1
|
Lee H, Park SH, Shin EC. IL-15 in T-Cell Responses and Immunopathogenesis. Immune Netw 2024; 24:e11. [PMID: 38455459 PMCID: PMC10917573 DOI: 10.4110/in.2024.24.e11] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
IL-15 belongs to the common gamma chain cytokine family and has pleiotropic immunological functions. IL-15 is a homeostatic cytokine essential for the development and maintenance of NK cells and memory CD8+ T cells. In addition, IL-15 plays a critical role in the activation, effector functions, tissue residency, and senescence of CD8+ T cells. IL-15 also activates virtual memory T cells, mucosal-associated invariant T cells and γδ T cells. Recently, IL-15 has been highlighted as a major trigger of TCR-independent activation of T cells. This mechanism is involved in T cell-mediated immunopathogenesis in diverse diseases, including viral infections and chronic inflammatory diseases. Deeper understanding of IL-15-mediated T-cell responses and their underlying mechanisms could optimize therapeutic strategies to ameliorate host injury by T cell-mediated immunopathogenesis. This review highlights recent advancements in comprehending the role of IL-15 in relation to T cell responses and immunopathogenesis under various host conditions.
Collapse
Affiliation(s)
- Hoyoung Lee
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
2
|
Mortier E, Maillasson M, Quéméner A. Counteracting Interleukin-15 to Elucidate Its Modes of Action in Physiology and Pathology. J Interferon Cytokine Res 2023; 43:2-22. [PMID: 36651845 DOI: 10.1089/jir.2022.0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Interleukin (IL)-15 belongs to the common gamma-dependent cytokine family, along with IL-2, IL-4, IL-7, IL-9, and IL-21. IL-15 is crucial for the homeostasis of Natural Killer (NK) and memory CD8 T cells, and to fight against cancer progression. However, dysregulations of IL-15 expression could occur and participate in the emergence of autoimmune inflammatory diseases as well as hematological malignancies. It is therefore important to understand the different modes of action of IL-15 to decrease its harmful action in pathology without affecting its beneficial effects in the immune system. In this review, we present the different approaches used by researchers to inhibit the action of IL-15, from most broad to the most selective. Indeed, it appears that it is important to selectively target the mode of action of the cytokine rather than the cytokine itself as they are involved in numerous biological processes.
Collapse
Affiliation(s)
- Erwan Mortier
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Mike Maillasson
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Agnès Quéméner
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| |
Collapse
|
3
|
Shallberg LA, Phan AT, Christian DA, Perry JA, Haskins BE, Beiting DP, Harris TH, Koshy AA, Hunter CA. Impact of secondary TCR engagement on the heterogeneity of pathogen-specific CD8+ T cell response during acute and chronic toxoplasmosis. PLoS Pathog 2022; 18:e1010296. [PMID: 35727849 PMCID: PMC9249239 DOI: 10.1371/journal.ppat.1010296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/01/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Initial TCR engagement (priming) of naive CD8+ T cells results in T cell expansion, and these early events influence the generation of diverse effector and memory populations. During infection, activated T cells can re-encounter cognate antigen, but how these events influence local effector responses or formation of memory populations is unclear. To address this issue, OT-I T cells which express the Nur77-GFP reporter of TCR activation were paired with the parasite Toxoplasma gondii that expresses OVA to assess how secondary encounter with antigen influences CD8+ T cell responses. During acute infection, TCR stimulation in affected tissues correlated with parasite burden and was associated with markers of effector cells while Nur77-GFP- OT-I showed signs of effector memory potential. However, both Nur77-GFP- and Nur77-GFP+ OT-I from acutely infected mice formed similar memory populations when transferred into naive mice. During the chronic stage of infection in the CNS, TCR activation was associated with large scale transcriptional changes and the acquisition of an effector T cell phenotype as well as the generation of a population of CD103+ CD69+ Trm like cells. While inhibition of parasite replication resulted in reduced effector responses it did not alter the Trm population. These data sets highlight that recent TCR activation contributes to the phenotypic heterogeneity of the CD8+ T cell response but suggest that this process has a limited impact on memory populations at acute and chronic stages of infection.
Collapse
Affiliation(s)
- Lindsey A. Shallberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anthony T. Phan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David A. Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joseph A. Perry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Breanne E. Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tajie H. Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anita A. Koshy
- Department of Neurology, Department of Immunobiology, and BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Ong CY, Abdalkareem EA, Khoo BY. Functional roles of cytokines in infectious disease associated colorectal carcinogenesis. Mol Biol Rep 2022; 49:1529-1535. [PMID: 34981335 DOI: 10.1007/s11033-021-07006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Infection processes induce various soluble factors that are carcinogens in humans; therefore, research into the soluble factors of chronic disease released from cells that have been infected with parasites is warranted. Parasitic infections in host cells release high levels of IFNγ. Studies have hypothesised that parasitosis-associated carcinogenesis might be analogous to colorectal cancers developed from inflammatory bowel diseases, whereby various cytokines and chemokines are secreted during chronic inflammation. IL-18 and IL-21 are other factors that might be involved in the development of colorectal cancer in schistosomiasis patients and patients with other infections. IL-21 has profound effects on tumour growth and immunosurveillance of colitis-associated tumourigenesis, thereby emphasising its involvement in the pathogenesis of colorectal cancer. The prominent role of IL-21 in antitumour effects greatly depends on the enhanced cytolytic activity of NK cells and the pathogenic role of IL-21, which is often associated with enhanced risks of cancer and chronic inflammatory processes. As IL-15 is also related to chronic disease, it is believed to also play a role in the antitumour effect of colorectal carcinogenesis. IL-15 generates and maintains long-term CD8+ T cell immunity against T. gondii to control the infection of intracellular pathogens. The lack of IL-15 in mice contributes to the downregulation of the IFNγ-producing CD4+ T cell response against acute T. gondii infection. IL-15 induces hyperplasia and supports the progressive growth of colon cancer via multiple functions. The limited role of IL-15 in the development of NK and CD8+ T cells suggests that there may be other cytokines compensating for the loss of the IL-15 gene.
Collapse
Affiliation(s)
- Ching Yi Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, H53, Jalan Inovasi, 11800, Gelugor, Penang, Malaysia
| | - Eshtiyag Abdalla Abdalkareem
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, H53, Jalan Inovasi, 11800, Gelugor, Penang, Malaysia.,Tropical Medicine Research Institute (TMRI), 1304, El-Gaser Street, Khartoum, Sudan
| | - Boon Yin Khoo
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, H53, Jalan Inovasi, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
5
|
Smith NC, Goulart C, Hayward JA, Kupz A, Miller CM, van Dooren GG. Control of human toxoplasmosis. Int J Parasitol 2020; 51:95-121. [PMID: 33347832 DOI: 10.1016/j.ijpara.2020.11.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022]
Abstract
Toxoplasmosis is caused by Toxoplasma gondii, an apicomplexan parasite that is able to infect any nucleated cell in any warm-blooded animal. Toxoplasma gondii infects around 2 billion people and, whilst only a small percentage of infected people will suffer serious disease, the prevalence of the parasite makes it one of the most damaging zoonotic diseases in the world. Toxoplasmosis is a disease with multiple manifestations: it can cause a fatal encephalitis in immunosuppressed people; if first contracted during pregnancy, it can cause miscarriage or congenital defects in the neonate; and it can cause serious ocular disease, even in immunocompetent people. The disease has a complex epidemiology, being transmitted by ingestion of oocysts that are shed in the faeces of definitive feline hosts and contaminate water, soil and crops, or by consumption of intracellular cysts in undercooked meat from intermediate hosts. In this review we examine current and future approaches to control toxoplasmosis, which encompass a variety of measures that target different components of the life cycle of T. gondii. These include: education programs about the parasite and avoidance of contact with infectious stages; biosecurity and sanitation to ensure food and water safety; chemo- and immunotherapeutics to control active infections and disease; prophylactic options to prevent acquisition of infection by livestock and cyst formation in meat; and vaccines to prevent shedding of oocysts by definitive feline hosts.
