:555-559. [PMID: 29579851 DOI: 10.1016/j.transproceed.2017.11.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/20/2017] [Accepted: 11/11/2017] [Indexed: 12/29/2022]
Abstract
INTRODUCTION We have recently reported that some lymphocyte populations do not maintain the same proportion in kidney graft blood as in peripheral blood, despite a stable function of the transplanted kidney. These results suggest that a comparative study between leukocyte cells from graft blood and those obtained from peripheral blood could provide information about the inflammatory state of the transplanted organ. In this work we selected the population of CD4+ lymphocytes and monocytes expressing CXCR3 to test this hypothesis. MATERIAL AND METHODS The study was performed by flow cytometry during month 3, 6, and 12 after transplantation in 58 patients who received an isolated kidney transplant and the same immunosuppressive regimen. The peripheral blood sample was obtained by venipuncture and the graft blood by fine needle aspiration. RESULTS We found a significant percentage decrease in CXCR3+ monocytes throughout the first year of transplantation in peripheral blood (15.9 ± 20.7 vs. 12.6 ± 12.4 vs. 6.3 ± 9.0, at 3, 6, and 12 months, respectively; P = .001), whereas the percentage of CXCR3+ monocytes in graft blood did not change over this period. This situation resulted in a significant percentage difference between the CXCR3+ monocytes from the graft blood and those from the peripheral blood at the sixth (15.8 ± 8.1 vs. 12.6 ± 12.4, respectively; P = .008) and 12th months (12.9 ± 8.1 vs. 6.3 ± 9.0, respectively; P < .001). CONCLUSIONS Therefore, we can conclude that the significant percentage increase of CXCR3+ monocytes in graft blood with respect to peripheral blood suggests the presence of inflammatory activity despite renal function being stable during the second half of the first year post-transplantation.
Collapse
Affiliation(s)
- A Caballero
- Immunology Department, Regional University Hospital of Malaga and University of Malaga, IBIMA, REDINREN (RD16/0009/0006), Malaga, Spain
| | - E Palma
- Nephrology Department, Regional University Hospital of Malaga and University of Malaga, IBIMA, REDINREN (RD16/0009/0006), Malaga, Spain
| | - P Ruiz-Esteban
- Immunology Department, Complejo Hospitalario General Universitario de Albacete, Albacete, Spain
| | - T Vazquez
- Nephrology Department, Regional University Hospital of Malaga and University of Malaga, IBIMA, REDINREN (RD16/0009/0006), Malaga, Spain
| | - E Sola
- Nephrology Department, Regional University Hospital of Malaga and University of Malaga, IBIMA, REDINREN (RD16/0009/0006), Malaga, Spain
| | - A Torio
- Immunology Department, Complejo Hospitalario General Universitario de Albacete, Albacete, Spain
| | - M Cabello
- Nephrology Department, Regional University Hospital of Malaga and University of Malaga, IBIMA, REDINREN (RD16/0009/0006), Malaga, Spain
| | - V Lopez
- Nephrology Department, Regional University Hospital of Malaga and University of Malaga, IBIMA, REDINREN (RD16/0009/0006), Malaga, Spain
| | - C Jironda
- Nephrology Department, Regional University Hospital of Malaga and University of Malaga, IBIMA, REDINREN (RD16/0009/0006), Malaga, Spain
| | - A Duarte
- Nephrology Department, Regional University Hospital of Malaga and University of Malaga, IBIMA, REDINREN (RD16/0009/0006), Malaga, Spain
| | - J Alonso-Titos
- Nephrology Department, Regional University Hospital of Malaga and University of Malaga, IBIMA, REDINREN (RD16/0009/0006), Malaga, Spain
| | - D Hernández
- Nephrology Department, Regional University Hospital of Malaga and University of Malaga, IBIMA, REDINREN (RD16/0009/0006), Malaga, Spain.
| |
Collapse
|
24
|
Friedman O, Carmel N, Sela M, Abu Jabal A, Inbal A, Ben Hamou M, Krelin Y, Gur E, Shani N. Immunological and inflammatory mapping of vascularized composite allograft rejection processes in a rat model. PLoS One 2017; 12:e0181507. [PMID: 28746417 PMCID: PMC5528841 DOI: 10.1371/journal.pone.0181507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Hand and face vascularized composite allotransplantation (VCA) is an evolving and challenging field with great opportunities. During VCA, massive surgical damage is inflicted on both donor and recipient tissues, which may contribute to the high VCA rejection rates. To segregate between the damage-induced and rejection phase of post-VCA responses, we compared responses occurring up to 5 days following syngeneic versus allogeneic vascularized groin flap transplantations, culminating in transplant acceptance or rejection, respectively. METHODS The immune response elicited upon transplantation of a syngeneic versus allogeneic vascularized groin flap was compared at Post-operative days 2 or 5 by histology, immunohistochemistry and by broad-scope gene and protein analyses using quantitative real-time PCR and Multiplex respectively. RESULTS Immune cell infiltration began at the donor-recipient interface and paralleled expression of a large group of wound healing-associated genes in both allografts and syngrafts. By day 5 post-transplantation, cell infiltration spread over the entire allograft but remained confined to the wound site in the syngraft. This shift correlated with upregulation of IL-18, INFg, CXCL9, 10 and 11, CCL2, CCL5, CX3CL1 and IL-10 in the allograft only, suggesting their role in the induction of the anti-alloantigen adaptive immune response. CONCLUSIONS High resemblance between the cues governing VCA and solid organ rejection was observed. Despite this high resemblance we describe also, for the first time, a damage induced inflammatory component in VCA rejection as immune cell infiltration into the graft initiated at the surgical damage site spreading to the entire allograft only at late stage rejection. We speculate that the highly inflammatory setting created by the unique surgical damage during VCA may enhance acute allograft rejection.
