1
|
Li Z, Murthy AK, Hao L, Andrew L, Anderson AS. Factor H binding protein (FHbp): An evaluation of genotypic diversity across Neisseria meningitidis serogroups. Hum Vaccin Immunother 2024; 20:2409502. [PMID: 39387286 PMCID: PMC11469366 DOI: 10.1080/21645515.2024.2409502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Neisseria meningitidis serogroups A, B, C, W, X, and Y cause invasive meningococcal disease (IMD) worldwide. Factor H binding protein (FHbp), a key meningococcal virulence factor, is an antigen included in both licensed meningococcal serogroup B (MenB) vaccines. This review examines the biology and epidemiology of FHbp and assesses the ability and potential of FHbp vaccine antigens to protect against IMD. Using evidence from the literature and the contemporary PubMLST database, we discuss analyses of MenB genotypes on the representation of the most prevalent multilocus sequence typing (MLST)/clonal complexes, FHbp subfamily distribution, and FHbp and porin A (PorA) variants. We further discuss that the similar genotypes, distribution, and diversity of FHbp variant types have remained stable over long time periods, supporting the potential for FHbp-containing, protein-based vaccines to protect against IMD, including MenB-FHbp (Trumenba®), which contains two lipidated FHbp antigens (one each from both FHbp subfamilies: A and B).
Collapse
Affiliation(s)
- Zhenghui Li
- Pfizer Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | | | - Li Hao
- Pfizer Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | - Lubomira Andrew
- Pfizer Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | | |
Collapse
|
2
|
Velimirov B, Velimirov BA. Immune Responses Elicited by Outer Membrane Vesicles of Gram-Negative Bacteria: Important Players in Vaccine Development. Life (Basel) 2024; 14:1584. [PMID: 39768292 PMCID: PMC11678573 DOI: 10.3390/life14121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
The attractiveness of OMVs derived from Gram-negative bacteria lies in the fact that they have two biomembranes sandwiching a peptidoglycan layer. It is well known that the envelope of OMVs consists of the outer bacterial membrane [OM] and not of the inner one [IM] of the source bacterium. This implies that all outer membranous molecules found in the OM act as antigens. However, under specific conditions, some of the inner membrane proteins can be exported into the outer membrane layer and perform as antigens. A key information was that the used purification procedures for OMVs, the induction methods to increase the production of OMVs as well as the specific mutant strains obtained via genetic engineering affect the composition of potential antigens on the surface and in the lumen of the OMVs. The available literature allowed us to list the major antigens that could be defined on OMVs. The functions of the antigens within the source bacterium are discussed for a better understanding of the various available hypotheses on the biogenesis of vesicle formation. Also, the impacts of OMV antigens on the immune system using animal models are assessed. Furthermore, information on the pathways of OMVs entering the host cell is presented. An example of a bacterial infection that causes epidemic diseases, namely via Neisseria meningitidis, is used to demonstrate that OMVs derived from this pathogen elicit protective immune responses when administered as a vaccine. Furthermore, information on OMV vaccines under development is presented. The assembled knowledge allowed us to formulate a number of reasons why OMVs are attractive as vaccine platforms, as their undesirable side effects remain small, and to provide an outlook on the potential use of OMVs as a vaccine platform.
Collapse
Affiliation(s)
- Branko Velimirov
- Division of Microbiology and Molecular Biology, Medical Faculty, Private Sigmund Freud University, Freudplatz 3, 1020 Wien, Austria;
| | | |
Collapse
|
3
|
Veggi D, Chesterman CC, Santini L, Huang Y, Pacchiani N, Sierra J, Chen L, Laliberte J, Bianchi F, Cozzi R, Frigimelica E, Maione D, Finco O, Bottomley MJ. Bactericidal human monoclonal antibody 1B1 shows specificity for meningococcal factor H binding protein variant 2 and displaces human factor H. FASEB Bioadv 2024; 6:235-248. [PMID: 39114449 PMCID: PMC11301264 DOI: 10.1096/fba.2023-00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 08/10/2024] Open
Abstract
Thousands of disease cases and hundreds of deaths occur globally each year due to invasive meningococcal disease. Neisseria meningitidis serogroup B (MenB) is the leading cause of such disease in developed countries. Two vaccines, 4CMenB and MenB-fHbp, that protect against MenB are available and include one or two forms respectively of factor H binding protein (fHbp), a key protective antigen. Studies of circulating meningococci have identified over 1380 different fHbp amino acid sequences, which form three immunologically distinct clusters, termed variants 1, 2, and 3. Neither of the current vaccines contains a variant 2 antigen, which is less well characterized than fHbp variants 1 and 3. We characterized the interaction of fHbp variant 2 with humAb 1B1 using biochemical methods and live meningococcal assays. Further, we determined the crystal structure of the complex at 2.4 Å resolution, clearly revealing the epitope and providing the first detailed report of an antibody with distinct specificity for fHbp variant 2. Extensive mutagenesis and binding studies elucidated key hotspots in the interface. This combination of structural and functional studies provides a molecular explanation for the bactericidal potency and specificity of humAb 1B1 for fHbp variant 2. Our studies, focused on fHbp variant 2, expand the understanding of this previously under characterized group of the vast family of variants of fHbp, a virulence factor present on all meningococci. Moreover, the definition of a protective conformational epitope on fHbp variant 2 may support the design and development of novel variant 2-containing MenB vaccines affording greater breadth of protection.
Collapse
|
4
|
Piliou S, Farman TA, Marini A, Manoharan S, Mastroeni P. Commensal Neisseria cinerea outer membrane vesicles as a platform for the delivery of meningococcal and gonococcal antigens to the immune system. Vaccine 2023; 41:7671-7681. [PMID: 38008665 DOI: 10.1016/j.vaccine.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
An affordable, accessible, and broadly protective vaccine is required to tackle the re-occurring bacterial meningococcal epidemics in Sub-Saharan Africa as well as an effective control of multi-drug resistant strains of gonococcus. Outer membrane vesicles (OMVs) secreted from Gram-negative bacteria represent an attractive platform for antigen delivery to the immune system and therefore for development of multi-component vaccines. In this study, we describe the generation of modified OMVs (mOMVs) from commensal biosafety-level 1 (BSL-1) Neisseria cinerea ATCC® 14685TM, which is phylogenetically close to the pathogenic bacteria Neisseria meningitidis and Neisseria gonorrhoeae. mOMVs were prepared from N. cinerea engineered to express heterologous antigens from N. meningitidis (factor H binding protein (fHbp) and Neisseria Heparin Binding Antigen (NHBA-2)) and from N. gonorrhoeae (NHBA-542). Mice immunised with the mOMVs produced antibodies against fHbp and NHBA. The work indicates that mOMV from N. cinerea can be used as a platform to induce immune responses against antigens involved in the protective immune response against meningococcal and gonococcal diseases.
Collapse
Affiliation(s)
- Stavroula Piliou
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Theo A Farman
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Arianna Marini
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Shathviga Manoharan
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
5
|
Efron A, Biolchi A, Sorhouet Pereira C, Tomei S, Campos J, De Belder D, Moscoloni MA, Santos M, Vidal G, Nocita F, Vizzotti C, Pizza M. Bactericidal killing of meningococcal W strains isolated in Argentina by the sera of adolescents and infants immunized with 4-component meningococcal serogroup B vaccine (4CMenB). Hum Vaccin Immunother 2023; 19:2288389. [PMID: 38111094 PMCID: PMC10732599 DOI: 10.1080/21645515.2023.2288389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023] Open
Abstract
Invasive meningococcal disease (IMD) is a life-threatening disease caused by meningococcal serogroups A, B, C, W, X, and Y, of which B and W are most common in Argentina. The 4-component meningococcal serogroup B (4CMenB) vaccine contains three purified recombinant protein antigens (Neisseria adhesin A [NadA], factor H binding protein [fHbp], and Neisserial Heparin Binding Antigen [NHBA]) and outer membrane vesicles (OMV), which is derived from the New Zealand epidemic strain and contains Porin A 1.4. These antigens are present and conserved in strains that belong to other serogroups. In this study, we show that 10/11 (91%) meningococcal serogroup W (MenW) strains selected to be representative of MenW isolates that caused IMD in Argentina during 2010-2011 were killed in bactericidal assays by the sera of adolescents and infants who had been immunized with the 4CMenB vaccine. We also show that MenW strains that caused IMD in Argentina during 2018-2021 were genetically similar to the earlier strains, indicating that the 4CMenB vaccine would likely still provide protection against current MenW strains. These data highlight the potential of 4CMenB vaccination to protect adolescents and infants against MenW strains that are endemic in Argentina.
Collapse
Affiliation(s)
- Adriana Efron
- Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Argentina
| | | | | | | | - Josefina Campos
- Centro Nacional de Genómica y Bioinformática-ANLIS “Dr. Carlos G. Malbrán”, Argentina
| | - Denise De Belder
- Centro Nacional de Genómica y Bioinformática-ANLIS “Dr. Carlos G. Malbrán”, Argentina
| | | | - Mauricio Santos
- Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Argentina
| | | | | | | | | |
Collapse
|
6
|
Yee WX, Barnes G, Lavender H, Tang CM. Meningococcal factor H-binding protein: implications for disease susceptibility, virulence, and vaccines. Trends Microbiol 2023; 31:805-815. [PMID: 36941192 PMCID: PMC10914675 DOI: 10.1016/j.tim.2023.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
Neisseria meningitidis is a human-adapted pathogen that causes meningitis and sepsis worldwide. N. meningitidis factor H-binding protein (fHbp) provides a mechanism for immune evasion by binding human complement factor H (CFH) to protect it from complement-mediated killing. Here, we discuss features of fHbp which enable it to engage human CFH (hCFH), and the regulation of fHbp expression. Studies of host susceptibility and bacterial genome-wide association studies (GWAS) highlight the importance of the interaction between fHbp and CFH and other complement factors, such as CFHR3, on the development of invasive meningococcal disease (IMD). Understanding the basis of fHbp:CFH interactions has also informed the design of next-generation vaccines as fHbp is a protective antigen. Structure-informed refinement of fHbp vaccines will help to combat the threat posed by the meningococcus, and accelerate the elimination of IMD.
Collapse
Affiliation(s)
- Wearn-Xin Yee
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Grace Barnes
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
7
|
Ispasanie E, Muri L, Schmid M, Schubart A, Thorburn C, Zamurovic N, Holbro T, Kammüller M, Pluschke G. In vaccinated individuals serum bactericidal activity against B meningococci is abrogated by C5 inhibition but not by inhibition of the alternative complement pathway. Front Immunol 2023; 14:1180833. [PMID: 37457736 PMCID: PMC10349132 DOI: 10.3389/fimmu.2023.1180833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Several diseases caused by the dysregulation of complement activation can be treated with inhibitors of the complement components C5 and/or C3. However, complement is required for serum bactericidal activity (SBA) against encapsulated Gram-negative bacteria. Therefore, C3 and C5 inhibition increases the risk of invasive disease, in particular by Neisseria meningitidis. As inhibitors against complement components other than C3 and C5 may carry a reduced risk of infection, we compared the effect of inhibitors targeting the terminal pathway (C5), the central complement component C3, the alternative pathway (FB and FD), and the lectin pathway (MASP-2) on SBA against serogroup B meningococci. Methods Serum from adults was collected before and after vaccination with the meningococcal serogroup B vaccine 4CMenB and tested for meningococcal killing. Since the B capsular polysaccharide is structurally similar to certain human polysaccharides, 4CMenB was designed to elicit antibodies against meningococcal outer membrane proteins. Results While only a few pre-vaccination sera showed SBA against the tested B meningococcal isolates, 4CMenB vaccination induced potent complement-activating IgG titers against isolates expressing a matching allele of the bacterial cell surface-exposed factor H-binding protein (fHbp). SBA triggered by these cell surface protein-specific antibodies was blocked by C5 and reduced by C3 inhibition, whereas alternative (factor B and D) and lectin (MASP-2) pathway inhibitors had no effect on the SBA of post-4CMenB vaccination sera. Discussion Compared to the SBA triggered by A,C,W,Y capsule polysaccharide conjugate vaccination, SBA against B meningococci expressing a matching fHbp allele was remarkably resilient against the alternative pathway inhibition.