Collapse
Affiliation(s)
- Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| | - Cibelly Goulart
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD 4878, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
6
|
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Influence of the Host and Parasite Strain on the Immune Response During Toxoplasma Infection. Front Cell Infect Microbiol 2020; 10:580425. [PMID: 33178630 PMCID: PMC7593385 DOI: 10.3389/fcimb.2020.580425] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is an exceptionally successful parasite that infects a very broad host range, including humans, across the globe. The outcome of infection differs remarkably between hosts, ranging from acute death to sterile infection. These differential disease patterns are strongly influenced by both host- and parasite-specific genetic factors. In this review, we discuss how the clinical outcome of toxoplasmosis varies between hosts and the role of different immune genes and parasite virulence factors, with a special emphasis on Toxoplasma-induced ileitis and encephalitis.
Collapse
Affiliation(s)
| | | | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
7
|
Kupz A, Pai S, Giacomin PR, Whan JA, Walker RA, Hammoudi PM, Smith NC, Miller CM. Treatment of mice with S4B6 IL-2 complex prevents lethal toxoplasmosis via IL-12- and IL-18-dependent interferon-gamma production by non-CD4 immune cells. Sci Rep 2020; 10:13115. [PMID: 32753607 PMCID: PMC7403597 DOI: 10.1038/s41598-020-70102-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/23/2020] [Indexed: 01/08/2023] Open
Abstract
Toxoplasmic encephalitis is an AIDS-defining condition. The decline of IFN-γ-producing CD4+ T cells in AIDS is a major contributing factor in reactivation of quiescent Toxoplasma gondii to an actively replicating stage of infection. Hence, it is important to characterize CD4-independent mechanisms that constrain acute T. gondii infection. We investigated the in vivo regulation of IFN-γ production by CD8+ T cells, DN T cells and NK cells in response to acute T. gondii infection. Our data show that processing of IFN-γ by these non-CD4 cells is dependent on both IL-12 and IL-18 and the secretion of bioactive IL-18 in response to T. gondii requires the sensing of viable parasites by multiple redundant inflammasome sensors in multiple hematopoietic cell types. Importantly, our results show that expansion of CD8+ T cells, DN T cells and NK cell by S4B6 IL-2 complex pre-treatment increases survival rates of mice infected with T. gondii and this is dependent on IL-12, IL-18 and IFN-γ. Increased survival is accompanied by reduced pathology but is independent of expansion of TReg cells or parasite burden. This provides evidence for a protective role of IL2C-mediated expansion of non-CD4 cells and may represent a promising lead to adjunct therapy for acute toxoplasmosis.
Collapse
Affiliation(s)
- Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia.
| | - Saparna Pai
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Jennifer A Whan
- Advanced Analytical Centre, James Cook University, Cairns, QLD, 4878, Australia
| | - Robert A Walker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Nicholas C Smith
- School of Science and Health, Western Sydney University, Parramatta South Campus, Sydney, NSW, 2116, Australia.,School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Catherine M Miller
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia.,Discipline of Biomedicine, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
8
|
He JJ, Ma J, Wang JL, Zhang FK, Li JX, Zhai BT, Wang ZX, Elsheikha HM, Zhu XQ. Global Transcriptome Profiling of Multiple Porcine Organs Reveals Toxoplasma gondii-Induced Transcriptional Landscapes. Front Immunol 2019; 10:1531. [PMID: 31333663 PMCID: PMC6618905 DOI: 10.3389/fimmu.2019.01531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/19/2019] [Indexed: 12/23/2022] Open
Abstract
We characterized the porcine tissue transcriptional landscapes that follow Toxoplasma gondii infection. RNAs were isolated from liver, spleen, cerebral cortex, lung, and mesenteric lymph nodes (MLNs) of T. gondii-infected and uninfected (control) pigs at days 6 and 18 postinfection, and were analyzed using next-generation sequencing (RNA-seq). T. gondii altered the expression of 178, 476, 199, 201, and 362 transcripts at 6 dpi and 217, 223, 347, 119, and 161 at 18 dpi in the infected brain, liver, lung, MLNs and spleen, respectively. The differentially expressed transcripts (DETs) were grouped into five expression patterns and 10 sub-clusters. Gene Ontology enrichment and pathway analysis revealed that immune-related genes dominated the overall transcriptomic signature and that metabolic processes, such as steroid biosynthesis, and metabolism of lipid and carboxylic acid, were downregulated in infected tissues. Co-expression network analysis identified transcriptional modules associated with host immune response to infection. These findings not only show how T. gondii infection alters porcine transcriptome in a tissue-specific manner, but also offer a gateway for testing new hypotheses regarding human response to T. gondii infection.
Collapse
Affiliation(s)
- Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie-Xi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bin-Tao Zhai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ze-Xiang Wang
- Department of Parasitology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
9
|
Hwang S, Khan IA. CD8+ T cell immunity in an encephalitis model of Toxoplasma gondii infection. Semin Immunopathol 2015; 37:271-9. [PMID: 25944514 DOI: 10.1007/s00281-015-0483-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/22/2015] [Indexed: 12/19/2022]
Abstract
Toxoplasma gondii infection induces a robust CD8 T cell immunity in the infected host, which is critical for keeping chronic infection under control. IFNγ production and cytolytic activity exhibited by CD8 T cells are critical functions needed to prevent the reactivation of latent infection. Paradoxically, the susceptible mice infected with the parasite develop encephalitis irrespective of the presence of vigorous CD8 T cell immunity. Recent studies from our laboratory have demonstrated that these animals have defect in the memory CD8 T cell population, which become dysfunctional due to exhibition of inhibitory receptors like PD-1. Although the blockade of PD-1-PDL-1 pathway rescues the CD8 response, PD-1(hi) expressing cells are refractory to the treatment. In this review, we discuss the development of CD8 memory response during chronic infection, mechanism responsible for their dysfunctionality, and possible therapeutic measures that can be taken to reverse the process.