Collapse
Affiliation(s)
- Or Friedman
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Narin Carmel
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Meirav Sela
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ameen Abu Jabal
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Inbal
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Ben Hamou
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yakov Krelin
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Gur
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Shani
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
25
|
Fearon DT. Immune-Suppressing Cellular Elements of the Tumor Microenvironment. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-050216-034359] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Douglas T. Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
- Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
26
|
Bender C, Christen S, Scholich K, Bayer M, Pfeilschifter JM, Hintermann E, Christen U. Islet-Expressed CXCL10 Promotes Autoimmune Destruction of Islet Isografts in Mice With Type 1 Diabetes. Diabetes 2017; 66:113-126. [PMID: 27797910 DOI: 10.2337/db16-0547] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/21/2016] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes (T1D) results from the autoimmune destruction of insulin-producing β-cells in the pancreas. Thereby, the chemokine CXC-motif ligand 10 (CXCL10) plays an important role in the recruitment of autoaggressive lymphocytes to the islets of Langerhans. Transplantation of isolated islets as a promising therapy for T1D has been hampered by early graft rejection. Here, we investigated the influence of CXCL10 on the autoimmune destruction of islet isografts using RIP-LCMV mice expressing a lymphocytic choriomeningitis virus (LCMV) protein in the β-cells. RIP-LCMV islets express CXCL10 after isolation and maintain CXCL10 production after engraftment. Thus, we isolated islets from either normal or CXCL10-deficient RIP-LCMV mice and transferred them under the kidney capsule of diabetic RIP-LCMV mice. We found that the autoimmune destruction of CXCL10-deficient islet isografts was significantly reduced. The autoimmune destruction was also diminished in mice administered with an anti-CXCL10 antibody. The persistent protection from autoimmune destruction was paralleled by an increase in FoxP3+ regulatory T cells within the cellular infiltrates around the islet isografts. Consequently, CXCL10 might influence the cellular composition locally in the islet graft, thereby playing a role in the autoimmune destruction. CXCL10 might therefore constitute a potential therapeutic target to prolong islet graft survival.
Collapse
Affiliation(s)
- Christine Bender
- Institute for Pharmacology and Toxicology, Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety (ZAFES), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Selina Christen
- Institute for Pharmacology and Toxicology, Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety (ZAFES), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Klaus Scholich
- Institute for Clinical Pharmacology, Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety (ZAFES), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Monika Bayer
- Institute for Pharmacology and Toxicology, Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety (ZAFES), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Josef M Pfeilschifter
- Institute for Pharmacology and Toxicology, Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety (ZAFES), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Edith Hintermann
- Institute for Pharmacology and Toxicology, Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety (ZAFES), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Urs Christen
- Institute for Pharmacology and Toxicology, Pharmazentrum Frankfurt/Center for Drug Research, Development, and Safety (ZAFES), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Stephenson E, Savvatis K, Mohiddin SA, Marelli-Berg FM. T-cell immunity in myocardial inflammation: pathogenic role and therapeutic manipulation. Br J Pharmacol 2016; 174:3914-3925. [PMID: 27590129 DOI: 10.1111/bph.13613] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/13/2022] Open
Abstract
T-cell-mediated immunity has been linked not only to a variety of heart diseases, including classic inflammatory diseases such as myocarditis and post-myocardial infarction (Dressler's) syndrome, but also to conditions without an obvious inflammatory component such as idiopathic dilated cardiomyopathy and hypertensive cardiomyopathy. It has been recently proposed that in all these conditions, the heart becomes the focus of T-cell-mediated autoimmune inflammation following ischaemic or infectious injury. For example, in acute myocarditis, an inflammatory disease of heart muscle, T-cell responses are thought to arise as a consequence of a viral infection. In a number of patients, persistent T-cell-mediated responses in acute viral myocarditis can lead to autoimmunity and chronic cardiac inflammation resulting in dilated cardiomyopathy. In spite of the major progress made in understanding the mechanisms of pathogenic T-cell responses, effective and safe therapeutic targeting of the immune system in chronic inflammatory diseases of the heart has not yet been developed due to the lack of specific diagnostic and prognostic biomarkers at an early stage. This has also prevented the identification of targets for patient-tailored immunomodulatory therapies that are both disease- and organ-selective. In this review, we discuss current knowledge of the development and functional characteristics of pathogenic T-cell-mediated immune responses in the heart, and, in particular, in myocarditis, as well as recent advances in experimental models which have the potential to translate into heart-selective immunomodulation. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- E Stephenson
- William Harvey Research Institute, London, UK.,Barts and The London School of Medicine, London, UK
| | - K Savvatis
- William Harvey Research Institute, London, UK.,Barts and The London School of Medicine, London, UK.,Department of Cardiology, Barts Heart Centre, St. Bartholomew NHS Trust, London, UK
| | - S A Mohiddin
- William Harvey Research Institute, London, UK.,Barts and The London School of Medicine, London, UK.,Department of Cardiology, Barts Heart Centre, St. Bartholomew NHS Trust, London, UK
| | - F M Marelli-Berg
- William Harvey Research Institute, London, UK.,Barts and The London School of Medicine, London, UK
| |
Collapse
|
28
|
Jain NG, Wong EA, Aranyosi AJ, Boneschansker L, Markmann JF, Briscoe DM, Irimia D. Microfluidic mazes to characterize T-cell exploration patterns following activation in vitro. Integr Biol (Camb) 2016; 7:1423-31. [PMID: 26325525 DOI: 10.1039/c5ib00146c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The migration of T-cell subsets within peripheral tissues is characteristic of inflammation and immunoregulation. In general, the lymphocyte migratory response is assumed directional and guided by local gradients of chemoattractants and/or chemorepellents. However, little is known about how cells explore their tissue environment, and whether lymphocyte activation may influence speed and exploratory patterns of migration. To probe migration patterns by T-cells we designed a microfluidic maze device that replicates critical features of a tissue-like microenvironment. We quantified the migration patterns of unstimulated and mitogen-activated human T-cells at single cell resolution and found significant differences in exploration within microfluidic mazes. While unstimulated lymphocytes migrated in a directed manner, activated T-cells migrated through large areas of the mazes in an exploratory pattern in response to the chemoattractants RANTES (CCL5) and IP-10 (CXCL10). The analysis of migration enabled by the microfluidic devices help develop new methods for determining how human circulating T-cells function in vivo to seek out antigens in health and disease states.
