1
|
Shi A, Yun F, Shi L, Liu X, Jia Y. Research progress on the mechanism of common inflammatory pathways in the pathogenesis and development of lymphoma. Ann Med 2024; 56:2329130. [PMID: 38489405 PMCID: PMC10946270 DOI: 10.1080/07853890.2024.2329130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
In recent years, the incidence and mortality rates of lymphoma have gradually increased worldwide. Tumorigenesis and drug resistance are closely related to intracellular inflammatory pathways in lymphoma. Therefore, understanding the biological role of inflammatory pathways and their abnormal activation in relation to the development of lymphoma and their selective modulation may open new avenues for targeted therapy of lymphoma. The biological functions of inflammatory pathways are extensive, and they are central hubs for regulating inflammatory responses, immune responses, and the tumour immune microenvironment. However, limited studies have investigated the role of inflammatory pathways in lymphoma development. This review summarizes the relationship between abnormal activation of common inflammatory pathways and lymphoma development to identify precise and efficient targeted therapeutic options for patients with advanced, drug-resistant lymphoma.
Collapse
Affiliation(s)
- Aorong Shi
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
| | - Fen Yun
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Lin Shi
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Xia Liu
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Yongfeng Jia
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| |
Collapse
|
2
|
Wu YF, Yuan QH, Shen HR, Du KX, Shang CY, Li Y, Zhang XY, Wu JZ, Gao R, Wang L, Li JY, Yin H, Liang JH, Xu W. The prognostic significance of MYC/BCL2 double expression in DLBCL in the genetic classification era. Cancer Sci 2024. [PMID: 39492801 DOI: 10.1111/cas.16377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Double expression (DE) is a World Health Organization-recognized adverse prognostic factor in diffuse large B-cell lymphoma (DLBCL). However, the prognostic value of DE in the genetic subtyping era and potential mechanisms remain to be explored. We enrolled 246 DLBCL patients diagnosed between December 2021 and September 2023 in a Jiangsu Province Hospital cohort and included 930 DLBCL patients from three published studies in an external cohort. Double-expression DLBCL (DEL) in the external cohort was mainly distributed in the OTHER subtype (42.0%), EZB subtype (28.3%), and MCD subtype (15.0%), whereas the MCD subtype exhibited the highest ratio of DEL. DEL was significantly related to unfavorable overall survival (OS) and progression-free survival (PFS) in DLBCL, but only in EZB and OTHER subtypes that DEL retained remarkably adverse impacts on survivals compared to non-DEL. We explored the prognostic value of clinical and genetic parameters in DEL patients and found only ST2 showed better OS than A53 in DEL patients, whereas the other subtypes showed no significant difference. DEL showed similarities with the MCD subtype in mutation profiles. Furthermore, RNA-sequencing analyses exhibited upregulation in tumor proliferation-related pathways in DEL patients, but downregulation in extracellular matrix organization, T-cell activation and proliferation, type II interferon production, and pathways associated with cell death might contribute to the poor outcomes of DEL patients.
Collapse
Affiliation(s)
- Yi-Fan Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Qun-Hui Yuan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Hao-Rui Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Kai-Xin Du
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Chun-Yu Shang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xin-Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jia-Zhu Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Rui Gao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Hua Yin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jin-Hua Liang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
3
|
Ye F, Huang Y, Zeng L, Li N, Hao L, Yue J, Li S, Deng J, Yu F, Hu X. The genetically predicted causal associations between circulating 3-hydroxybutyrate levels and malignant neoplasms: A pan-cancer Mendelian randomization study. Clin Nutr 2024; 43:137-152. [PMID: 39378563 DOI: 10.1016/j.clnu.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/15/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVE The ketogenic diet or exogenous supplementation with 3-hydroxybutyrate (3HB) is progressively gaining recognition as a valuable therapeutic or health intervention strategy. However, the effects of 3HB on cancers have been inconsistent in previous studies. This study aimed to comprehensively investigate the causal effects of circulating 3HB levels on 120 cancer phenotypes, and explore the 3HB mediation effect between liver fat accumulation and cancers. METHODS Univariate Mendelian randomization (UVMR) was used in this study to investigate the causal impact of circulating 3HB levels on cancers. We conducted meta-analyses for 3HB-cancer associations sourced from different exposure data. In multivariate MR(MVMR), the body mass index, alcohol frequency and diabetes were included as covariates to investigate the independent effect of 3HB on cancer risk. Additionally, utilizing mediation MR analysis, we checked the potential mediating role of 3HB in the association between liver fat and cancer. RESULTS Integrating findings from UVMR and MVMR, we observed that elevated circulating 3HB levels were associated with reduced risk of developing diffuse large B-cell lymphoma(DLBCL) (OR[95%CI] = 0.28[0.14-0.57] p = 3.92e-04), biliary malignancies (OR[95%CI] = 0.30[0.15-0.60], p = 7.67e-04), hepatocellular carcinoma(HCC) (OR[95%CI] = 0.25[0.09-0.71], p = 9.33e-03), primary lymphoid and hematopoietic malignancies (OR[95%CI] = 0.76[0.58-0.99], p = 0.045). Further UVMR analysis revealed that an increase in the percent liver fat was associated with reduced 3HB levels (Beta[95%CI] = -0.073[-0.122∼-0.024], p = 0.0034) and enhanced susceptibility to HCC (OR[95%CI] = 13.9[9.76-19.79], p = 3.14e-48), biliary malignancies (OR[95%CI] = 4.04[3.22-5.07], p = 1.64e-33), nasopharyngeal cancer (OR[95%CI] = 3.26[1.10-9.67], p = 0.03), and primary lymphoid and hematopoietic malignancies (OR[95%CI] = 1.27[1.13-1.44], p = 1.04e-4). Furthermore, 3HB fully mediated the effect of liver fat on susceptibility to DLBCL (OR[95%CI] = 1.076[1.01-1.15], p = 0.034). CONCLUSIONS Circulating 3HB is associated with a reduced susceptibility to developing DLBCL, HCC, biliary malignancies, and primary lymphoid and hematopoietic malignancies. The impaired ketogenesis induced by metabolic-dysfunction associated fatty liver disease (MAFLD) contributes to risk of DLBCL.
Collapse
Affiliation(s)
- Fanghang Ye
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yucheng Huang
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Rheumatology and Immunology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Liang Zeng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Na Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Liyuan Hao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiayun Yue
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shenghao Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiali Deng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei Yu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
4
|
Peng F, Igawa T, Urata T, Kobayashi H, Isoda T, Ono S, Tanaka T, Ennisshi D, Maeda Y, Yamamoto H. High Prevalence of MYD88 and CD79B Mutations in Primary Sinonasal Diffuse Large B-Cell Lymphoma: Identification of an MCD-like Subtype. Am J Surg Pathol 2024:00000478-990000000-00435. [PMID: 39483112 DOI: 10.1097/pas.0000000000002329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Primary sinonasal diffuse large B-cell lymphoma (PSDLBCL) is a rare aggressive lymphoma. Recently, genetic classification using Next Generation Sequencing (NGS) demonstrated that PSDLBCL largely consists of the MCD genotype, which has a poor prognosis mainly driven by MYD88 L265P and CD79B gene abnormalities. This study investigated the prevalence and clinicopathological significance of MYD88 L265P and CD79B Y196 mutations using droplet digital PCR in 55 patients with PSDLBCL, as well as the translocation of BCL2/BCL6/c-Myc with FISH. We found mutations in MYD88 L265P (29/55, 52.7%) and CD79B Y196 (20/55, 36.4%). The MCD-like subtype, defined by the mutation of MYD88 and/or CD79B, was found in 32 out of 55 cases (58.2%). This subtype largely consists of non-GCB type (31/32, 96.9%; P<0.01) and double-expressor cases (20/32, 62.5%; P=0.01) compared with the MYD88/CD79B co-wild type, with BCL6 translocation in a small subset (2/32, 6.3%) and no translocations of BCL2 (0/32) or c-Myc (0/32). The MCD-like subtype tended to relapse in specific sites such as the central nervous system, testis, and/or skin compared with the co-wild type (P=0.03), showing poorer outcomes in overall survival (P=0.02) and progression-free survival (P=0.01). In conclusion, our study highlights a high prevalence of MYD88 and CD79B mutations in PSDLBCL, identifying an aggressive MCD-like subtype with a distinct relapse pattern. This molecular subclassification can be helpful for both prognostic prediction and therapeutic strategy in patients with PSDLBCL.
Collapse
Affiliation(s)
| | | | - Tomohiro Urata
- Department of Hematology and Blood Transfusion, Kochi Health Sciences Center, Kochi, Japan
| | | | - Tetsuya Isoda
- Department of Pathology, Okayama Medical Center, Okayama
| | | | | | - Daisuke Ennisshi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital
| | - Yoshinobu Maeda
- Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | | |
Collapse
|
5
|
Li Z, Jiang W, Zhou H, Cen H, Zhang M, Lv F, Zhang Q, Sun X, Liu L, Huang Y, Yang H, Gao S, He C, Yang W, Li W, Yu D, Yang Y, Cheng Y, Qian Z, Xiang Y, Guo Q, Xu B, Song Y, Zhang L, Lin L, Shen J, Yan F, Liu H, Zhang D, Wang J, Zhou M, Zhu X, Zhang W, Zhao W, Feng R, Zhang X, Jin J, Zhong M, Zhang M, Wang J, Jing H, Wang Z, Zhao H, Zhu J. Comparison of zuberitamab plus CHOP versus rituximab plus CHOP for the treatment of drug-naïve patients diagnosed with CD20-positive diffuse large B-cell lymphoma: a phase 3 trial. J Immunother Cancer 2024; 12:e008895. [PMID: 39455094 PMCID: PMC11529747 DOI: 10.1136/jitc-2024-008895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND In patients with untreated CD20-positive diffuse large B-cell lymphoma (DLBCL), a phase 3 trial was carried out to evaluate the efficacy and safety of zuberitamab plus CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone; Hi-CHOP) versus rituximab plus CHOP (R-CHOP) treatment regimens. METHODS In a 2:1 ratio, eligible patients were assigned randomly to receive treatment of six cycles of either 375 mg/m2 zuberitamab or rituximab together with conventional CHOP chemotherapy. The objective response rate (ORR) at C6D50 served as the primary endpoint, and a non-inferiority margin of 10% was established. The secondary endpoints included the complete response (CR) rate at C6D50, duration of response (DOR), progression-free survival (PFS) and event-free survival (EFS) judged by blinded-independent review committee (BIRC), overall survival (OS) and safety outcomes. RESULTS Of the 487 randomized patients, 423 patients including 287 in the Hi-CHOP and 136 in the R-CHOP groups completed the C6D50 assessment. For the full analysis set (FAS) and per-protocol set (PPS), BIRC-assessed ORR at C6D50 for the Hi-CHOP and R-CHOP groups were 83.5% versus 81.4% and 95.3% versus 93.7%, respectively. The non-inferiority was confirmed as the lower limit of the two-sided 95% CI for the intergroup differences of -5.2% and -3.3%; both were >-10% in the FAS and PPS. The BIRC-assessed CR rate of Hi-CHOP was significantly higher in PPS (85.7% vs 77.3%, p=0.038), but comparable in FAS (75.2% vs 67.9%, p=0.092). After a median follow-up of 29.6 months, patients in the Hi-CHOP group had a slight advantage with regard to the DOR (HR 0.74, p=0.173), PFS (HR 0.67, p=0.057), EFS (HR 0.90, p=0.517) and OS (HR 0.60, p=0.059). Patients with the germinal-center B cell-like subtype who received Hi-CHOP exhibited statistically significant improvements in ORR (p=0.034) and CR rate (p=0.038) at C6D50, EFS (p=0.046) and OS (p=0.014). Treatment-emergent adverse event occurrence rates were comparable across groups (all p>0.05). Infusion-related responses occurred more often in the Hi-CHOP group (32.1% vs 19.9%, p=0.006), all of grade 1-3 severity. CONCLUSIONS Zuberitamab (375 mg/m2) plus CHOP was non-inferior to R-CHOP regarding ORR but exhibited a higher CR rate and was well tolerated in CD20-positive, previously untreated Chinese patients with DLBCL. TRIAL REGISTRATION NUMBER Chinese Clinical Trial Registry, ChiCTR2000040602, retrospectively registered.
Collapse
Affiliation(s)
- Zhiming Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Wenqi Jiang
- Center of Excellence in Oncology, Guangzhou R&F Hospital, Guangzhou, China
| | - Hui Zhou
- Department of Lymphoma & Hematology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hong Cen
- Department of Hematology/Oncology and Pediatric Oncology, Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Mingzhi Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangfang Lv
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qingyuan Zhang
- Deparment of Mammary and Lymphatic Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiuhua Sun
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Lihong Liu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunhong Huang
- Department of Lymphoma, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Haiyan Yang
- Department of Lymphoma Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Chuan He
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wenyu Li
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Sciences, Guangzhou, China
| | - Ding Yu
- Department of Lymphoma, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Yang
- Department of Lymphoma, Head and Neck Oncology, Fujian Cancer Hospital, Fuzhou, China
| | - Ying Cheng
- Department of Hematology, Jilin Cancer Hospital, Changchun, China
| | - Zhengzi Qian
- Department of Lymphoma, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Ying Xiang
- Department of Hematology and Oncology, Chongqing Cancer Hospital, Chongqing, China
| | - Qunyi Guo
- Department of Hematology and Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yuqin Song
- Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liling Zhang
- Department of Lymphoma, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lie Lin
- Department of Hematology, Hainan General Hospital, Haikou, China
| | - Jianzhen Shen
- Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Feng Yan
- Department of Hematology, Third Affiliated Hospital of Suzhou University, First People's Hospital of Changzhou, Changzhou, China
| | - Huilan Liu
- Department of Hematology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jishi Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Min Zhou
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiongpeng Zhu
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Weihua Zhang
- Department of Hematology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ru Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohong Zhang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Meizuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Mei Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingbo Wang
- Department of Hematology, Aerospace Central Hospital, Beijing, China
| | - Hongmei Jing
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Zhao Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongguo Zhao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Zhu
- Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
6
|
Hanbal AT, El-Ashwah S, Eladl AE, Shamaa S, Saleh LM. Utility of clinical, laboratory, and lymph node MYD88 L265P mutation in risk assessment of diffuse large B-cell lymphoma patients. J Egypt Natl Canc Inst 2024; 36:31. [PMID: 39397180 DOI: 10.1186/s43046-024-00237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is an aggressive non-Hodgkin lymphoma and is characterized by heterogeneity in biology and clinical behavior. Mutations in the myeloid differentiation primary response 88 (MYD88) are found in different lymphoproliferative disorders and are associated with variable clinical and prognostic impact. AIM To investigate the frequency of MYD88 L265P mutation and its clinical impact in a cohort of Egyptian DLBCL patients. METHODS FFPE lymph node samples from 87 DLBCL patients (46 males / 41 females; median age, 58 years) were included and analyzed for MYD88 L265P by an allele-specific PCR. RESULTS MYD88 L265P mutations were found in 52 patients (59.8%) out of 87 DLBCL cases. Patients with L265 mutation were significantly younger than non-mutated patients (p = 0.022). None of the patients with the L265P mutation showed a significant association with the clinical parameters of DLBCL. Interestingly, MYD88 L265 mutated patients were found to be significantly correlated with HCV infection (p = 0.037). The median follow-up time across the entire cohort was 26 months. Univariate analysis showed that overall survival (OS) was affected by gender, LDH level, and CNS-IPI scoring (p = 0.048, 0.008, and 0.046, respectively), while disease-free survival (DFS) was affected by B symptoms and LDH level (p = < 0.000 and 0.02, respectively). However, the MYD88 mutation status and other prognostic factors showed no association with OS or DFS. CONCLUSIONS Our findings indicate a high frequency of MYD88 L265P mutations in our study population and not associated with prognostic markers or the outcome of the disease.