Collapse
Affiliation(s)
- Emma Ispasanie
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Lukas Muri
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marc Schmid
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Anna Schubart
- Novartis Institutes for Biomedical Research, Department Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | | | - Natasa Zamurovic
- Novartis Institutes for Biomedical Research, Translational Medicine-Preclinical Safety, Basel, Switzerland
| | - Thomas Holbro
- Global Drug Development, Novartis Pharma AG, Basel, Switzerland
| | - Michael Kammüller
- Novartis Institutes for Biomedical Research, Translational Medicine-Preclinical Safety, Basel, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Dold C, Marsay L, Wang N, Silva-Reyes L, Clutterbuck E, Paterson GK, Sharkey K, Wyllie D, Beernink PT, Hill AV, Pollard AJ, Rollier CS. An adenoviral-vectored vaccine confers seroprotection against capsular group B meningococcal disease. Sci Transl Med 2023; 15:eade3901. [PMID: 37343082 DOI: 10.1126/scitranslmed.ade3901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/30/2023] [Indexed: 06/23/2023]
Abstract
Adenoviral-vectored vaccines are licensed for prevention of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Ebola virus, but, for bacterial proteins, expression in a eukaryotic cell may affect the antigen's localization and conformation or lead to unwanted glycosylation. Here, we investigated the potential use of an adenoviral-vectored vaccine platform for capsular group B meningococcus (MenB). Vector-based candidate vaccines expressing MenB antigen factor H binding protein (fHbp) were generated, and immunogenicity was assessed in mouse models, including the functional antibody response by serum bactericidal assay (SBA) using human complement. All adenovirus-based vaccine candidates induced high antigen-specific antibody and T cell responses. A single dose induced functional serum bactericidal responses with titers superior or equal to those induced by two doses of protein-based comparators, as well as longer persistence and a similar breadth. The fHbp transgene was further optimized for human use by incorporating a mutation abrogating binding to the human complement inhibitor factor H. The resulting vaccine candidate induced high and persistent SBA responses in transgenic mice expressing human factor H. The optimized transgene was inserted into the clinically relevant ChAdOx1 backbone, and this vaccine has now progressed to clinical development. The results of this preclinical vaccine development study underline the potential of vaccines based on genetic material to induce functional antibody responses against bacterial outer membrane proteins.
Collapse
Affiliation(s)
- Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, UK
| | - Leanne Marsay
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, UK
| | - Nelson Wang
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, UK
| | - Laura Silva-Reyes
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, UK
| | - Elizabeth Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, UK
| | - Gavin K Paterson
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Kelsey Sharkey
- Division of Infectious Diseases and Global Health, Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David Wyllie
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Peter T Beernink
- Division of Infectious Diseases and Global Health, Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adrian V Hill
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, UK
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
9
|
Viviani V, Fantoni A, Tomei S, Marchi S, Luzzi E, Bodini M, Muzzi A, Giuliani MM, Maione D, Derrick JP, Delany I, Pizza M, Biolchi A, Bartolini E. OpcA and PorB are novel bactericidal antigens of the 4CMenB vaccine in mice and humans. NPJ Vaccines 2023; 8:54. [PMID: 37045859 PMCID: PMC10097807 DOI: 10.1038/s41541-023-00651-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The ability of Neisseria meningitidis Outer Membrane Vesicles (OMV) to induce protective responses in humans is well established and mainly attributed to Porin A (PorA). However, the contribution of additional protein antigens to protection remains to be elucidated. In this study we dissected the immunogenicity of antigens originating from the OMV component of the 4CMenB vaccine in mice and humans. We collected functional data on a panel of strains for which bactericidal responses to 4CMenB in infants was attributable to the OMV component and evaluated the role of 30 OMV-specific protein antigens in cross-coverage. By using tailor-made protein microarrays, the immunosignature of OMV antigens was determined. Three of these proteins, OpcA, NspA, and PorB, triggered mouse antibodies that were bactericidal against several N. meningitidis strains. Finally, by genetic deletion and/or serum depletion studies, we demonstrated the ability of OpcA and PorB to induce functional immune responses in infant sera after vaccination. In conclusion, while confirming the role of PorA in eliciting protective immunity, we identified two OMV antigens playing a key role in protection of infants vaccinated with the 4CMenB vaccine against different N. meningitidis serogroup B strains.
Collapse
Affiliation(s)
- Viola Viviani
- GSK, Siena, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | | | | | | | | |
Collapse
|
10
|
Lo Presti A, Carannante A, Fazio C, Neri A, Vacca P, Ambrosio L, Lista F, Fillo S, Stefanelli P. FHbp variants among meningococci of serogroup B in Italy: Evolution and selective pressure, 2014-2017. PLoS One 2023; 18:e0277976. [PMID: 36795654 PMCID: PMC9934395 DOI: 10.1371/journal.pone.0277976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Neisseria meningitidis (meningococcus) is the causative agent of invasive meningococcal disease (IMD). Meningococcus of serogroup B (MenB) is one of the main serogroup causing IMD. MenB strains may be prevented by meningococcal B vaccines. In particular, vaccines with Factor H-binding protein (FHbp), classified into two subfamilies (A or B) or in three variants (v1, v2 or v3), are those available. The objective of the study was to investigate the phylogenetic relationships of FHbp subfamilies A and B (variants v1, v2 or v3) genes and proteins, together with their evolution patterns and selective pressure. MATERIALS AND METHODS Overall, alignments of FHbp nucleotide and protein sequence from 155 MenB samples collected in different parts of Italy, from 2014 to 2017, were analyzed by ClustalW. JModeltest and the Smart Model Selection software were used for the statistical selection of the best-fit substitution models for nucleotide and protein alignments. Site-specific positive and negative selection were estimated through the HYPHY package. The phylogenetic signal was investigated with the likelihood mapping method. The Maximum Likelihood (ML) phylogenetic reconstructions were performed with Phyml. RESULTS The phylogenic analysis identified different clusters within the FHbp subfamily A and B variants, confirming sequence diversity. The pattern of selective pressure in our study indicated that subfamily B FHbp sequences are subjected to greater variations and positive selective pressure respect to subfamily A, with 16 positively supported selected sites identified. CONCLUSION The study pointed out the need for continued genomic surveillance for meningococci to monitor selective pressure and amino acidic changes. Monitoring the genetic diversity and molecular evolution of FHbp variants may be useful to investigate genetic diversity which may emerge over time.
Collapse
Affiliation(s)
| | - Anna Carannante
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Cecilia Fazio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Arianna Neri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Vacca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Luigina Ambrosio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Silvia Fillo
- Scientific Department, Army Medical Center, Rome, Italy
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
11
|
Khan MA, Amin A, Farid A, Ullah A, Waris A, Shinwari K, Hussain Y, Alsharif KF, Alzahrani KJ, Khan H. Recent Advances in Genomics-Based Approaches for the Development of Intracellular Bacterial Pathogen Vaccines. Pharmaceutics 2022; 15:pharmaceutics15010152. [PMID: 36678781 PMCID: PMC9863128 DOI: 10.3390/pharmaceutics15010152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Infectious diseases continue to be a leading cause of morbidity and mortality worldwide. The majority of infectious diseases are caused by intracellular pathogenic bacteria (IPB). Historically, conventional vaccination drives have helped control the pathogenesis of intracellular bacteria and the emergence of antimicrobial resistance, saving millions of lives. However, in light of various limitations, many diseases that involve IPB still do not have adequate vaccines. In response to increasing demand for novel vaccine development strategies, a new area of vaccine research emerged following the advent of genomics technology, which changed the paradigm of vaccine development by utilizing the complete genomic data of microorganisms against them. It became possible to identify genes related to disease virulence, genetic patterns linked to disease virulence, as well as the genetic components that supported immunity and favorable vaccine responses. Complete genomic databases, and advancements in transcriptomics, metabolomics, structural genomics, proteomics, immunomics, pan-genomics, synthetic genomics, and population biology have allowed researchers to identify potential vaccine candidates and predict their effects in patients. New vaccines have been created against diseases for which previously there were no vaccines available, and existing vaccines have been improved. This review highlights the key issues and explores the evolution of vaccines. The increasing volume of IPB genomic data, and their application in novel genome-based techniques for vaccine development, were also examined, along with their characteristics, and the opportunities and obstacles involved. Critically, the application of genomics technology has helped researchers rapidly select and evaluate candidate antigens. Novel vaccines capable of addressing the limitations associated with conventional vaccines have been developed and pressing healthcare issues are being addressed.
Collapse
Affiliation(s)
- Muhammad Ajmal Khan
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- Correspondence: (M.A.K.); or (H.K.)
| | - Aftab Amin
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Awais Farid
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China
| | - Amin Ullah
- Molecular Virology Laboratory, Department of Microbiology and Biotechnology, Abasyn University, Peshawar 25000, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Khyber Shinwari
- Institute of Chemical Engineering, Department Immuno-Chemistry, Ural Federal University, Yekaterinbiurg 620002, Russia
| | - Yaseen Hussain
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (M.A.K.); or (H.K.)
| |
Collapse
|
12
|
Suri K, D'Souza A, Huang D, Bhavsar A, Amiji M. Bacterial extracellular vesicle applications in cancer immunotherapy. Bioact Mater 2022; 22:551-566. [PMID: 36382022 PMCID: PMC9637733 DOI: 10.1016/j.bioactmat.2022.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer therapy is undergoing a paradigm shift toward immunotherapy focusing on various approaches to activate the host immune system. As research to identify appropriate immune cells and activate anti-tumor immunity continues to expand, scientists are looking at microbial sources given their inherent ability to elicit an immune response. Bacterial extracellular vesicles (BEVs) are actively studied to control systemic humoral and cellular immune responses instead of using whole microorganisms or other types of extracellular vesicles (EVs). BEVs also provide the opportunity as versatile drug delivery carriers. Unlike mammalian EVs, BEVs have already made it to the clinic with the meningococcal vaccine (Bexsero®). However, there are still many unanswered questions in the use of BEVs, especially for chronic systemically administered immunotherapies. In this review, we address the opportunities and challenges in the use of BEVs for cancer immunotherapy and provide an outlook towards development of BEV products that can ultimately translate to the clinic.
Collapse
Affiliation(s)
- Kanika Suri
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 20115, USA
| | - Di Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 20115, USA
| | - Aashray Bhavsar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA,Corresponding author. Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Cappelli L, Cinelli P, Giusti F, Ferlenghi I, Utrio-Lanfaloni S, Wahome N, Bottomley MJ, Maione D, Cozzi R. Self-assembling protein nanoparticles and virus like particles correctly display β-barrel from meningococcal factor H-binding protein through genetic fusion. PLoS One 2022; 17:e0273322. [PMID: 36112575 PMCID: PMC9480994 DOI: 10.1371/journal.pone.0273322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/06/2022] [Indexed: 12/04/2022] Open
Abstract
Recombinant protein-based vaccines are a valid and safer alternative to traditional vaccines based on live-attenuated or killed pathogens. However, the immune response of subunit vaccines is generally lower compared to that elicited by traditional vaccines and usually requires the use of adjuvants. The use of self-assembling protein nanoparticles, as a platform for vaccine antigen presentation, is emerging as a promising approach to enhance the production of protective and functional antibodies. In this work we demonstrated the successful repetitive antigen display of the C-terminal β-barrel domain of factor H binding protein, derived from serogroup B Meningococcus on the surface of different self-assembling nanoparticles using genetic fusion. Six nanoparticle scaffolds were tested, including virus-like particles with different sizes, geometries, and physicochemical properties. Combining computational and structure-based rational design we were able generate antigen-fused scaffolds that closely aligned with three-dimensional structure predictions. The chimeric nanoparticles were produced as recombinant proteins in Escherichia coli and evaluated for solubility, stability, self-assembly, and antigen accessibility using a variety of biophysical methods. Several scaffolds were identified as being suitable for genetic fusion with the β-barrel from fHbp, including ferritin, a de novo designed aldolase from Thermotoga maritima, encapsulin, CP3 phage coat protein, and the Hepatitis B core antigen. In conclusion, a systematic screening of self-assembling nanoparticles has been applied for the repetitive surface display of a vaccine antigen. This work demonstrates the capacity of rational structure-based design to develop new chimeric nanoparticles and describes a strategy that can be utilized to discover new nanoparticle-based approaches in the search for vaccines against bacterial pathogens.
