1
|
Sohrabi S, Masoumi J, Naseri B, Ghorbaninezhad F, Alipour S, Kazemi T, Ahmadian Heris J, Aghebati Maleki L, Basirjafar P, Zandvakili R, Doustvandi MA, Baradaran B. STATs signaling pathways in dendritic cells: As potential therapeutic targets? Int Rev Immunol 2024; 43:138-159. [PMID: 37886903 DOI: 10.1080/08830185.2023.2274576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs), including heterogenous populations with phenotypic and functional diversity that coordinate bridging innate and adaptive immunity. Signal transducer and activator of transcriptions (STAT) factors as key proteins in cytokine signaling were shown to play distinct roles in the maturation and antigen presentation of DCs and play a pivotal role in modulating immune responses mediated by DCs such as differentiation of T cells to T helper (Th) 1, Th2 or regulatory T (Treg) cells. This review sheds light on the importance of STAT transcription factors' signaling pathways in different subtypes of DCs and highlights their targeting potential usages for improving DC-based immunotherapies for patients who suffer from cancer or diverse autoimmune conditions according to the type of the STAT transcription factor and its specific activating or inhibitory agent.
Collapse
Affiliation(s)
- Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Pedram Basirjafar
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Kumar A, Taghi Khani A, Sanchez Ortiz A, Swaminathan S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front Immunol 2022; 13:901277. [PMID: 35865534 PMCID: PMC9294178 DOI: 10.3389/fimmu.2022.901277] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that drives the generation of myeloid cell subsets including neutrophils, monocytes, macrophages, and dendritic cells in response to stress, infections, and cancers. By modulating the functions of innate immune cells that serve as a bridge to activate adaptive immune responses, GM-CSF globally impacts host immune surveillance under pathologic conditions. As with other soluble mediators of immunity, too much or too little GM-CSF has been found to promote cancer aggressiveness. While too little GM-CSF prevents the appropriate production of innate immune cells and subsequent activation of adaptive anti-cancer immune responses, too much of GM-CSF can exhaust immune cells and promote cancer growth. The consequences of GM-CSF signaling in cancer progression are a function of the levels of GM-CSF, the cancer type, and the tumor microenvironment. In this review, we first discuss the secretion of GM-CSF, signaling downstream of the GM-CSF receptor, and GM-CSF’s role in modulating myeloid cell homeostasis. We then outline GM-CSF’s anti-tumorigenic and pro-tumorigenic effects both on the malignant cells and on the non-malignant immune and other cells in the tumor microenvironment. We provide examples of current clinical and preclinical strategies that harness GM-CSF’s anti-cancer potential while minimizing its deleterious effects. We describe the challenges in achieving the Goldilocks effect during administration of GM-CSF-based therapies to patients with cancer. Finally, we provide insights into how technologies that map the immune microenvironment spatially and temporally may be leveraged to intelligently harness GM-CSF for treatment of malignancies.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Adeleh Taghi Khani
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Ashly Sanchez Ortiz
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
- Department of Hematological Malignancies, Beckman Research Institute of City of Hope, Monrovia, CA, United States
- *Correspondence: Srividya Swaminathan,
| |
Collapse
|
3
|
The Making of Hematopoiesis: Developmental Ancestry and Environmental Nurture. Int J Mol Sci 2018; 19:ijms19072122. [PMID: 30037064 PMCID: PMC6073875 DOI: 10.3390/ijms19072122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/02/2023] Open
Abstract
Evidence from studies of the behaviour of stem and progenitor cells and of the influence of cytokines on their fate determination, has recently led to a revised view of the process by which hematopoietic stem cells and their progeny give rise to the many different types of blood and immune cells. The new scenario abandons the classical view of a rigidly demarcated lineage tree and replaces it with a much more continuum-like view of the spectrum of fate options open to hematopoietic stem cells and their progeny. This is in contrast to previous lineage diagrams, which envisaged stem cells progressing stepwise through a series of fairly-precisely described intermediate progenitors in order to close down alternative developmental options. Instead, stem and progenitor cells retain some capacity to step sideways and adopt alternative, closely related, fates, even after they have “made a lineage choice.” The stem and progenitor cells are more inherently versatile than previously thought and perhaps sensitive to lineage guidance by environmental cues. Here we examine the evidence that supports these views and reconsider the meaning of cell lineages in the context of a continuum model of stem cell fate determination and environmental modulation.
Collapse
|
4
|
Brown G, Tsapogas P, Ceredig R. The changing face of hematopoiesis: a spectrum of options is available to stem cells. Immunol Cell Biol 2018; 96:898-911. [DOI: 10.1111/imcb.12055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences; Institute of Immunology and Immunotherapy; College of Medical and Dental Sciences; University of Birmingham; Edgbaston Birmingham UK
| | - Panagiotis Tsapogas
- Developmental and Molecular Immunology; Department of Biomedicine; University of Basel; Basel Switzerland
| | - Rhodri Ceredig
- Discipline of Physiology; College of Medicine & Nursing Health Science; National University of Ireland; Galway Ireland
| |
Collapse
|
5
|
|
6
|
Kim S, Park K, Choi J, Jang E, Paik DJ, Seong RH, Youn J. Foxp3+ regulatory T cells ensure B lymphopoiesis by inhibiting the granulopoietic activity of effector T cells in mouse bone marrow. Eur J Immunol 2014; 45:167-79. [PMID: 25348202 DOI: 10.1002/eji.201444532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 08/28/2014] [Accepted: 10/22/2014] [Indexed: 11/09/2022]
Abstract
Foxp3(+) Treg cells are crucial for maintaining T-cell homeostasis, but their role in B-cell homeostasis remains unclear. Here, we found that Foxp3 mutant scurfy mice had fewer B-lineage cells and progenitors, including common lymphoid progenitors and lymphoid-primed multipotent progenitors, but higher myeloid-lineage cell numbers in BM compared with WT littermates. Homeostasis within the HSC compartment was also compromised with apparent expansion of long- and short-term HSCs. This abnormality was due to the lack of Treg cells, but not to the Treg-cell extrinsic functions of Foxp3 or cell-autonomous defects. Among cytokines enriched in the BM of scurfy mice, IFN-γ affected only B lymphopoiesis, but GM-CSF, TNF, and IL-6 collectively promoted granulopoiesis at the expense of B lymphopoiesis. Neutralization of these three cytokines reversed the hematopoietic defects on early B-cell progenitors in scurfy mice. Treg cells ensured B lymphopoiesis by reducing the production of these cytokines by effector T cells, but not by directly affecting B lymphopoiesis. These results suggest that Treg cells occupy an important niche in the BM to protect B-lineage progenitor cells from excessive exposure to a lymphopoiesis-regulating milieu.
Collapse
Affiliation(s)
- Sunghoon Kim
- Department of Biomedical Sciences, Hanyang University Graduate School, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Xu D, Zhao M, Song Y, Song J, Huang Y, Wang J. Novel insights in preventing Gram-negative bacterial infection in cirrhotic patients: review on the effects of GM-CSF in maintaining homeostasis of the immune system. Hepatol Int 2014; 9:28-34. [DOI: 10.1007/s12072-014-9588-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/20/2014] [Indexed: 02/08/2023]
|
8
|
Abstract
Neutrophils are a key cell type of the innate immune system. They are short-lived and need to be continuously generated in steady-state conditions from haematopoietic stem and progenitor cells in the bone marrow to ensure their immediate availability for the containment of invading pathogens. However, if microbial infection cannot be controlled locally, and consequently develops into a life-threatening condition, neutrophils are used up in large quantities and the haematopoietic system has to rapidly adapt to the increased demand by switching from steady-state to emergency granulopoiesis. This involves the markedly increased de novo production of neutrophils, which results from enhanced myeloid precursor cell proliferation in the bone marrow. In this Review, we discuss the molecular and cellular events that regulate emergency granulopoiesis, a process that is crucial for host survival.