Collapse
Affiliation(s)
- SuJin Hwang
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, USA
| | | |
Collapse
|
10
|
Huntington ND. The unconventional expression of IL-15 and its role in NK cell homeostasis. Immunol Cell Biol 2014; 92:210-3. [PMID: 24492800 DOI: 10.1038/icb.2014.1] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/08/2013] [Accepted: 01/05/2014] [Indexed: 02/08/2023]
Abstract
Natural killer (NK) cells are the founding members of the innate lymphoid cell family and contribute to the rapid production of inflammatory mediators upon pathogen detection. The evolution of receptors for self major histocompatibility complex-I and stress-induced ligands also bestows upon NK cells an important effector role in the clearance of virus-infected and transformed cells. NK cells are dependent on the pleiotropic cytokine interleukin (IL)-15 for their development, differentiation and optimal function. Here I review the regulation of IL-15 in vivo, its role in driving NK cell differentiation and discuss the function of NK cell diversification with regard to innate immunity.
Collapse
|
11
|
Bouchaud G, Gehrke S, Krieg C, Kolios A, Hafner J, Navarini AA, French LE, Boyman O. Epidermal IL-15Rα acts as an endogenous antagonist of psoriasiform inflammation in mouse and man. ACTA ACUST UNITED AC 2013; 210:2105-17. [PMID: 24019554 PMCID: PMC3782049 DOI: 10.1084/jem.20130291] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Stromal cells at epithelial surfaces contribute to innate immunity by sensing environmental danger signals and producing proinflammatory cytokines. However, the role of stromal cells in controlling local inflammation is unknown. We show that endogenous soluble IL-15 receptor α (IL-15Rα) derived from epidermal stroma, notably keratinocytes, protects against dendritic cell/IL-15-mediated, T cell-driven skin inflammation in vivo, and is relevant to human psoriasis. Selective lack of IL-15Rα on stromal epidermal cells exacerbated psoriasiform inflammation in animals. Epidermal IL-15Rα was shed by keratinocytes via proteolytic cleavage by matrix metalloproteinases upon stimulation with proinflammatory cytokines to counteract IL-15-induced proliferation of IL-17(+) αβ and γδ T cells and production of TNF, IL-23, IL-17, and IL-22 during skin inflammation. Notably, administration of soluble IL-15Rα was able to repress secretion of IL-1β, IL-6, and TNF by keratinocytes, dampen expansion of IL-17(+) αβ and γδ T cells in vivo, and prevent psoriasis in two mouse models, including human xenograft AGR mice. Serum levels of soluble IL-15Rα negatively correlated with disease severity, and levels rose upon successful treatment of psoriasis in patients. Thus, stressed epidermal stromal cells use soluble IL-15Rα to dampen chronic inflammatory skin disease.
Collapse
Affiliation(s)
- Grégory Bouchaud
- Laboratory of Applied Immunobiology and 2 Department of Dermatology, University of Zurich, 8006 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Bhadra R, Khan IA. IL-7 and IL-15 do not synergize during CD8 T cell recall response against an obligate intracellular parasite. Microbes Infect 2012; 14:1160-8. [PMID: 22885140 DOI: 10.1016/j.micinf.2012.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
Long-term protection against Toxoplasma gondii is dependent on robust CD8(+) T cell immunity. In the absence of this response, the host is unable to maintain chronicity, which results in recrudescence of infection and possible death. Factors needed for the persistence of protective CD8(+) T cells against the parasite need to be evaluated. Previous studies from our laboratory have reported that synergism between γ chain cytokines like IL-7 and IL-15 is critical for the generation of CD8(+) T cell response needed for protection during acute infection. In this study we report that the situation is different during the recall response where CD8(+) T cell response is almost entirely dependent on IL-15, with IL-7 at best playing a minor role. In the absence of IL-15, CD8(+) T cells fail to respond optimally to parasitic re-challenge and hosts are unable to control their replication, which leads to their death. Thus T. gondii infection may represent a unique situation where CD8(+) T cell response during secondary challenge is primarily dependent on IL-15 with other γ chain cytokines having nominal effect. These findings provide important information regarding factors involved in the generation of protective immunity against T. gondii with strong implications in developing immunotherapeutic agents against the pathogen.
Collapse
Affiliation(s)
- Rajarshi Bhadra
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037, USA
| | | |
Collapse
|
13
|
Perera PY, Lichy JH, Waldmann TA, Perera LP. The role of interleukin-15 in inflammation and immune responses to infection: implications for its therapeutic use. Microbes Infect 2012; 14:247-61. [PMID: 22064066 PMCID: PMC3270128 DOI: 10.1016/j.micinf.2011.10.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 10/18/2011] [Indexed: 01/02/2023]
Abstract
Interleukin-15 (IL-15) is a pleiotropic cytokine with a broad range of biological functions in many diverse cell types. It plays a major role in the development of inflammatory and protective immune responses to microbial invaders and parasites by modulating immune cells of both the innate and adaptive immune systems. This review provides an overview of the mechanisms by which IL-15 modulates the host response to infectious agents and its utility as a cytokine adjuvant in vaccines against infectious pathogens.
Collapse
Affiliation(s)
- Pin-Yu Perera
- Veterans Affairs Medical Center, Washington D.C. 20422
| | - Jack H. Lichy
- Veterans Affairs Medical Center, Washington D.C. 20422
| | - Thomas A. Waldmann
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Liyanage P. Perera
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
14
|
Bhadra R, Gigley JP, Khan IA. The CD8 T-cell road to immunotherapy of toxoplasmosis. Immunotherapy 2012; 3:789-801. [PMID: 21668315 DOI: 10.2217/imt.11.68] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Toxoplasma gondii infection induces a robust CD8 T-cell immunity that is critical for keeping chronic infection under control. In studies using animal models, it has been demonstrated that the absence of this response can compromise the host ability to keep chronic infection under check. Therapeutic agents that facilitate the induction and maintenance of CD8 T-cell response against the pathogen need to be developed. In the last decade, major strides in understanding the development of effector and memory response, particularly in viral and tumor models, have been made. However, factors involved in the generation of effector or memory response against T. gondii infection have not been extensively investigated. This information will be invaluable in designing immunotherapeutic regimens needed for combating this intracellular pathogen that poses a severe risk for pregnant women and immunocompromised individuals.
Collapse
Affiliation(s)
- Rajarshi Bhadra
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University, Washington, DC 20037, USA
| | | | | |
Collapse
|
15
|
CD8 T Cells and Toxoplasma gondii: A New Paradigm. J Parasitol Res 2011; 2011:243796. [PMID: 21687650 PMCID: PMC3112509 DOI: 10.1155/2011/243796] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/10/2011] [Indexed: 01/09/2023] Open
Abstract
CD8 T cells are essential for control of Toxoplasma gondii infection. Once activated they undergo differentiation into short-lived effector and memory precursor effector cells. As effector cells, CD8 T cells exert immune pressure on the parasite via production of inflammatory cytokines and through their cytolytic activity. Once immune control has been established, the parasite encysts and develops into chronic infection regulated by the memory CD8 T-cell population. Several signals are needed for this process to be initiated and for development of fully differentiated memory CD8 T cells. With newly developed tools including CD8 T-cell tetramers and TCR transgenic mice, dissecting the biology behind T. gondii-specific CD8 T-cell responses can now be more effectively addressed. In this paper, we discuss what is known about the signals required for effective T. gondii-specific CD8 T-cell development, their differentiation, and effector function.