Collapse
Affiliation(s)
| | - Paolo Cinelli
- University of Bologna, Bologna, Italy
- GSK, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Alfini R, Brunelli B, Bartolini E, Carducci M, Luzzi E, Ferlicca F, Buccato S, Galli B, Lo Surdo P, Scarselli M, Romagnoli G, Cartocci E, Maione D, Savino S, Necchi F, Delany I, Micoli F. Investigating the Role of Antigen Orientation on the Immune Response Elicited by Neisseria meningitidis Factor H Binding Protein on GMMA. Vaccines (Basel) 2022; 10:1182. [PMID: 35893831 PMCID: PMC9331691 DOI: 10.3390/vaccines10081182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
GMMA are outer membrane vesicles (OMVs) released from Gram-negative bacteria genetically modified to enhance OMVs formation that have been shown to be optimal systems to enhance immunogenicity of protein antigens. Here, we selected Neisseria meningitidis factor H binding protein (fHbp) and used the conjugation chemistry as a tool to alter antigen orientation on GMMA. Indeed, fHbp was randomly linked to GMMA or selectively attached via the N-terminus to mimic native presentation of the protein on the bacterial surface. Interestingly, protein and peptide array analyses confirmed that antibodies induced by the selective and the random conjugates showed a pattern very similar to fHbp natively expressed on bacterial surfaces or to the recombinant protein mixed with GMMA, respectively. However, the two conjugates elicited antibodies with similar serum bactericidal activity against meningococcal strains, superior to the protein alone or physically mixed with GMMA. Presentation of fHbp on GMMA strongly enhances the functional immune response elicited by the protein but its orientation on the bacterial surface does not have an impact. This study demonstrates the flexibility of the GMMA platform as a display and delivery system for enhancing antigen immunogenicity and further supports the use of such promising technology for the development of effective vaccines.
Collapse
Affiliation(s)
- Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (M.C.); (F.N.)
| | - Brunella Brunelli
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Erika Bartolini
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (M.C.); (F.N.)
| | - Enrico Luzzi
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Francesca Ferlicca
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Scilla Buccato
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Barbara Galli
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Paola Lo Surdo
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Maria Scarselli
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Giacomo Romagnoli
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Elena Cartocci
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Domenico Maione
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Silvana Savino
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Francesca Necchi
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (M.C.); (F.N.)
| | - Isabel Delany
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (M.C.); (F.N.)
| |
Collapse
|
15
|
Long Q, Zheng P, Zheng X, Li W, Hua L, Yang Z, Huang W, Ma Y. Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy. Adv Drug Deliv Rev 2022; 186:114321. [PMID: 35533789 DOI: 10.1016/j.addr.2022.114321] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/18/2022] [Accepted: 04/30/2022] [Indexed: 02/06/2023]
Abstract
Bacterial membrane vesicles (BMVs) have emerged as novel and promising platforms for the development of vaccines and immunotherapeutic strategies against infectious and noninfectious diseases. The rich microbe-associated molecular patterns (MAMPs) and nanoscale membrane vesicle structure of BMVs make them highly immunogenic. In addition, BMVs can be endowed with more functions via genetic and chemical modifications. This article reviews the immunological characteristics and effects of BMVs, techniques for BMV production and modification, and the applications of BMVs as vaccines or vaccine carriers. In summary, given their versatile characteristics and immunomodulatory properties, BMVs can be used for clinical vaccine or immunotherapy applications.
Collapse
|
16
|
Kumar A, Sahu U, Kumari P, Dixit A, Khare P. Designing of multi-epitope chimeric vaccine using immunoinformatic platform by targeting oncogenic strain HPV 16 and 18 against cervical cancer. Sci Rep 2022; 12:9521. [PMID: 35681036 PMCID: PMC9184633 DOI: 10.1038/s41598-022-13442-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cervical cancer is the most common gynaecological cancer and reaches an alarming stage. HPVs are considered the main causative agents for cervical cancer and other sexually transmitted infections across the globe. Currently, three prophylactic vaccines are available against HPV infections with no therapeutic values. Due to a lack of effective therapeutic and prophylactic measures, the HPV infection is spreading in an uncontrolled manner. Next-generation of vaccine is needed to have both prophylactic and therapeutic values against HPV. Here first time we have designed a multi-epitope chimeric vaccine using the most oncogenic strain HPV 16 and HPV 18 through an immunoinformatic approach. In this study, we have used the L1, E5, E6 and E7 oncoproteins from both HPV 16 and HPV 18 strains for epitope prediction. Our recombinant chimeric vaccine construct consists, selected helper and cytotoxic T cell epitopes. Our computational analysis suggests that this chimeric construct is highly stable, non-toxic and also capable of inducing both cell-mediated and humoral immune responses. Furthermore, in silico cloning of the multi-epitope chimeric vaccine construct was done and the stabilization of the vaccine construct is validated with molecular dynamics simulation studies. Finally, our results indicated that our construct could be used for an effective prophylactic and therapeutic vaccine against HPV.
Collapse
Affiliation(s)
- Anoop Kumar
- National Institute of Biologicals (NIB), Noida, Uttar Pradesh, India
| | - Utkarsha Sahu
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India
- Division of Synthetic Biology, Absolute foods, 5th floor, Plot 68, Sector 44, Gurugram, Haryana, 122003, India
| | - Pratima Kumari
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad Rd, Faridabad, Haryana, 121001, India
| | - Anshuman Dixit
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Prashant Khare
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India.
- Division of Synthetic Biology, Absolute foods, 5th floor, Plot 68, Sector 44, Gurugram, Haryana, 122003, India.
| |
Collapse
|
17
|
Findlow J, Borrow R, Stephens DS, Liberator P, Anderson AS, Balmer P, Jodar L. Correlates of protection for meningococcal surface protein vaccines; current approaches for the determination of breadth of coverage. Expert Rev Vaccines 2022; 21:753-769. [PMID: 35469524 DOI: 10.1080/14760584.2022.2064850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The two currently licensed surface protein non capsular meningococcal serogroup B (MenB) vaccines both have the purpose of providing broad coverage against diverse MenB strains. However, the different antigen compositions and approaches used to assess breadth of coverage currently make direct comparisons complex. AREAS COVERED In the second of two companion papers, we comprehensively review the serology and factors influencing breadth of coverage assessments for two currently licensed MenB vaccines. EXPERT OPINION Surface protein MenB vaccines were developed using different approaches, resulting in unique formulations and thus their breadth of coverage. The surface proteins used as vaccine antigens can vary among meningococcal strains due to gene presence/absence, sequence diversity and differences in protein expression. Assessment of the breadth of coverage provided by vaccines is influenced by the ability to induce cross-reactive functional immune responses to sequence diverse protein variants; the characteristics of the circulating invasive strains from specific geographic locations; methodological differences in the immunogenicity assays; differences in human immune responses between individuals; and the maintenance of protective antibody levels over time. Understanding the proportion of meningococcal strains which are covered by the two licensed vaccines is important in understanding protection from disease and public health use.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - David S Stephens
- Woodruff Health Sciences Center, Emory University, Atlanta, Georgia, USA
| | - Paul Liberator
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, USA
| | | | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Luis Jodar
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
18
|
Mikucki A, McCluskey NR, Kahler CM. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front Cell Infect Microbiol 2022; 12:862935. [PMID: 35531336 PMCID: PMC9072670 DOI: 10.3389/fcimb.2022.862935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023] Open
Abstract
Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Telethon Kids Institute, Murdoch University, Perth, WA, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
19
|
Veggi D, Malito E, Lo Surdo P, Pansegrau W, Rippa V, Wahome N, Savino S, Masignani V, Pizza M, Bottomley MJ. Structural characterization of a cross-protective natural chimera of factor H binding protein from meningococcal serogroup B strain NL096. Comput Struct Biotechnol J 2022; 20:2070-2081. [PMID: 35601959 PMCID: PMC9079162 DOI: 10.1016/j.csbj.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Invasive meningococcal disease can cause fatal sepsis and meningitis and is a global health threat. Factor H binding protein (fHbp) is a protective antigen included in the two currently available vaccines against serogroup B meningococcus (MenB). FHbp is a remarkably variable surface-exposed meningococcal virulence factor with over 1300 different amino acid sequences identified so far. Based on this variability, fHbp has been classified into three variants, two subfamilies or nine modular groups, with low degrees of cross-protective activity. Here, we report the crystal structure of a natural fHbp cross-variant chimera, named variant1-2,3.x expressed by the MenB clinical isolate NL096, at 1.2 Å resolution, the highest resolution of any fHbp structure reported to date. We combined biochemical, site-directed mutagenesis and computational biophysics studies to deeply characterize this rare chimera. We determined the structure to be composed of two adjacent domains deriving from the three variants and determined the molecular basis of its stability, ability to bind Factor H and to adopt the canonical three-dimensional fHbp structure. These studies guided the design of loss-of-function mutations with potential for even greater immunogenicity. Moreover, this study represents a further step in the understanding of the fHbp biological and immunological evolution in nature. The chimeric variant1-2,3.x fHbp protein emerges as an intriguing cross-protective immunogen and suggests that identification of such naturally occurring hybrid proteins may result in stable and cross-protective immunogens when seeking to design and develop vaccines against highly variable pathogens.
Collapse
Affiliation(s)
- Daniele Veggi
- Corresponding author at: GSK Vaccines srl, Via Fiorentina 1, Siena 53100, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Product review on the IMD serogroup B vaccine Bexsero®. Hum Vaccin Immunother 2022; 18:2020043. [PMID: 35192786 PMCID: PMC8986181 DOI: 10.1080/21645515.2021.2020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bexsero® is a multicomponent vaccine composed of four major proteins of Neisseria meningitidis: the fHbp, NHBA, NadA and PorA. This vaccine was licensed against invasive meningococcal disease (IMD) due to serogroup B isolates. When administered alone, Bexsero® showed a safety profile similar to other childhood vaccines. It provides an excellent immunogenicity but that requires booster doses in infants and young children. Although the vaccine does not seem to impact on acquisition of carriage of serogroup B isolates, it confers protection against isolates of serogroup B harboring distinct but cross-reactive variants of fHbp, NadA and NHBA. Primary vaccination schemes in infancy underwent a rapid increase after a toddler booster suggesting an anamnestic response and the establishment of a memory response. As Bexsero® targets sub-capsular proteins that can be conserved regardless the capsule, the vaccine can be effective against non-B isolates such as isolates of serogroups W and X.
Collapse
|
21
|
Venkataranganayaka Abhilasha K, Kedihithlu Marathe G. Bacterial lipoproteins in sepsis. Immunobiology 2021; 226:152128. [PMID: 34488139 DOI: 10.1016/j.imbio.2021.152128] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023]
Abstract
Bacterial lipoproteins are membrane proteins derived from both gram-negative and gram-positive bacteria. They seem to have diverse functions not only on bacterial growth, but also play an important role in host's virulence. Bacterial lipoproteins exert their action on host immune cells via TLR2/1 or TLR2/6. Therefore, bacterial lipoproteins also need to be considered while addressing bacterial pathogenicity besides classical bacterial endotoxin like LPS and other microbial associated molecular patterns such as LTA, and peptidoglycans. In this mini-review, we provide an overview of general bacterial lipoprotein biosynthesis and the need to understand the lipoprotein-mediated pathogenicity in diseases like sepsis.