Collapse
|
9
|
Ariyoshi K, Takabatake T, Shinagawa M, Kadono K, Daino K, Imaoka T, Kakinuma S, Nishimura M, Shimada Y. Age Dependence of Hematopoietic Progenitor Survival and Chemokine Family Gene Induction after Gamma Irradiation in Bone Marrow Tissue in C3H/He Mice. Radiat Res 2014; 181:302-13. [DOI: 10.1667/rr13466] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kentaro Ariyoshi
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takashi Takabatake
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mayumi Shinagawa
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kyoko Kadono
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazuhiro Daino
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuhiko Imaoka
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mayumi Nishimura
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yoshiya Shimada
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
10
|
Abstract
T and B cells share a common somatic gene rearrangement mechanism for assembling the genes that code for their antigen receptors; they also have developmental pathways with many parallels. Shared usage of basic helix-loop-helix E proteins as transcriptional drivers underlies these common features. However, the transcription factor networks in which these E proteins are embedded are different both in membership and in architecture for T and B cell gene regulatory programs. These differences permit lineage commitment decisions to be made in different hierarchical orders. Furthermore, in contrast to B cell gene networks, the T cell gene network architecture for effector differentiation is sufficiently modular so that E protein inputs can be removed. Complete T cell-like effector differentiation can proceed without T cell receptor rearrangement or selection when E proteins are neutralized, yielding natural killer and other innate lymphoid cells.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
11
|
Reece P, Baatjes AJ, Cyr MM, Sehmi R, Denburg JA. Toll-like receptor-mediated eosinophil-basophil differentiation: autocrine signalling by granulocyte-macrophage colony-stimulating factor in cord blood haematopoietic progenitors. Immunology 2013; 139:256-64. [PMID: 23347362 DOI: 10.1111/imm.12078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/30/2022] Open
Abstract
Eosinophils are multi-functional leucocytes that play a role in inflammatory processes including allergy and infection. Although bone marrow (BM) inflammatory cells are the main source of eosinophil-basophil (Eo/B) differentiation-inducing cytokines, a recent role has been demonstrated for cytokine induction through Toll-like receptor (TLR)-mediated signalling in BM progenitors. Having previously demonstrated that cord blood (CB) progenitors induce Eo/B colony-forming units (CFU) after lipopolysaccharide (LPS) stimulation, we sought to investigate the intracellular mechanisms by which LPS induces Eo/B differentiation. Freshly isolated CD34-enriched human CB cells were stimulated with LPS (and/or pharmacological inhibitors) and assessed for alterations in haematopoietic cytokine receptor expression and signalling pathways by flow cytometry, Eo/B CFU in methylcellulose cultures, and cytokine secretion using Luminex assays. The LPS stimulation resulted in a significant increase in granulocyte-macrophage colony-stimulating factor (GM-CSF)-responsive, as opposed to interleukin-5-responsive, Eo/B CFU, which also correlated with significant increases in CD34(+) cell GM-CSFRα expression. Functionally, CB CD34(+) cells secrete abundant amounts of GM-CSF following LPS stimulation, via a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism; this secretion was responsible for Eo/B CFU formation ex vivo, as shown by antibody blockade. We show for the first time that LPS stimulation of CB progenitor cells results in autocrine activation of p38 MAPK-dependent GM-CSF secretion facilitating Eo/B differentiation ex vivo. This work provides evidence that early life exposure to products of bacterial agents can modulate Eo/B differentiation, representing a novel mechanism by which progenitor cells can respond to microbial stimuli and so affect immune and inflammatory responses.
Collapse
Affiliation(s)
- Pia Reece
- Division of Clinical Immunology and Allergy, McMaster University, Hamilton, ON, Canada
| | | | | | | | | |
Collapse
|
12
|
Abstract
Enormous numbers of adult blood cells are constantly regenerated throughout life from hematopoietic stem cells through a series of progenitor stages. Accessibility, robust functional assays, well-established prospective isolation, and successful clinical application made hematopoiesis the classical mammalian stem cell system. Most of the basic concepts of stem cell biology have been defined in this system. At the same time, many long-standing disputes in hematopoiesis research illustrate our still limited understanding. Here we discuss the embryonic development and lifelong maintenance of the hematopoietic system, its cellular components, and some of the hypotheses about the molecular mechanisms involved in controlling hematopoietic cell fates.
Collapse
Affiliation(s)
- Michael A Rieger
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt (Main), Germany
| | | |
Collapse
|
13
|
Abstract
During systemic infection and inflammation, immune effector cells are in high demand and are rapidly consumed at sites of need. Although adaptive immune cells have high proliferative potential, innate immune cells are mostly postmitotic and need to be replenished from bone marrow (BM) hematopoietic stem and progenitor cells. We here review how early hematopoiesis has been shaped to deliver efficient responses to increased need. On the basis of most recent findings, we develop an integrated view of how cytokines, chemokines, as well as conserved pathogen structures, are sensed, leading to divisional activation, proliferation, differentiation, and migration of hematopoietic stem and progenitor cells, all aimed at efficient contribution to immune responses and rapid reestablishment of hematopoietic homeostasis. We also outline how chronic inflammatory processes might impinge on hematopoiesis, potentially fostering hematopoietic stem cell diseases, and, how clinical benefit is and could be achieved by learning from nature.
Collapse
|
14
|
Role of transcription factors in differentiation and reprogramming of hematopoietic cells. Keio J Med 2011; 60:47-55. [PMID: 21720200 DOI: 10.2302/kjm.60.47] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Differentiation of hematopoietic cells is a sequential process of cell fate decision originating from hematopoietic stem cells (HSCs), allowing multi- or oligopotent progenitors to commit to certain lineages. HSCs are cells that are able to self-renew and repopulate the marrow for the long term. They first differentiate into multipotent progenitors (MPPs), which give rise to common lymphoid progenitors (CLPs) and common myeloid progenitors (CMPs). CMPs then differentiate into granulocyte monocyte progenitors (GMPs) and megakaryocyte erythroid progenitors (MEPs), which are the precursors of granulocytes/monocytes and erythrocytes/megakaryocytes, respectively. Lineage specification at differentiation branch points is dictated by the activation of lineage-specific transcription factors such as C/EBPα, PU.1, and GATA-1. The role of these transcription factors is generally instructive, and the expression of a single factor can often determine cell fate. Differentiation was long regarded as an irreversible process, and it was believed that somatic cells would not change their fate once they were differentiated. This paradigm was first challenged by the finding that ectopic cytokine signals could change the fate of differentiation, probably through modulating internal transcription networks. Subsequently, we and others showed that virtually all progenitors, including CLPs, CMPs, GMPs, and MEPs, still retain differentiation plasticity, and they can be converted into lineages other than their own by ectopic activation of only a single lineage-specific transcription factor. These findings established a novel paradigm for cellular differentiation and opened up an avenue for artificially manipulating cell fate for clinical use.