Collapse
Affiliation(s)
- Namrata G Jain
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA and Transplant Research Program, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Elisabeth A Wong
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Alexander J Aranyosi
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Leo Boneschansker
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA and Transplant Research Program, Boston Children's Hospital, Boston, MA 02115, USA.
| | - James F Markmann
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA and Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Ave, MA 02139, USA
| | - David M Briscoe
- Transplant Research Program, Boston Children's Hospital, Boston, MA 02115, USA. and Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Ave, MA 02139, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA and Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
29
|
Ock SA, Lee J, Oh KB, Hwang S, Yun IJ, Ahn C, Chee HK, Kim H, Park JB, Kim SJ, Kim Y, Im GS, Park E. Molecular immunology profiles of monkeys following xenografting with the islets and heart of α-1,3-galactosyltransferase knockout pigs. Xenotransplantation 2016; 23:357-69. [PMID: 27511303 DOI: 10.1111/xen.12249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 06/18/2016] [Indexed: 11/29/2022]
Abstract
Effective immunosuppression strategies and genetically modified animals have been used to prevent hyperacute and acute xenograft rejection; however, the underlying mechanisms remain unknown. In this study, we evaluated the expression of a comprehensive set of immune system-related genes (89 genes, including five housekeeping genes) in the blood of cynomolgus monkeys (~5 yr old) used as graft recipients, before and after the xenografting of the islets and heart from single and double α-1,3-galactosyltransferase (GalT) knockout (KO) pigs (<6 weeks old). The immunosuppressive regimen included administration of cobra venom factor, anti-thymocyte globulin, rituximab, and anti-CD154 monoclonal antibodies to recipients before and after grafting. Islets were xenografted into the portal vein in type 1 diabetic monkeys, and the heart was xenografted by heterotopic abdominal heart transplantation. Genes from recipient blood were analyzed using RT(2) profiler PCR arrays and the web-based RT(2) profiler PCR array software v.3.5. Recipients treated with immunosuppressive agents without grafting showed significant downregulation of CCL5, CCR4, CCR6, CD4, CD40LG, CXCR3, FASLG, CXCR3, FOXP3, GATA3, IGNG, L10, IL23A, TRAF6, MAPK8, MIF, STAT4, TBX21, TLR3, TLR7, and TYK2 and upregulation of IFNGR1; thus, genes involved in protection against viral and bacterial infection were downregulated, confirming the risk of infection. Notably, C3-level control resulted in xenograft failure within 2 days because of a 7- to 11-fold increase in all xenotransplanted models. Islet grafting using single GalT-KO pigs resulted in upregulation of CXCL10 and MX1, early inflammation, and acute rejection-associated signals at 2 days after xenografting. We observed at least 5-fold upregulation in recipients transplanted with islets grafts from single (MX1) or double (C3, CCR8, IL6, IL13, IRF6, CXCL10, and MX1) GalT-KO pigs after 77 days; single GalT-KO incurred early losses owing to immune attacks. Our results suggest that this novel, simple, non-invasive, and time-efficient procedure (requiring only 1.5 ml blood) for evaluating graft success, minimizing immune rejection, and blocking infection.
Collapse
Affiliation(s)
- Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea. ,
| | - Jungkyu Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Ik Jin Yun
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Curie Ahn
- Transplantation Center, Seoul National University Hospital, Seoul, Korea.,Designed Animal & Transplantation Research Institute, Institute of Green BioScience & Technology, Seoul National University, Pyeongchang, Gangwon-do, Korea
| | - Hyun Keun Chee
- Department of Cardiothoracic Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Hwajung Kim
- Transplantation Center, Seoul National University Hospital, Seoul, Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Youngim Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Gi-Sun Im
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - EungWoo Park
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| |
Collapse
|
30
|
Fu H, Ward EJ, Marelli-Berg FM. Mechanisms of T cell organotropism. Cell Mol Life Sci 2016; 73:3009-33. [PMID: 27038487 PMCID: PMC4951510 DOI: 10.1007/s00018-016-2211-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 02/06/2023]
Abstract
Protective immunity relies upon T cell differentiation and subsequent migration to target tissues. Similarly, immune homeostasis requires the localization of regulatory T cells (Tregs) to the sites where immunity takes place. While naïve T lymphocytes recirculate predominantly in secondary lymphoid tissue, primed T cells and activated Tregs must traffic to the antigen rich non-lymphoid tissue to exert effector and regulatory responses, respectively. Following priming in draining lymph nodes, T cells acquire the 'homing receptors' to facilitate their access to specific tissues and organs. An additional level of topographic specificity is provided by T cells receptor recognition of antigen displayed by the endothelium. Furthermore, co-stimulatory signals (such as those induced by CD28) have been shown not only to regulate T cell activation and differentiation, but also to orchestrate the anatomy of the ensuing T cell response. We here review the molecular mechanisms supporting trafficking of both effector and regulatory T cells to specific antigen-rich tissues.
Collapse
Affiliation(s)
- Hongmei Fu
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Eleanor Jayne Ward
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Federica M Marelli-Berg
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
31
|
Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases. Clin Sci (Lond) 2016; 130:463-78. [DOI: 10.1042/cs20150666] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The CXC chemokines, CXCL4, -9, -10, -11, CXCL4L1, and the CC chemokine CCL21, activate CXC chemokine receptor 3 (CXCR3), a cell-surface G protein-coupled receptor expressed mainly by Th1 cells, cytotoxic T (Tc) cells and NK cells that have a key role in immunity and inflammation. However, CXCR3 is also expressed by vascular smooth muscle and endothelial cells, and appears to be important in controlling physiological vascular function. In the last decade, evidence from pre-clinical and clinical studies has revealed the participation of CXCR3 and its ligands in multiple cardiovascular diseases (CVDs) of different aetiologies including atherosclerosis, hypertension, cardiac hypertrophy and heart failure, as well as in heart transplant rejection and transplant coronary artery disease (CAD). CXCR3 ligands have also proven to be valid biomarkers for the development of heart failure and left ventricular dysfunction, suggesting an underlining pathophysiological relation between levels of these chemokines and the development of adverse cardiac remodelling. The observation that several of the above-mentioned chemokines exert biological actions independent of CXCR3 provides both opportunities and challenges for developing effective drug strategies. In this review, we provide evidence to support our contention that CXCR3 and its ligands actively participate in the development and progression of CVDs, and may additionally have utility as diagnostic and prognostic biomarkers.