Collapse
Affiliation(s)
- Kandahalli Venkataranganayaka Abhilasha
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India; Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India.
| |
Collapse
|
22
|
Safadi MAP, Martinón-Torres F, Serra L, Burman C, Presa J. Translating meningococcal serogroup B vaccines for healthcare professionals. Expert Rev Vaccines 2021; 20:401-414. [PMID: 34151699 DOI: 10.1080/14760584.2021.1899820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Vaccination is an effective strategy to combat invasive meningococcal disease (IMD). Vaccines against the major disease-causing meningococcal serogroups are available; however, development of vaccines against serogroup B faced particular challenges, including the inability to target traditional meningococcal antigens (i.e. polysaccharide capsule) and limited alternative antigens due to serogroup B strain diversity. Two different recombinant, protein-based, serogroup B (MenB) vaccines that may address these challenges are currently available. These vaccines have been extensively evaluated in pre-licensure safety and immunogenicity trials, and recently in real-world studies on effectiveness, safety, and impact on disease burden. AREAS COVERED This review provides healthcare professionals, particularly pediatricians, an overview of currently available MenB vaccines, including development strategies and evaluation of coverage. EXPERT OPINION Overall, recombinant MenB vaccines are valuable tools for healthcare professionals to protect patients against IMD. Their development required innovative design approaches that overcame challenging hurdles and identified novel protein antigen targets; however, important distinctions in the approaches used in their development, evaluation, and administration exist and many unanswered questions remain. Healthcare providers frequently prescribing MenB vaccines are challenged to keep abreast of these differences to ensure patient protection against this serious disease.
Collapse
Affiliation(s)
- Marco Aurelio P Safadi
- Department of Pediatrics, Santa Casa De São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario De Santiago De Compostela, Santiago De Compostela, Spain.,Genetics, Vaccines and Pediatrics Research Group, Universitario De Santiago De Compostela, Instituto De Investigación Sanitaria De Santiago De Compostela, Santiago De Compostela, Spain
| | - Lidia Serra
- Pfizer Vaccine Medical Development, Scientific and Clinical Affairs, Collegeville, PA, USA
| | - Cynthia Burman
- Pfizer Vaccine Medical Development, Scientific and Clinical Affairs, Collegeville, PA, USA
| | - Jessica Presa
- Pfizer Vaccines, Medical and Scientific Affairs, Collegeville, PA, USA
| |
Collapse
|
23
|
Clark SA, Gray S, Finn A, Borrow R. Colistin Sensitivity and Factor H-Binding Protein Expression among Commensal Neisseria Species. mSphere 2021; 6:e0017521. [PMID: 34133203 PMCID: PMC8265630 DOI: 10.1128/msphere.00175-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/28/2021] [Indexed: 11/20/2022] Open
Abstract
Many bacterial carriage studies utilize colistin-containing media to select for Neisseria meningitidis among the diverse human pharyngeal milieu. These studies commonly report the isolation of Neisseria commensal species, with carriage rates of around 1% or less typically observed. Here, we describe the isolation of N. cinerea and N. polysaccharea from pharyngeal swabs using nonselective agar and confirm they are unable to grow on colistin-containing media. We also demonstrated colistin sensitivity among archived Neisseria commensal strains, including N. cinerea, N. polysaccharea, N. mucosa, and N. subflava. The distribution of lptA among these strains indicated that, while the phosphoethanolamine (PEA) transferase encoded by this gene confers colistin resistance, other mechanisms may lead to reduced susceptibility in some lptA-deficient strains. The majority of the N. cinerea and N. polysaccharea isolates expressed medium to very high levels of factor H-binding protein (fHbp), an important meningococcal vaccine antigen. Sequence analysis showed that the commensal fHbp peptide variants were similar in sequence to fHbp variants typically observed among invasive meningococci. Altogether, these results not only suggest that Neisseria commensal strains could be carried at much higher rates than previously reported but also raise questions about the impact of protein-based meningococcal vaccines on these unencapsulated commensals. IMPORTANCE This study highlights the need for further work to accurately determine the pharyngeal carriage prevalence of Neisseria commensal bacteria (e.g., N. cinerea and N. polysaccharea) among the general population. Previous studies have clearly demonstrated the suppressive effect these commensal species can have on meningococcal colonization, and so the carriage prevalence of these species could be an important factor in the spread of meningococci through the population. Furthermore, the surface expression of the meningococcal vaccine antigen factor H-binding protein by many of these commensal strains could have important implications for the use of fHbp-containing vaccines. Carriage of these commensal species may influence the immune response to these vaccines, or conversely, the immune response elicited by vaccination may induce clearance of these potentially important members of the pharyngeal niche.
Collapse
Affiliation(s)
- Stephen A. Clark
- Meningococcal Reference Unit (MRU), Public Health England (PHE), Manchester, United Kingdom
| | - Steve Gray
- Meningococcal Reference Unit (MRU), Public Health England (PHE), Manchester, United Kingdom
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit (MRU), Public Health England (PHE), Manchester, United Kingdom
| |
Collapse
|
24
|
Sands NA, Beernink PT. Two human antibodies to a meningococcal serogroup B vaccine antigen enhance binding of complement Factor H by stabilizing the Factor H binding site. PLoS Pathog 2021; 17:e1009655. [PMID: 34125873 PMCID: PMC8224966 DOI: 10.1371/journal.ppat.1009655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/24/2021] [Accepted: 05/20/2021] [Indexed: 11/19/2022] Open
Abstract
Microbial pathogens bind host complement regulatory proteins to evade the immune system. The bacterial pathogen Neisseria meningitidis, or meningococcus, binds several complement regulators, including human Factor H (FH). FH binding protein (FHbp) is a component of two licensed meningococcal vaccines and in mice FHbp elicits antibodies that inhibit binding of FH to FHbp, which defeat the bacterial evasion mechanism. However, humans vaccinated with FHbp develop antibodies that enhance binding of FH to the bacteria, which could limit the effectiveness of the vaccines. In the present study, we show that two vaccine-elicited antibody fragments (Fabs) isolated from different human subjects increase binding of complement FH to meningococcal FHbp by ELISA. The two Fabs have different effects on the kinetics of FH binding to immobilized FHbp as measured by surface plasmon resonance. The 1.7- and 2.0-Å resolution X-ray crystal structures of the Fabs in complexes with FHbp illustrate that the two Fabs bind to similar epitopes on the amino-terminal domain of FHbp, adjacent to the FH binding site. Superposition models of ternary complexes of each Fab with FHbp and FH show that there is likely minimal contact between the Fabs and FH. Collectively, the structures reveal that the Fabs enhance binding of FH to FHbp by altering the conformations and mobilities of two loops adjacent to the FH binding site of FHbp. In addition, the 1.5 Å-resolution structure of one of the isolated Fabs defines the structural rearrangements associated with binding to FHbp. The FH-enhancing human Fabs, which are mirrored in the human polyclonal antibody responses, have important implications for tuning the effectiveness of FHbp-based vaccines.
Collapse
Affiliation(s)
- Nathaniel A. Sands
- Division of Infectious Diseases and Global Health, Department of Pediatrics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Peter T. Beernink
- Division of Infectious Diseases and Global Health, Department of Pediatrics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Rinaldi FM, Gaspar EB, Brito LT, Gaspari ED. Immunogenicity of antigens from outer membrane vesicles of Neisseria meningitidis associated with bilayer fragment of dioctadecyldimethylammonium in Swiss adult mice. Clin Exp Vaccine Res 2021; 10:106-122. [PMID: 34222123 PMCID: PMC8217576 DOI: 10.7774/cevr.2021.10.2.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/29/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose In the present study, meningococcal serogroup B outer membrane vesicles (OMVs) were associated with bilayer fragments of a cationic lipid, dioctadecyldimethylammonium (DDA-BF), used as adjuvant, in an antigenic preparation tested in adult female outbred mice. This adjuvant was compared to the traditional adjuvant aluminum hydroxide. Materials and Methods The potential in generating humoral response was evaluated by enzyme-linked immunosorbent assay (ELISA). Individual serum was collected and immunoglobulin G (IgG), IgG1, IgG2a, and IgG2b were quantified. Analyses were carried out 15 and 60 days after immunization. Antibodies avidity index were also analyzed by ELISA. Immunoblot and dot-ELISA were carried out to evaluate specific reaction for homologous strains and cross-reactive antigens present in other meningococcal strains isolated in 2011–2012 year, in Brazil. Delayed type hypersensitivity was used as indicative of cellular immunity and compared between two experimental groups, 24 hours after homologous strain challenge. Results The OMVs of Neisseria meningitidis, and N. lactamica (related species) were characterized by electrophoretic separation of proteins in 13% polyacrylamide gel. The strains presented antigens in the range of 8 to 130 kDa, showing a heterogeneous protein migration pattern. In the group immunized with OMVs/DDA-BF, we found no significant production of total IgG 15 days after the first immunization. On the other hand, 60 days after first immunization both adjuvants act benefiting total IgG production similarly. The antibodies of the IgG isotype produced by animals immunized after one or two doses after first immunization, showed intermediate and high avidity, independent on the adjuvant used. In both experimental groups the swelling of the footpads was significantly higher than those of the controls, suggesting that only one dose was enough to stimulate the generation of cellular immunity. Conclusion The use of this cationic adjuvant for N. meningitidis OMVs preparation revealed good potential for future new antigen preparation for N. meningitidis vaccine.
Collapse
|
26
|
Eichner H, Karlsson J, Spelmink L, Pathak A, Sham LT, Henriques-Normark B, Loh E. RNA thermosensors facilitate Streptococcus pneumoniae and Haemophilus influenzae immune evasion. PLoS Pathog 2021; 17:e1009513. [PMID: 33914847 PMCID: PMC8084184 DOI: 10.1371/journal.ppat.1009513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Bacterial meningitis is a major cause of death and disability in children worldwide. Two human restricted respiratory pathogens, Streptococcus pneumoniae and Haemophilus influenzae, are the major causative agents of bacterial meningitis, attributing to 200,000 deaths annually. These pathogens are often part of the nasopharyngeal microflora of healthy carriers. However, what factors elicit them to disseminate and cause invasive diseases, remain unknown. Elevated temperature and fever are hallmarks of inflammation triggered by infections and can act as warning signals to pathogens. Here, we investigate whether these respiratory pathogens can sense environmental temperature to evade host complement-mediated killing. We show that productions of two vital virulence factors and vaccine components, the polysaccharide capsules and factor H binding proteins, are temperature dependent, thus influencing serum/opsonophagocytic killing of the bacteria. We identify and characterise four novel RNA thermosensors in S. pneumoniae and H. influenzae, responsible for capsular biosynthesis and production of factor H binding proteins. Our data suggest that these bacteria might have independently co-evolved thermosensing abilities with different RNA sequences but distinct secondary structures to evade the immune system.
Collapse
Affiliation(s)
- Hannes Eichner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Jens Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Laura Spelmink
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Anuj Pathak
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Lok-To Sham
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- Clinical Microbiology, Bioclinicum, Karolinska University Hospital, Solna, Sweden
- Lee Kong Chian School of Medicine and Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Edmund Loh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- Clinical Microbiology, Bioclinicum, Karolinska University Hospital, Solna, Sweden
- Lee Kong Chian School of Medicine and Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
27
|
Spinsanti M, Brignoli T, Bodini M, Fontana LE, De Chiara M, Biolchi A, Muzzi A, Scarlato V, Delany I. Deconvolution of intergenic polymorphisms determining high expression of Factor H binding protein in meningococcus and their association with invasive disease. PLoS Pathog 2021; 17:e1009461. [PMID: 33770146 PMCID: PMC8026042 DOI: 10.1371/journal.ppat.1009461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/07/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neisseria meningitidis is a strictly human pathogen and is the major cause of septicemia and meningitis worldwide. Factor H binding protein (fHbp) is a meningococcal surface-exposed lipoprotein that binds the human Complement factor H allowing the bacterium to evade the host innate immune response. FHbp is also a key antigen in two vaccines against N. meningitidis serogroup B. Although the fHbp gene is present in most circulating meningococcal strains, level of fHbp expression varies among isolates and has been correlated to differences in promoter sequences upstream of the gene. Here we elucidated the sequence determinants that control fHbp expression in globally circulating strains. We analyzed the upstream fHbpintergenic region (fIR) of more than 5800 strains representative of the UK circulating isolates and we identified eleven fIR sequence alleles which represent 88% of meningococcal strains. By engineering isogenic recombinant strains where fHbp expression was under the control of each of the eleven fIR alleles, we confirmed that the fIR sequence determines a specific and distinct level of expression. Moreover, we identified the molecular basis for variation in expression through polymorphisms within key regulatory regions that are known to affect fHbp expression. We experimentally established three expression groups, high–medium–low, that correlated directly with the susceptibility to killing mediated by anti-fHbp antibodies and the ability of the meningococcal strain to survive within human serum. By using this sequence classification and information about the variant, we predicted fHbp expression in the panel of UK strains and we observed that strains with higher expressing fIR alleles are more likely associated with invasive disease. Overall, our findings can contribute to understand and predict vaccine coverage mediated by fHbp as well as to shed light on the role of this virulence factor in determining an invasive phenotype. Complement plays a key role in the immunity against Neisseria meningitidis. The meningococcus uses the Factor H binding protein (fHbp), to bind a negative regulator of the alternative complement pathway, factor H, to its surface thus preventing complement deposition and lysis. The use of fHbp as an antigen in two licensed vaccines highlights its public health relevance. Therefore the levels of this antigen produced by the bacterium are pivotal on the one hand for the survival of N. meningitidis in blood and on the other hand for the susceptibility to vaccine-induced killing antibodies. Here, we identify the predominant nucleotide sequences that drive distinct levels of the fHbp antigen in circulating meningococcal strains. We cluster them into distinct groups with increasing levels and observe that strains expressing higher fHbp amounts are associated with invasive disease. Our findings show that the nucleotide sequence of the fHbp promoter can be used for the prediction of antigen levels of any given strain and consequently for both the assessment of its sensitivity to killing by fHbp antibodies and its likelihood to cause invasive disease.