Collapse
|
15
|
Rothenberg EV. T cell lineage commitment: identity and renunciation. THE JOURNAL OF IMMUNOLOGY 2011; 186:6649-55. [PMID: 21646301 DOI: 10.4049/jimmunol.1003703] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Precursors undertaking T cell development shed their access to other pathways in a sequential process that begins before entry into the thymus and continues through many cell cycles afterward. This process involves three levels of regulatory change, in which the cells' intrinsic transcriptional regulatory factors, expression of signaling receptors (e.g., Notch1), and expression of distinct homing receptors separately contribute to confirmation of T cell identity. Each alternative potential has a different underlying molecular basis that is neutralized and then permanently silenced through different mechanisms in early T cell precursors. This regulatory mosaic has notable implications for the hierarchy of relationships linking T lymphocytes to other hematopoietic fates.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
16
|
Sarrazin S, Sieweke M. Integration of cytokine and transcription factor signals in hematopoietic stem cell commitment. Semin Immunol 2011; 23:326-34. [DOI: 10.1016/j.smim.2011.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/19/2011] [Indexed: 02/03/2023]
|
17
|
Kondo M. Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. Immunol Rev 2011; 238:37-46. [PMID: 20969583 DOI: 10.1111/j.1600-065x.2010.00963.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hematopoietic stem cells (HSCs) continuously replenish all classes of blood cells through a series of lineage restriction steps that results in the progressive loss of differentiation potential to other cell lineages. This review focuses on the recent advances in understanding one of the earliest differentiation steps in HSC maturation, which involves the diversification of the lymphoid and myeloid cell lineages, the two major branches of hematopoietic cells. We discuss progress in the identification and characterization of progenitor populations downstream of HSCs, which has been a key to understanding the sequential biological events that take place along the course of differentiation into a certain hematopoietic cell type. We also discuss the importance of bone marrow microenvironment in lymphoid and myeloid lineage choice.
Collapse
Affiliation(s)
- Motonari Kondo
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
18
|
Abstract
Understanding the diversification of dendritic cell (DC) lineages is one of the last frontiers in mapping the developmental hierarchy of the hematopoietic system. DCs are a vital link between the innate and adaptive immune responses; thus, elucidating their developmental pathways is crucial for insight into the generation of natural immunity and for learning how to regulate DCs in clinical settings. DCs arise from hematopoietic stem cells through specialized progenitor subsets under the direction of FMS-like tyrosine kinase 3 ligand (Flt3L) and Flt3L receptor (Flt3) signaling. Recent studies have revealed important contributions from granulocyte-macrophage colony-stimulating factor (GM-CSF) and type I interferons (IFNs) in vivo. Furthermore, DC development is guided by lineage-restricted transcription factors such as IRF8, E2-2, and Batf3. A critical question centers on how cytokines and lineage-restricted transcription factors operate molecularly to direct DC diversification. Here, we review recent findings that provide new insight into the DC developmental process.
Collapse
Affiliation(s)
- Stephanie S Watowich
- Department of Immunology and Center for Cancer Immunology Research, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
19
|
Saleem SJ, Conrad DH. Hematopoietic cytokine-induced transcriptional regulation and Notch signaling as modulators of MDSC expansion. Int Immunopharmacol 2011; 11:808-15. [PMID: 21426948 DOI: 10.1016/j.intimp.2011.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cells (HSCs) differentiate into mature lineage restricted blood cells under the influence of a complex network of hematopoietic cytokines, cytokine-mediated transcriptional regulators, and manifold intercellular signaling pathways. The classical model of hematopoiesis proposes that progenitor cells undergo a dichotomous branching into myelo-erythroid and lymphoid lineages. Nonetheless, erythroid and lymphoid restricted progenitors retain their myeloid potential, supporting the existence of an alternative 'myeloid-based' mechanism of hematopoiesis. In this case, abnormal pathology is capable of dysregulating hematopoiesis in favor of myelopoiesis. The accumulation of immature CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) has been shown to correlate with the presence of several hematopoietic cytokines, transcription factors and signaling pathways, lending support to this hypothesis. Although the negative role of MDSCs in cancer development is firmly established, it is now understood that MDSCs can exert a paradoxical, positive effect on transplantation, autoimmunity, and sepsis. Our conflicted understanding of MDSC function and the complexity of hematopoietic cytokine signaling underscores the need to elucidate molecular pathways of MDSC expansion for the development of novel MDSC-based therapeutics.
Collapse
Affiliation(s)
- Sheinei J Saleem
- Department of Microbiology and Immunology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | | |
Collapse
|
20
|
Abstract
The identity of T-cell progenitors that seed the thymus has remained controversial, largely because many studies differ over whether these progenitors retain myeloid potential. Contradictory reports diverge in their use of various in vitro and in vivo assays. To consolidate these discordant findings, we compared the myeloid potential of 2 putative thymus seeding populations, common lymphoid progenitors (CLPs) and multipotent progenitors (MPPs), and the earliest intrathymic progenitor (DN1), using 2 in vitro assays and in vivo readouts. These assays gave contradictory results: CLP and DN1 displayed surprisingly robust myeloid potential on OP9-DL1 in vitro stromal cocultures but displayed little myeloid potential in vivo, as well as in methylcellulose cultures. MPP, on the other hand, displayed robust myeloid potential in all settings. We conclude that stromal cocultures reveal cryptic, but nonphysiologic, myeloid potentials of lymphoid progenitors, providing an explanation for contradictory findings in the field and underscoring the importance of using in vivo assays for the determination of physiologic lineage potentials.
Collapse
|
21
|
Ando K, Miyazaki Y, Sawayama Y, Tominaga S, Matsuo E, Yamasaki R, Inoue Y, Iwanaga M, Imanishi D, Tsushima H, Fukushima T, Imaizumi Y, Taguchi J, Yoshida S, Hata T, Tomonaga M. High expression of 67-kDa laminin receptor relates to the proliferation of leukemia cells and increases expression of GM-CSF receptor. Exp Hematol 2010; 39:179-186.e4. [PMID: 21056082 DOI: 10.1016/j.exphem.2010.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 08/09/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The 67-kDa laminin receptor (LR) is a nonintegrin receptor for laminin, a major component of the extracellular matrix. To elucidate the role of LR in leukemia cells, we studied the relationship between the phenotype of leukemia cells and LR expression. MATERIALS AND METHODS The relationship between clinical features of acute myeloid leukemia and expression of LR was examined. LR was overexpressed or suppressed by the introduction of complementary DNA or small interfering RNA for LR in a human leukemia cell line to test the effect of LR on the phenotype of leukemia. Expression of granulocyte-macrophage colony-stimulating factor receptors (GM-CSFR) was also tested in leukemia cells, including clinical samples. RESULTS Expression of LR was significantly related to elevation of white blood cell count, lactate dehydrogenase, and survival among acute myeloid leukemia patients. Forced expression of LR enhanced proliferation, cell-cycle progression, and antiapoptosis of leukemia cells associated with phosphorylation of a transcription factor, signal transducer and activator of transcription 5, in the absence of stimulation by laminin. On the other hand, suppression of LR expression had the opposite effects. The number of GM-CSFR increased in leukemia cells overexpressing LR, and there was a significant relationship between the expression of LR and GM-CSFR in acute myeloid leukemia samples. CONCLUSIONS These results suggest that LR expression influenced the characteristics of leukemia cells toward an aggressive phenotype and increased the number of GM-CSFR. These changes might be partly related to enhanced GM-CSF signaling.