Collapse
Affiliation(s)
- Ahmed Talaat Hanbal
- Clinical Hematology, Internal Medicine Department, Oncology Center, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Shaimaa El-Ashwah
- Clinical Hematology, Internal Medicine Department, Oncology Center, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Ahmed E Eladl
- Pathology Department, Faculty of Medicine, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Sameh Shamaa
- Medical Oncology and Internal Medicine, Oncology Center, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Layla M Saleh
- Hematology Section, Clinical Pathology Department, Faculty of Medicine, Mansoura University, PO Box 35516, Mansoura, Egypt.
| |
Collapse
|
7
|
Zhou Y, Lou J, Tian Y, Ding J, Wang X, Tang B. How lactate affects immune strategies in lymphoma. Front Mol Biosci 2024; 11:1480884. [PMID: 39464313 PMCID: PMC11502318 DOI: 10.3389/fmolb.2024.1480884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Tumor cells undergo metabolic reprogramming through shared pathways, resulting in a hypoxic, acidic, and highly permeable internal tumor microenvironment (TME). Lactate, once only regarded as a waste product of glycolysis, has an inseparable dual role with tumor immunity. It can not only provide a carbon source for immune cells to enhance immunity but also help the immune escape through a variety of ways. Lymphoma also depends on the proliferation signal of TME. This review focuses on the dynamic process of lactate metabolism and immune function changes in lymphoma and aims to comprehensively summarize and explore which genes, transcription factors, and pathways affect the biological changes and functions of immune cells. To deeply understand the complex and multifaceted role of lactate metabolism and immunity in lymphoma, the combination of lactate targeted therapy and classical immunotherapy will be a promising development direction in the future.
Collapse
Affiliation(s)
- Yuehan Zhou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinzhan Lou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuqin Tian
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinlei Ding
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Tang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Alhosani F, Ilce BY, Alhamidi RS, Bhamidimarri PM, Hamad AM, Alkhayyal N, Künstner A, Khandanpour C, Busch H, Al-Ramadi B, Sayed K, AlFazari A, Bendardaf R, Hamoudi R. Transcriptome Profiling Associated with CARD11 Overexpression in Colorectal Cancer Implicates a Potential Role for Tumor Immune Microenvironment and Cancer Pathways Modulation via NF-κB. Int J Mol Sci 2024; 25:10367. [PMID: 39408697 PMCID: PMC11476988 DOI: 10.3390/ijms251910367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
The immune system plays a critical role in inflammation by initiating responses to infections or tissue damage. The nuclear factor-κB (NF-κB) pathway plays a key role in inflammation and innate immunity, as well as other cellular activities. Dysregulation of this well-choreographed pathway has been implicated in various diseases, including cancer. CARD11 is a key molecule in the BCL10-MALT1 complex, which is involved in transducing the signal downstream of the NF-κB pathway. This study aims to elucidate how CARD11 overexpression exacerbates the prognosis of colorectal cancer (CRC). To identify the cellular pathways influenced by CARD11, transcriptomic analysis in both CRC cell lines and patients was carried out on CARD11- overexpressed HCT-116 and HT-29 CRC cell lines alongside empty vector-transfected cell lines. Furthermore, a comparison of transcriptomic data from adenoma and carcinoma CRC patients with low- (CARD11-) and high-(CARD11+) CARD11 expression was carried out. Whole transcriptomics and bioinformatics analysis results indicate that CARD11 appears to play a key role in CRC progression. Absolute GSEA (absGSEA) on HCT-116 transcriptomics data revealed that CARD11 overexpression promotes cell growth and tissue remodeling and enhances immune response. Key genes co-expressed with CARD11, such as EP300, KDM5A, HIF1A, NFKBIZ, and DUSP1, were identified as mediators of these processes. In the HT-29 cell line, CARD11 overexpression activated pathways involved in chemotaxis and extracellular matrix (ECM) organization, marked by IL1RN, MDK, SPP1, and chemokines like CXCL1, CXCL3, and CCL22, which were shown to contribute to the more invasive stage of CRC. In patient samples, adenoma patients exhibited increased expression of genes associated with the tumor immune microenvironment, such as IL6ST, collagen family members, and CRC transition markers, such as GLI3 and PIEZO2, in CARD11+ adenoma patients. Carcinoma patients showed a dramatic increase in the expression of MAPK8IP2 in CARD11+ carcinoma patients alongside other cancer-related genes, including EMB, EPHB6, and CPEB4.
Collapse
Affiliation(s)
- Faisal Alhosani
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
- Forensic Laboratory Department, Sharjah Police Headquarters, Sharjah P.O. Box 1965, United Arab Emirates
| | - Burcu Yener Ilce
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Reem Sami Alhamidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Poorna Manasa Bhamidimarri
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Alaa Mohamed Hamad
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Noura Alkhayyal
- Oncology Unit, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates; (N.A.); (R.B.)
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
| | - Cyrus Khandanpour
- Department of Hematology and Oncology, University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, University of Lübeck, 23562 Lübeck, Germany;
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Kadria Sayed
- Department of Pathology and Laboratory Medicine, American Hospital Dubai, Dubai P.O. Box 3050, United Arab Emirates;
| | - Ali AlFazari
- Mediclinic Welcare Hospital, Dubai P.O. Box 31500, United Arab Emirates;
| | - Riyad Bendardaf
- Oncology Unit, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates; (N.A.); (R.B.)
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Center of Excellence for Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| |
Collapse
|
9
|
Rey-Búa B, Grande C, Sánchez Blanco JJ, Abrisqueta P, Gutiérrez A, Ramírez Páyer Á, Giné E, Zeberio Etxetxipia I, Terol MJ, de la Cruz Vicente F, Andreu R, Ramirez MJ, de la Fuente A, Viguria MC, Peñarrubia MJ, Jiménez-Ubieto A, Montes-Moreno S, López-Guillermo A, Caballero MD, Martín García-Sancho A. Ibrutinib in Combination with R-GemOx in Patients with Relapsed or Refractory Diffuse Large B-cell Lymphoma of Nongerminal Center B-cell-like Type: Phase II Clinical Trial of the Spanish GELTAMO Group. Clin Cancer Res 2024; 30:3704-3714. [PMID: 38900037 DOI: 10.1158/1078-0432.ccr-24-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/05/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE This phase II clinical trial evaluated the combination of ibrutinib with rituximab, gemcitabine, and oxaliplatin (R-GemOx) in patients with nongerminal center B-cell-like (non-GCB) diffuse large B-cell lymphoma (DLBCL). PATIENTS AND METHODS The IBDCL trial (NCT02692248) included patients with histologic diagnosis of non-GCB DLBCL with relapsed or refractory disease and non-candidates for stem-cell transplantation. Patients received an induction treatment consisting of six or eight cycles of R-GemOx at standard doses every 2 weeks, in combination with ibrutinib (560 mg daily), followed by a maintenance treatment with ibrutinib for a maximum of 2 years. The primary objective was to evaluate the overall response rate after four cycles. RESULTS Sixty-four patients were included, 72% of them refractory to the last regimen. The overall response rate and complete remission rate after the fourth cycle were 53% [95% confidence interval (CI), 41-65] and 34% (95% CI, 24-46), respectively. Twenty-four (37%) patients started maintenance, and 7 (11%) completed the planned 2 years. After a median follow-up of 29.7 months (range: 0.4-48.6), the estimated 2-year progression-free survival and overall survival were 18% (95% CI, 8-28) and 26% (95% CI, 14-37), respectively. The most common grade ≥3 treatment-related adverse events were thrombocytopenia (44%), neutropenia (30%), and anemia (14%). Grade ≥3 infectious and cardiovascular treatment-related adverse events were reported in 6 (9%) and 1 (2%) patient, respectively. CONCLUSIONS Ibrutinib in combination with R-GemOx, followed by ibrutinib maintenance, demonstrated encouraging antitumor activity with durable responses and a manageable toxicity in patients with non-GCB DLBCL.
Collapse
MESH Headings
- Humans
- Adenine/analogs & derivatives
- Adenine/administration & dosage
- Male
- Female
- Piperidines/administration & dosage
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Aged
- Middle Aged
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Adult
- Aged, 80 and over
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/administration & dosage
- Deoxycytidine/adverse effects
- Gemcitabine
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Drug Resistance, Neoplasm
- Rituximab/administration & dosage
- Rituximab/adverse effects
- Oxaliplatin/administration & dosage
- Oxaliplatin/adverse effects
- Treatment Outcome
- Spain/epidemiology
- Pyrimidines/administration & dosage
- Pyrimidines/adverse effects
- Pyrimidines/therapeutic use
Collapse
Affiliation(s)
- Beatriz Rey-Búa
- Hematology Department, Hospital Clínico Universitario de Salamanca, IBSAL, CIBERONC, Salamanca, Spain
| | - Carlos Grande
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José J Sánchez Blanco
- Hematology Department, Hospital General Universitario Morales Meseguer, Murcia, Spain
| | - Pau Abrisqueta
- Hematology Department, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Antonio Gutiérrez
- Hematology Department, Hospital Universitario Son Espases, IdISBa, Palma de Mallorca, Spain
| | - Ángel Ramírez Páyer
- Hematology Department, Hospital Universitario Central de Asturias, Asturias, Spain
| | - Eva Giné
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Maria J Terol
- Hematology Department, Hospital Clínico Valencia, INCLIVA, University of Valencia, Valencia, Spain
| | - Fátima de la Cruz Vicente
- Hematology Department, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Spain
| | - Rafel Andreu
- Hematology Department, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - Maria J Ramirez
- Hematology Department, Hospital Especialidades Jerez de la Frontera, Jerez, Spain
| | | | - Maria C Viguria
- Hematology Department, Complejo Hospitalario de Navarra, Spain
| | - María J Peñarrubia
- Hematology Department, Hospital Clínico de Valladolid, Valladolid, Spain
| | - Ana Jiménez-Ubieto
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Santiago Montes-Moreno
- Anatomic Pathology Department, Translational Hematopathology Lab, IDIVAL/UNICAN, Santander, Spain
| | | | - María D Caballero
- Hematology Department, Hospital Clínico Universitario de Salamanca, IBSAL, CIBERONC, Salamanca, Spain
- Medicine Department, University of Salamanca, Salamanca, Spain
| | - Alejandro Martín García-Sancho
- Hematology Department, Hospital Clínico Universitario de Salamanca, IBSAL, CIBERONC, Salamanca, Spain
- Medicine Department, University of Salamanca, Salamanca, Spain
| |
Collapse
|
10
|
Kalmegh P, Hande A, Gawande M, Patil S, Sonone A, Pakhale A. Case Report: Activated B-cell-diffuse large B-cell lymphoma. F1000Res 2024; 12:769. [PMID: 39092006 PMCID: PMC11292186 DOI: 10.12688/f1000research.134946.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 08/04/2024] Open
Abstract
Lymphomas of the oral and oropharyngeal regions are rather uncommon, and diagnosis can be challenging and confusing due to the multiple histological subgroups. Lymphomas are the third most common type of tumor in the head and neck region and are brought on by the lymphoreticular system. The two forms of lymphoma are Hodgkin's lymphoma and non-Hodgkin's lymphoma (NHL). Herein, we present a case report of oropharyngeal lymphoma. The female patient reported with a complaint of swelling over the palatal region for two to three months. An ulceroproliferative lesion was evident over the posterior palatal region. We diagnosed reactive lymphadenitis based on an incisional biopsy. To confirm the diagnosis and rule out other conditions, a punch biopsy followed by immunohistochemical studies were done. Features suggestive of activated B-cell-diffuse large B-cell lymphoma were confirmed. Among malignant lymphomas, diffuse large B-cell lymphoma is the most prevalent variety. Much progress has been made in recent years in understanding the molecular pathophysiology of this disease. In this case report, we aim to correlate the clinical presentation, histology features and immunohistochemical significance in order to promote early discovery, diagnosis, and treatment for a better prognosis of the patient.
Collapse
Affiliation(s)
- Padmashri Kalmegh
- Department of Oral and Maxillofacial Pathology and Microbiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| | - Alka Hande
- Department of Oral and Maxillofacial Pathology and Microbiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| | - Madhuri Gawande
- Department of Oral and Maxillofacial Pathology and Microbiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| | - Swati Patil
- Department of Oral and Maxillofacial Pathology and Microbiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| | - Archana Sonone
- Department of Oral and Maxillofacial Pathology and Microbiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| | - Aayushi Pakhale
- Department of Oral and Maxillofacial Pathology and Microbiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| |
Collapse
|
11
|
Britto LS, Balasubramani D, Desai S, Phillips P, Trehan N, Cesarman E, Koff JL, Singh A. T Cells Spatially Regulate B Cell Receptor Signaling in Lymphomas through H3K9me3 Modifications. Adv Healthc Mater 2024:e2401192. [PMID: 38837879 DOI: 10.1002/adhm.202401192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is a subtype associated with poor survival outcomes. Despite identifying therapeutic targets through molecular characterization, targeted therapies have limited success. New strategies using immune-competent tissue models are needed to understand how DLBCL cells evade treatment. Here, synthetic hydrogel-based lymphoma organoids are used to demonstrate how signals in the lymphoid tumor microenvironment (Ly-TME) can alter B cell receptor (BCR) signaling and specific histone modifications, tri-methylation of histone 3 at lysine 9 (H3K9me3), dampening the effects of BCR pathway inhibition. Using imaging modalities, T cells increase DNA methyltransferase 3A expression and cytoskeleton formation in proximal ABC-DLBCL cells, regulated by H3K9me3. Expansion microscopy on lymphoma organoids reveals T cells increase the size and quantity of segregated H3K9me3 clusters in ABC-DLBCL cells. Findings suggest the re-organization of higher-order chromatin structures that may contribute to evasion or resistance to therapy via the emergence of novel transcriptional states. Treating ABC-DLBCL cells with a G9α histone methyltransferase inhibitor reverses T cell-mediated modulation of H3K9me3 and overcomes T cell-mediated attenuation of treatment response to BCR pathway inhibition. This study emphasizes the Ly-TME's role in altering DLBCL fate and suggests targeting aberrant signaling and microenvironmental cross-talk that can benefit high-risk patients.