Collapse
|
16
|
Bhadra R, Guan H, Khan IA. Absence of both IL-7 and IL-15 severely impairs the development of CD8 T cell response against Toxoplasma gondii. PLoS One 2010; 5:e10842. [PMID: 20520779 PMCID: PMC2877110 DOI: 10.1371/journal.pone.0010842] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/02/2010] [Indexed: 11/21/2022] Open
Abstract
CD8+ T cells play an essential role in the protection against both acute as well as chronic Toxoplasma gondii infection. Although the role of IL-15 has been reported to be important for the development of long-term CD8+ T cell immunity against the pathogen, the simultaneous roles played by both IL-15 and related γ-chain family cytokine IL-7 in the generation of this response during acute phase of infection has not been described. We demonstrate that while lack of IL-7 or IL-15 alone has minimal impact on splenic CD8+ T cell maturation or effector function development during acute Toxoplasmosis, absence of both IL-7 and IL-15 only in the context of infection severely down-regulates the development of a potent CD8+ T cell response. This impairment is characterized by reduction in CD44 expression, IFN-γ production, proliferation and cytotoxicity. However, attenuated maturation and decreased effector functions in these mice are essentially downstream consequences of reduced number of antigen-specific CD8+ T cells. Interestingly, the absence of both cytokines did not impair initial CD8+ T cell generation but affected their survival and differentiation into memory phenotype IL-7Rαhi cells. Significantly lack of both cytokines severely affected expression of Bcl-2, an anti-apoptotic protein, but minimally affected proliferation. The overarching role played by these cytokines in eliciting a potent CD8+ T cell immunity against T. gondii infection is further evidenced by poor survival and high parasite burden in anti IL-7 treated IL-15−/− mice. These studies demonstrate that the two cytokines, IL-7 and IL-15, are exclusively important for the development of protective CD8+ T cell immune response against T. gondii. To the best of our knowledge this synergism between IL-7 and IL-15 in generating an optimal CD8+ T cell immunity against intracellular parasite or any other infectious disease model has not been previously reported.
Collapse
Affiliation(s)
- Rajarshi Bhadra
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, D. C., United States of America
| | - Hongbing Guan
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Imtiaz A. Khan
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, D. C., United States of America
- * E-mail:
| |
Collapse
|
17
|
Miller CM, Boulter NR, Ikin RJ, Smith NC. The immunobiology of the innate response to Toxoplasma gondii. Int J Parasitol 2008; 39:23-39. [PMID: 18775432 DOI: 10.1016/j.ijpara.2008.08.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/07/2008] [Accepted: 08/11/2008] [Indexed: 01/17/2023]
Abstract
Toxoplasma gondii is a unique intracellular parasite. It can infect a variety of cells in virtually all warm-blooded animals. It has a worldwide distribution and, overall, around one-third of people are seropositive for the parasite, with essentially the entire human population being at risk of infection. For most people, T. gondii causes asymptomatic infection but the parasite can cause serious disease in the immunocompromised and, if contracted for the first time during pregnancy, can cause spontaneous abortion or congenital defects, which have a substantial emotional, social and economic impact. Toxoplasma gondii provokes one of the most potent innate, pro-inflammatory responses of all infectious disease agents. It is also a supreme manipulator of the immune response so that innate immunity to T. gondii is a delicate balance between the parasite and its host involving a coordinated series of cellular interactions involving enterocytes, neutrophils, dendritic cells, macrophages and natural killer cells. Underpinning these interactions is the regulation of complex molecular reactions involving Toll-like receptors, activation of signalling pathways, cytokine production and activation of anti-microbial effector mechanisms including generation of reactive nitrogen and oxygen intermediates.
Collapse
Affiliation(s)
- Catherine M Miller
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | | | | | | |
Collapse
|
18
|
Subcellular expression pattern and role of IL-15 in pneumococci induced lung epithelial apoptosis. Histochem Cell Biol 2008; 130:165-76. [PMID: 18365236 DOI: 10.1007/s00418-008-0414-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
Abstract
Streptococcus pneumoniae is the leading causative agent of community-acquired pneumonia. Induction of apoptosis in pulmonary epithelial cells by bacteria during pneumonia might be harmful to the host. Interleukin-15 (IL-15) has been demonstrated as an effective inhibitor of apoptosis and is expressed in lung epithelium on the mRNA and protein level. Therefore, we characterized the sub-cellular expression pattern of the short and long IL-15 isoforms in lung epithelial cells in vitro as well as its role in pneumococci-related lung epithelial cell apoptosis. We found an expression pattern for both IL-15 signal peptides in the pulmonary epithelial cell lines A549 and Beas-2B. Moreover, a strong co-localization of IL-15 and IL-15Ralpha was detected on cell surfaces. Compared to pro-inflammatory cytokine stimulation, neither IL-15 nor its trimeric receptor complex was up-regulated after pneumococcal infection. However, overexpression of IL-15 isoforms revealed IL-15LSP and IL-15Vkl as inhibitors of pneumococci induced apoptosis in pulmonary epithelial cells. Thus, IL-15 may act as an anti-apoptotic molecule in pneumococci infection, thereby suggesting IL-15 as a benefical cytokine in pulmonary host defense against infection.
Collapse
|
19
|
Coinfection with Heligmosomoides polygyrus fails to establish CD8+ T-cell immunity against Toxoplasma gondii. Infect Immun 2008; 76:1305-13. [PMID: 18195022 DOI: 10.1128/iai.01236-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD8+ T-cell immunity is important for long-term protection against Toxoplasma gondii infection. However, a Th1 cytokine environment, especially the presence of gamma interferon (IFN-), is essential for the development of primary CD8+ T-cell immunity against this obligate intracellular pathogen. Earlier studies from our laboratory have demonstrated that mice lacking optimal IFN- levels fail to develop robust CD8+ T-cell immunity against T. gondii. In the present study, induction of primary CD8+ T-cell immune response against T. gondii infection was evaluated in mice infected earlier with Heligmosomoides polygyrus, a gastrointestinal worm known to evoke a polarized Th2 response in the host. In the early stage of T. gondii infection, both CD4 and CD8+ T-cell responses against the parasite were suppressed in the dually infected mice. At the later stages, however, T. gondii-specific CD4+ T-cell immunity recovered, while CD8+ T-cell responses remained low. Unlike in mice infected with T. gondii alone, depletion of CD4+ T cells in the dually infected mice led to reactivation of chronic infection, leading to Toxoplasma-related encephalitis. Our observations strongly suggest that prior infection with a Th2 cytokine-polarizing pathogen can inhibit the development of CD8+ T-cell immune response against T. gondii, thus compromising long-term protection against a protozoan parasite. This is the first study to examine the generation of CD8+ T-cell immune response in a parasitic nematode and protozoan coinfection model that has important implications for infections where a CD8+ T-cell response is critical for host protection and reduced infection pathology.