Collapse
Affiliation(s)
- Koji Ando
- Hematology and Molecular Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Abstract
The granulocyte-macrophage colony-stimulating factor (GM-CSF)/interleukin (IL)–3/IL-5 receptor family regulates the production and function of myeloid cells. These cytokines signal through receptor complexes that consist of unique ligand-binding α-chains and common signaling β-chains. IL-5 is distinct from IL-3 and GM-CSF in its capacity to induce eosinophil development, however, the molecular mechanisms that generate functional diversity within this receptor family are mostly unknown. Here, we characterized the selective IL-5Rα–binding adapter protein syntenin in IL-5R function. Syntenin and IL-5Rα colocalize at the plasma membrane and in early endosomal compartments. Manipulation of syntenin expression by ectopic expression or knockdown selectively modulated IL-5R but not GM-CSF receptor signaling, and severely affected IL-5–induced eosinophil differentiation from primary human CD34+ hematopoietic progenitor cells. We found syntenin up-regulated during eosinophilopoiesis but down-regulated during neutropoiesis. Syntenin forms complexes with multiple IL-5Rα chains, suggesting that syntenin-enhanced IL-5R output may result from stabilization of an IL-5–induced oligomeric receptor complex. These data demonstrate that cytokine-specific functions can be transduced by unique receptor α-chain–associating adapter proteins.
Collapse
|
23
|
Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC, Schroeder T. Hematopoietic cytokines can instruct lineage choice. Science 2009; 325:217-8. [PMID: 19590005 DOI: 10.1126/science.1171461] [Citation(s) in RCA: 325] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The constant regeneration of the blood system during hematopoiesis requires tightly controlled lineage decisions of hematopoietic progenitor cells (HPCs). Because of technical limitations, differentiation of individual HPCs could not previously be analyzed continuously. It was therefore disputed whether cell-extrinsic cytokines can instruct HPC lineage choice or only allow survival of cells that are already lineage-restricted. Here, we used bioimaging approaches that allow the continuous long-term observation of individual differentiating mouse HPCs. We demonstrate that the physiological cytokines, macrophage colony-stimulating factor and granulocyte colony-stimulating factor, can instruct hematopoietic lineage choice.
Collapse
Affiliation(s)
- Michael A Rieger
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg-Munich, Germany
| | | | | | | | | |
Collapse
|
24
|
Poh TW, Bradley JM, Mukherjee P, Gendler SJ. Lack of Muc1-regulated beta-catenin stability results in aberrant expansion of CD11b+Gr1+ myeloid-derived suppressor cells from the bone marrow. Cancer Res 2009; 69:3554-62. [PMID: 19351842 DOI: 10.1158/0008-5472.can-08-3806] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that inhibit T-cell activity and contribute to the immune suppression characteristic of most tumors. We discovered that bone marrow (BM) progenitor cells from the Muc1 knockout (KO) mice differentiated into CD11b(+)Gr1(+) MDSCs in vitro under granulocyte macrophage colony-stimulating factor and interleukin-4 signaling. MUC1 is a tumor-associated mucin and its cytoplasmic tail (MUC1-CT) can regulate beta-catenin to promote oncogenesis. Given the importance of beta-catenin in hematopoiesis, we hypothesized that the MUC1 regulation of beta-catenin is important for MDSC development. Our current study shows that the aberrant development of BM progenitors into CD11b(+)Gr1(+) MDSCs is dependent on the down-regulation of beta-catenin levels that occurs in the absence of Muc1. In light of this, KO mice showed enhanced EL4 tumor growth and were able to better tolerate allogeneic BM185 tumor growth, with an accumulation of CD11b(+)Gr1(+) cells in the blood and tumor-draining lymph nodes. WT mice were able to similarly tolerate allogeneic tumor growth when they were injected with CD11b(+)Gr1(+) cells from tumor-bearing KO mice, suggesting that tolerance of allogeneic tumors is dependent on MDSC-mediated immune suppression. This further delineates the ability of Muc1 to control MDSC development, which could directly affect tumorigenesis. Knowledge of the biology by which Muc1 regulates the development of myeloid progenitors into MDSCs would also be very useful in enhancing the efficacy of cancer vaccines in the face of tumor immune suppression.
Collapse
Affiliation(s)
- Tze Wei Poh
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona 85259, USA
| | | | | | | |
Collapse
|
25
|
Competition and collaboration: GATA-3, PU.1, and Notch signaling in early T-cell fate determination. Semin Immunol 2008; 20:236-46. [PMID: 18768329 DOI: 10.1016/j.smim.2008.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 07/06/2008] [Accepted: 07/10/2008] [Indexed: 12/15/2022]
Abstract
T-cell precursors remain developmentally plastic for multiple cell generations after entering the thymus, preserving access to developmental alternatives of macrophage, dendritic-cell, and even mast-cell fates. The underlying regulatory basis of this plasticity is that early T-cell differentiation depends on transcription factors which can also promote alternative developmental programs. Interfactor competition, together with environmental signals, keep these diversions under control. Here the pathways leading to several lineage alternatives for early pro-T-cells are reviewed, with close focus on the mechanisms of action of three vital factors, GATA-3, PU.1, and Notch-Delta signals, whose counterbalance appears to be essential for T-cell specification.
Collapse
|
26
|
Cobaleda C, Busslinger M. Developmental plasticity of lymphocytes. Curr Opin Immunol 2008; 20:139-48. [PMID: 18472258 DOI: 10.1016/j.coi.2008.03.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/29/2008] [Accepted: 03/31/2008] [Indexed: 02/04/2023]
Abstract
Experimental perturbation of signaling or transcription factor networks has been used to study the developmental potential of lymphoid progenitors, lineage-committed precursors and mature lymphocytes. Common lymphoid progenitors and uncommitted pro-T cells can be efficiently diverted into myeloid or erythroid lineages by ectopic cytokine signaling or retroviral expression of the myeloid C/EBPalpha or erythroid GATA1 transcription factor. Forced C/EBPalpha expression furthermore induces direct transdifferentiation of immature thymocytes or B cells into macrophages. Notably, conditional inactivation of the B cell commitment factor Pax5 is sufficient to convert mature B cells into functional T cells via dedifferentiation to uncommitted progenitors. Together these experiments have uncovered an unanticipated developmental plasticity of lymphocytes, which may account for lineage switches observed in human malignancies.