Collapse
Affiliation(s)
- Lucy S Britto
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Deepali Balasubramani
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Sona Desai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Phunterion Phillips
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Neev Trehan
- St Richards Hospital, University Hospitals Sussex NHS Foundation Trust, Chichester, West Sussex, PO19 6SE, UK
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jean L Koff
- Winship Cancer Center, Emory University School of Medicine, Atlanta, GA, 30307, USA
| | - Ankur Singh
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
12
|
Adams CM, McBride A, Michener P, Shkundina I, Mitra R, An HH, Porcu P, Eischen CM. Identifying Targetable Vulnerabilities to Circumvent or Overcome Venetoclax Resistance in Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2024; 16:2130. [PMID: 38893249 PMCID: PMC11171410 DOI: 10.3390/cancers16112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Clinical trials with single-agent venetoclax/ABT-199 (anti-apoptotic BCL2 inhibitor) revealed that diffuse large B-cell lymphoma (DLBCL) is not solely dependent on BCL2 for survival. Gaining insight into pathways/proteins that increase venetoclax sensitivity or unique vulnerabilities in venetoclax-resistant DLBCL would provide new potential treatment avenues. Therefore, we generated acquired venetoclax-resistant DLBCL cells and evaluated these together with intrinsically venetoclax-resistant and -sensitive DLBCL lines. We identified resistance mechanisms, including alterations in BCL2 family members that differed between intrinsic and acquired venetoclax resistance and increased dependencies on specific pathways. Although combination treatments with BCL2 family member inhibitors may overcome venetoclax resistance, RNA-sequencing and drug/compound screens revealed that venetoclax-resistant DLBCL cells, including those with TP53 mutation, had a preferential dependency on oxidative phosphorylation. Mitochondrial electron transport chain complex I inhibition induced venetoclax-resistant, but not venetoclax-sensitive, DLBCL cell death. Inhibition of IDH2 (mitochondrial redox regulator) synergistically overcame venetoclax resistance. Additionally, both acquired and intrinsic venetoclax-resistant DLBCL cells were similarly sensitive to inhibitors of transcription, B-cell receptor signaling, and class I histone deacetylases. These approaches were also effective in DLBCL, follicular, and marginal zone lymphoma patient samples. Our results reveal there are multiple ways to circumvent or overcome the diverse venetoclax resistance mechanisms in DLBCL and other B-cell lymphomas and identify critical targetable pathways for future clinical investigations.
Collapse
Affiliation(s)
- Clare M. Adams
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA 19107, USA
| | - Amanda McBride
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA 19107, USA
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 834 Chestnut St., Philadelphia, PA 19107, USA
| | - Peter Michener
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA 19107, USA
| | - Irina Shkundina
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA 19107, USA
| | - Ramkrishna Mitra
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA 19107, USA
| | - Hyun Hwan An
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA 19107, USA
| | - Pierluigi Porcu
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 834 Chestnut St., Philadelphia, PA 19107, USA
| | - Christine M. Eischen
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA 19107, USA
| |
Collapse
|
13
|
Alford D, Petković I. Prognostic Significance of Bcl-2 Expression in Non-germinal Center B-cell-Like Diffuse Large B-cell Lymphoma. Cureus 2024; 16:e62031. [PMID: 38989351 PMCID: PMC11234070 DOI: 10.7759/cureus.62031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
INTRODUCTION Diffuse large B-cell lymphomas (DLBCLs) are a group of malignant neoplasms with extensive clinical and molecular heterogeneity. Several key genetic aberrations have been identified, such as those involving the MYC, BCL6, and BCL2 genes. Prior studies on the prognostic significance of Bcl-2 protein expression in DLBCL have been contradictory, with some suggesting it has an adverse effect, while others have shown no such association. Bcl-2 is known to be more highly expressed in the non-germinal center B-cell-like (non-GCB) subtype compared to germinal center B-cell-like (GCB) DLBCL. Non-GCB status is associated with a less favorable prognosis. This study aimed to investigate whether the expression of Bcl-2 protein in non-GCB DLBCL influences response to treatment, progression-free survival, or overall survival. METHODS In this retrospective study, we investigated whether there was a difference in the clinical outcomes of non-GCB DLBCL cases (n = 97) that were confirmed by immunochemistry to demonstrate high levels of Bcl-2 protein expression (>50% neoplastic cells stained) when compared to those who were deemed negative based on this criterion. Response to rituximab-based induction immunochemotherapy, five-year progression-free survival, and five-year overall survival were assessed. RESULTS There was no statistically significant difference in response to treatment, five-year progression-free survival, or five-year overall survival between the patients who were positive for Bcl-2 (n = 70) compared to those who were considered Bcl-2 negative (n = 27). CONCLUSION High levels of Bcl-2 protein expression do not appear to be of prognostic significance in non-GCB DLBCL and therefore Bcl-2 may not be a key therapeutic target in the treatment and improvement of clinical outcome in such cases.
Collapse
|
14
|
Eken JA, Koning MT, Kupcova K, Sepúlveda Yáñez JH, de Groen RA, Quinten E, Janssen J, van Bergen CA, Vermaat JS, Cleven A, Navarrete MA, Ylstra B, de Jong D, Havranek O, Jumaa H, Veelken H. Antigen-independent, autonomous B cell receptor signaling drives activated B cell DLBCL. J Exp Med 2024; 221:e20230941. [PMID: 38512136 PMCID: PMC10959178 DOI: 10.1084/jem.20230941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/29/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Diffuse large B cell lymphoma of activated B cell type (ABC-DLBCL), a major cell-of-origin DLBCL subtype, is characterized by chronic active B cell receptor (BCR) signaling and NF-κB activation, which can be explained by activating mutations of the BCR signaling cascade in a minority of cases. We demonstrate that autonomous BCR signaling, akin to its essential pathogenetic role in chronic lymphocytic leukemia (CLL), can explain chronic active BCR signaling in ABC-DLBCL. 13 of 18 tested DLBCL-derived BCR, including 12 cases selected for expression of IgM, induced spontaneous calcium flux and increased phosphorylation of the BCR signaling cascade in murine triple knockout pre-B cells without antigenic stimulation or external BCR crosslinking. Autonomous BCR signaling was associated with IgM isotype, dependent on somatic BCR mutations and individual HCDR3 sequences, and largely restricted to non-GCB DLBCL. Autonomous BCR signaling represents a novel immunological oncogenic driver mechanism in DLBCL originating from individual BCR sequences and adds a new dimension to currently proposed genetics- and transcriptomics-based DLBCL classifications.
Collapse
Affiliation(s)
- Janneke A. Eken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Marvyn T. Koning
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Kristyna Kupcova
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Internal Medicine—Hematology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Julieta H. Sepúlveda Yáñez
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
- School of Medicine, Universidad de Magallanes, Punta Arenas, Chile
| | - Ruben A.L. de Groen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Edwin Quinten
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Jurriaan Janssen
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | | | - Joost S.P. Vermaat
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Arjen Cleven
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Bauke Ylstra
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Daphne de Jong
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Internal Medicine—Hematology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hassan Jumaa
- Institute of Immunology, University of Ulm, Ulm, Germany
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
15
|
Tumuluru S, Godfrey JK, Cooper A, Yu J, Chen X, MacNabb BW, Venkataraman G, Zha Y, Pelzer B, Song J, Duns G, Sworder BJ, Bolen C, Penuel E, Postovalova E, Kotlov N, Bagaev A, Fowler N, Smith SM, Alizadeh AA, Steidl C, Kline J. Integrative genomic analysis identifies unique immune environments associated with immunotherapy response in diffuse large B cell lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576100. [PMID: 38328071 PMCID: PMC10849512 DOI: 10.1101/2024.01.17.576100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Most diffuse large B-cell lymphoma (DLBCL) patients treated with bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was employed to characterize DLBCL immune environments, which effectively segregated DLBCLs into four quadrants - termed DLBCL-immune quadrants (IQ) - defined by cell-of-origin and immune-related gene set expression scores. Recurrent genomic alterations were enriched in each IQ, suggesting that lymphoma cell-intrinsic alterations contribute to orchestrating unique DLBCL immune environments. In relapsed/refractory DLBCL patients, DLBCL-IQ assignment correlated significantly with clinical benefit with the CD20 x CD3 BsAb, mosunetuzumab, but not with CD19-directed CAR T cells. DLBCL-IQ provides a new framework to conceptualize the DLBCL immune landscape and uncovers the differential impact of the endogenous immune environment on outcomes to BsAb and CAR T cell treatment.
Collapse
|
16
|
McCrury M, Swafford K, Shuttleworth SL, Mehdi SH, Acharya B, Saha D, Naceanceno K, Byrum SD, Storey AJ, Xu YZ, Doshier C, Patel V, Post GR, De Loose A, Rodriguez A, Shultz LD, Zhan F, Yoon D, Frett B, Kendrick S. Bifunctional Inhibitor Reveals NEK2 as a Therapeutic Target and Regulator of Oncogenic Pathways in Lymphoma. Mol Cancer Ther 2024; 23:316-329. [PMID: 37816504 PMCID: PMC10932871 DOI: 10.1158/1535-7163.mct-23-0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
Expression of the serine/threonine kinase never in mitosis gene A (NIMA)-related kinase 2 (NEK2) is essential for entry into mitosis via its role in facilitating centrosome separation. Its overactivity can lead to tumorigenesis and drug resistance through the activation of several oncogenic pathways, including AKT. Although the cancer-enabling activities of NEK2 are documented in many malignancies, including correlations with poor survival in myeloma, breast, and non-small cell lung cancer, little is known about the role of NEK2 in lymphoma. Here, in tumors from patients with diffuse large B-cell lymphoma (DLBCL), the most common, aggressive non-Hodgkin lymphoma, we found a high abundance of NEK2 mRNA and protein associated with an inferior overall survival. Using our recently developed NEK2 inhibitor, NBI-961, we discovered that DLBCL cell lines and patient-derived cells exhibit a dependency on NEK2 for their viability. This compromised cell fitness was directly attributable to efficient NEK2 inhibition and proteasomal degradation by NBI-961. In a subset of particularly sensitive DLBCL cells, NBI-961 induced G2/mitosis arrest and apoptosis. In contrast, an existing indirect NEK2 inhibitor, INH154, did not prevent NEK2 autophosphorylation, induce NEK2 proteasomal degradation, or affect cell viability. Global proteomics and phospho-proteomics revealed that NEK2 orchestrates cell-cycle and apoptotic pathways through regulation of both known and new signaling molecules. We show the loss of NEK2-sensitized DLBCL to the chemotherapy agents, doxorubicin and vincristine, and effectively suppressed tumor growth in mice. These studies establish the oncogenic activity of NEK2 in DLBCL and set the foundation for development of anti-NEK2 therapeutic strategies in this frequently refractory and relapse-prone cancer.
Collapse
Affiliation(s)
- Mason McCrury
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kennith Swafford
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sydnye L. Shuttleworth
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Syed Hassan Mehdi
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Baku Acharya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Debasmita Saha
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kevin Naceanceno
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Aaron J. Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ying-Zhi Xu
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Claire Doshier
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Vijay Patel
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ginell R. Post
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Annick De Loose
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Fenghuang Zhan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Donghoon Yoon
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brendan Frett
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Samantha Kendrick
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
17
|
Liang X, Yu H, Liang R, Feng Z, Saidahmatov A, Sun C, Ren H, Wei X, Zhao J, Yang C, Liu H. Development of Potent MALT1 Inhibitors Featuring a Novel "2-Thioxo-2,3-dihydrothiazolo[4,5- d]pyrimidin-7(6 H)-one" Scaffold for the Treatment of B Cell Lymphoma. J Med Chem 2024; 67:2884-2906. [PMID: 38349664 DOI: 10.1021/acs.jmedchem.3c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) has emerged as a novel and promising therapeutic target for the treatment of lymphomas and autoimmune diseases. Herein, we reported a new class of MALT1 inhibitors featuring a novel "2-thioxo-2,3-dihydrothiazolo[4,5-d]pyrimidin-7(6H)-one" scaffold developed by structure-based drug design. Structure-activity relationship studies finally led to the discovery of MALT1 inhibitor 10m, which covalently and potently inhibited MALT1 protease with the IC50 value of 1.7 μM. 10m demonstrated potent and selective antiproliferative activity against ABC-DLBCL and powerful ability to induce HBL1 apoptosis. 10m also effectively downregulated the activities of MALT1 and its downstream signal pathways. Furthermore, 10m induced upregulation of mTOR and PI3K-Akt signals and exhibited a synergistic antitumor effect with Rapamycin in HBL1 cells. More importantly, 10m remarkably suppressed the tumor growth both in the implanted HBL1 and TMD8 xenograft models. Collectively, this work provides valuable MALT1 inhibitors with a distinct core structure.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haolan Yu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Renwen Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuanghui Feng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China
| | - Abdusaid Saidahmatov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxia Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Hairu Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiaohui Wei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayan Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai 200433, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
18
|
Phelan JD, Scheich S, Choi J, Wright GW, Häupl B, Young RM, Rieke SA, Pape M, Ji Y, Urlaub H, Bolomsky A, Doebele C, Zindel A, Wotapek T, Kasbekar M, Collinge B, Huang DW, Coulibaly ZA, Morris VM, Zhuang X, Enssle JC, Yu X, Xu W, Yang Y, Zhao H, Wang Z, Tran AD, Shoemaker CJ, Shevchenko G, Hodson DJ, Shaffer AL, Staudt LM, Oellerich T. Response to Bruton's tyrosine kinase inhibitors in aggressive lymphomas linked to chronic selective autophagy. Cancer Cell 2024; 42:238-252.e9. [PMID: 38215749 PMCID: PMC11256978 DOI: 10.1016/j.ccell.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
Diffuse large B cell lymphoma (DLBCL) is an aggressive, profoundly heterogeneous cancer, presenting a challenge for precision medicine. Bruton's tyrosine kinase (BTK) inhibitors block B cell receptor (BCR) signaling and are particularly effective in certain molecular subtypes of DLBCL that rely on chronic active BCR signaling to promote oncogenic NF-κB. The MCD genetic subtype, which often acquires mutations in the BCR subunit, CD79B, and in the innate immune adapter, MYD88L265P, typically resists chemotherapy but responds exceptionally to BTK inhibitors. However, the underlying mechanisms of response to BTK inhibitors are poorly understood. Herein, we find a non-canonical form of chronic selective autophagy in MCD DLBCL that targets ubiquitinated MYD88L265P for degradation in a TBK1-dependent manner. MCD tumors acquire genetic and epigenetic alterations that attenuate this autophagic tumor suppressive pathway. In contrast, BTK inhibitors promote autophagic degradation of MYD88L265P, thus explaining their exceptional clinical benefit in MCD DLBCL.