Collapse
|
20
|
Hocke AC, Lampe MP, Witzenrath M, Mollenkopf H, Zerrahn J, Schmeck B, Kessler U, Krüll M, Hammerschmidt S, Hippenstiel S, Schütte H, Suttorp N, Rosseau S. Cell-specific interleukin-15 and interleukin-15 receptor subunit expression and regulation in pneumococcal pneumonia--comparison to chlamydial lung infection. Cytokine 2007; 38:61-73. [PMID: 17611121 DOI: 10.1016/j.cyto.2007.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 03/21/2007] [Accepted: 05/03/2007] [Indexed: 12/27/2022]
Abstract
Interleukin (IL)-15 has critical impact on the homeostasis and activation of natural killer cells, natural killer T cells, gammadeltaT cells, and CD8(+)T cells, and contributes to antimicrobial defenses particularly at mucosal sites. The respiratory tract comprises a large mucosal surface and harbors significant amounts of lymphocytes, however the expression pattern of IL-15 in the lung and its role in local immune responses are largely unknown. We therefore analyzed the differential expression of IL-15 and the IL-15 receptor (IL-15R) complex in the lungs of mice and demonstrated substantial constitutive expression in bronchial and alveolar epithelial cells, alveolar macrophages, and vascular smooth muscle cells, implicating contribution to pulmonary immune cell homeostasis already under normal conditions. The induction of pneumococcal pneumonia but not the infection with Chlamydophila pneumoniae evoked a significant up-regulation of IL-15 on alveolar macrophages and bronchial epithelial cells, with the latter presenting de-novo expression of IL-15 on their basolateral surface and additional up-regulation of IL-15Ralpha. Moreover, transcriptome analysis as well as semi-quantitative PCR indicated at least partial transcriptional regulation in mice lungs. In conclusion IL-15 is suggested being of functional importance in the pulmonary immune response against pneumococcal pneumonia.
Collapse
Affiliation(s)
- Andreas C Hocke
- Charité - Universitätsmedizin Berlin, Department of Internal Medicine, Infectious and Respiratory Diseases, Chariteplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Guan H, Moretto M, Bzik DJ, Gigley J, Khan IA. NK Cells Enhance Dendritic Cell Response against Parasite Antigens via NKG2D Pathway. THE JOURNAL OF IMMUNOLOGY 2007; 179:590-6. [PMID: 17579080 DOI: 10.4049/jimmunol.179.1.590] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies have shown that NK-dendritic cell (DC) interaction plays an important role in the induction of immune response against tumors and certain viruses. Although the effect of this interaction is bidirectional, the mechanism or molecules involved in this cross-talk have not been identified. In this study, we report that coculture with NK cells causes several fold increase in IL-12 production by Toxoplasma gondii lysate Ag-pulsed DC. This interaction also leads to stronger priming of Ag-specific CD8+ T cell response by these cells. In vitro blockade of NKG2D, a molecule present on human and murine NK cells, neutralizes the NK cell-induced up-regulation of DC response. Moreover, treatment of infected animals with Ab to NKG2D receptor compromises the development of Ag-specific CD8+ T cell immunity and reduces their ability to clear parasites. These studies emphasize the critical role played by NKG2D in the NK-DC interaction, which apparently is important for the generation of robust CD8+ T cell immunity against intracellular pathogens. To the best of our knowledge, this is the first work that describes in vivo importance of NKG2D during natural infection.
Collapse
Affiliation(s)
- Hongbing Guan
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Immune compromise can modify the severity and manifestation of some parasitic infections. More widespread use of newer immnosuppressive therapies, the growing population of individuals with immunocompromised states as well as the prolonged survival of these patients have altered the pattern of parasitic infection. This review article discusses the burden and immunology of parasitic infections in patients who are immunocompromised secondary to congenital immunodeficiency, malnutrition, malignancy, and immunosuppressive medications. This review does not address the literature on parasitic infections in the setting of HIV-1 infection.
Collapse
Affiliation(s)
- T Evering
- Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
23
|
Zhang W, Dong SF, Sun SH, Wang Y, Li GD, Qu D. Coimmunization with IL-15 plasmid enhances the longevity of CD8 T cells induced by DNA encoding hepatitis B virus core antigen. World J Gastroenterol 2006; 12:4727-35. [PMID: 16937447 PMCID: PMC4087841 DOI: 10.3748/wjg.v12.i29.4727] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To test the feasibility of delivering a plasmid encoding IL-15 as a DNA vaccine adjuvant for improving the immune responses induced by hepatitis B virus core gene DNA vaccine.
METHODS: We used RT-PCR based strategies to develop IL-15 expression constructs. We first confirmed that the gene could be expressed in Escherichia coli due to the poor expression of IL-15. Then the bioactivity of IL-15 plasmid expression product was identified by CTLL-2 proliferation assay. One hundred micrograms of DNA from each of the IL-15 eukaryotic expressed plasmid and the recombinant plasmid harboring DNA encoding the 144 amino acids of the N-terminus of HBV core gene (abbreviated pHBc144) was used to co-immunize C57 BL/6 mice. The titer of anti-HBcIgG was detected by ELISA and the antigen-specific CD8+ T cells (CD8+IFN-γ+ T cells) were detected by intracellular cytokine staining at different time points.
RESULTS: After co-immunization by pIL-15 and pHBc144 DNA vaccine the antigen-specific CD8+ cells of mice increased gradually, the first peak of immune response appeared 14 d later, then the number of antigen-specific CD8+ Ts cells decreased gradually and maintained at a steady level in 3 mo. After boosting, the number of antigen-specific CD8+ T cells reached the second peak 10 d later with a double of the 1st peak, then the number of antigen-specific CD8+ T cells decreased slowly. IL-15 as a gene adjuvant had no significant effect on humoral immune responses induced by hepatitis B virus core gene DNA vaccine, but increased the memory antigen-specific CD8+ T cells induced by hepatitis B virus core gene DNA vaccine.
CONCLUSION: DNA vaccine constructed by HBc Ag 1-144 amino acid induces effective cell immunity, and cytokine plasmid-delivered IL-15 enhances the longevity of CD8+ T cells.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Line
- Cell Survival/drug effects
- Cell Survival/physiology
- DNA, Viral/genetics
- DNA, Viral/pharmacology
- DNA, Viral/therapeutic use
- Escherichia coli/immunology
- Escherichia coli/metabolism
- Female
- Gene Expression Regulation, Viral
- Hepatitis B/drug therapy
- Hepatitis B/pathology
- Hepatitis B/prevention & control
- Hepatitis B Core Antigens/genetics
- Hepatitis B Core Antigens/pharmacology
- Hepatitis B Core Antigens/therapeutic use
- Hepatitis B Vaccines/genetics
- Hepatitis B Vaccines/immunology
- Hepatitis B Vaccines/therapeutic use
- Immunologic Memory/immunology
- Immunotherapy, Active/methods
- Interleukin-15/immunology
- Interleukin-15/metabolism
- Interleukin-15/therapeutic use
- Mice
- Mice, Inbred C57BL
- Plasmids/genetics
- Vaccination/methods
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
24
|
Buzoni-Gatel D, Schulthess J, Menard LC, Kasper LH. Mucosal defences against orally acquired protozoan parasites, emphasis on Toxoplasma gondii infections. Cell Microbiol 2006; 8:535-44. [PMID: 16548880 DOI: 10.1111/j.1462-5822.2006.00692.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Protozoan parasites that gain access to the host through the mucosal tissue of the alimentary tract may influence the development of intestinal inflammatory disorders. Despite the diversity of the extracellular and intracellular protozoan pathogens discussed in this review, our current understanding of the mechanisms involved in the immune response indicates that a common exuberant immune response to rid the host of these agents is elicited. This robust inflammatory response is orchestrated both by cells from parenchymatous origin such as intestinal epithelial cells and by cells from the haematopoietic system such as macrophages, dendritic cells and lymphocytes. This inflammatory immune response is controlled by a series of regulatory mechanisms in most species. When this balance is no longer evident, an inflammation of the intestine may occur, leading to acute gastritis and diarrhoea and that would add pathological effects to those because of the pathogen itself.