Collapse
|
32
|
Corinaldesi C, Di Luigi L, Lenzi A, Crescioli C. Phosphodiesterase type 5 inhibitors: back and forward from cardiac indications. J Endocrinol Invest 2016; 39:143-51. [PMID: 26122487 PMCID: PMC4712255 DOI: 10.1007/s40618-015-0340-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/11/2015] [Indexed: 12/24/2022]
Abstract
PDE5 inhibitors (PDE5i) are widely known as treatment for erectile dysfunction (ED). This favorable action has emerged as a "side effect" from pioneering studies when PDE5i have been originally proposed as treatment for coronary artery disease (CAD). PDE5i showed marginal benefits for CAD treatment; although disappointing for that indication, they improved systemic and pulmonary vasodilation and ameliorated general endothelial function. Therefore, PDE5i have been approved and licensed also for pulmonary artery hypertension (PAH), besides ED. Nowadays, fine-tuned biomolecular mechanisms of PDE5i are well recognized to be beneficial onto myocardial contractility and geometry, to reduce tissue fibrosis, hypertrophy and apoptosis. PDE5i consistently exert benefits on heart failure, infarct, cardiomyopathy. The concept that PDE5i likely blunt Th1-driven inflammatory processes, which shift the homeostatic balance from health to disease, has emerged; PDE5i seem to decrease the release of active biomolecules from cells to tissues interested by inflammation. In this view, following clinical and basic research progresses, PDE5i can be undoubtedly "re-allocated" for cardiac indications and, hopefully, they could be approved as therapeutic tools to treat and prevent heart disease. This review aims to summarize PDE5i different clinical applications, from past to present and future, focusing on their potential power as treatment for cardiac diseases.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Cardiovascular Agents/pharmacokinetics
- Cardiovascular Agents/pharmacology
- Cardiovascular Agents/therapeutic use
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/immunology
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/physiopathology
- Coronary Artery Disease/drug therapy
- Coronary Artery Disease/immunology
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/physiopathology
- Cyclic Nucleotide Phosphodiesterases, Type 5/chemistry
- Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Evidence-Based Medicine
- Heart/drug effects
- Heart/physiopathology
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Myocardium/enzymology
- Myocardium/immunology
- Myocardium/metabolism
- Phosphodiesterase 5 Inhibitors/pharmacokinetics
- Phosphodiesterase 5 Inhibitors/pharmacology
- Phosphodiesterase 5 Inhibitors/therapeutic use
- Vasodilator Agents/pharmacokinetics
- Vasodilator Agents/pharmacology
- Vasodilator Agents/therapeutic use
Collapse
Affiliation(s)
- C Corinaldesi
- Department of Movement, Human and Health Sciences, Section of Health Science, Unit of Endocrinology, University of Rome "Foro Italico", Rome, Italy
| | - L Di Luigi
- Department of Movement, Human and Health Sciences, Section of Health Science, Unit of Endocrinology, University of Rome "Foro Italico", Rome, Italy
| | - A Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - C Crescioli
- Department of Movement, Human and Health Sciences, Section of Health Science, Unit of Endocrinology, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
33
|
Geng W, Lo CM, Ng KT, Ling CC, Qi X, Li CX, Zhai Y, Liu XB, Ma YY, Man K. Interferon-gamma inducible protein 10 (IP10) induced cisplatin resistance of HCC after liver transplantation through ER stress signaling pathway. Oncotarget 2015; 6:28042-56. [PMID: 26336986 PMCID: PMC4695043 DOI: 10.18632/oncotarget.4832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022] Open
Abstract
Tumor recurrence remains an obstacle after liver surgery, especially in living donor liver transplantation (LDLT) for patients with hepatocellular carcinoma (HCC). The acute-phase liver graft injury might potentially induce poor response to chemotherapy in recurrent HCC after liver transplantation. We here intended to explore the mechanism and to identify a therapeutic target to overcome such chemoresistance. The associations among graft injury, overexpression of IP10 and multidrug resistant genes were investigated in a rat liver transplantation model, and further validated in clinical cohort. The role of IP10 on HCC cell proliferation and tumor growth under chemotherapy was studied both in vitro and in vivo. The underlying mechanism was revealed by detecting the activation of endoplasmic reticulum (ER) stress signaling pathways. Moreover, the effect of IP10 neutralizing antibody sensitizing cisplatin treatment was further explored. In rat liver transplantation model, significant up-regulation of IP10 associated with multidrug resistant genes was found in small-for-size liver graft. Clinically, high expression of circulating IP10 was significant correlated with tumor recurrence in HCC patients underwent LDLT. Overexpression of IP10 promoted HCC cell proliferation and tumor growth under cisplatin treatment by activation of ATF6/Grp78 signaling. IP10 neutralizing antibody sensitized cisplatin treatment in nude mice. The overexpression of IP10, which induced by liver graft injury, may lead to cisplatin resistance via ATF6/Grp78 ER stress signaling pathway. IP10 neutralizing antibody could be a potential adjuvant therapy to sensitize cisplatin treatment.
Collapse
Affiliation(s)
- Wei Geng
- Department of Surgery, The University of Hong Kong, Hong Kong, China
- Department of Transplantation and Hepatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chung-Mau Lo
- Department of Surgery, The University of Hong Kong, Hong Kong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Kevin T.P. Ng
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Chang-Chun Ling
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Xiang Qi
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Chang-Xian Li
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Yuan Zhai
- Department of Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Xiao-Bing Liu
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Yuen-Yuen Ma
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Kwan Man
- Department of Surgery, The University of Hong Kong, Hong Kong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW To summarize the promises and limitations of candidate noninvasive immunological biomarkers in cardiac rejection, with a special focus on the chemokine CXCL10, as a pretransplant predictive marker of early heart acute rejection. Potential issues for transfer from research to the clinic are addressed. RECENT FINDINGS Early changes of immune biomolecules in peripheral blood, reflecting graft or heart recipient's immune status, are candidate biomarkers able to diagnose or predict cardiac rejection, ideally giving an opportunity to intervene before heart failure occurs. The support of robust analytical methodologies is necessary for the transition from biomarker discovery to clinical implementation. SUMMARY Cardiac rejection represents the main problem after heart transplantation. Endomyocardial biopsy, although invasive and not risk free, is the gold-standard procedure for rejection monitoring. Noninvasive heart damage biomarkers manifest substantially after rejection occurrence. The goal is to detect graft injury at the earliest possible stage in disease initiation. Some biomolecules associated with the early immune response to cardiac allograft retain the power to be diagnostic and, even better, predictive of acute rejection, as in the case of pretransplant CXCL10 serum level. Multicenter studies for assay validation and standardization, integrated analysis of multiple biomarkers, and cost-effectiveness evaluation are mandatory efforts.