Collapse
Affiliation(s)
- James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Bethesda, MD 20850, USA
| | - Björn Häupl
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Ryan M Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara A Rieke
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Martine Pape
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Yanlong Ji
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Arnold Bolomsky
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carmen Doebele
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Alena Zindel
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Tanja Wotapek
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Monica Kasbekar
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brett Collinge
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivian M Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xiaoxuan Zhuang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julius C Enssle
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhuo Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andy D Tran
- CCR Microscopy Core, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher J Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Galina Shevchenko
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Arthur L Shaffer
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
19
|
Kanaoka D, Yamada M, Yokoyama H, Nishino S, Kunimura N, Satoyoshi H, Wakabayashi S, Urabe K, Ishii T, Nakanishi M. FPFT-2216, a Novel Anti-lymphoma Compound, Induces Simultaneous Degradation of IKZF1/3 and CK1α to Activate p53 and Inhibit NFκB Signaling. CANCER RESEARCH COMMUNICATIONS 2024; 4:312-327. [PMID: 38265263 PMCID: PMC10846380 DOI: 10.1158/2767-9764.crc-23-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/03/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Reducing casein kinase 1α (CK1α) expression inhibits the growth of multiple cancer cell lines, making it a potential therapeutic target for cancer. Herein, we evaluated the antitumor activity of FPFT-2216-a novel low molecular weight compound-in lymphoid tumors and elucidated its molecular mechanism of action. In addition, we determined whether targeting CK1α with FPFT-2216 is useful for treating hematopoietic malignancies. FPFT-2216 strongly degraded CK1α and IKAROS family zinc finger 1/3 (IKZF1/3) via proteasomal degradation. FPFT-2216 exhibited stronger inhibitory effects on human lymphoma cell proliferation than known thalidomide derivatives and induced upregulation of p53 and its transcriptional targets, namely, p21 and MDM2. Combining FPFT-2216 with an MDM2 inhibitor exhibited synergistic antiproliferative activity and induced rapid tumor regression in immunodeficient mice subcutaneously transplanted with a human lymphoma cell line. Nearly all tumors in mice disappeared after 10 days; this was continuously observed in 5 of 7 mice up to 24 days after the final FPFT-2216 administration. FPFT-2216 also enhanced the antitumor activity of rituximab and showed antitumor activity in a patient-derived diffuse large B-cell lymphoma xenograft model. Furthermore, FPFT-2216 decreased the activity of the CARD11/BCL10/MALT1 (CBM) complex and inhibited IκBα and NFκB phosphorylation. These effects were mediated through CK1α degradation and were stronger than those of known IKZF1/3 degraders. In conclusion, FPFT-2216 inhibits tumor growth by activating the p53 signaling pathway and inhibiting the CBM complex/NFκB pathway via CK1α degradation. Therefore, FPFT-2216 may represent an effective therapeutic agent for hematopoietic malignancies, such as lymphoma. SIGNIFICANCE We found potential vulnerability to CK1α degradation in certain lymphoma cells refractory to IKZF1/3 degraders. Targeting CK1α with FPFT-2216 could inhibit the growth of these cells by activating p53 signaling. Our study demonstrates the potential therapeutic application of CK1α degraders, such as FPFT-2216, for treating lymphoma.
Collapse
Affiliation(s)
- Daiki Kanaoka
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Mitsuo Yamada
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Hironori Yokoyama
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Satoko Nishino
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Naoshi Kunimura
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Hiroshi Satoyoshi
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Shota Wakabayashi
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Kazunori Urabe
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Takafumi Ishii
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Masato Nakanishi
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| |
Collapse
|
20
|
Liu F, Tian S, Liu Q, Deng Y, He Q, Shi Q, Chen G, Xu X, Yuan J, Nakamura S, Karube K, Wang Z. Comparison of genomic alterations in Epstein-Barr virus-positive and Epstein-Barr virus-negative diffuse large B-cell lymphoma. Cancer Med 2024; 13:e6995. [PMID: 38457199 PMCID: PMC10922027 DOI: 10.1002/cam4.6995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/30/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (EBV-posDLBCL) is an aggressive B-cell lymphoma that often presents similar morphological and immune phenotype features to that of EBV-negative DLBCL (EBV-negDLBCL). AIMS AND METHODS To better understand their difference in genomic landscape, we performed whole-exome sequencing (WES) of EBV-posDLBCL and EBV-negDLBCL. RESULTS This analysis revealed a new mutational signature 17 (unknown) and signature 29 (smoking) in EBV-posDLBCL as well as a specific mutational signature 24 (associated with aflatoxin) in EBV-negDLBCL. Compared with EBV-negDLBCL, more somatic copy number alterations (CNAs) and deletions were detected in EBV-posDLBCL (p = 0.01). The most frequent CNAs specifically detected in EBV-posDLBCL were gains at 9p24.1 (PDL1 and JAK2), 8q22.2-q24.23 (DEPTOR and MYC), and 7q31.31-q32.2 (MET), which were validated in additional EBV-posDLBCL cases. Overall, 53.7% (22/41) and 62.9% (22/35) of the cases expressed PD-L1 and c-MET, respectively, in neoplastic cells, whereas only 15.4% (4/26) expressed c-MYC. Neoplastic c-MET expression was positively correlated with PD-L1 (p < 0.001) and MYC expression (p = 0.016). However, EBV-posDLBCL cases did not show any differences in overall survival between PD-L1-, c-MET-, or c-MYC-positive and -negative cases or between age-related groups. Analysis of the association between somatic mutation load and EBV status showed no difference in the distribution of tumor mutant burden between the two lymphomas (p = 0.41). Recurrent mutations in EBV-posDLBCL implicated several genes, including DCAF8L1, KLF2, and NOL9, while in EBV-negDLBCL, ANK2, BPTF, and CNIH3 were more frequently mutated. Additionally, PIM1 is the most altered gene in all the WES-detected cases. CONCLUSIONS Our results confirm that genomic alteration differs significantly between EBV-posDLBCL and EBV-negDLBCL, and reveal new genetic alterations in EBV-posDLBCL. The positive correlation of c-MET and PD-L1/c-Myc expression may be involved in the pathogenesis of EBV-posDLBCL, which is should be explored prospectively in trials involving MET-directed therapies.
Collapse
Affiliation(s)
- Fang Liu
- Department of PathologyThe First People's Hospital of FoshanFoshanGuangdongChina
| | - Sufang Tian
- Department of Pathology and Molecular Diagnostics, Zhongnan HospitalWuhan UniversityWuhanHubeiChina
| | - Qing Liu
- Department of PathologyThe First People's Hospital of FoshanFoshanGuangdongChina
| | - Yuanfei Deng
- Department of PathologyThe First People's Hospital of FoshanFoshanGuangdongChina
| | - Qingyan He
- Department of PathologyThe First People's Hospital of FoshanFoshanGuangdongChina
| | - Qianyun Shi
- Department of Pathology, Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingJiangsuChina
| | - Gang Chen
- Department of PathologyFujian Province Cancer CenterFuzhouFujianChina
| | - Xiuli Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing HospitalFourth Military Medical UniversityXi'anShannxiChina
| | - Jiayin Yuan
- Department of PathologyThe First People's Hospital of FoshanFoshanGuangdongChina
| | - Shigeo Nakamura
- Department of Pathology and Clinical LaboratoriesNagoya University HospitalNagoyaJapan
| | - Kennosuke Karube
- Department of Pathology and Clinical LaboratoriesNagoya University HospitalNagoyaJapan
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing HospitalFourth Military Medical UniversityXi'anShannxiChina
| |
Collapse
|
21
|
Cooper A, Tumuluru S, Kissick K, Venkataraman G, Song JY, Lytle A, Duns G, Yu J, Kotlov N, Bagaev A, Hodkinson B, Srinivasan S, Smith SM, Scott DW, Steidl C, Godfrey JK, Kline J. CD5 Gene Signature Identifies Diffuse Large B-Cell Lymphomas Sensitive to Bruton's Tyrosine Kinase Inhibition. J Clin Oncol 2024; 42:467-480. [PMID: 38079587 DOI: 10.1200/jco.23.01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 01/31/2024] Open
Abstract
PURPOSE A genetic classifier termed LymphGen accurately identifies diffuse large B-cell lymphoma (DLBCL) subtypes vulnerable to Bruton's tyrosine kinase inhibitors (BTKis), but is challenging to implement in the clinic and fails to capture all DLBCLs that benefit from BTKi-based therapy. Here, we developed a novel CD5 gene expression signature as a biomarker of response to BTKi-based therapy in DLBCL. METHODS CD5 immunohistochemistry (IHC) was performed on 404 DLBCLs to identify CD5 IHC+ and CD5 IHC- cases, which were subsequently characterized at the molecular level through mutational and transcriptional analyses. A 60-gene CD5 gene expression signature (CD5sig) was constructed using genes differentially expressed between CD5 IHC+ and CD5 IHC- non-germinal center B-cell-like (non-GCB DLBCL) DLBCLs. This CD5sig was applied to external DLBCL data sets, including pretreatment biopsies from patients enrolled in the PHOENIX study (n = 584) to define the extent to which the CD5sig could identify non-GCB DLBCLs that benefited from the addition of ibrutinib to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). RESULTS CD5 expression was observed in 12% of non-GCB DLBCLs. CD5+ DLBCLs displayed transcriptional features of B-cell receptor (BCR) activation and were enriched for BCR-activating mutations known to correlate with BTKi sensitivity. However, most CD5+ DLBCLs lacked canonical BCR-activating mutations or were LymphGen-unclassifiable (LymphGen-Other). The CD5sig recapitulated these findings in multiple independent data sets, indicating its utility in identifying DLBCLs with genetic and nongenetic bases for BCR dependence. Supporting this notion, CD5sig+ DLBCLs derived a selective survival advantage from the addition of ibrutinib to R-CHOP in the PHOENIX study, independent of LymphGen classification. CONCLUSION CD5sig is a useful biomarker to identify DLBCLs vulnerable to BTKi-based therapies and complements current biomarker approaches by identifying DLBCLs with genetic and nongenetic bases for BTKi sensitivity.
Collapse
Affiliation(s)
- Alan Cooper
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Sravya Tumuluru
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| | - Kyle Kissick
- Department of Pathology, University of Chicago, Chicago, IL
| | | | - Joo Y Song
- Department of Pathology, City of Hope, Duarte, CA
| | - Andrew Lytle
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC
| | - Gerben Duns
- Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Jovian Yu
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | | | | | - Brendan Hodkinson
- Oncology Translational Research, Janssen Research & Development, Spring House, PA
| | - Srimathi Srinivasan
- Oncology Translational Research, Janssen Research & Development, Lower Gwynedd Township, PA
| | - Sonali M Smith
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - David W Scott
- Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Christian Steidl
- Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC, Canada
| | - James K Godfrey
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Justin Kline
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
22
|
Wang P, Fredj Z, Zhang H, Rong G, Bian S, Sawan M. Blocking Superantigen-Mediated Diseases: Challenges and Future Trends. J Immunol Res 2024; 2024:2313062. [PMID: 38268531 PMCID: PMC10807946 DOI: 10.1155/2024/2313062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
Superantigens are virulence factors secreted by microorganisms that can cause various immune diseases, such as overactivating the immune system, resulting in cytokine storms, rheumatoid arthritis, and multiple sclerosis. Some studies have demonstrated that superantigens do not require intracellular processing and instated bind as intact proteins to the antigen-binding groove of major histocompatibility complex II on antigen-presenting cells, resulting in the activation of T cells with different T-cell receptor Vβ and subsequent overstimulation. To combat superantigen-mediated diseases, researchers have employed different approaches, such as antibodies and simulated peptides. However, due to the complex nature of superantigens, these approaches have not been entirely successful in achieving optimal therapeutic outcomes. CD28 interacts with members of the B7 molecule family to activate T cells. Its mimicking peptide has been suggested as a potential candidate to block superantigens, but it can lead to reduced T-cell activity while increasing the host's infection risk. Thus, this review focuses on the use of drug delivery methods to accurately target and block superantigens, while reducing the adverse effects associated with CD28 mimic peptides. We believe that this method has the potential to provide an effective and safe therapeutic strategy for superantigen-mediated diseases.
Collapse
Affiliation(s)
- Pengbo Wang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Zina Fredj
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Hongyong Zhang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Guoguang Rong
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Sumin Bian
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| |
Collapse
|
23
|
Li Z, Guo W, Bai O. Mechanism of action and therapeutic targeting of CD30 molecule in lymphomas. Front Oncol 2023; 13:1301437. [PMID: 38188299 PMCID: PMC10767573 DOI: 10.3389/fonc.2023.1301437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
At present, the treatment of lymphoma has entered the era of precision medicine, and CD30, as a transmembrane protein, has become an important marker to help the diagnosis and formulation of treatment plans for lymphomas. This protein is widely expressed in various types of lymphomas and can play a role through nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and other pathways, and ultimately lead to the up-regulation of CD30 expression to give tumor cells a survival advantage. Brentuximab vedotin (BV), as an antibody-drug conjugate (ADC) targeting CD30, is one of the first new drugs to significantly improve survival in patients with CD30+lymphomas. However, the biological function of CD30 has not been fully elucidated. Therefore, this review highlights the CD30-mediated tumor-promoting mechanisms and the molecular factors that regulate CD30 expression. We hope that a better understanding of CD30 biology will provide new insights into clinical treatment and improve the survival and quality of life of lymphoma patients.