Collapse
Affiliation(s)
| | - Tarcisio Brignoli
- GSK, Siena, Italy
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | | | | | | | | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | |
Collapse
|
28
|
Moore SR, Menon SS, Cortes C, Ferreira VP. Hijacking Factor H for Complement Immune Evasion. Front Immunol 2021; 12:602277. [PMID: 33717083 PMCID: PMC7947212 DOI: 10.3389/fimmu.2021.602277] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The complement system is an essential player in innate and adaptive immunity. It consists of three pathways (alternative, classical, and lectin) that initiate either spontaneously (alternative) or in response to danger (all pathways). Complement leads to numerous outcomes detrimental to invaders, including direct killing by formation of the pore-forming membrane attack complex, recruitment of immune cells to sites of invasion, facilitation of phagocytosis, and enhancement of cellular immune responses. Pathogens must overcome the complement system to survive in the host. A common strategy used by pathogens to evade complement is hijacking host complement regulators. Complement regulators prevent attack of host cells and include a collection of membrane-bound and fluid phase proteins. Factor H (FH), a fluid phase complement regulatory protein, controls the alternative pathway (AP) both in the fluid phase of the human body and on cell surfaces. In order to prevent complement activation and amplification on host cells and tissues, FH recognizes host cell-specific polyanionic markers in combination with complement C3 fragments. FH suppresses AP complement-mediated attack by accelerating decay of convertases and by helping to inactivate C3 fragments on host cells. Pathogens, most of which do not have polyanionic markers, are not recognized by FH. Numerous pathogens, including certain bacteria, viruses, protozoa, helminths, and fungi, can recruit FH to protect themselves against host-mediated complement attack, using either specific receptors and/or molecular mimicry to appear more like a host cell. This review will explore pathogen complement evasion mechanisms involving FH recruitment with an emphasis on: (a) characterizing the structural properties and expression patterns of pathogen FH binding proteins, as well as other strategies used by pathogens to capture FH; (b) classifying domains of FH important in pathogen interaction; and (c) discussing existing and potential treatment strategies that target FH interactions with pathogens. Overall, many pathogens use FH to avoid complement attack and appreciating the commonalities across these diverse microorganisms deepens the understanding of complement in microbiology.
Collapse
Affiliation(s)
- Sara R Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
29
|
Lodi L, Moriondo M, Nieddu F, Ricci S, Guiducci S, Lippi F, Canessa C, Calistri E, Citera F, Giovannini M, Indolfi G, Resti M, Azzari C. Molecular typing of group B Neisseria meningitidis'subcapsular antigens directly on biological samples demonstrates epidemiological congruence between culture-positive and -negative cases: A surveillance study of invasive disease over a 13-year period. J Infect 2021; 82:28-36. [PMID: 33610687 DOI: 10.1016/j.jinf.2020.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Surveillance of serogroup B Neisseria meningitidis (MenB) subcapsular antigen variant distribution in invasive disease (IMD) is fundamental for multicomponent vaccine coverage prediction. IMD incidence in Tuscany in 2018 was 0.37/100,000 inhabitants, with MenB representing 57% of cases. More than 50% of MenB responsible for IMD cannot be grown in culture, and molecular characterization of these cases is often lacking. The aim of the present study was to describe the distribution of MenB subcapsular antigens, comparing their distribution in culture-positive and culture-negative cases. METHODS Molecular data regarding clonal complexes and subcapsular antigen variants of the 55 MenB-IMD occurring in Tuscany from 2007 to 2019 were made available, and their distribution between culture-positive and culture-negative cases was compared. Genetic-MATS and MenDeVAR prediction systems were used to assess multicomponent vaccine coverage predictions. RESULTS Culture-positive and culture-negative cases presented a similar percentage representation of fHbp subfamilies. Clonal complex 162 was almost constantly associated with fHbp B231/v1.390, Neisserial-heparin-binding-antigen (NHBA) peptide 20, and PorinA P1.22,14 (BAST-3033): these were the most represented antigenic variants, both in culture-positive and culture-negative groups. Point-estimate 4CMenB coverage prediction was 88.5% (84.6%-92.3%). CONCLUSIONS Our data demonstrate that non-cultivable meningococci, responsible for IMD, possess genetic variants of subcapsular antigens that are representative of what has been observed in culture. The vaccine-related antigenic epidemiology of MenB is thus similar in both groups. One of the first on-field applications of gMATS and MenDeVAR identifies their major advantage in their accessibility and in the possibility of dynamic data implementation that must be pursued continuously in the future.
Collapse
Affiliation(s)
- Lorenzo Lodi
- Department of Health Sciences, University of Florence and Meyer Children's University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Maria Moriondo
- Department of Health Sciences, University of Florence and Meyer Children's University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Francesco Nieddu
- Department of Health Sciences, University of Florence and Meyer Children's University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Silvia Ricci
- Department of Health Sciences, University of Florence and Meyer Children's University Hospital, viale Pieraccini 24, 50139 Florence, Italy.
| | - Sara Guiducci
- Department of Health Sciences, University of Florence and Meyer Children's University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Francesca Lippi
- Department of Health Sciences, University of Florence and Meyer Children's University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Clementina Canessa
- Department of Health Sciences, University of Florence and Meyer Children's University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Elisa Calistri
- Department of Health Sciences, University of Florence and Meyer Children's University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Francesco Citera
- Department of Health Sciences, University of Florence and Meyer Children's University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Mattia Giovannini
- Department of Health Sciences, University of Florence and Meyer Children's University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Giuseppe Indolfi
- Department of Pediatrics, Meyer Children's University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Massimo Resti
- Department of Pediatrics, Meyer Children's University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| | - Chiara Azzari
- Department of Health Sciences, University of Florence and Meyer Children's University Hospital, viale Pieraccini 24, 50139 Florence, Italy
| |
Collapse
|
30
|
Tzanakaki G, Xirogianni A, Tsitsika A, Clark SA, Kesanopoulos K, Bratcher HB, Papandreou A, Rodrigues CMC, Maiden MCJ, Borrow R, Tsolia M. Estimated strain coverage of serogroup B meningococcal vaccines: A retrospective study for disease and carrier strains in Greece (2010-2017). Vaccine 2021; 39:1621-1630. [PMID: 33597116 DOI: 10.1016/j.vaccine.2021.01.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/07/2021] [Accepted: 01/30/2021] [Indexed: 11/17/2022]
Abstract
Invasive meningococcal disease (IMD) is associated with high case fatality rates and long-term sequelae among survivors. Meningococci belonging to six serogroups (A, B, C, W, X, and Y) cause nearly all IMD worldwide, with serogroup B meningococci (MenB) the predominant cause in many European countries, including Greece (~80% of all IMD). In the absence of protein-conjugate polysaccharide MenB vaccines, two protein-based vaccines are available to prevent MenB IMD in Greece: 4CMenB (Bexsero™, GlaxoSmithKline), available since 2014; and MenB-FHbp, (Trumenba™, Pfizer), since 2018. This study investigated the potential coverage of MenB vaccines in Greece using 107 MenB specimens, collected from 2010 to 2017 (66 IMD isolates and 41 clinical samples identified solely by non-culture PCR), alongside 6 MenB isolates from a carriage study conducted during 2017-2018. All isolates were characterized by multilocus sequence typing (MLST), PorA, and FetA antigen typing. Whole Genome Sequencing (WGS) was performed on 66 isolates to define the sequences of vaccine components factor H-binding protein (fHbp), Neisserial Heparin Binding Antigen (NHBA), and Neisseria adhesin A (NadA). The expression of fHbp was investigated with flow cytometric meningococcal antigen surface expression (MEASURE) assay. The fHbp gene was present in-frame in all isolates tested by WGS and in 41 MenB clinical samples. All three variant families of fHbp peptides were present, with subfamily B peptides (variant 1) occurring in 69.2% and subfamily A in 30.8% of the samples respectively. Sixty three of 66 (95.5%) MenB isolates expressed sufficient fHbp to be susceptible to bactericidal killing by MenB-fHbp induced antibodies, highlighting its potential to protect against most IMD in Greece.
Collapse
Affiliation(s)
- G Tzanakaki
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece.
| | - A Xirogianni
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | - A Tsitsika
- Second Dept of Paediatrics, Medical School, National Kapodistrian University, Athens, Greece
| | - S A Clark
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - K Kesanopoulos
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | - H B Bratcher
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK
| | - A Papandreou
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | - C M C Rodrigues
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK
| | - M C J Maiden
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK
| | - R Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - M Tsolia
- Second Dept of Paediatrics, Medical School, National Kapodistrian University, Athens, Greece
| |
Collapse
|
31
|
Baisa G, Rancour D, Mansfield K, Burns M, Martin L, Cunha D, Fischer J, Muecksch F, Hatziioannou T, Bieniasz PD, Schomburg F, Luke K. A Recombinant Protein SARS-CoV-2 Candidate Vaccine Elicits High-titer Neutralizing Antibodies in Macaques. RESEARCH SQUARE 2021:rs.3.rs-137857. [PMID: 33442678 PMCID: PMC7805460 DOI: 10.21203/rs.3.rs-137857/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background Vaccines that generate robust and long-lived protective immunity against SARS-CoV-2 infection are urgently required. Methods We assessed the potential of vaccine candidates based on the SARS-CoV-2 spike in cynomolgus macaques (M. fascicularis) by examining their ability to generate spike binding antibodies with neutralizing activity. Antigens were derived from two distinct regions of the spike S1 subunit, either the N-terminal domain or an extended C-terminal domain containing the receptor-binding domain and were fused to the human IgG1 Fc domain. Three groups of 2 animals each were immunized with either antigen, alone or in combination. The development of antibody responses was evaluated through 20 weeks post-immunization. Results A robust IgG response to the spike protein was detected as early as 2 weeks after immunization with either protein and maintained for over 20 weeks. Sera from animals immunized with antigens derived from the RBD were able to prevent binding of soluble spike proteins to the ACE2 receptor, shown by in vitro binding assays, while sera from animals immunized with the N-terminal domain alone lacked this activity. Crucially, sera from animals immunized with the extended receptor binding domain but not the N-terminal domain had potent neutralizing activity against SARS-CoV-2 pseudotyped virus, with titers in excess of 10,000, greatly exceeding that typically found in convalescent humans. Neutralizing activity persisted for more than 20 weeks. Conclusions These data support the utility of spike subunit-based antigens as a vaccine for use in humans.