Collapse
|
35
|
Ahmed SS, Wang XN, Norden J, Pearce K, El-Gezawy E, Atarod S, Hromadnikova I, Collin M, Holler E, Dickinson AM. Identification and validation of biomarkers associated with acute and chronic graft versus host disease. Bone Marrow Transplant 2015; 50:1563-71. [DOI: 10.1038/bmt.2015.191] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/28/2022]
|
36
|
Abstract
Expression of distinct homing receptors guides adaptive immune cells to antigen-rich tissue. In this issue of Immunity, Komarowska et al. (2015) describe an autocrine loop that is initiated by cardiac-expressed hepatocyte growth factor to direct T cells into the heart during inflammation and cardiac transplant rejection.
Collapse
Affiliation(s)
- Dennis Wolf
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Jie Li
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
37
|
Protective Effect of CXCR3⁺CD4⁺CD25⁺Foxp3⁺ Regulatory T Cells in Renal Ischemia-Reperfusion Injury. Mediators Inflamm 2015; 2015:360973. [PMID: 26273136 PMCID: PMC4530276 DOI: 10.1155/2015/360973] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/07/2014] [Accepted: 10/12/2014] [Indexed: 11/26/2022] Open
Abstract
Regulatory T cells (Tregs) suppress excessive immune responses and are potential therapeutic targets in autoimmune disease and organ transplantation rejection. However, their role in renal ischemia-reperfusion injury (IRI) is unclear. Levels of Tregs and expression of CXCR3 in Tregs were analyzed to investigate their function in the early phase of renal IRI. Mice were randomly divided into Sham, IRI, and anti-CD25 (PC61) + IRI groups. The PC61 + IRI group was established by i.p. injection of PC61 monoclonal antibody (mAb) to deplete Tregs before renal ischemia. CD4+CD25+Foxp3+ Tregs and CXCR3 on Tregs were analyzed by flow cytometry. Blood urea nitrogen (BUN), serum creatinine (Scr) levels, and tubular necrosis scores, all measures of kidney injury, were greater in the IRI group than in the Sham group. Numbers of Tregs were increased at 72 h after reperfusion in kidney. PC61 mAb preconditioning decreased the numbers of Tregs and aggravated kidney injury. There was no expression of CXCR3 on Tregs in normal kidney, while it expanded at 72 h after reperfusion and inversely correlated with BUN, Scr, and kidney histology score. This indicated that recruitment of Tregs into the kidney was related to the recovery of renal function after IRI and CXCR3 might be involved in the migration of Tregs.
Collapse
|
38
|
Hepatocyte Growth Factor Receptor c-Met Instructs T Cell Cardiotropism and Promotes T Cell Migration to the Heart via Autocrine Chemokine Release. Immunity 2015; 42:1087-99. [PMID: 26070483 PMCID: PMC4510150 DOI: 10.1016/j.immuni.2015.05.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/18/2014] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Effector-T-cell-mediated immunity depends on the efficient localization of antigen-primed lymphocytes to antigen-rich non-lymphoid tissue, which is facilitated by the expression of a unique set of “homing” receptors acquired by memory T cells. We report that engagement of the hepatocyte growth factor (HGF) receptor c-Met by heart-produced HGF during priming in the lymph nodes instructs T cell cardiotropism, which was associated with a specialized homing “signature” (c-Met+CCR4+CXCR3+). c-Met signals facilitated T cell recruitment to the heart via the chemokine receptor CCR5 by inducing autocrine CCR5 ligand release. c-Met triggering was sufficient to support cardiotropic T cell recirculation, while CCR4 and CXCR3 sustained recruitment during heart inflammation. Transient pharmacological blockade of c-Met during T cell priming led to enhanced survival of heart, but not skin, allografts associated with impaired localization of alloreactive T cells to heart grafts. These findings suggest c-Met as a target for development of organ-selective immunosuppressive therapies. HGF-induced c-Met signals during activation induce cardiotropic memory T cells Cardiotropic T cells express a specific molecular signature (c-Met+CCR4+CXCR3+) By inducing an autocrine chemokine loop, c-Met also promotes T cell recruitment Blockade of the HGF-c-Met axis prevents heart, but not skin, allograft rejection
Collapse
|
39
|
Fairchild RL, Suthanthiran M. Urine CXCL10/IP-10 Fingers Ongoing Antibody-Mediated Kidney Graft Rejection. J Am Soc Nephrol 2015; 26:2607-9. [PMID: 25948874 DOI: 10.1681/asn.2015040353] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Robert L Fairchild
- Department of Immunology and the Glickman Urological Institute, Cleveland Clinic, Cleveland, Ohio; andJoan and Sanford I. Weill Department of Medicine and Department of Transplantation Medicine, New York Presbyterian-Weill Cornell Medical Center, New York, New York
| | - Manikkam Suthanthiran
- Department of Immunology and the Glickman Urological Institute, Cleveland Clinic, Cleveland, Ohio; andJoan and Sanford I. Weill Department of Medicine and Department of Transplantation Medicine, New York Presbyterian-Weill Cornell Medical Center, New York, New York
| |
Collapse
|
40
|
Lee JR, Muthukumar T, Dadhania D, Ding R, Sharma VK, Schwartz JE, Suthanthiran M. Urinary cell mRNA profiles predictive of human kidney allograft status. Immunol Rev 2015; 258:218-40. [PMID: 24517436 DOI: 10.1111/imr.12159] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kidney allograft status is currently characterized using the invasive percutaneous needle core biopsy procedure. The procedure has become safer over the years, but challenges and complications still exist including sampling error, interobserver variability, bleeding, arteriovenous fistula, graft loss, and even death. Because the most common type of acute rejection is distinguished by inflammatory cells exiting the intravascular compartment and gaining access to the renal tubular space, we reasoned that a kidney allograft may function as an in vivo flow cytometer and sort cells involved in rejection into urine. To test this idea, we developed quantitative polymerase chain reaction (PCR) assays for absolute quantification of mRNA and pre-amplification protocols to overcome the low RNA yield from urine. Here, we review our single center urinary cell mRNA profiling studies that led to the multicenter Clinical Trials in Organ Transplantation (CTOT-04) study and the discovery and validation of a 3-gene signature of 18S rRNA-normalized measures of CD3ε mRNA and IP-10 mRNA and 18S rRNA that is diagnostic and predictive of acute cellular rejection in the kidney allograft. We also review our development of a 4-gene signature of mRNAs for vimentin, NKCC2, E-cadherin, and 18S rRNA diagnostic of interstitial fibrosis/tubular atrophy (IF/TA).