Collapse
Affiliation(s)
| | | | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
24
|
Tkachenko A, Kupcova K, Havranek O. B-Cell Receptor Signaling and Beyond: The Role of Igα (CD79a)/Igβ (CD79b) in Normal and Malignant B Cells. Int J Mol Sci 2023; 25:10. [PMID: 38203179 PMCID: PMC10779339 DOI: 10.3390/ijms25010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
B-cell receptor (BCR) is a B cell hallmark surface complex regulating multiple cellular processes in normal as well as malignant B cells. Igα (CD79a)/Igβ (CD79b) are essential components of BCR that are indispensable for its functionality, signal initiation, and signal transduction. CD79a/CD79b-mediated BCR signaling is required for the survival of normal as well as malignant B cells via a wide signaling network. Recent studies identified the great complexity of this signaling network and revealed the emerging role of CD79a/CD79b in signal integration. In this review, we have focused on functional features of CD79a/CD79b, summarized signaling consequences of CD79a/CD79b post-translational modifications, and highlighted specifics of CD79a/CD79b interactions within BCR and related signaling cascades. We have reviewed the complex role of CD79a/CD79b in multiple aspects of normal B cell biology and how is the normal BCR signaling affected by lymphoid neoplasms associated CD79A/CD79B mutations. We have also summarized important unresolved questions and highlighted issues that remain to be explored for better understanding of CD79a/CD79b-mediated signal transduction and the eventual identification of additional therapeutically targetable BCR signaling vulnerabilities.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Kristyna Kupcova
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| |
Collapse
|
25
|
Wimberger N, Ober F, Avar G, Grau M, Xu W, Lenz G, Menden MP, Krappmann D. Oncogene-induced MALT1 protease activity drives posttranscriptional gene expression in malignant lymphomas. Blood 2023; 142:1985-2001. [PMID: 37623434 PMCID: PMC10733837 DOI: 10.1182/blood.2023021299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Constitutive mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) activity drives survival of malignant lymphomas addicted to chronic B-cell receptor signaling, oncogenic CARD11, or the API2-MALT1 (also BIRC3::MALT1) fusion oncoprotein. Although MALT1 scaffolding induces NF-κB-dependent survival signaling, MALT1 protease function is thought to augment NF-κB activation by cleaving signaling mediators and transcriptional regulators in B-cell lymphomas. However, the pathological role of MALT1 protease function in lymphomagenesis is not well understood. Here, we show that TRAF6 controls MALT1-dependent activation of NF-κB transcriptional responses but is dispensable for MALT1 protease activation driven by oncogenic CARD11. To uncouple enzymatic and nonenzymatic functions of MALT1, we analyzed TRAF6-dependent and -independent as well as MALT1 protease-dependent gene expression profiles downstream of oncogenic CARD11 and API2-MALT1. The data suggest that by cleaving and inactivating the RNA binding proteins Regnase-1 and Roquin-1/2, MALT1 protease induces posttranscriptional upregulation of many genes including NFKBIZ/IκBζ, NFKBID/IκBNS, and ZC3H12A/Regnase-1 in activated B-cell-like diffuse large B-cell lymphoma (ABC DLBCL). We demonstrate that oncogene-driven MALT1 activity in ABC DLBCL cells regulates NFKBIZ and NFKBID induction on an mRNA level via releasing a brake imposed by Regnase-1 and Roquin-1/2. Furthermore, MALT1 protease drives posttranscriptional gene induction in the context of the API2-MALT1 fusion created by the recurrent t(11;18)(q21;q21) translocation in MALT lymphoma. Thus, MALT1 paracaspase acts as a bifurcation point for enhancing transcriptional and posttranscriptional gene expression in malignant lymphomas. Moreover, the identification of MALT1 protease-selective target genes provides specific biomarkers for the clinical evaluation of MALT1 inhibitors.
Collapse
Affiliation(s)
- Nicole Wimberger
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets Therapeutic Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Franziska Ober
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets Therapeutic Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Göksu Avar
- Department of Computational Health, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Michael Grau
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Wendan Xu
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Michael P. Menden
- Department of Computational Health, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Australia
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets Therapeutic Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| |
Collapse
|
26
|
Assis-Mendonça GR, Campos LG, Delamain MT, de Brito ABC, Fanelli MF, Soares FA, de Souza CA, Vassallo J, Lima CSP. Association of single nucleotide variants in VEGFA and KDR with the risk and angiogenic features of diffuse large B-cell lymphoma. Leuk Lymphoma 2023; 64:2165-2177. [PMID: 37647140 DOI: 10.1080/10428194.2023.2248330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma subtype and dependent on angiogenesis (AG), whose main effectors are VEGFA and VEGFR2. Functional single nucleotide variants (SNVs) are described in VEGFA and KDR genes. However, it still unknown whether VEGFA - 2578C/A, -2489C/T, -1154G/A, -634G/C, -460C/T and KDR-604T/C, -271G/A, +1192G/A and +1719A/T SNVs act on DLBCL risk and angiogenic features. Genomic DNA from 168 DLBCL patients and 205 controls was used for SNV genotyping. Angiogenesis was immunohistochemically assessed in tumor biopsies, with reactions for VEGFA, VEGFR2, and CD34. VEGFA -1154GG genotype were associated with 1.6-fold higher DLBCL risk. KDR + 1192GG plus KDR + 1719 TT and KDR + 1192GG plus VEGFA - 2578CC combined genotypes are associated with 2.19- and 2.04-fold higher risks of DLBCL, respectively. VEGFA - 634GG or GC genotypes are associated with increased microvessel density and VEGFA levels. No relationship was observed between SNVs and cell-of-origin classification of DLBCL, but higher VEGFA and VEGFR2 were seen in non-germinal center tumors.
Collapse
Affiliation(s)
- Guilherme Rossi Assis-Mendonça
- School of Medical Sciences, Laboratory of Cancer Genetics, University of Campinas, Campinas, Brazil
- Young Physician Leaders Program, National Academy of Medicine, Rio de Janeiro, Brazil
| | - Letícia Goulart Campos
- School of Medical Sciences, Laboratory of Cancer Genetics, University of Campinas, Campinas, Brazil
| | | | | | | | - Fernando Augusto Soares
- Instituto D'Or de Pesquisa e Ensino (IDOR), Anatomic Pathology D'Or Hospitals Network, São Paulo, Brazil
| | - Cármino Antônio de Souza
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - José Vassallo
- Instituto D'Or de Pesquisa e Ensino (IDOR), Anatomic Pathology D'Or Hospitals Network, São Paulo, Brazil
- Department of Pathology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Carmen Silvia Passos Lima
- School of Medical Sciences, Laboratory of Cancer Genetics, University of Campinas, Campinas, Brazil
- Department of Anesthesiology, Oncology and Radiology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
27
|
Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, Lou G, Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther 2023; 8:420. [PMID: 37926722 PMCID: PMC10625992 DOI: 10.1038/s41392-023-01647-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yu-Yang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Pi
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Sheng-Han Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Bo Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
28
|
Fuertes T, Álvarez-Corrales E, Gómez-Escolar C, Ubieto-Capella P, Serrano-Navarro Á, de Molina A, Méndez J, Ramiro AR, de Yébenes VG. miR-28-based combination therapy impairs aggressive B cell lymphoma growth by rewiring DNA replication. Cell Death Dis 2023; 14:687. [PMID: 37852959 PMCID: PMC10585006 DOI: 10.1038/s41419-023-06178-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common aggressive B cell lymphoma and accounts for nearly 40% of cases of B cell non-Hodgkin lymphoma. DLBCL is generally treated with R-CHOP chemotherapy, but many patients do not respond or relapse after treatment. Here, we analyzed the therapeutic potential of the tumor suppressor microRNA-28 (miR-28) for DLBCL, alone and in combination with the Bruton's tyrosine kinase inhibitor ibrutinib. Combination therapy with miR-28 plus ibrutinib potentiated the anti-tumor effects of monotherapy with either agent by inducing a specific transcriptional cell-cycle arrest program that impairs DNA replication. The molecular actions of miR-28 and ibrutinib synergistically impair DNA replication by simultaneous inhibition of origin activation and fork progression. Moreover, we found that downregulation of the miR-28-plus-ibrutinib gene signature correlates with better survival of ABC-DLBCL patients. These results provide evidence for the effectiveness of a new miRNA-based ibrutinib combination therapy for DLBCL and unveil the miR-28-plus-ibrutinib gene signature as a new predictor of outcome in ABC-DLBCL patients.
Collapse
Affiliation(s)
- Teresa Fuertes
- B Cell Biology Laboratory Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Emigdio Álvarez-Corrales
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Carmen Gómez-Escolar
- B Cell Biology Laboratory Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Álvaro Serrano-Navarro
- B Cell Biology Laboratory Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Antonio de Molina
- Comparative Medicine Unit. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan Méndez
- DNA replication Group. Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Almudena R Ramiro
- B Cell Biology Laboratory Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| | - Virginia G de Yébenes
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
29
|
Song Y, Wu SJ, Shen Z, Zhao D, Chan TSY, Huang H, Qiu L, Li J, Tan TD, Zhu J, Song Y, Huang WH, Zhao W, Liu HSY, Xu W, Chen N, Ma J, Chang CS, Tse EWC. Chinese expert consensus on Bruton tyrosine kinase inhibitors in the treatment of B-cell malignancies. Exp Hematol Oncol 2023; 12:92. [PMID: 37845755 PMCID: PMC10578030 DOI: 10.1186/s40164-023-00448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023] Open
Abstract
Targeted therapy with Bruton tyrosine kinase (BTK) inhibitors have revolutionized the treatment of patients with various B-cell malignancies. BTK inhibitors such as ibrutinib, zanubrutinib, orelabrutinib, and acalabrutinib have shown good clinical efficacy and better safety profiles than those of traditional chemotherapy and chemoimmunotherapy regimens. Multiple studies on new BTK inhibitors are ongoing, which may provide more therapeutic options for the treatment of B-cell malignancies. Considering the unmet need of evidence on BTK inhibitors in all clinical settings and to standardize the use of BTK inhibitors available in mainland China, Taiwan, Hong Kong, and Macau regions, this consensus has been formulated for the treatment of various B-cell malignancies based on the clinical practice and available evidences on the use of BTK inhibitors. The recommendations of this consensus will provide guidance to physicians and clinical researchers on the effective treatment of B-cell malignancies with BTK inhibitors.
Collapse
Affiliation(s)
- Yuqin Song
- Peking University Cancer Hospital and Institute, Beijing, China
| | - Shang-Ju Wu
- Hematology Division, Department of Internal Medicine, National Taiwan University Hospital, Taiwan, China
| | - Zhixiang Shen
- Shanghai Jiaotong University Affiliated Ruijin Hospital, Shanghai, China
| | - Donglu Zhao
- Harbin Hematology and Oncology Institute, Heilongjiang, 150007, China
| | | | | | - Lugui Qiu
- Institute of Hematology and Blood Diseases Hospital, Tianjing, China
| | - Jianyong Li
- Jiangsu Provincial People's Hospital, Jiangsu, China
| | - Tran-der Tan
- Department of Hematology and Medical Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taiwan, China
| | - Jun Zhu
- Peking University Cancer Hospital and Institute, Beijing, China
| | - Yongping Song
- The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Wei-Han Huang
- Department of Clinical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taiwan, China
| | - Weili Zhao
- Shanghai Jiaotong University Affiliated Ruijin Hospital, Shanghai, China
| | | | - Wei Xu
- Jiangsu Provincial People's Hospital, Jiangsu, China
| | - Naizhi Chen
- Macau Society of Hematology and Oncology, Macau, China
| | - Jun Ma
- Harbin Hematology and Oncology Institute, Heilongjiang, 150007, China.
| | - Cheng-Shyong Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Bing Show Chwan Memorial Hospital, Taiwan, China.
- Department of Healthcare Administration, Central Taiwan University of Science and Technology, Taiwan, China.
| | - Eric Wai Choi Tse
- Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
30
|
Karatrasoglou EA, Dimou M, Piperidou A, Lakiotaki E, Korkolopoulou P, Vassilakopoulos TP. The Role of mTOR in B Cell Lymphoid Malignancies: Biologic and Therapeutic Aspects. Int J Mol Sci 2023; 24:14110. [PMID: 37762410 PMCID: PMC10531792 DOI: 10.3390/ijms241814110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Non-Hodgkin lymphoma's (NHL) incidence is rising over time, and B cell lymphomas comprise the majority of lymphomas. The phosphoinositide 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue 1 (Akt)/mammalian target of the rapamycin (mTOR) signaling pathway plays a critical role in a variety of cellular processes, such as cell proliferation and survival. Its role in lymphomagenesis is confirmed in many different types of B cell lymphomas. This review is mainly focused on the PI3K/v-akt/mTOR pathway-related oncogenic mechanisms in B cell NHLs with an emphasis on common B cell lymphoma types [diffuse large B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL)]. Furthermore, it summarizes the literature regarding the clinical applications of the mTOR inhibitors temsirolimus and everolimus in B cell NHLs, which have been tested in a range of clinical trials enrolling patients with B cell malignancies, either as monotherapy or in combination with other agents or regimens.
Collapse
Affiliation(s)
- Eleni A. Karatrasoglou
- First Department of Pathology, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (E.L.); (P.K.)
| | - Maria Dimou
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (M.D.); (A.P.); (T.P.V.)
| | - Alexia Piperidou
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (M.D.); (A.P.); (T.P.V.)
| | - Eleftheria Lakiotaki
- First Department of Pathology, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (E.L.); (P.K.)
| | - Penelope Korkolopoulou
- First Department of Pathology, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (E.L.); (P.K.)
| | - Theodoros P. Vassilakopoulos
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (M.D.); (A.P.); (T.P.V.)
| |
Collapse
|
31
|
Berker N, Yeğen G, Özlük Y, Doğan Ö. Value of GCET1, HGAL (GCET2), and LMO2 in the Determination of Germinal Center Phenotype in Diffuse Large B-cell Lymphoma. Turk J Haematol 2023; 40:162-173. [PMID: 37519110 PMCID: PMC10476251 DOI: 10.4274/tjh.galenos.2023.2023.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
Objective Diffuse large B-cell lymphoma (DLBCL) is a biologically heterogeneous disease that is classified into germinal center B-cell (GCB) and non-GCB subtypes, which are prognostically different. The Hans algorithm is the most widely used tool based on CD10, BCL6, and MUM1 expression, but some cases with the non-GCB phenotype are still known to be misclassified. In this study, we investigate the extent to which GCET1, HGAL, and LMO2 protein expressions reflect GCB phenotype together with their roles in determining the GCB phenotype of DLBCL and their contributions to the performance of the Hans algorithm. Materials and Methods Sixty-five cases of DLBCL-not otherwise specified, 40 cases of follicular lymphoma (FL), and 19 non-GC-derived lymphoma cases were included in this study. The DLBCL cases were grouped as CD10+ (Group A) or only MUM1+ (Group B), and the remaining cases constituted the intermediate group (Group C). GCET1, HGAL, and LMO2 expressions were evaluated. Results In the FL group, GCET1, HGAL, and LMO2 were positive in 85%, 77.5%, and 100% of the cases, respectively. Among the non-GC-derived lymphoma cases, all three markers were negative in cases of small lymphocytic lymphoma, plasmablastic lymphoma, peripheral T-cell lymphoma, and anaplastic large cell lymphoma. GCET1 and HGAL were negative in cases of marginal zone lymphoma (MZL) and mantle cell lymphoma (MCL). Two of the 3 MZL and 2 of the 4 MCL cases were positive for LMO2. In the DLBCL group, the number of cases with GCET1, HGAL, and LMO2 positivity was 18 (90%), 17 (85%), and 20 (100%), respectively, in Group A and 0 (0%), 2 (13.3%), and 2 (13.3%), respectively, in Group B. Considering these rates, when the cases in the intermediate group were evaluated, it was concluded that 13 cases typed as non-GCB according to the Hans algorithm may have the GCB phenotype. Conclusion GCET1, HGAL, and LMO2 are highly sensitive markers for determining the germinal center cell phenotype and can increase the accuracy of the subclassification of DLBCL cases, especially for cases that are negative for CD10.