Collapse
Affiliation(s)
- César Cobaleda
- Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | |
Collapse
|
27
|
Abstract
AbstractMef2c is a MADS (MCM1-agamous–deficient serum response factor) transcription factor best known for its role in muscle and cardiovascular development. A causal role of up-regulated MEF2C expression in myelomonocytic acute myeloid leukemia (AML) has recently been demonstrated. Due to the pronounced monocytic component observed in Mef2c-induced AML, this study was designed to assess the importance of Mef2c in normal myeloid differentiation. Analysis of bone marrow (BM) cells manipulated to constitutively express Mef2c demonstrated increased monopoiesis at the expense of granulopoiesis, whereas BM isolated from Mef2cΔ/− mice showed reduced levels of monocytic differentiation in response to cytokines. Mechanistic studies showed that loss of Mef2c expression correlated with reduced levels of transcripts encoding c-Jun, but not PU.1, C/EBPα, or JunB transcription factors. Inhibiting Jun expression by short-interfering RNA impaired Mef2c-mediated inhibition of granulocyte development. Moreover, retroviral expression of c-Jun in BM cells promoted monocytic differentiation. The ability of Mef2c to modulate cell-fate decisions between monocyte and granulocyte differentiation, coupled with its functional sensitivity to extracellular stimuli, demonstrate an important role in immunity—and, consistent with findings of other myeloid transcription factors, a target of oncogenic lesions in AML.
Collapse
|
28
|
The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by suppressing transcription factor IRF8. Immunity 2008; 28:509-20. [PMID: 18342552 DOI: 10.1016/j.immuni.2008.02.013] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 12/30/2007] [Accepted: 02/04/2008] [Indexed: 11/23/2022]
Abstract
The development of distinct dendritic cell (DC) subsets is regulated by cytokines. The ligand for the FMS-like tyrosine kinase 3 receptor (Flt3L) is necessary for plasmacytoid DC (pDC) and conventional DC (cDC) maturation. The cytokine GM-CSF inhibits Flt3L-driven pDC production while promoting cDC growth. We show that GM-CSF selectively utilized its signal transducer STAT5 to block Flt3L-dependent pDC development from the lineage-negative, Flt3+ (lin- Flt3+) bone-marrow subset. The signaling molecule STAT3, by contrast, was necessary for expansion of DC progenitors but not pDC maturation. In vivo, STAT5 suppressed pDC formation during repopulation of the DC compartment after bone-marrow ablation. GM-CSF-dependent STAT5 signaling rapidly extinguished pDC-related gene expression in lin- Flt3+ progenitors. Inspection of the Irf8 promoter revealed that STAT5 was recruited during GM-CSF-mediated suppression, indicating that STAT5 directly inhibited transcription of this critical pDC gene. Our results therefore show that GM-CSF controls the production of pDCs by employing STAT5 to suppress IRF8 and the pDC transcriptional network in lin- Flt3+ progenitors.
Collapse
|
29
|
Cantor AB, Iwasaki H, Arinobu Y, Moran TB, Shigematsu H, Sullivan MR, Akashi K, Orkin SH. Antagonism of FOG-1 and GATA factors in fate choice for the mast cell lineage. ACTA ACUST UNITED AC 2008; 205:611-24. [PMID: 18299398 PMCID: PMC2275384 DOI: 10.1084/jem.20070544] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The zinc finger transcription factor GATA-1 requires direct physical interaction with the cofactor friend of GATA-1 (FOG-1) for its essential role in erythroid and megakaryocytic development. We show that in the mast cell lineage, GATA-1 functions completely independent of FOG proteins. Moreover, we demonstrate that FOG-1 antagonizes the fate choice of multipotential progenitor cells for the mast cell lineage, and that its down-regulation is a prerequisite for mast cell development. Remarkably, ectopic expression of FOG-1 in committed mast cell progenitors redirects them into the erythroid, megakaryocytic, and granulocytic lineages. These lineage switches correlate with transcriptional down-regulation of GATA-2, an essential mast cell GATA factor, via switching of GATA-1 for GATA-2 at a key enhancer element upstream of the GATA-2 gene. These findings illustrate combinatorial control of cell fate identity by a transcription factor and its cofactor, and highlight the role of transcriptional networks in lineage determination. They also provide evidence for lineage instability during early stages of hematopoietic lineage commitment.
Collapse
Affiliation(s)
- Alan B Cantor
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Multipotent blood progenitor cells enter the thymus and begin a protracted differentiation process in which they gradually acquire T-cell characteristics while shedding their legacy of developmental plasticity. Notch signalling and basic helix-loop-helix E-protein transcription factors collaborate repeatedly to trigger and sustain this process throughout the period leading up to T-cell lineage commitment. Nevertheless, the process is discontinuous with separately regulated steps that demand roles for additional collaborating factors. This Review discusses new evidence on the coordination of specification and commitment in the early T-cell pathway; effects of microenvironmental signals; the inheritance of stem-cell regulatory factors; and the ensemble of transcription factors that modulate the effects of Notch and E proteins, to distinguish individual stages and to polarize T-cell-lineage fate determination.
Collapse
|
31
|
Rosas M, Gordon S, Taylor PR. Characterisation of the expression and function of the GM-CSF receptor alpha-chain in mice. Eur J Immunol 2007; 37:2518-28. [PMID: 17694571 PMCID: PMC2699419 DOI: 10.1002/eji.200636892] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine able to regulate a variety of cell functions including differentiation of macrophages and granulocytes, dendritic cell development and the maintenance of homeostasis. It binds specifically to its receptor, which is composed of a cytokine-specific α-chain (GM-CSF receptor α-chain, GMRα) and a β-chain shared with the receptors for interleukin-3 and interleukin-5. In this report, we present a comprehensive study of GMRα in the mouse. We have found that the mouse GMRα is polymorphic and alternatively spliced. In the absence of specific antibodies, we generated a novel chimeric protein containing the Fc fragment of human IgG1 coupled to mouse GM-CSF, which was able to specifically bind to GMRα and induce proliferation of GMRα-transduced Ba/F3 cells. We used this reagent to perform the first detailed FACS study of the surface expression of mouse GMRα by leucocytes. Highest expression was found on monocytes and granulocytes, and variable expression on tissue macrophages. The GM-CSF receptor in mice is specifically expressed by myeloid cells and is useful for the detection of novel uncharacterised myeloid populations. The ability to detect GM-CSF receptor expression in experimental studies should greatly facilitate the analysis of its role in immune pathologies.
Collapse
Affiliation(s)
- Marcela Rosas
- Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff, UK
| | | | | |
Collapse
|
32
|
|
33
|
Abstract
Prospective isolation of hematopoietic stem and progenitor cells has identified the lineal relationships among all blood-cell types and has allowed their developmental mechanisms to be assayed at the single-cell level. These isolated cell populations are used to elucidate the molecular mechanism of lineage fate decision and of its plasticity directly by stage-specific enforcement or repression of lineage-instructive signaling in purified cells. With an emphasis on the myeloid lineage, this review summarizes current concepts and controversies regarding adult murine hematopoietic development and discusses the potential mechanisms, operated by single or by multiple transcription factors, of myeloid lineage fate decision.