Collapse
Affiliation(s)
- John R Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Department of Transplantation Medicine, New York Presbyterian Hospital - Weill Cornell Medical Center, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Nedjai B, Viney JM, Li H, Hull C, Anderson CA, Horie T, Horuk R, Vaidehi N, Pease JE. CXCR3 antagonist VUF10085 binds to an intrahelical site distinct from that of the broad spectrum antagonist TAK-779. Br J Pharmacol 2015; 172:1822-33. [PMID: 25425280 PMCID: PMC4376459 DOI: 10.1111/bph.13027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/16/2014] [Accepted: 11/20/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE The chemokine receptor CXCR3 is implicated in a variety of clinically important diseases, notably rheumatoid arthritis and atherosclerosis. Consequently, antagonists of CXCR3 are of therapeutic interest. In this study, we set out to characterize binding sites of the specific low MW CXCR3 antagonist VUF10085 and the broad spectrum antagonist TAK-779 which blocks CXCR3 along with CCR2 and CCR5. EXPERIMENTAL APPROACH Molecular modelling of CXCR3, followed by virtual ligand docking, highlighted several CXCR3 residues likely to contact either antagonist, notably a conserved aspartate in helix 2 (Asp-112(2:63) ), which was postulated to interact with the quaternary nitrogen of TAK-779. Validation of modelling was carried out by site-directed mutagenesis of CXCR3, followed by assays of cell surface expression, ligand binding and receptor activation. KEY RESULTS Mutation of Asn-132(3.33) , Phe-207 and Tyr-271(6.51) within CXCR3 severely impaired both ligand binding and chemotactic responses, suggesting that these residues are critical for maintenance of a functional CXCR3 conformation. Contrary to our hypothesis, mutation of Asp-112(2:63) had no observable effects on TAK-779 activity, but clearly decreased the antagonist potency of VUF 10085. Likewise, mutations of Phe-131(3.32) , Ile-279(6.59) and Tyr-308(7.43) were well tolerated and were critical for the antagonist activity of VUF 10085 but not for that of TAK-779. CONCLUSIONS AND IMPLICATIONS This more detailed definition of a binding pocket within CXCR3 for low MW antagonists should facilitate the rational design of newer CXCR3 antagonists, with obvious clinical potential.
Collapse
Affiliation(s)
- Belinda Nedjai
- Leukocyte Biology Section, NHLI Division, Faculty of Medicine, Imperial College, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Solhjou Z, Athar H, Xu Q, Abdi R. Emerging therapies targeting intra-organ inflammation in transplantation. Am J Transplant 2015; 15:305-11. [PMID: 25612486 DOI: 10.1111/ajt.13073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 09/16/2014] [Accepted: 10/12/2014] [Indexed: 01/25/2023]
Abstract
Over the past several years, the field of transplantation has witnessed significant progress on several fronts; in particular, achievements have been made in devising novel immunosuppressive strategies. An under-explored area that may hold great potential to improve transplantation outcomes is the design of novel strategies to apply specifically to organs to reduce intra-graft inflammation. A growing body of evidence indicates a key role of intra-graft inflammatory cascade in potently instigating the alloimmune response. Indeed, controlling the activation of innate immunity/inflammatory responses has been shown to be a promising strategy to increase the graft acceptance and survival. In this minireview, we provide an overview of emerging targeted strategies, which can be directly applied to grafts to down-regulate intra-graft inflammation prior to transplantation.
Collapse
Affiliation(s)
- Z Solhjou
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | | |
Collapse
|
43
|
Abstract
Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. They also recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses.
Collapse
Affiliation(s)
- Caroline L Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Andrew D Luster
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
44
|
Abstract
Natural killer (NK) cells are effector cells of the innate immune system that can lyse target cells without prior sensitization and have an important role in host defense to pathogens and transformed cells. A balance between negative and positive signals transmitted via germ line-encoded inhibitory and activating receptors controls the function of NK cells. Although the concept of "missing-self" would suggest that NK cells could target foreign allografts, the prevailing dogma has been that NK cells are not active participants in the mechanisms that culminate in the rejection of solid organ allografts. Recent studies, however, challenge this conclusion and instead implicate NK cells in contributing to both graft rejection and tolerance to an allograft. In this review, we highlight recent studies with the goal of understanding the complex NK cell interactions that impact alloimmunity.
Collapse
Affiliation(s)
- Uzi Hadad
- Division of Abdominal Transplantation, Department of Surgery and Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
45
|
Noninvasive allograft imaging of acute rejection: evaluation of (131)I-anti-CXCL10 mAb. Inflammation 2014; 38:456-64. [PMID: 25338944 DOI: 10.1007/s10753-014-0050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to investigate the use of iodine-131-labeled anti-CXCL10 mAb as tracer targeted at CXCL10 to detect acute rejection (AR) with mice model. Expression of CXCL10 was proved by RT-PCR, ELISA, and immunochemistry staining. All groups were submitted to whole-body autoradioimaging and ex vivo biodistribution studies after tail vein injection of (131)I-anti-CXCL10 mAb. The highest concentration/expression of CXCL10 was detected in allograft tissue compared with allograft treated with tacrolimus and isograft control. Tacrolimus could obviously inhibit the rejection of allograft. Allograft could be obviously imaged at all checking points, much clearer than the other two groups. The biodistribution results showed the highest uptake of radiotracer in allograft. T/NT (target/nontarget) ratio was 4.15 ± 0.25 at 72 h, apparently different from allograft treated with tacrolimus (2.29 ± 0.10), P < 0.05. These data suggest that CXCL10 is a promising target for early stage AR imaging and (131)I-CXCL10 mAb can successfully image AR and monitor the effect of immunosuppressant.