Collapse
Affiliation(s)
- Neslihan Berker
- İstanbul University İstanbul Faculty of Medicine, Department of Pathology, İstanbul, Türkiye
| | - Gülçin Yeğen
- İstanbul University İstanbul Faculty of Medicine, Department of Pathology, İstanbul, Türkiye
| | - Yasemin Özlük
- İstanbul University İstanbul Faculty of Medicine, Department of Pathology, İstanbul, Türkiye
| | - Öner Doğan
- İstanbul University İstanbul Faculty of Medicine, Department of Pathology, İstanbul, Türkiye
- Koç University Faculty of Medicine, Department of Pathology, İstanbul, Türkiye
| |
Collapse
|
32
|
Lee B, Pierpont T, August A, Richards K. Monoclonal antibodies binding to different epitopes of CD20 differentially sensitize DLBCL to different classes of chemotherapy. Front Oncol 2023; 13:1159484. [PMID: 37601699 PMCID: PMC10436104 DOI: 10.3389/fonc.2023.1159484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Rituximab (R), an anti-CD20 monoclonal antibody (mAb) and the world's first approved antibody for oncology patients, was combined with the CHOP chemotherapy regimen and markedly improved the prognosis of all B- cell-derived lymphomas, the most common hematological malignancy worldwide. However, there is a 35% disease recurrence with no advancement in the first-line treatment since R was combined with the archetypal CHOP chemotherapy regimen nearly 30 years ago. There is evidence that R synergizes with chemotherapy, but the pharmacological interactions between R and CHOP or between newer anti-CD20 mAbs and CHOP remain largely unexplored. Methods We used in vitro models to score pharmacological interactions between R and CHOP across various lymphoma cell lines. We compared these pharmacological interactions to ofatumumab, a second-generation anti-CD20 mAb, and CHOP. Lastly, we used RNA-sequencing to characterize the transcriptional profiles induced by these two antibodies and potential molecular pathways that mediate their different effects. Results We discovered vast heterogeneity in the pharmacological interactions between R and CHOP in a way not predicted by the current clinical classification. We then discovered that R and ofatumumab differentially synergize with the cytotoxic and cytostatic capabilities of CHOP in separate distinct subsets of B-cell lymphoma cell lines, thereby expanding favorable immunochemotherapy interactions across a greater range of cell lines beyond those induced by R-CHOP. Lastly, we discovered these two mAbs differentially modulate genes enriched in the JNK and p38 MAPK family, which regulates apoptosis and proliferation. Discussion Our findings were completely unexpected because these mAbs were long considered to be biological and clinical equivalents but, in practice, may perform better than the other in a patient-specific manner. This finding may have immediate clinical significance because both immunochemotherapy combinations are already FDA-approved with no difference in toxicity across phase I, II, and III clinical trials. Therefore, this finding could inform a new precision medicine strategy to provide additional therapeutic benefit to patients with B-cell lymphoma using immunochemotherapy combinations that already meet the clinical standard of care.
Collapse
Affiliation(s)
- Brian Lee
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tim Pierpont
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Kristy Richards
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
33
|
Rovsing AB, Thomsen EA, Nielsen I, Skov TW, Luo Y, Dybkaer K, Mikkelsen JG. Resistance to vincristine in DLBCL by disruption of p53-induced cell cycle arrest and apoptosis mediated by KIF18B and USP28. Br J Haematol 2023; 202:825-839. [PMID: 37190875 DOI: 10.1111/bjh.18872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The frontline therapy R-CHOP for patients with diffuse large B-cell lymphoma (DLBCL) has remained unchanged for two decades despite numerous Phase III clinical trials investigating new alternatives. Multiple large studies have uncovered genetic subtypes of DLBCL enabling a targeted approach. To further pave the way for precision oncology, we perform genome-wide CRISPR screening to uncover the cellular response to one of the components of R-CHOP, vincristine, in the DLBCL cell line SU-DHL-5. We discover important pathways and subnetworks using gene-set enrichment analysis and protein-protein interaction networks and identify genes related to mitotic spindle organization that are essential during vincristine treatment. The inhibition of KIF18A, a mediator of chromosome alignment, using the small molecule inhibitor BTB-1 causes complete cell death in a synergistic manner when administered together with vincristine. We also identify the genes KIF18B and USP28 of which CRISPR/Cas9-directed knockout induces vincristine resistance across two DLBCL cell lines. Mechanistic studies show that lack of KIF18B or USP28 counteracts a vincristine-induced p53 response suggesting that resistance to vincristine has origin in the mitotic surveillance pathway (USP28-53BP1-p53). Collectively, our CRISPR screening data uncover potential drug targets and mechanisms behind vincristine resistance, which may support the development of future drug regimens.
Collapse
Affiliation(s)
| | | | - Ian Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Karen Dybkaer
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | | |
Collapse
|
34
|
Guldenpfennig C, Teixeiro E, Daniels M. NF-kB's contribution to B cell fate decisions. Front Immunol 2023; 14:1214095. [PMID: 37533858 PMCID: PMC10391175 DOI: 10.3389/fimmu.2023.1214095] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
NF-κB signaling is essential to an effective innate and adaptive immune response. Many immune-specific functional and developmental outcomes depend in large on NF-κB. The formidable task of sorting out the mechanisms behind the regulation and outcome of NF-κB signaling remains an important area of immunology research. Here we briefly discuss the role of NF-κB in regulating cell fate decisions at various times in the path of B cell development, activation, and the generation of long-term humoral immunity.
Collapse
Affiliation(s)
- Caitlyn Guldenpfennig
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Mark Daniels
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
35
|
Jayawant E, Pack A, Clark H, Kennedy E, Ghodke A, Jones J, Pepper C, Pepper A, Mitchell S. NF-κB fingerprinting reveals heterogeneous NF-κB composition in diffuse large B-cell lymphoma. Front Oncol 2023; 13:1181660. [PMID: 37333821 PMCID: PMC10272839 DOI: 10.3389/fonc.2023.1181660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Improving treatments for Diffuse Large B-Cell Lymphoma (DLBCL) is challenged by the vast heterogeneity of the disease. Nuclear factor-κB (NF-κB) is frequently aberrantly activated in DLBCL. Transcriptionally active NF-κB is a dimer containing either RelA, RelB or cRel, but the variability in the composition of NF-κB between and within DLBCL cell populations is not known. Results Here we describe a new flow cytometry-based analysis technique termed "NF-κB fingerprinting" and demonstrate its applicability to DLBCL cell lines, DLBCL core-needle biopsy samples, and healthy donor blood samples. We find each of these cell populations has a unique NF-κB fingerprint and that widely used cell-of-origin classifications are inadequate to capture NF-κB heterogeneity in DLBCL. Computational modeling predicts that RelA is a key determinant of response to microenvironmental stimuli, and we experimentally identify substantial variability in RelA between and within ABC-DLBCL cell lines. We find that when we incorporate NF-κB fingerprints and mutational information into computational models we can predict how heterogeneous DLBCL cell populations respond to microenvironmental stimuli, and we validate these predictions experimentally. Discussion Our results show that the composition of NF-κB is highly heterogeneous in DLBCL and predictive of how DLBCL cells will respond to microenvironmental stimuli. We find that commonly occurring mutations in the NF-κB signaling pathway reduce DLBCL's response to microenvironmental stimuli. NF-κB fingerprinting is a widely applicable analysis technique to quantify NF-κB heterogeneity in B cell malignancies that reveals functionally significant differences in NF-κB composition within and between cell populations.
Collapse
|
36
|
Hori D, Kobayashi R, Nakazawa A, Iwafuchi H, Klapper W, Osumi T, Ohk K, Sekimizu M. Non-germinal center B-cell subtype of pediatric diffuse large B-cell lymphoma in Japan: A retrospective cohort study. Pediatr Blood Cancer 2023; 70:e30279. [PMID: 36860130 DOI: 10.1002/pbc.30279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is classified into two molecular subtypes according to its cell of origin: germinal center B-cell (GCB) subtype and activated B-cell/non-GCB subtype. This latter subtype shows a poorer prognosis in adults. However, in pediatric DLBCL, the prognostic impact of the subtype is yet to be clarified. OBJECTIVES This study sought to compare the prognosis between GCB and non-GCB DLBCL in a large number of cases in children and adolescents. In addition, this study intended to describe the clinical, immunohistochemical, and cytogenetic characteristics of these two molecular subtypes of DLBCL, and consider differences in the biology, frequency, and prognosis of GCB and non-GCB subtypes in pediatric versus adult DLBCL or in Japanese versus Western pediatric DLBCL patients. DESIGN/METHODS We selected mature B-cell lymphoma/leukemia patients for whom specimens had been submitted to the central pathology review in Japan between June 2005 and November 2019. We referred the past studies on Asian adult patients and Western pediatric patients to compare with our results. RESULTS Data were obtained from 199 DLBCL patients. The median age of all patients was 10 years, with 125 patients (62.8%) in the GCB group and 49 (24.6%) in the non-GCB group other than 25 cases whose immunohistochemical data were insufficient. Overall, the percentage of translocation of MYC (1.4%) and BCL6 (6.3%) was lower than in adult and Western pediatric DLBCL cases. The non-GCB group showed a significantly higher proportion of females (44.9%), a higher incidence of stage III disease (38.8%), and B-cell lymphoma 2 (BCL2)-positivity in immunohistochemistry (79.6%) compared to the GCB group; however, no BCL2 rearrangement was observed in both GCB and non-GCB groups. The prognosis did not differ significantly between the GCB and non-GCB groups. CONCLUSION This study including a large number of non-GCB patients showed the same prognosis between GCB and non-GCB groups and suggested a difference in the biology of pediatric and adolescent DLBCL compared to adult DLBCL as well as between Asian and Western DLBCL.
Collapse
Affiliation(s)
- Daiki Hori
- Lymphoma and Pathology Committee, JCCG (Japan Children's Cancer Group)/JPLSG (Japan Pediatric Leukemia/Lymphoma Study Group), Tokyo, Japan
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Sapporo, Hokkaido, Japan
| | - Ryoji Kobayashi
- Lymphoma and Pathology Committee, JCCG (Japan Children's Cancer Group)/JPLSG (Japan Pediatric Leukemia/Lymphoma Study Group), Tokyo, Japan
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Sapporo, Hokkaido, Japan
| | - Atsuko Nakazawa
- Lymphoma and Pathology Committee, JCCG (Japan Children's Cancer Group)/JPLSG (Japan Pediatric Leukemia/Lymphoma Study Group), Tokyo, Japan
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| | - Hideto Iwafuchi
- Lymphoma and Pathology Committee, JCCG (Japan Children's Cancer Group)/JPLSG (Japan Pediatric Leukemia/Lymphoma Study Group), Tokyo, Japan
- Department of Pathology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Wolfram Klapper
- Department of Pathology, General Pathology and Hematopathology, University Hospitals Schleswig-Holstein, Kiel, Germany
| | - Tomoo Osumi
- National Center for Child Health and Development, Children's Cancer Center, Tokyo, Japan
| | - Kentaro Ohk
- Lymphoma and Pathology Committee, JCCG (Japan Children's Cancer Group)/JPLSG (Japan Pediatric Leukemia/Lymphoma Study Group), Tokyo, Japan
- Department of Pediatric Hematology and Oncology Research, Research Institute, National Center for Child Health and Development, Tokyo, Japan
| | - Masahiro Sekimizu
- Lymphoma and Pathology Committee, JCCG (Japan Children's Cancer Group)/JPLSG (Japan Pediatric Leukemia/Lymphoma Study Group), Tokyo, Japan
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
37
|
Qin Y, Qiu T, Xie Z, Chen X, Liu P, Yang J, He X, Gui L, Zhou S, Jiang H, Zhang C, Yang S, Tang L, Shi Y. MYD88 L265P and MYD88 other variants show different molecular characteristics and prognostic significance in diffuse large B-cell lymphoma. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04714-1. [PMID: 37093346 PMCID: PMC10374827 DOI: 10.1007/s00432-023-04714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/18/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE This study aims to investigate the clinical and molecular differences between diffuse large B-cell lymphoma (DLBCL) patients with MYD88L265P and MYD88other. METHODS DLBCL patients with MYD88 variations were collected from the Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CHCAMS), and Suzhou Municipal Hospital from February 6th, 2007 to May 20th, 2022. Clinicopathological parameters and treatment outcomes between MYD88L265P and MYD88other were investigated. RESULTS A total of 132 patients with MYD88 variations from a cohort of 475 DLBCL patients were included, among which, 78 were MYD88L265P, while 54 were MYD88other. MYD88L265P was more common in non-GCB subtype than MYD88other (83% vs. 60%, P = 0.004). Besides, MYD88L265P was significantly related to higher proportion of testicle/ central nervous system involvement (31% vs. 6%, P < 0.001), PIM1 mutation (71% vs. 39%, P < 0.001), and PIM1 hypermutation (28% vs. 11%, P = 0.018), compared with MYD88other. Compared with MYD88L265P, MYD88other were more likely to have higher percentage of advanced stage (60% vs. 42%, P = 0.044), extranodal site ≥ 2 (45% vs. 28%, P = 0.044), elevated LDH (55% vs. 35%, P = 0.033), positive CD10 expression (36% vs. 16%, P = 0.009), BCL-6 translocation (20% vs. 8%, P = 0.033), and NOTCH pathway gene alteration (24% vs. 13%, P = 0.040). In non-GCB DLBCL subtype, patients with MYD88other were significantly associated with worse progression free survival (PFS) than those with MYD88L265P when treated initially with R-CHOP/R-CHOP-like regimen (P = 0.010). CONCLUSION The findings of this study indicate that DLBCL patients with MYD88L265P and MYD88other are likely to be two subgroups with different clinical and molecular characteristics. The survival of patients with MYD88other is not superior than those with MYD88L265P, even poorer when focusing on the non-GCB subtype.