Collapse
Affiliation(s)
- Dominique Buzoni-Gatel
- Réponses Précoces aux Parasites et Immunopathologie, Institut Pasteur, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
25
|
Rausch A, Hessmann M, Hölscher A, Schreiber T, Bulfone-Paus S, Ehlers S, Hölscher C. Interleukin-15 mediates protection against experimental tuberculosis: a role for NKG2D-dependent effector mechanisms of CD8+ T cells. Eur J Immunol 2006; 36:1156-67. [PMID: 16619285 DOI: 10.1002/eji.200535290] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
CD8+ T cells are involved in protection against Mycobacterium tuberculosis infection and represent a promising target for new vaccine strategies. Because IL-15 is important for the homeostasis of CD8+ T cells, we studied the immune response in IL-15-deficient mice during tuberculosis. In the absence of IL-15, CD8+ T cells failed to efficiently accumulate in draining lymph nodes and at the site of infection. The expression of antigen-specific effector functions, such as the production of interferon-gamma and cytotoxicity, were impaired in CD8+ T cells, but not CD4+ T cells, from IL-15-deficient mice. This defect was associated with an increased mortality of IL-15-deficient mice during the chronic phase of infection. The lectin-like stimulatory receptor natural killer group 2D (NKG2D) was up-regulated on CD8+ T cells only from wild-type mice, but not from IL-15-deficient mice. Mechanistically, blocking NKG2D function with an mAb inhibited M. tuberculosis-directed CD8+ T cell responses in vitro. We conclude that in addition to regulating the expansion of CD8+ T cells, IL-15 is also necessary for inducing effector mechanisms in CD8+ T cells that depend on NKG2D expression. Hence, our results implicate IL-15 and NKG2D as promising targets for modulating CD8+ T cell-mediated protection against tuberculosis.
Collapse
Affiliation(s)
- Alexandra Rausch
- Junior Research Group Molecular Infection Biology, Research Center Borstel, Borstel, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Khan IA, Thomas SY, Moretto MM, Lee FS, Islam SA, Combe C, Schwartzman JD, Luster AD. CCR5 is essential for NK cell trafficking and host survival following Toxoplasma gondii infection. PLoS Pathog 2006; 2:e49. [PMID: 16789839 PMCID: PMC1475660 DOI: 10.1371/journal.ppat.0020049] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 04/12/2006] [Indexed: 11/18/2022] Open
Abstract
The host response to intracellular pathogens requires the coordinated action of both the innate and acquired immune systems. Chemokines play a critical role in the trafficking of immune cells and transitioning an innate immune response into an acquired response. We analyzed the host response of mice deficient in the chemokine receptor CCR5 following infection with the intracellular protozoan parasite Toxoplasma gondii. We found that CCR5 controls recruitment of natural killer (NK) cells into infected tissues. Without this influx of NK cells, tissues from CCR5-deficient (CCR5-/-) mice were less able to generate an inflammatory response, had decreased chemokine and interferon gamma production, and had higher parasite burden. As a result, CCR5-/- mice were more susceptible to infection with T. gondii but were less susceptible to the immune-mediated tissue injury seen in certain inbred strains. Adoptive transfer of CCR5+/+ NK cells into CCR5-/- mice restored their ability to survive lethal T. gondii infection and demonstrated that CCR5 is required for NK cell homing into infected liver and spleen. This study establishes CCR5 as a critical receptor guiding NK cell trafficking in host defense.
Collapse
Affiliation(s)
- Imtiaz A Khan
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Medical Center, New Orleans, Louisiana, United States of America
- * To whom correspondence should be addressed. E-mail: (IAK); (ADL)
| | - Seddon Y Thomas
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Magali M Moretto
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Medical Center, New Orleans, Louisiana, United States of America
| | - Frederick S Lee
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sabina A Islam
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Crescent Combe
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Medical Center, New Orleans, Louisiana, United States of America
| | - Joseph D Schwartzman
- Department of Pathology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail: (IAK); (ADL)
| |
Collapse
|
27
|
Combe CL, Moretto MM, Schwartzman JD, Gigley JP, Bzik DJ, Khan IA. Lack of IL-15 results in the suboptimal priming of CD4+ T cell response against an intracellular parasite. Proc Natl Acad Sci U S A 2006; 103:6635-40. [PMID: 16614074 PMCID: PMC1458934 DOI: 10.1073/pnas.0506180103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IFN-gamma-producing CD4+ T cells, although important for protection against acute Toxoplasma gondii infection, can cause gut pathology, which may prove to be detrimental for host survival. Here we show that mice lacking IL-15 gene develop a down-regulated IFN-gamma-producing CD4+ T cell response against the parasite, which leads to a reduction in gut necrosis and increased level of survival against infection. Moreover, transfer of immune CD4+ T cells from WT to IL-15-/- mice reversed inhibition of gut pathology and caused mortality equivalent to levels of parental WT mice. Down-regulated CD4+ T cell response in the absence of IL-15, manifested as reduced antigen-specific proliferation, was due to defective priming of the T cell subset by dendritic cells (DCs) of these animals. When stimulated with antigen-pulsed DCs from WT mice, CD4+ T cells from IL-15-/- mice were primed optimally, and robust proliferation of these cells was observed. A defect in the DCs of knockout mice was further confirmed by their reduced ability to produce IL-12 upon stimulation with Toxoplasma lysate antigen. Addition of exogenous IL-15 to DC cultures from knockout mice led to increased IL-12 production by these cells and restored their ability to prime an optimal parasite-specific CD4+ T cell response. To our knowledge, this is the first demonstration of the role of IL-15 in the development of CD4+ T cell immunity against an intracellular pathogen. Furthermore, based on these observations, targeting of IL-15 should have a beneficial effect on individuals suffering from CD4+ T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Crescent L. Combe
- *Department of Microbiology, Parasitology, and Immunology, Louisiana State University Health Sciences Center, New Orleans, LA 70112; and
| | - Magali M. Moretto
- *Department of Microbiology, Parasitology, and Immunology, Louisiana State University Health Sciences Center, New Orleans, LA 70112; and
| | | | | | - David J. Bzik
- Microbiology, Dartmouth Medical School, Lebanon, NH 03755
| | - Imtiaz A. Khan
- *Department of Microbiology, Parasitology, and Immunology, Louisiana State University Health Sciences Center, New Orleans, LA 70112; and
- To whom correspondence should be addressed at:
Department of Microbiology, Immunology, and Parasitology, 1901 Perdido Street, New Orleans, LA 70112. E-mail:
| |
Collapse
|
28
|
Saito K, Yajima T, Kumabe S, Doi T, Yamada H, Sad S, Shen H, Yoshikai Y. Impaired protection against Mycobacterium bovis bacillus Calmette-Guerin infection in IL-15-deficient mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:2496-504. [PMID: 16456010 DOI: 10.4049/jimmunol.176.4.2496] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To investigate the potential role of endogenous IL-15 in mycobacterial infection, we examined protective immunity in IL-15-deficient (IL-15(-/-)) mice after infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG) or recombinant OVA-expressing BCG (rBCG-OVA). IL-15(-/-) mice exhibited an impaired protection in the lung on day 120 after BCG infection as assessed by bacterial growth. CD4(+) Th1 response capable of producing IFN-gamma was normally detected in spleen and lung of IL-15(-/-) mice on day 120 after infection. Although Ag-specific CD8 responses capable of producing IFN-gamma and exhibiting cytotoxic activity were detected in the lung on day 21 after infection with rBCG-OVA, the responses were severely impaired on days 70 and 120 in IL-15(-/-) mice. The degree of proliferation of Ag-specific CD8(+) T cells in IL-15(-/-) mice was similar to that in wild-type mice during the course of infection with rBCG-OVA, whereas sensitivity to apoptosis of Ag-specific CD8(+) T cells significantly increased in IL-15(-/-) mice. These results suggest that IL-15 plays an important role in the development of long-lasting protective immunity to BCG infection via sustaining CD8 responses in the lung.