Collapse
|
46
|
Quan Z, Quan Y, Wei B, Fang D, Yu W, Jia H, Quan W, Liu Y, Wang Q. Protein-protein interaction network and mechanism analysis in ischemic stroke. Mol Med Rep 2014; 11:29-36. [PMID: 25333814 PMCID: PMC4237100 DOI: 10.3892/mmr.2014.2696] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 05/13/2014] [Indexed: 12/23/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and permanent disability, with enormous financial repercussions on health systems worldwide. Ischemic brain injury results from a complex sequence of pathophysiological events that evolve over time. In order to examine the molecular mechanisms underlying middle cerebral artery occlusion (MCAO)-induced ischemic stroke, the GSE35338 affymetrix microarray data was obtained from the Gene Expression Omnibus database and the differentially expressed genes (DEGs) between samples from patients with MCAO-induced ischemic stroke and sham controls at various time points were identified. Furthermore, protein-protein interaction (PPI) networks were constructed by mapping the DEGs into PPI data to identify the pathways that these DEGS are involved in. The results revealed that the expression of 438 DEGs, which are mainly involved in cell death, oxidant reduction, cell cycle and cell-cell signaling, were altered in MCAO samples. The nodes of CXC motif chemokine 10 (CXCL10) and interleukin-6 (IL-6) were large, with degrees of >20. In conclusion, the results suggest that CXCL10 and IL-6 have important roles in the occurrence and progression of MCAO-induced ischemic stroke.
Collapse
Affiliation(s)
- Zhe Quan
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong 250000, P.R. China
| | - Yuan Quan
- Norman Bethune Medical School of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Bo Wei
- Department of Neurosurgery, The Third Affiliated Hospital (China‑Japan Union Hospital) of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Dening Fang
- Department of Gastroenterology, Shanghai No. 8 Hospital, Shanghai 200235, P.R. China
| | - Weidong Yu
- Department of Neurosurgery, The Third Affiliated Hospital (China‑Japan Union Hospital) of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Hao Jia
- Department of Emergency Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Wei Quan
- Department of Infection, HuiNanXian Hospital, Huinan, Jilin 135100, P.R. China
| | - Yuguang Liu
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong 250000, P.R. China
| | - Qihong Wang
- Department of Neurosurgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
47
|
Muthukumar T, Lee JR, Dadhania DM, Ding R, Sharma VK, Schwartz JE, Suthanthiran M. Allograft rejection and tubulointerstitial fibrosis in human kidney allografts: interrogation by urinary cell mRNA profiling. Transplant Rev (Orlando) 2014; 28:145-54. [PMID: 24929703 DOI: 10.1016/j.trre.2014.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/26/2014] [Accepted: 05/22/2014] [Indexed: 01/07/2023]
Abstract
Because the kidney allograft has the potential to function as an in-vivo flow cytometer and facilitate the access of immune cells and kidney parenchymal cells in to the urinary space, we hypothesized that mRNA profiling of urinary cells offers a noninvasive means of assessing the kidney allograft status. We overcame the inherent challenges of urinary cell mRNA profiling by developing pre-amplification protocols to compensate for low RNA yield from urinary cells and by developing robust protocols for absolute quantification mRNAs using RT-PCR assays. Armed with these tools, we undertook first single-center studies urinary cell mRNA profiling and then embarked on the multicenter Clinical Trials in Organ Transplantation-04 study of kidney transplant recipients. We report here our discovery and validation of diagnostic and prognostic biomarkers of acute cellular rejection and of interstitial fibrosis and tubular atrophy (IF/TA). Our urinary cell mRNA profiling studies, in addition to demonstrating the feasibility of accurate diagnosis of acute cellular rejection and IF/TA in the kidney allograft, advance mechanistic and potentially targetable biomarkers. Interventional trials, guided by urinary cell mRNA profiles, may lead to personalized immunosuppression in recipients of kidney allografts.
Collapse
Affiliation(s)
- Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY; Department of Transplantation Medicine, New York Presbyterian Hospital - Weill Cornell Medical Center, New York, NY.
| | - John R Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY; Department of Transplantation Medicine, New York Presbyterian Hospital - Weill Cornell Medical Center, New York, NY
| | - Darshana M Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY; Department of Transplantation Medicine, New York Presbyterian Hospital - Weill Cornell Medical Center, New York, NY
| | - Ruchuang Ding
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Vijay K Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Joseph E Schwartz
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY; Department of Psychiatry and Behavioral Science, Stony Brook School of Medicine, Stony Brook, NY
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY; Department of Transplantation Medicine, New York Presbyterian Hospital - Weill Cornell Medical Center, New York, NY
| |
Collapse
|
48
|
Zhuang J, Shan Z, Ma T, Li C, Qiu S, Zhou X, Lin L, Qi Z. CXCL9 and CXCL10 accelerate acute transplant rejection mediated by alloreactive memory T cells in a mouse retransplantation model. Exp Ther Med 2014; 8:237-242. [PMID: 24944628 PMCID: PMC4061216 DOI: 10.3892/etm.2014.1714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/02/2014] [Indexed: 11/21/2022] Open
Abstract
C-X-C motif chemokine ligand (CXCL) 9 and CXCL10 play key roles in the initiation and development of acute transplant rejection. Previously, higher levels of RANTES expression and secretion were demonstrated in retransplantation or T-cell memory-transfer models. In the present study, the effect of the chemokines, CXCL9 and CXCL10, were investigated in a mouse retransplantation model. BALB/c mice were used as donors, while C57BL/6 mice were used as recipients. In the experimental groups, a heterotopic heart transplantation was performed six weeks following skin grafting. In the control groups, a heterotopic heart transplantation was performed without skin grafting. Untreated mice served as blank controls. The mean graft survival time of the heterotopic heart transplantations was 7.7 days in the experimental group (n=6), as compared with 3.25 days in the control group (n=6; P<0.001). On day three following cardiac transplantation, histological evaluation of the grafts revealed a higher International Society for Heart & Lung Transplantation grade in the experimental group as compared with the control group. In addition, gene expression and serum concentrations of CXCL9, CXCL10, interferon-γ, and interleukin-2 were markedly higher in the experimental group when compared with the control group. Differences between the levels of CXCL9 and CXCL10 in the pre- and post-transplant mice indicated that the chemokines may serve as possible biomarkers to predict acute rejection. The results of the present study demonstrated that CXCL9 and CXCL10 play a critical role in transplantation and retransplantation. High levels of these cytokines during the pre-transplant period may lead to extensive acute rejection. Thus, the observations enhance the understanding of the mechanism underlying the increased expression and secretion of CXCL9 and CXCL10 by alloreactive memory T cells.