Collapse
Affiliation(s)
- Yan Qin
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Tian Qiu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Zucheng Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Xinrui Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Peng Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Jianliang Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Xiaohui He
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Lin Gui
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Shengyu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Hongxin Jiang
- Department of Medical Oncology, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China
| | - Changgong Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Sheng Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China.
| |
Collapse
|
38
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
39
|
Lee J, Robinson ME, Sun R, Kume K, Ma N, Cosgun KN, Chan LN, Leveille E, Geng H, Vykunta VS, Shy BR, Marson A, Katz S, Chen J, Paietta E, Meffre E, Vaidehi N, Müschen M. Dynamic phosphatase-recruitment controls B-cell selection and oncogenic signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532151. [PMID: 36993276 PMCID: PMC10054997 DOI: 10.1101/2023.03.13.532151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Initiation of B-cell receptor (BCR) 1 signaling, and subsequent antigen-encounter in germinal centers 2,3 represent milestones of B-lymphocyte development that are both marked by sharp increases of CD25 surface-expression. Oncogenic signaling in B-cell leukemia (B-ALL) 4 and lymphoma 5 also induced CD25-surface expression. While CD25 is known as an IL2-receptor chain on T- and NK-cells 6-9 , the significance of its expression on B-cells was unclear. Our experiments based on genetic mouse models and engineered patient-derived xenografts revealed that, rather than functioning as an IL2-receptor chain, CD25 expressed on B-cells assembled an inhibitory complex including PKCδ and SHIP1 and SHP1 phosphatases for feedback control of BCR-signaling or its oncogenic mimics. Recapitulating phenotypes of genetic ablation of PKCδ 10 - 12 , SHIP1 13,14 and SHP1 14, 15,16 , conditional CD25-deletion decimated early B-cell subsets but expanded mature B-cell populations and induced autoimmunity. In B-cell malignancies arising from early (B-ALL) and late (lymphoma) stages of B-cell development, CD25-loss induced cell death in the former and accelerated proliferation in the latter. Clinical outcome annotations mirrored opposite effects of CD25-deletion: high CD25 expression levels predicted poor clinical outcomes for patients with B-ALL, in contrast to favorable outcomes for lymphoma-patients. Biochemical and interactome studies revealed a critical role of CD25 in BCR-feedback regulation: BCR-signaling induced PKCδ-mediated phosphorylation of CD25 on its cytoplasmic tail (S 268 ). Genetic rescue experiments identified CD25-S 268 tail-phosphorylation as central structural requirement to recruit SHIP1 and SHP1 phosphatases to curb BCR-signaling. A single point mutation CD25 S268A abolished recruitment and activation of SHIP1 and SHP1 to limit duration and strength of BCR-signaling. Loss of phosphatase-function, autonomous BCR-signaling and Ca 2+ -oscillations induced anergy and negative selection during early B-cell development, as opposed to excessive proliferation and autoantibody production in mature B-cells. These findings highlight the previously unrecognized role of CD25 in assembling inhibitory phosphatases to control oncogenic signaling in B-cell malignancies and negative selection to prevent autoimmune disease.
Collapse
|
40
|
Mitchell S, Tsui R, Tan ZC, Pack A, Hoffmann A. The NF-κB multidimer system model: A knowledge base to explore diverse biological contexts. Sci Signal 2023; 16:eabo2838. [PMID: 36917644 PMCID: PMC10195159 DOI: 10.1126/scisignal.abo2838] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
The nuclear factor κB (NF-κB) system is critical for various biological functions in numerous cell types, including the inflammatory response, cell proliferation, survival, differentiation, and pathogenic responses. Each cell type is characterized by a subset of 15 NF-κB dimers whose activity is regulated in a stimulus-responsive manner. Numerous studies have produced different mathematical models that account for cell type-specific NF-κB activities. However, whereas the concentrations or abundances of NF-κB subunits may differ between cell types, the biochemical interactions that constitute the NF-κB signaling system do not. Here, we synthesized a consensus mathematical model of the NF-κB multidimer system, which could account for the cell type-specific repertoires of NF-κB dimers and their cell type-specific activation and cross-talk. Our review demonstrates that these distinct cell type-specific properties of NF-κB signaling can be explained largely as emergent effects of the cell type-specific expression of NF-κB monomers. The consensus systems model represents a knowledge base that may be used to gain insights into the control and function of NF-κB in diverse physiological and pathological scenarios and that describes a path for generating similar regulatory knowledge bases for other pleiotropic signaling systems.
Collapse
Affiliation(s)
- Simon Mitchell
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA 90095, USA
- Brighton and Sussex Medical School, Department of Clinical and Experimental Medicine, University of Sussex, Falmer, East Sussex, BN1 9PX, UK
| | - Rachel Tsui
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Zhixin Cyrillus Tan
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA 90095, USA
| | - Arran Pack
- Brighton and Sussex Medical School, Department of Clinical and Experimental Medicine, University of Sussex, Falmer, East Sussex, BN1 9PX, UK
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
41
|
Deka K, Li Y. Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells 2023; 12:788. [PMID: 36899924 PMCID: PMC10001244 DOI: 10.3390/cells12050788] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The NF-κB signalling pathway is a major signalling cascade involved in the regulation of inflammation and innate immunity. It is also increasingly recognised as a crucial player in many steps of cancer initiation and progression. The five members of the NF-κB family of transcription factors are activated through two major signalling pathways, the canonical and non-canonical pathways. The canonical NF-κB pathway is prevalently activated in various human malignancies as well as inflammation-related disease conditions. Meanwhile, the significance of non-canonical NF-κB pathway in disease pathogenesis is also increasingly recognized in recent studies. In this review, we discuss the double-edged role of the NF-κB pathway in inflammation and cancer, which depends on the severity and extent of the inflammatory response. We also discuss the intrinsic factors, including selected driver mutations, and extrinsic factors, such as tumour microenvironment and epigenetic modifiers, driving aberrant activation of NF-κB in multiple cancer types. We further provide insights into the importance of the interaction of NF-κB pathway components with various macromolecules to its role in transcriptional regulation in cancer. Finally, we provide a perspective on the potential role of aberrant NF-κB activation in altering the chromatin landscape to support oncogenic development.
Collapse
Affiliation(s)
- Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
42
|
Cristian M, Baz RA, Stoica AG, Așchie M, Ghinea MM, Deacu M, Boșoteanu M, Mitroi AF, Dobrin N, Iordache IE, Bălțătescu GI. Diffuse large B cell lymphoma CD5-positive arising in an immune deficiency and immune dysregulation setting: A case report and brief review of the literature. Medicine (Baltimore) 2023; 102:e33083. [PMID: 36827036 PMCID: PMC11309652 DOI: 10.1097/md.0000000000033083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
RATIONALE In the era of antiretroviral therapy, lymphoma is the primary cause of cancer-related death among human immunodeficiency virus (HIV)-infected people and the most prevalent and aggressive non-Hodgkin lymphoma is diffuse large B cell lymphoma, which usually has an aggressive clinical course. CD5-positive diffuse large B cell lymphoma (DLBCL) is an insufficiently studied, relatively new entity, which accounts for 5% to 10% of the DLBCL population. The current study presents the clinicopathological features, diagnostic approach, and clinical outcomes of this HIV-related lymphoma and highlights the importance of the early diagnosis of CD5-positive DLBCL. PATIENT CONCERNS We present a case of a 30-year-old male patient, with a medical history of HIV-positive serology and antiviral treatment, presenting with diffuse abdominal pain and symptoms related to obstruction or perforation, followed by exploratory laparotomy and surgical resection of the small intestine with other areas of involvement. The surgical specimen was morphologically evaluated and immunohistochemical stained. DIAGNOSES AND INTERVENTIONS Histopathologic examination revealed a diffuse neoplastic proliferation of large B lymphocytes within the small intestine, lacking features of other defined types of large B cell lymphoma. The diagnosis of CD5-positive DLBCL subtype was made after immunostaining with twelve monoclonal antibodies (CD3, CD5, CD10, CD20, CD23, CD30, CD68, Cyclin D1, MUM1, Bcl2, Bcl6, and Ki-67). The expression profile of immunohistochemical markers (CD10, Bcl6, and MUM1) established the cell of origin of this case of DLBCL by using the Hans algorithm. LESSONS The current report highlights the importance of early diagnosis of CD5-positive DLBCL because of its poor prognosis and calls attention to the critical importance to identify immunodeficiencies because doing so affects the types of treatments available. Although cell-of-origin is useful for predicting outcomes, the germinal center B cell like and activated-B cell like subtypes remain heterogeneous, with better, and worse prognostic subsets within each group.
Collapse
Affiliation(s)
- Miruna Cristian
- Faculty of Medicine, “Ovidius” University of Constanta, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology - CEDMOG, “Ovidius” University of Constanta, Constanta, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Radu Andrei Baz
- Faculty of Medicine, “Ovidius” University of Constanta, Constanta, Romania
- Department of Radiology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Andreea Georgiana Stoica
- Faculty of Medicine, “Ovidius” University of Constanta, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology - CEDMOG, “Ovidius” University of Constanta, Constanta, Romania
- Department of Hematology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Mariana Așchie
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology - CEDMOG, “Ovidius” University of Constanta, Constanta, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
- Academy of Medical Sciences, Bucharest, Romania
| | - Maria Mihaela Ghinea
- Faculty of Medicine, “Ovidius” University of Constanta, Constanta, Romania
- Department of Hematology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Mariana Deacu
- Faculty of Medicine, “Ovidius” University of Constanta, Constanta, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Madalina Boșoteanu
- Faculty of Medicine, “Ovidius” University of Constanta, Constanta, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Anca Florentina Mitroi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology - CEDMOG, “Ovidius” University of Constanta, Constanta, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Nicolae Dobrin
- Faculty of Medicine, “Ovidius” University of Constanta, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology - CEDMOG, “Ovidius” University of Constanta, Constanta, Romania
| | - Ionut Eduard Iordache
- Faculty of Medicine, “Ovidius” University of Constanta, Constanta, Romania
- Department of Surgery, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Gabriela Izabela Bălțătescu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology - CEDMOG, “Ovidius” University of Constanta, Constanta, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| |
Collapse
|
43
|
Yousefi Z, Sharifzadeh S, Zare F, Eskandari N. Fc receptor-like 1 (FCRL1) is a novel biomarker for prognosis and a possible therapeutic target in diffuse large B-cell lymphoma. Mol Biol Rep 2023; 50:1133-1145. [PMID: 36409389 DOI: 10.1007/s11033-022-08104-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma, which can involve various types of mature B-cells. Considering that the incidence of DLBCL has increased, additional research is required to identify novel and effective prognostic and therapeutic molecules. Fc receptor-like 1 (FCRL1) acts as an activation co-receptor of human B-cells. Aberrant expression of this molecule has been reported in a number of B-cell-related disorders. Moreover, the clinical significance and prognosis value of FCRL1 in DLBCL are not completely identified. METHODS In this study, the expression levels of FCRL1 were determined in thirty patients with DLBCL and 15 healthy controls (HCs). In addition, the correlation between FCRL1 expressions with clinicopathological variables of DLBCL patients were examined. Then, the potential roles of FCRL1 in proliferation, apoptosis, and cell cycle distribution of B-cells from DLBCL patients were determined using flow cytometry analysis, after knockdown of this marker using retroviral short hairpin RNA interference. Quantitative real time-PCR, western blotting, and enzyme-linked immunosorbent assay were also used to identify the possible effects of FCRL1 knockdown on the expression levels of BCL-2, BID, BAX, intracellular signaling pathway PI3K/p-Akt, and p65 nuclear factor-kappa B (NF-κB) in the B-cells of DLBCL. RESULTS Statistical analysis revealed higher levels of FCRL1 expression in the B-cells of DLBCL patients compared to HCs at both protein and mRNA levels. A positive correlation was observed between the FCRL1 expression and some clinicopathological parameters of DLBCL patients. In addition, FCRL1 knockdown significantly decreased cell proliferation and stimulated apoptosis as well as G1 cell cycle arrest in the B-cells of DLBCL patients. The levels of p65 NF-κB and PI3K/p-Akt expressions were markedly reduced after knockdown of FCRL1 expression. CONCLUSIONS These results suggested that FCRL1 could be a potential novel biomarker for prognosis and/or a possible effective therapeutic target for treatment of patients with DLBCL.
Collapse
Affiliation(s)
- Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sedigheh Sharifzadeh
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farahnaz Zare
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Eskandari
- Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
44
|
Westin J, Davis RE, Feng L, Hagemeister F, Steiner R, Lee HJ, Fayad L, Nastoupil L, Ahmed S, Rodriguez A, Fanale M, Samaniego F, Iyer SP, Nair R, Oki Y, Fowler N, Wang M, Ma MCJ, Vega F, McDonnell T, Pinnix C, Griffith D, Lu Y, Tewari S, Sun R, Scott DW, Flowers CR, Neelapu S, Green MR. Smart Start: Rituximab, Lenalidomide, and Ibrutinib in Patients With Newly Diagnosed Large B-Cell Lymphoma. J Clin Oncol 2023; 41:745-755. [PMID: 35952327 PMCID: PMC10489211 DOI: 10.1200/jco.22.00597] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/03/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Chemoimmunotherapy for patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL) is largely unchanged for decades. Both preclinical models and clinical data suggest the combination of lenalidomide and ibrutinib may have synergy in DLBCL, particularly in the non-germinal center B-cell-like subset. METHODS We enrolled 60 patients with newly diagnosed non-germinal center B-cell-like DLBCL in this investigator-initiated, single-arm phase II trial of rituximab, lenalidomide, and ibrutinib (RLI) with the sequential addition of chemotherapy (ClinicalTrials.gov identifier: NCT02636322). Patients were treated with rituximab 375 mg/m2 intravenous once on day 1, lenalidomide 25 mg once per day on days 1-10, and ibrutinib 560 mg once daily continuously of each 21-day cycle (RLI). After two cycles, standard chemotherapy was added to RLI for six additional cycles. The primary end points were overall response rate (ORR) after two cycles of RLI alone and complete response rate after completion of RLI with chemotherapy. In evaluable samples, circulating tumor DNA and DLBCL90 assays were performed. RESULTS The median age was 63.5 years (range, 29-83 years) with 28% age 70 years or older. The revised international prognostic index identified 42% as high risk, and 62% were double expressor of MYC and BCL2 protein. The ORR after two cycles of RLI was 86.2%, and the complete response rate at the end of RLI-chemotherapy was 94.5%. With a median follow-up of 31 months, the progression-free survival and overall survival were at 91.3% and 96.6% at 2 years, respectively. CONCLUSION Smart Start is the first study, to our knowledge, to treat newly diagnosed DLBCL with a targeted therapy combination before chemotherapy. RLI produced a high ORR, and RLI with chemotherapy resulted in durable responses. This establishes the potential for developing biologically driven and noncytotoxic first-line therapies for DLBCL.