Collapse
Affiliation(s)
- Hiromi Iwasaki
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | | |
Collapse
|
34
|
Rothenberg EV. Negotiation of the T lineage fate decision by transcription-factor interplay and microenvironmental signals. Immunity 2007; 26:690-702. [PMID: 17582342 DOI: 10.1016/j.immuni.2007.06.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Notch-Delta signaling of hematopoietic precursors sets in motion a train of events that activates expression of T lineage genes. Even so, through many cell generations the pro-T cells remain uncommitted to the T cell fate, preserving alternative potentials as divergent as monocyte or dendritic cell fates. This plasticity can be explained by the tenacious expression of stem- and progenitor-associated regulatory genes in the cells, and by the combinatorial coding of T cell identity by factors that are not intrinsically T lineage specific in their spectra of activity. T lineage developmental success depends on precise temporal and quantitative regulation of these factors and on the continuing modulating influence of Notch-Delta signals that buffer the cells against mechanisms promoting non-T outcomes. An additional mechanism, still not fully defined, is required just prior to T cell receptor-mediated selection to end plasticity and make T lineage commitment irreversible.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
35
|
Martelli MP, Manes N, Pettirossi V, Liso A, Pacini R, Mannucci R, Zei T, Bolli N, di Raimondo F, Specchia G, Nicoletti I, Martelli MF, Falini B. Absence of nucleophosmin leukaemic mutants in B and T cells from AML with NPM1 mutations: implications for the cell of origin of NPMc+ AML. Leukemia 2007; 22:195-8. [PMID: 17637812 DOI: 10.1038/sj.leu.2404857] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Hibbs ML, Quilici C, Kountouri N, Seymour JF, Armes JE, Burgess AW, Dunn AR. Mice lacking three myeloid colony-stimulating factors (G-CSF, GM-CSF, and M-CSF) still produce macrophages and granulocytes and mount an inflammatory response in a sterile model of peritonitis. THE JOURNAL OF IMMUNOLOGY 2007; 178:6435-43. [PMID: 17475873 DOI: 10.4049/jimmunol.178.10.6435] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To assess the combined role of G-CSF, GM-CSF, and M-CSF in myeloid cell production, mice deficient in all three myeloid CSFs were generated (G-/-GM-/-M-/- mice). G-/-GM-/-M-/- mice share characteristics found in mice lacking individual cytokines: they are toothless and osteopetrotic and furthermore acquire alveolar proteinosis that is more severe than that found in either GM-/- or G-/-GM-/- mice. G-/-GM-/-M-/- mice have a significantly reduced lifespan, which is prolonged by antibiotic administration, suggesting compromised ability to control bacterial infection. G-/-GM-/-M-/- mice have circulating neutrophils and monocytes, albeit at significantly reduced numbers compared with wild-type mice, but surprisingly, have more circulating monocytes than M-/- mice and more circulating neutrophils than G-/-GM-/- mice. Due to severe osteopetrosis, G-/-GM-/-M-/- mice show diminished numbers of myeloid cells, myeloid progenitors, and B lymphocytes in the bone marrow, but have significantly enhanced compensatory splenic hemopoiesis. Although G-/-GM-/-M-/- mice have a profound deficiency of myeloid cells in the resting peritoneal cavity, the animals mount a moderate cellular response in a model of sterile peritonitis. These data establish that in the absence of G-CSF, GM-CSF, and M-CSF, additional growth factor(s) can stimulate myelopoiesis and acute inflammatory responses.
Collapse
Affiliation(s)
- Margaret L Hibbs
- Signal Transduction Laboratory, Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Victoria, and Department of Medicine, University of Melbourne, Parkville, Australia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The subdivision of bone marrow (BM) with surface markers and reporter systems and the use of multiple culture and transplantation assays to assess differentiation potential have led to extraordinary progress in defining stages of B lymphopoiesis between the hematopoietic stem cell and B cell receptor (BCR)-expressing lymphocytes. Despite the lack of standard nomenclature and a series of technical issues that still need to be resolved, there seems to be a general consensus regarding the major route to becoming a B cell. Nevertheless, evidence that additional, minor pathways through which B lineage cells are generated exists, and a new appreciation that lymphoid progenitors are protean and able to alter their differentiation potential during embryogenesis and after birth in response to infections suggests that a full understanding of B cell development and how it is regulated has not yet been attained.
Collapse
Affiliation(s)
- Richard R Hardy
- The Division of Basic Sciences, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | |
Collapse
|
38
|
Hsu CL, Kikuchi K, Kondo M. Activation of mitogen-activated protein kinase kinase (MEK)/extracellular signal regulated kinase (ERK) signaling pathway is involved in myeloid lineage commitment. Blood 2007; 110:1420-8. [PMID: 17536016 PMCID: PMC1975832 DOI: 10.1182/blood-2007-02-071761] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Common lymphoid progenitors (CLPs) are lymphoid-lineage-committed progenitor cells. However, they maintain a latent myeloid differentiation potential that can be initiated by stimulation with interleukin-2 (IL-2) via ectopically expressed IL-2 receptors. Although CLPs express IL-7 receptors, which share the common gamma chain with IL-2 receptors, IL-7 cannot initiate lineage conversion in CLPs. In this study, we demonstrate that the critical signals for initiating lineage conversion in CLPs are delivered via IL-2 receptor beta (IL-2R beta) intracellular domains. Fusion of the A region of the IL-2R beta cytoplasmic tail to IL-7R alpha enables IL-7 to initiate myeloid differentiation in CLPs. We found that Shc, which associates with the A region, mediates lineage conversion signals through the mitogen activated protein kinase (MAPK) pathway. Because mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitors completely blocked IL-2-mediated lineage conversion, MAPK activation, specifically via the MEK/ERK pathway, is critically involved in the initiation of this event. Furthermore, formation of granulocyte/macrophage (GM) colonies by hematopoietic stem cells, but not by common myeloid progenitors (CMPs), was severely reduced in the presence of MEK/ERK inhibitors. These results demonstrate that activation of MEK/ERK plays an important role in GM lineage commitment.
Collapse
Affiliation(s)
- Chia-Lin Hsu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
39
|
Onai N, Obata-Onai A, Schmid MA, Manz MG. Flt3 in regulation of type I interferon-producing cell and dendritic cell development. Ann N Y Acad Sci 2007; 1106:253-61. [PMID: 17360795 DOI: 10.1196/annals.1392.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flt3-ligand is a nonredundant cytokine in type I interferon-producing cell (IPC) and dendritic cell (DC) development. We demonstrated that IPC and DC differentiation potential is confined to Flt3(+)-hematopoietic progenitor cells, that Flt3-ligand drives development along both lymphoid and myeloid developmental pathways from Flt3(+)-progenitors to Flt3(+)-IPCs and -DCs, and that in vivo pharmacologic inhibition of Flt3-signaling leads to disruption of IPC and DC development in spite of consecutive Flt3-ligand upregulation in treated animals. We here summarize our recent findings that overexpression of human Flt3 in Flt3(-) and Flt3(+) hematopoietic progenitors rescues and enhances their IPC and DC differentiation potential, respectively. Based on these data, we propose an instructive, demand-regulated, cytokine-driven IPC and DC regeneration model, where high Flt3-ligand levels initiate a self-sustaining, Flt3-STAT3 and -PU.1-mediated IPC and DC differentiation program in Flt3(+)-hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Nobuyuki Onai
- Institute for Research in Biomedicine (IRB), Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| | | | | | | |
Collapse
|
40
|
Alcaide P, Jones TG, Lord GM, Glimcher LH, Hallgren J, Arinobu Y, Akashi K, Paterson AM, Gurish MA, Luscinskas FW. Dendritic cell expression of the transcription factor T-bet regulates mast cell progenitor homing to mucosal tissue. ACTA ACUST UNITED AC 2007; 204:431-9. [PMID: 17296784 PMCID: PMC2118716 DOI: 10.1084/jem.20060626] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The transcription factor T-bet was identified in CD4+ T cells, and it controls interferon γ production and T helper type 1 cell differentiation. T-bet is expressed in certain other leukocytes, and we recently showed (Lord, G.M., R.M. Rao, H. Choe, B.M. Sullivan, A.H. Lichtman, F.W. Luscinskas, and L.H. Glimcher. 2005. Blood. 106:3432–3439) that it regulates T cell trafficking. We examined whether T-bet influences homing of mast cell progenitors (MCp) to peripheral tissues. Surprisingly, we found that MCp homing to the lung or small intestine in T-bet−/− mice is reduced. This is reproduced in adhesion studies using bone marrow–derived MCs (BMMCs) from T-bet−/− mice, which showed diminished adhesion to mucosal addresin cellular adhesion molecule–1 (MAdCAM-1) and vascular cell adhesion molecule–1 (VCAM-1), endothelial ligands required for MCp intestinal homing. MCp, their precursors, and BMMCs do not express T-bet, suggesting that T-bet plays an indirect role in homing. However, adoptive transfer experiments revealed that T-bet expression by BM cells is required for MCp homing to the intestine. Furthermore, transfer of WT BM-derived dendritic cells (DCs) to T-bet−/− mice restores normal MCp intestinal homing in vivo and MCp adhesion to MAdCAM-1 and VCAM-1 in vitro. Nonetheless, T-bet−/− mice respond vigorously to intestinal infection with Trichinella spiralis, eliminating a role for T-bet in MC recruitment to sites of infection and their activation and function. Therefore, remarkably, T-bet expression by DCs indirectly controls MCp homing to mucosal tissues.