Collapse
Affiliation(s)
- Kimika Saito
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cox AL, Thompson SAJ, Jones JL, Robertson VH, Hale G, Waldmann H, Compston DAS, Coles AJ. Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur J Immunol 2005; 35:3332-42. [PMID: 16231285 DOI: 10.1002/eji.200535075] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Following lymphocyte depletion, homeostatic mechanisms drive the reconstitution of lymphocytes. We prospectively studied this process in 16 patients for 1 year after a single pulse of treatment with Campath-1H, a humanised anti-CD52 monoclonal antibody. We observed two phases of lymphocyte reconstitution. In the first 6 months after treatment the precursor frequency and proliferation index of the patients' autologous mixed lymphocyte reaction increased; the depleted T cell pool was dominated by memory T cells, especially (CD4+)CD25high T cells, a putative regulatory phenotype; and there was a non-significant rise in peripheral mononuclear cell FoxP3 mRNA expression and fall in constitutive cytokine mRNA expression. In the later phase, from 6-to-12 months after Campath-1H, these changes reversed and there was a rise in ROG mRNA expression. However, total CD4+ numbers remained below 50% of pre-treatment levels at 12 months, perhaps reflecting a failure in homeostasis. This was not due to an impaired IL-7 response, as in rheumatoid arthritis, nor to a lack of IL-7 receptors, which are found on fewer human (CD4+)CD25high than naive cells. We speculate that CCL21 and IL-15 responses to lymphopaenia may be suboptimal in multiple sclerosis.
Collapse
Affiliation(s)
- Amanda L Cox
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
El-Malky M, Shaohong L, Kumagai T, Yabu Y, Noureldin MS, Saudy N, Maruyama H, Ohta N. Protective effect of vaccination with Toxoplasma lysate antigen and CpG as an adjuvant against Toxoplasma gondii in susceptible C57BL/6 mice. Microbiol Immunol 2005; 49:639-46. [PMID: 16034207 DOI: 10.1111/j.1348-0421.2005.tb03656.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infection with the intracellular protozoan parasite Toxoplasma gondii causes serious public health problems to both humans and livestock and of great economic impact worldwide. Oligodeoxynucleotides (ODN) which contain immunostimulatory CG motifs (CpG ODN) can promote Th1 responses, an adjuvant activity that is desirable for vaccination against intracellular pathogens. We investigated the feasibility of using CpG as an adjuvant combined with Toxoplasma lysate antigen (TLA) as a vaccine against toxoplasmosis. Genetically susceptible C57BL/6 mice were vaccinated with TLA with or without CpG ODN as an adjuvant and then challenged with 85 cysts of the moderately virulent RRA (Beverley) strain of T. gondii. Prior to challenge infection, immunization with TLA plus CpG ODN directed cellular and humoral immunity toward a Th1 pattern, characterized by enhanced INF gamma production by splenic cells in response to TLA, and enhanced production of toxoplasma-specific IgG and IgG (2a) antibodies. Consequently, CpG/TLA-treated mice showed prolonged survival and 64% reduction in brain parasite burden compared to non-CpG/TLA treated group. Our results suggest that CpG ODN would provide a stable and effective adjuvant for use in vaccination against toxoplasmosis.
Collapse
Affiliation(s)
- Mohamed El-Malky
- Department of Molecular Parasitology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Combe CL, Curiel TJ, Moretto MM, Khan IA. NK cells help to induce CD8(+)-T-cell immunity against Toxoplasma gondii in the absence of CD4(+) T cells. Infect Immun 2005; 73:4913-21. [PMID: 16041005 PMCID: PMC1201207 DOI: 10.1128/iai.73.8.4913-4921.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD8(+) T-cell immunity plays an important role in protection against intracellular infections. Earlier studies have shown that CD4(+) T-cell help was needed for launching in vivo CD8(+) T-cell activity against these pathogens and tumors. However, recently CD4(+) T-cell-independent CD8 responses during several microbial infections including those with Toxoplasma gondii have been described, although the mechanism is not understood. We now demonstrate that, in the absence of CD4(+) T cells, T. gondii-infected mice exhibit an extended NK cell response, which is mediated by continued interleukin-12 (IL-12) secretion. This prolonged NK cell response is critical for priming parasite-specific CD8(+) T-cell immunity. Depletion of NK cells inhibited the generation of CD8(+) T-cell immunity in CD4(-/-) mice. Similarly neutralization of IL-12 reduces NK cell numbers in infected animals and leads to the down-regulation of CD8(+) T-cell immunity against T. gondii. Adoptive transfer of NK cells into the IL-12-depleted animals restored their CD8(+) T-cell immune response, and animals exhibited reduced mortality. NK cell gamma interferon was essential for cytotoxic T-lymphocyte priming. Our studies for the first time demonstrate that, in the absence of CD4(+) T cells, NK cells can play an important role in induction of primary CD8(+) T-cell immunity against an intracellular infection. These observations have therapeutic implications for immunocompromised individuals, including those with human immunodeficiency virus infection.
Collapse
Affiliation(s)
- Crescent L Combe
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
32
|
Lazarevic V, Yankura DJ, DiVito SJ, Flynn JL. Induction of Mycobacterium tuberculosis-specific primary and secondary T-cell responses in interleukin-15-deficient mice. Infect Immun 2005; 73:2910-22. [PMID: 15845497 PMCID: PMC1087383 DOI: 10.1128/iai.73.5.2910-2922.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several studies have provided evidence that interleukin-15 (IL-15) can enhance protective immune responses against Mycobacterium tuberculosis infection. However, the effects of IL-15 deficiency on the functionality of M. tuberculosis-specific CD4 and CD8 T cells are unknown. In this study, we investigated the generation and maintenance of effector and memory T-cell responses following M. tuberculosis infection of IL-15(-/-) mice. IL-15(-/-) mice had slightly higher bacterial numbers during chronic infection, which were accompanied by an increase in gamma interferon (IFN-gamma)-producing CD4 and CD8 T cells. There was no evidence of increased apoptosis or a defect in proliferation of CD8 effector T cells following M. tuberculosis infection. The induction of cytotoxic and IFN-gamma CD8 T-cell responses was normal in the absence of IL-15 signaling. The infiltration of CD4 and CD8 T cells into the lungs of "immune" IL-15(-/-) mice was delayed in response to M. tuberculosis challenge. These findings demonstrate that efficient effector CD4 and CD8 T cells can be developed following M. tuberculosis infection in the absence of IL-15 but that recall T-cell responses may be impaired.