Collapse
Affiliation(s)
- Jason Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - R. Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lei Feng
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Fredrick Hagemeister
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Raphael Steiner
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hun Ju Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Luis Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Loretta Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alma Rodriguez
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michelle Fanale
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
- Seagen, Bothell, WA
| | - Felipe Samaniego
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Swaminathan P. Iyer
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ranjit Nair
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yasuhiro Oki
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nathan Fowler
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Man Chun John Ma
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Timothy McDonnell
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chelsea Pinnix
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Donna Griffith
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sanjit Tewari
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ryan Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - David W. Scott
- British Columbia Cancer Centre for Lymphoid Cancer, Vancouver, British Columbia, Canada
| | - Christopher R. Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael R. Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
45
|
Takahara T, Nakamura S, Tsuzuki T, Satou A. The Immunology of DLBCL. Cancers (Basel) 2023; 15:835. [PMID: 36765793 PMCID: PMC9913124 DOI: 10.3390/cancers15030835] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy and is the most common type of malignant lymphoid neoplasm. While some DLBCLs exhibit strong cell-autonomous survival and proliferation activity, others depend on interactions with non-malignant cells for their survival and proliferation. Recent next-generation sequencing studies have linked these interactions with the molecular classification of DLBCL. For example, germinal center B-cell-like DLBCL tends to show strong associations with follicular T cells and epigenetic regulation of immune recognition molecules, whereas activated B-cell-like DLBCL shows frequent genetic aberrations affecting the class I major histocompatibility complex. Single-cell technologies have also provided detailed information about cell-cell interactions and the cell composition of the microenvironment of DLBCL. Aging-related immunological deterioration, i.e., immunosenescence, also plays an important role in DLBCL pathogenesis, especially in Epstein-Barr virus-positive DLBCL. Moreover, DLBCL in "immune-privileged sites"-where multiple immune-modulating mechanisms exist-shows unique biological features, including frequent down-regulation of immune recognition molecules and an immune-tolerogenic tumor microenvironment. These advances in understanding the immunology of DLBCL may contribute to the development of novel therapies targeting immune systems.
Collapse
Affiliation(s)
- Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya 466-8550, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan
| |
Collapse
|
46
|
Lai J, Yao Y, Zhang Y, Liu Y, Lu C, Meng C, Xia D, Li Y, Cao K, Gao X, Yuan Q. Cell-Penetrating Peptide Conjugated Au Nanoclusters Selectively Suppress Refractory Lymphoma Cells via Targeting Both Canonical and Noncanonical NF-κB Signaling Pathways. Bioconjug Chem 2023; 34:228-237. [PMID: 36521093 DOI: 10.1021/acs.bioconjchem.2c00529] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is the most aggressive form of DLBCL, with a significantly inferior prognosis due to resistance to the standard R-CHOP immunochemotherapy. Survival of ABC-DLBCL cells addicted to the constitutive activations of both canonical and noncanonical NF-κB signaling makes them attractive therapeutic targets. However, a pharmaceutical approach simultaneously targeting the canonical and noncanonical NF-κB pathway in the ABC-DLBCL cell is still lacking. Peptide-conjugated gold nanoclusters (AuNCs) have emerged unique intrinsic biomedical activities and possess a great potential in cancer theranostics. Here, we demonstrated a Au25 nanocluster conjugated by cell-penetrating peptides that can selectively repress the growth of ABC-DLBCL cells by inducing efficient apoptosis, more efficiently than glutathione (GSH)-conjugated AuNCs. The mechanism study showed that the cell-penetrating peptides enhanced the cellular internalization efficiency of AuNCs, and the selective repression in ABC-DLBCL cells is due to the inhibition of inherent constitutive canonical and noncanonical NF-κB activities by AuNCs. Several NF-κB target genes involved in chemotherapy resistance in ABC-DLBCL cells, including anti-apoptotic Bcl-2 family members and DNA damage repair proteins, were effectively down-regulated by the AuNC. The emerged novel activity of AuNCs in targeting both arms of NF-κB signaling in ABC-DLBCL cells may provide a promising candidate and a new insight into the rational design of peptide-conjugated Au nanomedicine for molecular targeting treatment of refractory lymphomas.
Collapse
Affiliation(s)
- Jing Lai
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Yawen Yao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Yulu Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Yu Liu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Cao Lu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Cong Meng
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Dongfang Xia
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China
| | - Yanggege Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Kai Cao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Qing Yuan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
47
|
Roberts AD, Taraska JW. B cell receptor (BCR) endocytosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:159-177. [PMID: 36631191 DOI: 10.1016/bs.pmbts.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The B cell receptor (BCR) interacts with foreign antigens to mediate B cell activation and secretion of antibodies. B cell activation begins with initiation of signaling pathways, such as NFAT, NF-κB, and MAPK, and endocytosis of the BCR-antigen complex. Many studies have investigated the signaling pathways associated with BCR activation, and this work has led to significant advances in drug therapies to treat cancer and autoimmune diseases that are linked to aberrant BCR signaling. Less is known, however, about the mechanisms of BCR endocytosis and the role endocytosis plays in B cell pathogenesis. This chapter will review key characteristics of the BCR, including a review of signaling pathways, and endocytic mechanisms associated with the activated BCR. We will also review recent studies investigating the role of BCR endocytosis disease pathogenesis.
Collapse
Affiliation(s)
- Aleah D Roberts
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
48
|
Venturutti L, Rivas MA, Pelzer BW, Flümann R, Hansen J, Karagiannidis I, Xia M, McNally DR, Isshiki Y, Lytle A, Teater M, Chin CR, Meydan C, Knittel G, Ricker E, Mason CE, Ye X, Pan-Hammarström Q, Steidl C, Scott DW, Reinhardt HC, Pernis AB, Béguelin W, Melnick AM. An Aged/Autoimmune B-cell Program Defines the Early Transformation of Extranodal Lymphomas. Cancer Discov 2023; 13:216-243. [PMID: 36264161 PMCID: PMC9839622 DOI: 10.1158/2159-8290.cd-22-0561] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 01/17/2023]
Abstract
A third of patients with diffuse large B-cell lymphoma (DLBCL) present with extranodal dissemination, which is associated with inferior clinical outcomes. MYD88L265P is a hallmark extranodal DLBCL mutation that supports lymphoma proliferation. Yet extranodal lymphomagenesis and the role of MYD88L265P in transformation remain mostly unknown. Here, we show that B cells expressing Myd88L252P (MYD88L265P murine equivalent) activate, proliferate, and differentiate with minimal T-cell costimulation. Additionally, Myd88L252P skewed B cells toward memory fate. Unexpectedly, the transcriptional and phenotypic profiles of B cells expressing Myd88L252P, or other extranodal lymphoma founder mutations, resembled those of CD11c+T-BET+ aged/autoimmune memory B cells (AiBC). AiBC-like cells progressively accumulated in animals prone to develop lymphomas, and ablation of T-BET, the AiBC master regulator, stripped mouse and human mutant B cells of their competitive fitness. By identifying a phenotypically defined prospective lymphoma precursor population and its dependencies, our findings pave the way for the early detection of premalignant states and targeted prophylactic interventions in high-risk patients. SIGNIFICANCE Extranodal lymphomas feature a very poor prognosis. The identification of phenotypically distinguishable prospective precursor cells represents a milestone in the pursuit of earlier diagnosis, patient stratification, and prophylactic interventions. Conceptually, we found that extranodal lymphomas and autoimmune disorders harness overlapping pathogenic trajectories, suggesting these B-cell disorders develop and evolve within a spectrum. See related commentary by Leveille et al. (Blood Cancer Discov 2023;4:8-11). This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Leandro Venturutti
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada., Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z1L3, Canada., Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada.,Corresponding authors: Leandro Venturutti, PhD. Centre for Lymphoid Cancer and Terry Fox Laboratory, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada. Phone: 604-675-8000; Fax: 604-877-0712; , Ari M. Melnick, MD. Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, 413 E 69th St, New York, NY, 10021, USA. Phone: 646-962-6725; Fax: 646-962-0576;
| | - Martin A. Rivas
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Benedikt W. Pelzer
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA., Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne D-50937, Germany
| | - Ruth Flümann
- Department I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany., Max-Planck-Institute for Biology of Aging, Cologne 50931, Germany
| | - Julia Hansen
- Department I of Internal Medicine, University Hospital Cologne, Cologne 50931, Germany., Max-Planck-Institute for Biology of Aging, Cologne 50931, Germany
| | - Ioannis Karagiannidis
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Min Xia
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dylan R. McNally
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yusuke Isshiki
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Andrew Lytle
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada
| | - Matt Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher R. Chin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA., Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA., The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA., The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gero Knittel
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA., The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Stockholm, Sweden
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada., Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z1L3, Canada., Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada., Department of Medicine, University of British Columbia, Vancouver, BC V6T1Z7, Canada
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ari M. Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.,Corresponding authors: Leandro Venturutti, PhD. Centre for Lymphoid Cancer and Terry Fox Laboratory, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada. Phone: 604-675-8000; Fax: 604-877-0712; , Ari M. Melnick, MD. Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, 413 E 69th St, New York, NY, 10021, USA. Phone: 646-962-6725; Fax: 646-962-0576;
| |
Collapse
|
49
|
Masle-Farquhar E, Jeelall Y, White J, Bier J, Deenick EK, Brink R, Horikawa K, Goodnow CC. CARD11 gain-of-function mutation drives cell-autonomous accumulation of PD-1 + ICOS high activated T cells, T-follicular, T-regulatory and T-follicular regulatory cells. Front Immunol 2023; 14:1095257. [PMID: 36960072 PMCID: PMC10028194 DOI: 10.3389/fimmu.2023.1095257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Germline CARD11 gain-of-function (GOF) mutations cause B cell Expansion with NF-κB and T cell Anergy (BENTA) disease, whilst somatic GOF CARD11 mutations recur in diffuse large B cell lymphoma (DLBCL) and in up to 30% of the peripheral T cell lymphomas (PTCL) adult T cell leukemia/lymphoma (ATL), cutaneous T cell lymphoma (CTCL) and Sezary Syndrome. Despite their frequent acquisition by PTCL, the T cell-intrinsic effects of CARD11 GOF mutations are poorly understood. Methods Here, we studied B and T lymphocytes in mice with a germline Nethyl-N-nitrosourea (ENU)-induced Card11M365K mutation identical to a mutation identified in DLBCL and modifying a conserved region of the CARD11 coiled-coil domain recurrently mutated in DLBCL and PTCL. Results and discussion Our results demonstrate that CARD11.M365K is a GOF protein that increases B and T lymphocyte activation and proliferation following antigen receptor stimulation. Germline Card11M365K mutation was insufficient alone to cause B or T-lymphoma, but increased accumulation of germinal center (GC) B cells in unimmunized and immunized mice. Card11M365K mutation caused cell-intrinsic over-accumulation of activated T cells, T regulatory (TREG), T follicular (TFH) and T follicular regulatory (TFR) cells expressing increased levels of ICOS, CTLA-4 and PD-1 checkpoint molecules. Our results reveal CARD11 as an important, cell-autonomous positive regulator of TFH, TREG and TFR cells. They highlight T cell-intrinsic effects of a GOF mutation in the CARD11 gene, which is recurrently mutated in T cell malignancies that are often aggressive and associated with variable clinical outcomes.
Collapse
Affiliation(s)
- Etienne Masle-Farquhar
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Etienne Masle-Farquhar, ; Yogesh Jeelall,
| | - Yogesh Jeelall
- John Curtin School of Medical Research, Immunology Department, The Australian National University, Canberra, ACT, Australia
- *Correspondence: Etienne Masle-Farquhar, ; Yogesh Jeelall,
| | - Jacqueline White
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Julia Bier
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Keisuke Horikawa
- John Curtin School of Medical Research, Immunology Department, The Australian National University, Canberra, ACT, Australia
| | - Christopher Carl Goodnow
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
50
|
Xu W, Berning P, Erdmann T, Grau M, Bettazová N, Zapukhlyak M, Frontzek F, Kosnopfel C, Lenz P, Grondine M, Willis B, Lynch JT, Klener P, Hailfinger S, Barry ST, Lenz G. mTOR inhibition amplifies the anti-lymphoma effect of PI3Kβ/δ blockage in diffuse large B-cell lymphoma. Leukemia 2023; 37:178-189. [PMID: 36352190 PMCID: PMC9883168 DOI: 10.1038/s41375-022-01749-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease that exhibits constitutive activation of phosphoinositide 3-kinase (PI3K) driven by chronic B-cell receptor signaling or PTEN deficiency. Since pan-PI3K inhibitors cause severe side effects, we investigated the anti-lymphoma efficacy of the specific PI3Kβ/δ inhibitor AZD8186. We identified a subset of DLBCL models within activated B-cell-like (ABC) and germinal center B-cell-like (GCB) DLBCL that were sensitive to AZD8186 treatment. On the molecular level, PI3Kβ/δ inhibition decreased the pro-survival NF-κB and AP-1 activity or led to downregulation of the oncogenic transcription factor MYC. In AZD8186-resistant models, we detected a feedback activation of the PI3K/AKT/mTOR pathway following PI3Kβ/δ inhibition, which limited AZD8186 efficacy. The combined treatment with AZD8186 and the mTOR inhibitor AZD2014 overcame resistance to PI3Kβ/δ inhibition and completely prevented outgrowth of lymphoma cells in vivo in cell line- and patient-derived xenograft mouse models. Collectively, our study reveals that subsets of DLBCLs are addicted to PI3Kβ/δ signaling and thus identifies a previously unappreciated role of the PI3Kβ isoform in DLBCL survival. Furthermore, our data demonstrate that combined targeting of PI3Kβ/δ and mTOR is effective in all major DLBCL subtypes supporting the evaluation of this strategy in a clinical trial setting.
Collapse
Affiliation(s)
- Wendan Xu
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Philipp Berning
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Tabea Erdmann
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Michael Grau
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Nardjas Bettazová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Myroslav Zapukhlyak
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Fabian Frontzek
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Corinna Kosnopfel
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Peter Lenz
- Department of Physics, University of Marburg, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Marburg, Germany
| | | | - Brandon Willis
- Bioscience, Early Oncology, AstraZeneca, Boston, MA, USA
| | - James T Lynch
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Internal Medicine - Department of Hematology, University General Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stephan Hailfinger
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Georg Lenz
- Department of Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|