Collapse
Affiliation(s)
| | | | | | | | - Lori Martin
- Novartis Institutes for BioMedical Research Inc
| | | | | | | | | | | | | | | |
Collapse
|
32
|
de Lemos APS, Sacchi CT, Gonçalves CR, Camargo CH, Andrade AL. Genomic surveillance of Neisseria meningitidis serogroup B invasive strains: Diversity of vaccine antigen types, Brazil, 2016-2018. PLoS One 2020; 15:e0243375. [PMID: 33347452 PMCID: PMC7751880 DOI: 10.1371/journal.pone.0243375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022] Open
Abstract
Background Neisseria meningitidis serogroup B remains a prominent cause of invasive meningococcal disease (IMD) in Brazil. Because two novel protein-based vaccines against serogroup B are available, the main purpose of this study was to provide data on the diversity and distribution of meningococcal vaccine antigen types circulating in Brazil. Methodology Genetic lineages, vaccine antigen types, and allele types of antimicrobial-associated resistance genes based on whole-genome sequencing of a collection of 145 Neisseria meningitidis serogroup B invasive strains recovered in Brazil from 2016 to 2018 were collected. Results A total of 11 clonal complexes (ccs) were identified among the 145 isolates, four of which were predominant, namely, cc461, cc35, cc32, and cc213, accounting for 72.0% of isolates. The most prevalent fHbp peptides were 24 (subfamily A/variant 2), 47 (subfamily A/variant 3), 1 (subfamily B/variant 1) and 45 (subfamily A/variant 3), which were predominantly associated with cc35, cc461, cc32, and cc213, respectively. The NadA peptide was detected in only 26.2% of the isolates. The most frequent NadA peptide 1 was found almost exclusively in cc32. We found seven NHBA peptides that accounted for 74.5% of isolates, and the newly described peptide 1390 was the most prevalent peptide exclusively associated with cc461. Mutated penA alleles were detected in 56.5% of the isolates, whereas no rpoB and gyrA mutant alleles were found. Conclusion During the study period, changes in the clonal structure of circulating strains were observed, without a predominance of a single hyperinvasive lineage, indicating that an epidemiologic shift has occurred that led to a diversity of vaccine antigen types in recent years in Brazil.
Collapse
Affiliation(s)
| | | | | | | | - Ana Lúcia Andrade
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
33
|
Baisa G, Rancour D, Mansfield K, Burns M, Martin L, Cunha D, Fischer J, Muecksch F, Hatziioannou T, Bieniasz PD, Schomburg F, Luke K. "A recombinant protein SARS-CoV-2 candidate vaccine elicits high-titer neutralizing antibodies in macaques.". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.20.422693. [PMID: 33398285 PMCID: PMC7781324 DOI: 10.1101/2020.12.20.422693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vaccines that generate robust and long-lived protective immunity against SARS-CoV-2 infection are urgently required. We assessed the potential of vaccine candidates based on the SARS-CoV-2 spike in cynomolgus macaques (M. fascicularis) by examining their ability to generate spike binding antibodies with neutralizing activity. Antigens were derived from two distinct regions of the spike S1 subunit, either the N-terminal domain (NTD) or an extended C-terminal domain containing the receptor-binding domain (RBD) and were fused to the human IgG1 Fc domain. Three groups of 2 animals each were immunized with either antigen, alone or in combination. The development of antibody responses was evaluated through 20 weeks post-immunization. A robust IgG response to the spike protein was detected as early as 2 weeks after immunization with either protein and maintained for over 20 weeks. Sera from animals immunized with antigens derived from the RBD were able to prevent binding of soluble spike proteins to the ACE2 receptor, shown by in vitro binding assays, while sera from animals immunized with the NTD alone lacked this activity. Crucially, sera from animals immunized with the RBD but not the NTD had potent neutralizing activity against SARS-CoV-2 pseudotyped virus, with titers in excess of 10,000, greatly exceeding that typically found in convalescent humans. Neutralizing activity persisted for more than 20 weeks. These data support the utility of spike subunit-based antigens as a vaccine for use in humans.
Collapse
Affiliation(s)
- Gary Baisa
- Intuitive Biosciences, 918 Deming Way, Madison WI 53717
| | | | - Keith Mansfield
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139
| | - Monika Burns
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139
| | - Lori Martin
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139
| | - Daise Cunha
- Covance Greenfield Laboratories, 671 South Meridian Road Greenfield, IN 46140
| | - Jessica Fischer
- Covance Greenfield Laboratories, 671 South Meridian Road Greenfield, IN 46140
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Theodora Hatziioannou
- Laboratory of Retrovirology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York NY 10065
| | | | - Kimberly Luke
- Intuitive Biosciences, 918 Deming Way, Madison WI 53717
| |
Collapse
|
34
|
Findlow J, Bayliss CD, Beernink PT, Borrow R, Liberator P, Balmer P. Broad vaccine protection against Neisseria meningitidis using factor H binding protein. Vaccine 2020; 38:7716-7727. [PMID: 32878710 PMCID: PMC8082720 DOI: 10.1016/j.vaccine.2020.08.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 11/29/2022]
Abstract
Neisseria meningitidis, the causative agent of invasive meningococcal disease (IMD), is classified into different serogroups defined by their polysaccharide capsules. Meningococcal serogroups A, B, C, W, and Y are responsible for most IMD cases, with serogroup B (MenB) causing a substantial percentage of IMD cases in many regions. Vaccines using capsular polysaccharides conjugated to carrier proteins have been successfully developed for serogroups A, C, W, and Y. However, because the MenB capsular polysaccharide is poorly immunogenic, MenB vaccine development has focused on alternative antigens. The 2 currently available MenB vaccines (MenB-4C and MenB-FHbp) both include factor H binding protein (FHbp), a surface-exposed protein harboured by nearly all meningococcal isolates that is important for survival of the bacteria in human blood. MenB-4C contains a nonlipidated FHbp from subfamily B in addition to other antigens, including Neisserial Heparin Binding Antigen, Neisserial adhesin A, and outer membrane vesicles, whereas MenB-FHbp contains a lipidated FHbp from each subfamily (A and B). FHbp is highly immunogenic and a main target of bactericidal activity of antibodies elicited by both licensed MenB vaccines. FHbp is also an important vaccine component, in contrast to some other meningococcal antigens that may have limited cross-protection across strains, as FHbp-specific antibodies can provide broad cross-protection within each subfamily. Limited cross-protection between subfamilies necessitates the inclusion of FHbp variants from both subfamilies to achieve broad FHbp-based vaccine coverage. Additionally, immune responses to the lipidated form of FHbp have a superior cross-reactive profile to those elicited by the nonlipidated form. Taken together, the inclusion of lipidated FHbp variants from both FHbp subfamilies is expected to provide broad protection against the diverse disease-causing meningococcal strains expressing a wide range of FHbp sequence variants. This review describes the development of vaccines for MenB disease prevention, with a focus on the FHbp antigen.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK.
| | | | - Peter T Beernink
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Ray Borrow
- Public Health England, Manchester Royal Infirmary, Manchester, UK.
| | - Paul Liberator
- Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA.
| | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA.
| |
Collapse
|
35
|
Neisseria meningitidis Urethritis Outbreak Isolates Express a Novel Factor H Binding Protein Variant That Is a Potential Target of Group B-Directed Meningococcal (MenB) Vaccines. Infect Immun 2020; 88:IAI.00462-20. [PMID: 32958529 DOI: 10.1128/iai.00462-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Factor H binding protein (FHbp) is an important Neisseria meningitidis virulence factor that binds a negative regulator of the alternative complement pathway, human factor H (FH). Binding of FH increases meningococcal resistance to complement-mediated killing. FHbp also is reported to prevent interaction of the antimicrobial peptide (AMP) LL-37 with the meningococcal surface and meningococcal killing. FHbp is a target of two licensed group B-directed meningococcal (MenB) vaccines. We found a new FHbp variant, peptide allele identification no. 896 (ID 896), was highly expressed by an emerging meningococcal pathotype, the nonencapsulated urethritis clade (US_NmUC). This clade has been responsible for outbreaks of urethritis in multiple U.S. cities since 2015, other mucosal infections, and cases of invasive meningococcal disease. FHbp ID 896 is a member of the variant group 1 (subfamily B), bound protective anti-FHbp monoclonal antibodies, bound high levels of human FH, and enhanced the resistance of the clade to complement-mediated killing in low levels of human complement likely present at human mucosal surfaces. Interestingly, expression of FHbp ID 896 resulted in augmented killing of the clade by LL-37. FHbp ID 896 of the clade was recognized by antibodies elicited by FHbp in MenB vaccines.
Collapse
|
36
|
Carannante A, Fazio C, Neri A, Lista F, Fillo S, Ciammaruconi A, Vacca P, Stefanelli P. Meningococcal B vaccine antigen FHbp variants among disease-causing Neisseria meningitidis B isolates, Italy, 2014-2017. PLoS One 2020; 15:e0241793. [PMID: 33176334 PMCID: PMC7657669 DOI: 10.1371/journal.pone.0241793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022] Open
Abstract
Background Typing of Neisseria meningitidis isolates is crucial for the surveillance of invasive meningococcal disease (IMD). We performed a molecular epidemiology study of N. meningitidis serogroup B (MenB) causing IMD in Italy between 2014 and 2017 to describe circulating strains belonging to this serogroup, with particular regards to the two factor H-binding protein (FHbp) subfamilies present in the bivalent MenB vaccine. Materials and methods A total of 109 culture positive and 46 culture negative MenB samples were collected within the National Surveillance System (NSS) of IMD in Italy and molecularly analyzed by conventional methods. Results Overall, 71 MenB samples showed the FHbp subfamily A and 83 the subfamily B. The subfamily variants were differently distributed by age. The most frequent variants, A05 and B231, were associated with cc213 and cc162, respectively. All MenB with the FHbp A05 variant displayed the PorA P1.22,14 and 85.7% of them the FetA F5-5. The majority of MenB with the FHbp B231 variant showed the PorA P1.22,14 (65.4%) and 84.6%, the FetA F3-6. Conclusion MenB circulating in Italy were characterized by a remarkable association between clonal complex and FHbp variants, although a high degree of genetic diversity observed over time. A dynamic trend in clonal complexes distribution within MenB was detected. Our results stress the importance of continued meningococcal molecular surveillance to evaluate the potential vaccine coverage of the available MenB vaccines.
Collapse
Affiliation(s)
- Anna Carannante
- Department Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Cecilia Fazio
- Department Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Arianna Neri
- Department Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Silvia Fillo
- Scientific Department, Army Medical Center, Rome, Italy
| | | | - Paola Vacca
- Department Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Stefanelli
- Department Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
37
|
Immunological fingerprint of 4CMenB recombinant antigens via protein microarray reveals key immunosignatures correlating with bactericidal activity. Nat Commun 2020; 11:4994. [PMID: 33020485 PMCID: PMC7536418 DOI: 10.1038/s41467-020-18791-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 09/10/2020] [Indexed: 11/08/2022] Open
Abstract
Serogroup B meningococcus (MenB) is a leading cause of meningitis and sepsis across the world and vaccination is the most effective way to protect against this disease. 4CMenB is a multi-component vaccine against MenB, which is now licensed for use in subjects >2 months of age in several countries. In this study, we describe the development and use of an ad hoc protein microarray to study the immune response induced by the three major 4CMenB antigenic components (fHbp, NHBA and NadA) in individual sera from vaccinated infants, adolescents and adults. The resulting 4CMenB protein antigen fingerprinting allowed the identification of specific human antibody repertoire correlating with the bactericidal response elicited in each subject. This work represents an example of epitope mapping of the immune response induced by a multicomponent vaccine in different age groups with the identification of protective signatures. It shows the high flexibility of this microarray based methodology in terms of high-throughput information and minimal volume of biological samples needed. 4CMenB is an approved multi-component vaccine against Serogroup B meningococcus. Here the authors develop a protein microarray for three major 4CMenB antigenic components (fHbp, NHBA and NadA) and describe antibody repertoires in sera from vaccinated infants, adolescents and adults correlating with bactericidal response.