Collapse
Affiliation(s)
- Jiawei Zhuang
- Department of Cardiac Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhonggui Shan
- Department of Cardiac Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Teng Ma
- Department of Cardiac Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Chun Li
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Shuiwei Qiu
- Department of Cardiac Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Xiaobiao Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Lianfeng Lin
- Department of Cardiac Surgery, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhongquan Qi
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
49
|
Zhang M, He J, Hou J, Wu J, Sun M, Cui J, Tian J, Jiang M, Yu B. The immunosuppressant Protosappanin A diminished recipient T cell migration into allograft via inhibition of IP-10 in rat heart transplant. PLoS One 2014; 9:e96138. [PMID: 24798458 PMCID: PMC4010525 DOI: 10.1371/journal.pone.0096138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
The immunosuppressant Protosappanin A (PrA), isolated from the medicinal herb, promotes cardiac allograft survival, diminishes inflammatory cell infiltration, and inhibits interferon γ-induced protein 10 kDa (IP-10) mRNA expression in rats cardiac grafts. Binding of the chemokine IP-10 to its cognate receptor, CXCR3, plays crucial roles in allograft immunity, especially by mediating the recruitment of effector T cells to allografted tissues. In this study, we attempted to determine whether PrA-mediated inhibition of IP-10 contributes to the effect of reduced T cell infiltration into cardiac allograft within a rat model. Administration of PrA (25 mg/kg daily) via oral gavage following heart transplantation significantly reduced the increase of IP-10 mRNA level in allograft and prevented IP-10 secretion by peripheral blood mononuclear cells (PBMC) isolated from recipient rats seven days posttransplantation. Furthermore, in vitro experiments demonstrated that PrA addition to control PBMC prevented IP-10 secretion. Chemotactic migration assays were utilized to evaluate recipient T cell migration towards PBMC supernatant. PrA administration impaired PBMC supernatant-induced T cell migration. Additional in vitro experiments revealed that PrA slightly reduced naïve T cell migration towards chemokines. The presence of IP-10 in PBMC supernatant prevented PrA from reducing T cell migration in PrA-treated recipients. Neither CXCR3 chemokine ligand Mig nor non-CXCR3 chemokine ligand SDF-1 had any effect on T cell migration in PrA-treated recipients. The addition of anti-CXCR3 antibody restored PrA-mediated inhibition of T cell migration. Immunofluorescence microscopy showed that IP-10 was expressed mainly in CD68 positive infiltrating monocytes. Furthermore, PrA consistently reduced CXCR3+T cell infiltration into cardiac allografts. The reduced intensity of CXCR3 staining in PrA-treated allografts contributed to the previously depressed naïve T cell migrating activity induced by PrA. Collectively, these data indicate that PrA inhibition of IP-10 activity reduced recipient T cell migration and infiltration of cardiac allografts, thus partially explaining the immunosuppressive effect of PrA.
Collapse
Affiliation(s)
- Maomao Zhang
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jieqiong He
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jingbo Hou
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jian Wu
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Meng Sun
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Jinjin Cui
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiangtian Tian
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Miaomiao Jiang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Bo Yu
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail:
| |
Collapse
|
50
|
Mok CKP, Kang SSR, Chan RWY, Yue PYK, Mak NK, Poon LLM, Wong RNS, Peiris JSM, Chan MCW. Anti-inflammatory and antiviral effects of indirubin derivatives in influenza A (H5N1) virus infected primary human peripheral blood-derived macrophages and alveolar epithelial cells. Antiviral Res 2014; 106:95-104. [PMID: 24717263 DOI: 10.1016/j.antiviral.2014.03.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/28/2014] [Accepted: 03/29/2014] [Indexed: 12/09/2022]
Abstract
Human disease caused by highly pathogenic avian influenza A (HPAI) (H5N1) is associated with fulminant viral pneumonia and mortality rates in excess of 60%. Acute respiratory syndrome (ARDS) has been found to be the most severe form of acute lung injury caused by H5N1 virus infection while cytokine dysregulation and viral replication are thought to contribute to its pathogenesis. In this study, the antiviral and anti-inflammatory effects of two indirubin derivatives: indirubin-3'-oxime (IM) and E804 on primary human peripherial blood-derived macrophages and type-I like pneumocytes (human alveolar epithelial cells) during influenza A (H5N1) virus infection were investigated. We found that both of the indirubin derivatives strongly suppress the pro-inflammatory cytokines including IP-10 (CXCL10), one of the key factors which contribute to the lung inflammation during H5N1 virus infection. In addition, we also demonstrated that the indirubin derivative delays the virus replication in the primary cell culture models. Our results showed that indirubin derivatives have a potential to be used as an adjunct to antiviral therapy for the treatment of severe human H5N1 disease.
Collapse
Affiliation(s)
- Chris K P Mok
- Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Sara S R Kang
- Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Renee W Y Chan
- Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Patrick Y K Yue
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Nai K Mak
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Leo L M Poon
- Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Ricky N S Wong
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - J S Malik Peiris
- Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Michael C W Chan
- Centre of Influenza Research, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|