Collapse
Affiliation(s)
- Pilar Alcaide
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Butcher CM, Hutton JF, Hahn U, To LB, Bardy P, Lewis I, D'Andrea RJ. Cellular origin and lineage specificity of the JAK2V617F allele in polycythemia vera. Blood 2007; 109:386-7. [PMID: 17190855 DOI: 10.1182/blood-2006-07-036426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Laiosa CV, Stadtfeld M, Xie H, de Andres-Aguayo L, Graf T. Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and PU.1 transcription factors. Immunity 2006; 25:731-44. [PMID: 17088084 DOI: 10.1016/j.immuni.2006.09.011] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 06/02/2006] [Accepted: 09/26/2006] [Indexed: 11/24/2022]
Abstract
The differentiation potential of T lineage cells becomes restricted soon after entry of multipotent precursors into the thymus and is accompanied by a downregulation of the transcription factors C/EBP alpha and PU.1. To investigate this restriction point, we have expressed C/EBP alpha and PU.1 in fully committed pre-T cells and found that C/EBP alpha (and C/EBP beta) induced the formation of functional macrophages. In contrast, PU.1 converted them into myeloid dendritic cells under identical culture conditions. C/EBP alpha-induced reprogramming is complex because upregulation of some but not all myelomonocytic markers required endogenous PU.1. Notch signaling partially inhibited C/EBP alpha-induced macrophage formation and completely blocked PU.1-induced dendritic cell formation. Likewise, expression of intracellular Notch or the transcription factor GATA-3 inhibited C/EBP alpha-induced lineage conversion. Our data show that committed T cell progenitors remain susceptible to the lineage instructive effects of myeloid transcription factors and suggest that Notch signaling induces T lineage restriction by downregulating C/EBP alpha and PU.1 in multilineage precursors.
Collapse
Affiliation(s)
- Catherine V Laiosa
- Department of Developmental and Molecular Biology and the Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
43
|
Iwasaki H, Mizuno SI, Arinobu Y, Ozawa H, Mori Y, Shigematsu H, Takatsu K, Tenen DG, Akashi K. The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev 2006; 20:3010-21. [PMID: 17079688 PMCID: PMC1620021 DOI: 10.1101/gad.1493506] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The mechanism of lineage specification in multipotent stem cells has not been fully understood. We recently isolated progenitors with the eosinophil, basophil, or mast cell lineage potential, all of which originate from granulocyte/monocyte progenitors (GMPs). By using these prospectively purified progenitors, we show here that the expression timing of GATA-2 and CCAAT enhancer-binding protein alpha (C/EBPalpha) can differentially control their lineage commitment. The expression of GATA-2 instructed C/EBPalpha-expressing GMPs to commit exclusively into the eosinophil lineage, while it induced basophil and/or mast cell lineage commitment if C/EBPalpha was suppressed at the GMP stage. Furthermore, simply by switching the order of C/EBPalpha and GATA-2 transduction, even lymphoid-committed progenitors recaptured these developmental processes to be reprogrammed into each of these lineages. We propose that the order of expression of key transcription factors is critical for their interplay to selectively drive lineage specification programs, by which stem cells could generate multiple lineage cells in a hierarchical manner.
Collapse
Affiliation(s)
- Hiromi Iwasaki
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Hematopoiesis has provided a valuable model for understanding how genetic programs are established to decide cell fates in multipotent stem or progenitor cells. The identification of common myeloid and lymphoid progenitors has allowed us to directly assess the regulatory mechanisms of lineage commitment. Multiple genes of hematopoietic lineages, including transcription factors, are coexpressed in hematopoietic stem cells and progenitors, a phenomenon referred to as "lineage priming." The accessibility for multiple transcription factors promiscuously allows flexibility in cell fate commitments at the multipotent stages. The changes in the expression levels and timing of transcription factors can induce lineage conversion of committed cells, indicating that the regulation of transcription factors might be primarily critical for maintaining hierarchical hematopoietic development.
Collapse
Affiliation(s)
- Koichi Akashi
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, Takatsu K, Kincade PW. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 2006; 24:801-812. [PMID: 16782035 PMCID: PMC1626529 DOI: 10.1016/j.immuni.2006.04.008] [Citation(s) in RCA: 660] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 01/30/2006] [Accepted: 04/05/2006] [Indexed: 12/26/2022]
Abstract
Toll-like receptors (TLRs) are best known for their ability to recognize microbial or viral components and initiate innate immune responses. We showed here that TLRs and their coreceptors were expressed by multipotential hematopoietic stem cells, whose cell cycle entry was triggered by TLR ligation. TLR expression also extended to some of the early hematopoietic progenitors, although not the progenitor cells dedicated to megakaryocyte and erythroid differentiation. TLR signaling via the Myd88 adaptor protein drove differentiation of myeloid progenitors, bypassing some normal growth and differentiation requirements, and also drove lymphoid progenitors to become dendritic cells. CD14 contributed to the efficiency of lipopolysaccharide (LPS) recognition by stem and progenitor cells, and LPS interacted directly with the TLR4/MD-2 complex on these cells in bone marrow. Thus, the preferential pathogen-mediated stimulation of myeloid differentiation pathways may provide a means for rapid replenishment of the innate immune system during infection.