Collapse
|
38
|
Veggi D, Bianchi F, Santini L, Lo Surdo P, Chesterman CC, Pansegrau W, Bechi N, Huang Y, Masignani V, Pizza M, Rappuoli R, Bottomley MJ, Cozzi R, Maione D. 4CMenB vaccine induces elite cross-protective human antibodies that compete with human factor H for binding to meningococcal fHbp. PLoS Pathog 2020; 16:e1008882. [PMID: 33007046 PMCID: PMC7556464 DOI: 10.1371/journal.ppat.1008882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/14/2020] [Accepted: 08/13/2020] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis serogroup B (MenB) is the leading cause of meningococcal meningitis and sepsis in industrialized countries, with the highest incidence in infants and adolescents. Two recombinant protein vaccines that protect against MenB are now available (i.e. 4CMenB and MenB-fHbp). Both vaccines contain the Factor H Binding Protein (fHbp) antigen, which can bind the Human Factor H (fH), the main negative regulator of the alternative complement pathway, thus enabling bacterial survival in the blood. fHbp is present in meningococcal strains as three main variants which are immunologically distinct. Here we sought to obtain detailed information about the epitopes targeted by anti-fHbp antibodies induced by immunization with the 4CMenB multicomponent vaccine. Thirteen anti-fHbp human monoclonal antibodies (mAbs) were identified in a library of over 100 antibody fragments (Fabs) obtained from three healthy adult volunteers immunized with 4CMenB. Herein, the key cross-reactive mAbs were further characterized for antigen binding affinity, complement-mediated serum bactericidal activity (SBA) and the ability to inhibit binding of fH to live bacteria. For the first time, we identified a subset of anti-fHbp mAbs able to elicit human SBA against strains with all three variants and able to compete with human fH for fHbp binding. We present the crystal structure of fHbp v1.1 complexed with human antibody 4B3. The structure, combined with mutagenesis and binding studies, revealed the critical cross-reactive epitope. The structure also provided the molecular basis of competition for fH binding. These data suggest that the fH binding site on fHbp v1.1 can be accessible to the human immune system upon immunization, enabling elicitation of human mAbs broadly protective against MenB. The novel structural, biochemical and functional data are of great significance because the human vaccine-elicited mAbs are the first reported to inhibit the binding of fH to fHbp, and are bactericidal with human complement. Our studies provide molecular insights into the human immune response to the 4CMenB meningococcal vaccine and fuel the rationale for combined structural, immunological and functional studies when seeking deeper understanding of the mechanisms of action of human vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Huang
- GSK, Rockville, MD, United States of America
| | | | | | | | | | | | | |
Collapse
|
39
|
Afrough P, Asadi Karam MR, Vaziri F, Behrouzi A, Siadat SD. Construction and assessment of the immunogenicity and bactericidal activity of fusion protein porin A from Neisseria meningitidis serogroups A and B admixed with OMV adjuvant as a novel vaccine candidate. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:737-743. [PMID: 32695289 PMCID: PMC7351441 DOI: 10.22038/ijbms.2020.40470.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objectives The porins A and B and also outer membrane vesicles (OMVs) of Neisseria meningitidis are used for vaccine purposes. In the present study, we aimed to design a new vaccine candidate based on a fusion of PorA of serogroups A and B of N. meningitidis admixed with OMV and evaluate it in an animal model. Materials and Methods After bioinformatic studies, a fusion protein composed of porin A from both serogroups A and B of N. meningitidis was constructed, expressed, and purified by nickel resins. Extraction of OMV of N. meningitidis was performed using a chemical method. The mice were vaccinated subcutaneously in different groups with mixtures of PorA proteins, OMV, and Freund's adjuvants. Then, the immune responses were measured using the ELISA method. Finally, serum bactericidal activity (SBA) procedure was applied to assay the activity of the immune responses in mice. Results Mice received the PorA protein plus Freund's adjuvant. Mice vaccinated with PorA fusion of serogroups A+B plus Freund's adjuvant produced more IgG, IgG1, and IgG2a than combinations admixed with OMV. Furthermore, the vaccinated mice tended to direct the IgG responses toward IgG1. Sera of the mice that received PorA+Freund's and those that received PorA+OMV produced higher bactericidal activity than the controls. Conclusion Fusion protein porin A could be a valuable target for developing vaccines against N. meningitidis. Although, Freund's adjuvant induced the strongest IgG responses, given that Freund's adjuvant has no human use, and OMV is a human adjuvant, OMV could be considered in vaccine design against N. meningitidis.
Collapse
Affiliation(s)
- Parviz Afrough
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | | | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Rubin DHF, Ross JDC, Grad YH. The frontiers of addressing antibiotic resistance in Neisseria gonorrhoeae. Transl Res 2020; 220:122-137. [PMID: 32119845 PMCID: PMC7293957 DOI: 10.1016/j.trsl.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
The sexually transmitted infection gonorrhea, caused by the Gram-negative bacterium Neisseria gonorrhoeae, can cause urethritis, cervicitis, and systemic disease, among other manifestations. N. gonorrhoeae has rapidly rising incidence along with increasing levels of antibiotic resistance to a broad range of drugs including first-line treatments. The rise in resistance has led to fears of untreatable gonorrhea causing substantial disease globally. In this review, we will describe multiple approaches being undertaken to slow and control this spread of resistance. First, a number of old drugs have been repurposed and new drugs are being developed with activity against Neisseria gonorrhoeae. Second, vaccine development, long an important goal, is advancing. Third, new diagnostics promise rapid detection of antibiotic resistance and a shift from empiric to tailored treatment. The deployment of these new tools for addressing the challenge of antibiotic resistance will require careful consideration to provide optimal care for all patients while extending the lifespan of treatment regimens.
Collapse
Affiliation(s)
- Daniel H F Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Jonathan D C Ross
- Department of Sexual Health and HIV, Birmingham University Hospitals NHS Foundation Trust, Birmingham, UK
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
41
|
Principato S, Pizza M, Rappuoli R. Meningococcal factor H binding protein as immune evasion factor and vaccine antigen. FEBS Lett 2020; 594:2657-2669. [PMID: 32298465 DOI: 10.1002/1873-3468.13793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 01/15/2023]
Abstract
Factor H binding protein (fHbp) is a key virulence factor of Neisseria meningitidis and a main component of the two licensed vaccines against serogroup B meningococcus (Bexsero and Trumenba). fHbp is a surface-exposed lipoprotein that enables the bacterium to survive in human blood by binding the human complement regulator factor H (fH). When used as vaccine, the protein induces antibodies with potent bactericidal activity. While the fHbp gene is present in the majority of N. meningitidis serogroup B isolates, the expression level varies up to 15 times between different strains and more than 700 different sequence variants have been described. Antigenically, the protein has been divided into three variants or two subfamilies. The 3D structure of fHbp alone, in combination with fH or in complex with bactericidal antibodies, has been key to understanding the molecular details of the protein. In this article, we will review the biochemical and immunological properties of fHbp, and its key role in meningococcal pathogenesis, complement regulation, and immune evasion.
Collapse
|
42
|
Aston-Deaville S, Carlsson E, Saleem M, Thistlethwaite A, Chan H, Maharjan S, Facchetti A, Feavers IM, Alistair Siebert C, Collins RF, Roseman A, Derrick JP. An assessment of the use of Hepatitis B Virus core protein virus-like particles to display heterologous antigens from Neisseria meningitidis. Vaccine 2020; 38:3201-3209. [PMID: 32178907 PMCID: PMC7113836 DOI: 10.1016/j.vaccine.2020.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/15/2022]
Abstract
Neisseria meningitidis is the causative agent of meningococcal meningitis and sepsis and remains a significant public health problem in many countries. Efforts to develop a comprehensive vaccine against serogroup B meningococci have focused on the use of surface-exposed outer membrane proteins. Here we report the use of virus-like particles derived from the core protein of Hepatitis B Virus, HBc, to incorporate antigen domains derived from Factor H binding protein (FHbp) and the adhesin NadA. The extracellular domain of NadA was inserted into the major immunodominant region of HBc, and the C-terminal domain of FHbp at the C-terminus (CFHbp), creating a single polypeptide chain 3.7-fold larger than native HBc. Remarkably, cryoelectron microscopy revealed that the construct formed assemblies that were able to incorporate both antigens with minimal structural changes to native HBc. Electron density was weak for NadA and absent for CFHbp, partly attributable to domain flexibility. Following immunization of mice, three HBc fusions (CFHbp or NadA alone, NadA + CFHbp) were able to induce production of IgG1, IgG2a and IgG2b antibodies reactive against their respective antigens at dilutions in excess of 1:18,000. However, only HBc fusions containing NadA elicited the production of antibodies with serum bactericidal activity. It is hypothesized that this improved immune response is attributable to the adoption of a more native-like folding of crucial conformational epitopes of NadA within the chimeric VLP. This work demonstrates that HBc can incorporate insertions of large antigen domains but that maintenance of their three-dimensional structure is likely to be critical in obtaining a protective response.
Collapse
Affiliation(s)
- Sebastian Aston-Deaville
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Emil Carlsson
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Muhammad Saleem
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Angela Thistlethwaite
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Hannah Chan
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - Sunil Maharjan
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - Alessandra Facchetti
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - Ian M Feavers
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - C Alistair Siebert
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, UK
| | - Richard F Collins
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Alan Roseman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
43
|
Balmer P, Beeslaar J, Findlow J, Srivastava A. Understanding immunogenicity assessments for meningococcal serogroup B vaccines. Postgrad Med 2020; 132:184-191. [PMID: 32124678 DOI: 10.1080/00325481.2019.1696582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Invasive meningococcal disease (IMD) is a potentially devastating infection associated with high mortality and long-term sequelae; however, vaccines are available to protect against the five common disease-causing serogroups (A, B, C, W, and Y). Because traditional field efficacy clinical trials were not feasible due to low IMD incidence that necessitates a very large number of participants, serum bactericidal antibody (SBA) assays using rabbit (rSBA) or human (hSBA) complement were established as in vitro surrogates of meningococcal vaccine efficacy and are now routinely used to support vaccine licensure. Specifically, rSBA assays have been used to evaluate responses to meningococcal capsular polysaccharide-protein conjugate vaccines against serogroups A, C, W, and Y; the accepted correlate of protection for rSBA assays is a titer ≥1:8. Importantly, because the bacterial capsular polysaccharide antigen is conserved across strains, only one test strain that expresses an invariant polysaccharide capsule for each serogroup is required to assess coverage. rSBA assays are unsuitable for subcapsular protein-based serogroup B (MenB) vaccines, and therefore, hSBA assays have been used for licensure; titers ≥1:4 are considered the correlate of protection against IMD for hSBA. In contrast to MenACWY vaccines, because bacterial surface proteins are antigenically variable, MenB vaccines must be tested with hSBA assays using multiple test strains that represent the antigenic diversity of disease-causing isolates. As this complexity regarding SBA assessment methods can make data interpretation difficult, herein we describe the use of hSBA assays to evaluate MenB vaccine efficacy and to support licensure. In addition, we highlight how the two recently approved MenB vaccines differ in their use of hSBA assays in clinical studies to demonstrate broad protection against MenB IMD.
Collapse
Affiliation(s)
- Paul Balmer
- Vaccine Medical Development, Scientific & Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | | | - Jamie Findlow
- Vaccine Medical & Scientific Affairs, Pfizer Ltd, Tadworth, UK
| | - Amit Srivastava
- Vaccine Medical Development, Scientific & Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
44
|
Beernink PT. Effect of complement Factor H on antibody repertoire and protection elicited by meningococcal capsular group B vaccines containing Factor H binding protein. Hum Vaccin Immunother 2020; 16:703-712. [PMID: 31526219 DOI: 10.1080/21645515.2019.1664241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Bacteria produce surface ligands for host complement regulators including Factor H (FH), which allows the bacteria to evade immunity. Meningococcal Factor H binding protein (FHbp) is both a virulence factor and a vaccine antigen. Antibodies to FHbp can neutralize its function by inhibiting binding of FH to the bacteria and confer robust complement-mediated protection. However, in the presence of human or primate FH, antibodies to FHbp do not inhibit FH binding and the protective antibody responses are decreased. This immune suppression can be overcome by modification of the FHbp antigen to decrease FH binding, which modulates the antibody repertoire to inhibit FH binding and increase protection. When FHbp is present at sufficient density on the bacterial surface, two or more antibodies can synergize to activate the complement system. Thus, modification of FHbp antigens to decrease FH binding expands the anti-FHbp antibody repertoire and increases the potential for synergistic activity.