Collapse
Affiliation(s)
- Vanja Lazarevic
- Department of Molecular Genetics and Biochemistry, W1157 Biomedical Science Tower, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
33
|
Dawson HD, Beshah E, Nishi S, Solano-Aguilar G, Morimoto M, Zhao A, Madden KB, Ledbetter TK, Dubey JP, Shea-Donohue T, Lunney JK, Urban JF. Localized multigene expression patterns support an evolving Th1/Th2-like paradigm in response to infections with Toxoplasma gondii and Ascaris suum. Infect Immun 2005; 73:1116-28. [PMID: 15664955 PMCID: PMC546930 DOI: 10.1128/iai.73.2.1116-1128.2005] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human infectious diseases have been studied in pigs because the two species have common microbial, parasitic, and zoonotic organisms, but there has been no systematic evaluation of cytokine gene expression in response to infectious agents in porcine species. In this study, pigs were inoculated with two clinically and economically important parasites, Toxoplasma gondii and Ascaris suum, and gene expression in 11 different tissues for 20 different swine Th1/Th2-related cytokines, cytokine receptors, and markers of immune activation were evaluated by real-time PCR. A generalized Th1-like pattern of gene expression was evident in pigs infected with T. gondii, along with an increased anti-inflammatory gene expression pattern during the recovery phase of the infection. In contrast, an elevated Th2-like pattern was expressed during the period of expulsion of A. suum fourth-stage larvae from the small intestine of pigs, along with low-level Th1-like and anti-inflammatory cytokine gene expression. Prototypical immune and physiological markers of infection were observed in bronchial alveolar lavage cells, small intestinal smooth muscle, and epithelial cells. This study validated the use of a robust quantitative gene expression assay to detect immune and inflammatory markers at multiple host tissue sites, enhanced the definition of two important swine diseases, and supported the use of swine as an experimental model for the study of immunity to infectious agents relevant to humans.
Collapse
Affiliation(s)
- Harry D Dawson
- Nutrient Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Dept. of Agriculture, Bldg. 307C, Room 214, BARC-East, Beltsville, MD 20705, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Millington OR, Wei XQ, Garside P, Mowat AMI. Interleukin-15 is not required for the induction or maintenance of orally induced peripheral tolerance. Immunology 2004; 113:304-9. [PMID: 15500616 PMCID: PMC1782578 DOI: 10.1111/j.1365-2567.2004.01965.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Orally induced tolerance is a physiologically relevant form of peripheral tolerance, which is believed to be important for the prevention of pathological immune responses in the gut. Of several mechanisms proposed to mediate oral tolerance, one that has received much attention recently is the concept of regulatory CD4+ T cells. As recent studies have suggested that interleukin (IL)-15 may be important for the differentiation and maintenance of regulatory CD4+ T cells, we have examined the role of IL-15 in oral tolerance, using a soluble form of the IL-15 receptor (sIL-15R) which blocks the biological effects of IL-15 in vivo. Oral tolerance induced by feeding mice ovalbumin (OVA) in a low-dose regimen believed to induce regulatory T cell activity was not affected by the administration of sIL-15R during either the induction or maintenance phase of tolerance. Thus, oral tolerance does not involve an IL-15-dependent mechanism.
Collapse
Affiliation(s)
- Owain R Millington
- Division of Immunology, Infection and Inflammation, Western Infirmary, University of Glasgow, UK.
| | | | | | | |
Collapse
|
35
|
Lieberman LA, Villegas EN, Hunter CA. Interleukin-15-deficient mice develop protective immunity to Toxoplasma gondii. Infect Immun 2004; 72:6729-32. [PMID: 15501812 PMCID: PMC523054 DOI: 10.1128/iai.72.11.6729-6732.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have suggested an important role for interleukin-15 (IL-15) in resistance to and memory for Toxoplasma gondii infection. The studies presented here reveal that IL-15 is not required for infection-induced expansion of NK or CD8+ T cells. Furthermore, IL-15-/- mice develop long-term protective immunity to this pathogen.
Collapse
Affiliation(s)
- Linda A Lieberman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
36
|
Abstract
A cardinal feature of the adaptive immune response is its ability to generate long-lived populations of memory T lymphocytes. Memory T cells are specific to the antigen encountered during the primary immune response and react rapidly and vigorously upon re-encounter with the same antigen. Memory T cells that recognize microbial antigens provide the organism with long-lasting protection against potentially fatal infections. On the other hand, memory T cells that recognize donor alloantigens can jeopardize the survival of life-saving organ transplants. We review here the immunobiology of memory T cells and describe their role in the rejection of solid organ allografts.
Collapse
Affiliation(s)
- Anna Valujskikh
- Department of Immunology, The Cleveland Clinic Foundation, 9500 Euclid Avenue NB30, Cleveland, OH 44195, USA.
| | | |
Collapse
|
37
|
Burkett PR, Koka R, Chien M, Boone DL, Ma A. Generation, maintenance, and function of memory T cells. Adv Immunol 2004; 83:191-231. [PMID: 15135632 DOI: 10.1016/s0065-2776(04)83006-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Patrick R Burkett
- Department of Medicine and the Ben May Institute for Cancer Research, University of Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
CD8 T cells respond to viral infections but also participate in defense against bacterial and protozoal infections. In the last few years, as new methods to accurately quantify and characterize pathogen-specific CD8 T cells have become available, our understanding of in vivo T cell responses has increased dramatically. Pathogen-specific T cells, once thought to be quite rare following infection, are now known to be present at very high frequencies, particularly in peripheral, nonlymphoid tissues. With the ability to visualize in vivo CD8 T cell responses has come the recognition that T cell expansion is programmed and, to a great extent, independent of antigen concentrations. Comparison of CD8 T cell responses to different pathogens also highlights the intricate relationship between microbially induced innate inflammatory responses and the kinetics, magnitude, and character of long-term T cell responses. This review describes recent progress in some of the major murine models of CD8 T cell-mediated immunity to viral, bacterial, and protozoal infection.
Collapse
Affiliation(s)
- Phillip Wong
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
39
|
Baan CC, Balk AHMM, van der Plas AJ, van Gelder T, Vantrimpont PJMJ, Maat LPWM, Weimar W. IL-15R alpha-chain expression during anti-CD25 treatment of cardiac allograft recipients. Transplant Proc 2002; 34:3243-5. [PMID: 12493434 DOI: 10.1016/s0041-1345(02)03591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- C C Baan
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|