Collapse
Affiliation(s)
- Yoshinori Nagai
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104; Division of Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Karla P Garrett
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Shoichiro Ohta
- Division of Immunology, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan
| | - Uleng Bahrun
- Division of Immunology, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan
| | - Taku Kouro
- Division of Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kiyoshi Takatsu
- Division of Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Paul W Kincade
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
46
|
Fukuchi Y, Shibata F, Ito M, Goto-Koshino Y, Sotomaru Y, Ito M, Kitamura T, Nakajima H. Comprehensive analysis of myeloid lineage conversion using mice expressing an inducible form of C/EBP alpha. EMBO J 2006; 25:3398-410. [PMID: 16858416 PMCID: PMC1523173 DOI: 10.1038/sj.emboj.7601199] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 05/29/2006] [Indexed: 11/09/2022] Open
Abstract
CCAAT/enhancer-binding protein (C/EBP) alpha is a critical regulator for early myeloid differentiation. Although C/EBPalpha has been shown to convert B cells into myeloid lineage, precise roles of C/EBPalpha in various hematopoietic progenitors and stem cells still remain obscure. To examine the consequence of C/EBPalpha activation in various progenitors and to address the underlying mechanism of lineage conversion in detail, we established transgenic mice expressing a conditional form of C/EBPalpha. Using these mice, we show that megakaryocyte/erythroid progenitors (MEPs) and common lymphoid progenitors (CLPs) could be redirected to functional macrophages in vitro by a short-term activation of C/EBPalpha, and the conversion occurred clonally through biphenotypic intermediate cells. Moreover, in vivo activation of C/EBPalpha in mice led to the increase of mature granulocytes and myeloid progenitors with a concomitant decrease of hematopoietic stem cells and nonmyeloid progenitors. Our study reveals that C/EBPalpha can activate the latent myeloid differentiation program of MEP and CLP and shows that its global activation affects multilineage homeostasis in vivo.
Collapse
Affiliation(s)
- Yumi Fukuchi
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Fumi Shibata
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Miyuki Ito
- Center of Excellence, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yuko Goto-Koshino
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | - Mamoru Ito
- Central Institute for Experimental Animals, Kanagawa, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hideaki Nakajima
- Center of Excellence, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Center of Excellence, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan. Tel.: +81 3 5449 5759; Fax: +81 3 5449 5453; E-mail:
| |
Collapse
|
47
|
Bourette RP, Grasset MF, Mouchiroud G. E2a/Pbx1 oncogene inhibits terminal differentiation but not myeloid potential of pro-T cells. Oncogene 2006; 26:234-47. [PMID: 16819510 DOI: 10.1038/sj.onc.1209777] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
E2a/Pbx1 is a fusion oncoprotein resulting from the t(1;19) translocation found in human pre-B acute lymphocytic leukemia and in a small number of acute T-lymphoid and myeloid leukemias. It was previously suggested that E2a/Pbx1 could cooperate with normal or oncogenic signaling pathways to immortalize myeloid and lymphoid progenitor cells. To address this question, we introduced the receptor of the macrophage-colony-stimulating factor (M-CSF-R) in pro-T cells immortalized by a conditional, estradiol-dependent, E2a/Pbx1-protein, and continuously proliferating in response to stem cell factor and interleukin-7. We asked whether M-CSF-R would be functional in an early T progenitor cell and influence the fate of E2a/Pbx1-immortalized cells. E2a-Pbx1 immortalized pro-T cells could proliferate and shifted from lymphoid to myeloid lineage after signaling through exogenously expressed M-CSF-R, irrespective of the presence of estradiol. However, terminal macrophage differentiation of the cells was obtained only when estradiol was withdrawn from cultures. This demonstrated that M-CSF-R is functional for proliferation and differentiation signaling in a T-lymphoid progenitor cell, which, in addition, unveiled myeloid potential of pro-T progenitors. Moreover, the block of differentiation induced by the E2a/Pbx1 oncogene could be modulated by hematopoietic cytokines such as M-CSF, suggesting plasticity of leukemic progenitor cells. Finally, additional experiments suggested that PU.1 and eight twenty-one transcriptional regulators might be implicated in the mechanisms of oncogenesis by E2a/Pbx1.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Differentiation
- Cell Lineage
- Cell Proliferation
- Cell Transformation, Neoplastic
- Estradiol/pharmacology
- Female
- Flow Cytometry
- Genes, fms/genetics
- Genes, fms/physiology
- Green Fluorescent Proteins/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Interleukin-7/pharmacology
- Lymphocytes/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Myeloid Cells/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Phagocytosis
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Stem Cell Factor/pharmacology
- Stem Cells/metabolism
- Stem Cells/pathology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- R P Bourette
- Centre de Génétique Moléculaire et Cellulaire, UMR CNRS 5534, Villeurbanne Cedex, France.
| | | | | |
Collapse
|
48
|
Abstract
In recent years, investigators have made great progress in delineating developmental pathways of several lymphoid and myeloid lineages and in identifying transcription factors that establish and maintain their fate. However, the developmental branching points between these two large cell compartments are still controversial, and little is known about how their diversification is induced. Here, we give an overview of determinants that play a role at lymphoid-myeloid junctures, in particular transcription factors and cytokine receptors. Experiments showing that myeloid lineages can be reversibly reprogrammed into one another by transcription factor network perturbations are used to highlight key principles of lineage commitment. We also discuss experiments showing that lymphoid-to-myeloid but not myeloid-to-lymphoid conversions can be induced by the enforced expression of a single transcription factor. We close by proposing that this asymmetry is related to a higher complexity of transcription factor networks in lymphoid cells compared with myeloid cells, and we suggest that this feature must be considered when searching for mechanisms by which hematopoietic stem cells become committed to lymphoid lineages.
Collapse
Affiliation(s)
- Catherine V Laiosa
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
49
|
Baba Y, Garrett KP, Kincade PW. Constitutively active beta-catenin confers multilineage differentiation potential on lymphoid and myeloid progenitors. Immunity 2006; 23:599-609. [PMID: 16356858 PMCID: PMC1850237 DOI: 10.1016/j.immuni.2005.10.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/29/2005] [Accepted: 10/19/2005] [Indexed: 01/13/2023]
Abstract
Beta-catenin-mediated Wnt signaling may contribute to the self-renewal of hematopoietic stem cells and proliferation in some malignancies. We now show that expression of constitutively active beta-catenin in normal lymphoid or myeloid progenitors generated uncommitted cells with multilineage differentiation potential. Inappropriate gene expression occurred in cells destined to produce either cell type and caused corresponding changes in their characteristics. For example, forced activation of beta-catenin quickly increased C/EBPalpha while reducing EBF and Pax-5 in lymphoid progenitors that then generated myeloid cells. Inversely, EBF dramatically increased in transduced myeloid progenitors and lymphocytes were produced. The results indicate that ectopic activation of beta-catenin destabilizes lineage fate decisions and confers some, but not all, stem cell properties on committed progenitors.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13(th) Street, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
50
|
Kitajima K, Zheng J, Yen H, Sugiyama D, Nakano T. Multipotential differentiation ability of GATA-1-null erythroid-committed cells. Genes Dev 2006; 20:654-9. [PMID: 16543218 PMCID: PMC1413282 DOI: 10.1101/gad.1378206] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GATA-1, a zinc finger transcription factor, has been believed to be indispensable for the survival of proerythroblasts. However, we found that GATA-1-null proerythroblasts could survive and proliferate on OP9 stroma cells in the presence of erythropoietin. Furthermore, myeloid and mast cells were induced from the GATA-1-null proerythroblasts by the stimulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3), respectively, but lymphoid differentiation was not achieved by in vivo transfer. Thus, without activity of the transcription factor required for terminal differentiation, even relatively mature and committed cells proliferate continuously with the differentiation capacity to other lineages. Our data suggest that GATA-1 is a critical transcription factor to fix erythroid progenitors to the erythroid lineage.
Collapse
Affiliation(s)
- Kenji Kitajima
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|