Collapse
Affiliation(s)
- Peter T Beernink
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA.,Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
45
|
Ferreira VM, Ferreira ÍE, Chang HY, Nunes AMPB, Topaz N, Pimentel ER, Moura ARSS, Ribeiro GS, Feitosa CA, Reis MG, Wang X, Campos LC. Meningococcal carriage in young adults six years after meningococcal C conjugate (MCC) vaccine catch-up campaign in Salvador, Brazil. Vaccine 2020; 38:2995-3002. [PMID: 32115294 DOI: 10.1016/j.vaccine.2020.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 11/29/2022]
Abstract
Meningococcal carriage studies are important to improve the knowledge of disease epidemiology as well as to support appropriate vaccination strategies. We conducted a cross-sectional study to determine the prevalence and genotypic characteristics of meningococci collected from young adults in Salvador, Brazil six years after a meningococcal C conjugate vaccine catch-up campaign. From August through November 2016, oropharyngeal swabs were collected from 407 students aged 1824 years attending a private college in Salvador, Brazil. Neisseria meningitidis was identified by standard microbiology methods and real time PCR. Genetic characteristics of meningococci were assessed by rt-PCR and/or whole genome sequencing. We also investigated potential factors associated with carriage. N. meningitidis was detectable in 50 students, 39 by both culture and rt-PCR, 7 by culture alone and 4 by rt-PCR alone, resulting in an overall meningococcal carriage prevalence of 12.3% (50/407). Carriage was independently associated with male sex (adjusted PR: 1.97; 95% CI: 1.12-3.46; p = 0.018) and attending bars or parties at least once per month (aPR: 3.31; 95% CI: 1.49-7.38; p = 0.003). Molecular tests identified 92% (46/50) N. meningitidis as non-groupable, of which 63% (29/46) had the capsule null genotype; 14 NG isolates contained disrupted capsule backbones and belonged to the following genogroups: 7 B, 3 Z, 3 E and 1 W. One isolate belonged to genogroup C tested only by PCR; 3 isolates contained a complete B capsule backbones, 2 of which were determined to be NG by slide agglutination serogrouping. While most meningococcal carriage isolates were non-groupable, there was a high degree of genetic diversity present in the collection, as evidenced by 25 unique STs being detected. The carriage prevalence of meningococcal serogroup C was low among young adults. Continuous vaccination is important to maintain reduced meningococcal carriage and transmission, inducing herd protection.
Collapse
Affiliation(s)
- Viviane Matos Ferreira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
| | | | - How-Yi Chang
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Nadav Topaz
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Guilherme Sousa Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Mitermayer Galvão Reis
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States
| | - Xin Wang
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
46
|
Adsorption onto aluminum hydroxide adjuvant protects antigens from degradation. Vaccine 2020; 38:3600-3609. [PMID: 32063436 DOI: 10.1016/j.vaccine.2020.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 11/24/2022]
Abstract
Aluminum based adjuvants are widely used in commercial vaccines, since they are known to be safe and effective with a variety of antigens. The effect of antigen adsorption onto Aluminum Hydroxide is a complex area, since several mechanisms are involved simultaneously, whose impact is both antigen and formulation conditions dependent. Moreover, the mode of action of Aluminum Hydroxide is itself complex, with many mechanisms operating simultaneously. Within the literature there are contrasting theories regarding the effect of adsorption on antigen integrity and stability, with reports of antigen being stabilized by adsorption onto Aluminum Hydroxide, but also with contrary reports of antigen being destabilized. With the aim to understand the impact of adsorption on three recombinant proteins which, following in vivo immunization, are able to induce functional bactericidal antibodies against Neisseria meningitidis type B, we used a range of physico-chemical tools, such as DSC and UPLC, along with in vitro binding of antibodies that recognize structural elements of the proteins, and supported the in vitro data with in vivo evaluation in mice studies. We showed that, following exposure to accelerated degradation conditions involving heat, the recombinant proteins, although robust, were stabilized by adsorption onto Aluminum Hydroxide and retain their structural integrity unlike the not adsorbed proteins. The measure of the Melting Temperature was a useful tool to compare the behavior of proteins adsorbed and not adsorbed on Aluminum Hydroxide and to predict protein stability.
Collapse
|
47
|
Harris SL, Tan C, Perez J, Radley D, Jansen KU, Anderson AS, Jones TR. Selection of diverse strains to assess broad coverage of the bivalent FHbp meningococcal B vaccine. NPJ Vaccines 2020; 5:8. [PMID: 32025339 PMCID: PMC6989502 DOI: 10.1038/s41541-019-0154-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/20/2019] [Indexed: 01/14/2023] Open
Abstract
MenB-FHbp is a recombinant meningococcal serogroup B (MenB) vaccine composed of 2 factor H binding proteins (FHbps). Meningococcal vaccines targeting polysaccharide serogroup A, C, Y, and W capsules were licensed upon confirmation of bactericidal antibody induction after initial efficacy studies with serogroup A and C vaccines. Unlike meningococcal polysaccharide vaccines, wherein single strains demonstrated bactericidal antibodies per serogroup for each vaccine, MenB-FHbp required a more robust approach to demonstrate that bactericidal antibody induction could kill strains with diverse FHbp sequences. Serum bactericidal assays using human complement were developed for 14 MenB strains, representing breadth of meningococcal FHbp diversity of ~80% of circulating MenB strains. This work represents an innovative approach to license a non-toxin protein vaccine with 2 antigens representing a single virulence factor by an immune correlate, and uniquely demonstrates that such a vaccine provides coverage across bacterial strains by inducing broadly protective antibodies. Neisseria meningitidis is an important cause of invasive meningococcal disease, effective vaccines exist for some serogroups but immunogenicity to the MenB group is poor. Thomas R. Jones and colleagues examine serum bactericidal responses from volunteers challenged with MenB-FHbp – a recombinant MenB vaccine containing two Factor H (FH)-binding proteins. Serum bactericidal responses are tested against 14 MenB clinical isolates selected in an unbiased manner to cover the vast breadth of FHbp antigen and epidemiological diversity. This work demonstrates the broad efficacy of the MenB-FHbp vaccine using a serum bactericidal activity as a surrogate of protection.
Collapse
Affiliation(s)
| | - Cuiwen Tan
- Pfizer Vaccine Research and Development, Pearl River, NY USA
| | - John Perez
- 2Pfizer Vaccine Research and Development, Collegeville, PA USA
| | - David Radley
- 2Pfizer Vaccine Research and Development, Collegeville, PA USA
| | | | | | - Thomas R Jones
- Pfizer Vaccine Research and Development, Pearl River, NY USA
| |
Collapse
|
48
|
da Silva RAG, Karlyshev AV, Oldfield NJ, Wooldridge KG, Bayliss CD, Ryan A, Griffin R. Variant Signal Peptides of Vaccine Antigen, FHbp, Impair Processing Affecting Surface Localization and Antibody-Mediated Killing in Most Meningococcal Isolates. Front Microbiol 2019; 10:2847. [PMID: 31921030 PMCID: PMC6930937 DOI: 10.3389/fmicb.2019.02847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 11/24/2022] Open
Abstract
Meningococcal lipoprotein, Factor H binding protein (FHbp), is the sole antigen of the Trumenba vaccine (Pfizer) and one of four antigens of the Bexsero vaccine (GSK) targeting Neisseria meningitidis serogroup B isolates. Lipidation of FHbp is assumed to occur for all isolates. We show in the majority of a collection of United Kingdom isolates (1742/1895) non-synonymous single nucleotide polymorphisms (SNPs) in the signal peptide (SP) of FHbp. A single SNP, common to all, alters a polar amino acid that abolishes processing: lipidation and SP cleavage. Whilst some of the FHbp precursor is retained in the cytoplasm due to reduced binding to SecA, remarkably some is translocated and further surface-localized by Slam. Thus we show Slam is not lipoprotein-specific. In a panel of isolates tested, the overall reduced surface localization of the precursor FHbp, compared to isolates with an intact SP, corresponded with decreased susceptibility to antibody-mediated killing. Our findings shed new light on the canonical pathway for lipoprotein processing and translocation of important relevance for lipoprotein-based vaccines in development and in particular for Trumenba.
Collapse
Affiliation(s)
- Ronni A G da Silva
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Andrey V Karlyshev
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, United Kingdom
| | - Neil J Oldfield
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Karl G Wooldridge
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Christopher D Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ali Ryan
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, United Kingdom
| | - Ruth Griffin
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
49
|
Burman C, Alderfer J, Snow VT. A review of the immunogenicity, safety and current recommendations for the meningococcal serogroup B vaccine, MenB-FHbp. J Clin Pharm Ther 2019; 45:270-281. [PMID: 31820483 DOI: 10.1111/jcpt.13083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE This review describes invasive meningococcal disease (IMD) epidemiology in the United States, provides a brief overview of available meningococcal vaccines and discusses meningococcal serogroup B (MenB) vaccine development. Particular focus is given to the recombinant protein MenB vaccine, MenB-FHbp (Trumenba® , bivalent rLP2086) in light of recent publication of phase 3 data; the other MenB vaccine (Bexsero® , MenB-4C) has been recently reviewed. Current recommendations of the US Advisory Committee on Immunization Practices (ACIP) for MenB vaccination and potential barriers to immunization are also discussed. METHODS Using the published literature, this article reviews the development and use of MenB-FHbp to date, with a focus on the United States. RESULTS AND DISCUSSION Despite the availability of medical treatment, IMD is associated with significant mortality and frequently occurring serious permanent sequelae in surviving individuals. Worldwide, most IMD is caused by six serogroups (A, B, C, W, X and Y). MenB is the most common disease-causing meningococcal serogroup in the United States and has caused several recent university-based IMD outbreaks. MenB vaccines, including MenB-FHbp, are available in the United States. ACIP recommends that all individuals ≥10 years of age at increased risk for meningococcal disease receive MenB vaccination; healthy individuals 16-23 years of age are recommended MenB vaccines based on individual clinical decision-making. MenB-FHbp is used on a 2-dose schedule (0, 6 months) when vaccinating healthy individuals and on a tailored 3-dose schedule (0, 1-2, 6 months) in cases of increased risk. WHAT IS NEW AND CONCLUSION Because vaccination provides the most effective protection against IMD, pharmacists are in an excellent position to offer evidence-based vaccine information, as well as to encourage and provide meningococcal immunizations to adolescents and young adults.
Collapse
Affiliation(s)
- Cynthia Burman
- Pfizer Vaccines Medical Development & Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Justine Alderfer
- Pfizer Vaccines Medical Development & Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Vincenza T Snow
- Pfizer Vaccines Medical Development & Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
50
|
Rivero-Calle I, Raguindin PF, Gómez-Rial J, Rodriguez-Tenreiro C, Martinón-Torres F. Meningococcal Group B Vaccine For The Prevention Of Invasive Meningococcal Disease Caused By Neisseria meningitidis Serogroup B. Infect Drug Resist 2019; 12:3169-3188. [PMID: 31632103 PMCID: PMC6793463 DOI: 10.2147/idr.s159952] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Invasive meningococcal disease (IMD) is a major public health concern because of its high case fatality, long-term morbidity, and potential to course with outbreaks. IMD caused by Nesseira meningitidis serogroup B has been predominant in different regions of the world like Europe and only recently broadly protective vaccines against B serogroup have become available. Two protein-based vaccines, namely 4CMenB (Bexsero®) and rLP2086 (Trumenba®) are currently licensed for use in different countries against MenB disease. These vaccines came from a novel technology on vaccine design (or antigen selection) using highly specific antigen targets identified through whole-genome sequence analysis. Moreover, it has the potential to confer protection against non-B meningococcus and against other Neisserial species such as gonococcus. Real-world data on the vaccine-use are rapidly accumulating from the UK and other countries which used the vaccine for control of outbreak or as part of routine immunization program, reiterating its safety and efficacy. Additional data on real-life effectiveness, long-term immunity, and eventual herd effects, including estimates on vaccine impact for cost-effectiveness assessment are further needed. Given the predominance of MenB in Europe and other parts of the world, these new vaccines are crucial for the prevention and public health control of the disease, and should be considered.
Collapse
Affiliation(s)
- Irene Rivero-Calle
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| | - Peter Francis Raguindin
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| | - Jose Gómez-Rial
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| | - Carmen Rodriguez-Tenreiro
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| |
Collapse
|