1
|
Barchi JJ. Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy: Novel Designs and Recent Updates. Front Immunol 2022; 13:852147. [PMID: 35432351 PMCID: PMC9006936 DOI: 10.3389/fimmu.2022.852147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
For many years, cell-surface glycans (in particular, Tumor-Associated Carbohydrate Antigens, TACAs) have been the target of both passive and active anticancer immunotherapeutic design. Recent advances in immunotherapy as a treatment for a variety of malignancies has revolutionized anti-tumor treatment regimens. Checkpoint inhibitors, Chimeric Antigen Receptor T-cells, Oncolytic virus therapy, monoclonal antibodies and vaccines have been developed and many approvals have led to remarkable outcomes in a subset of patients. However, many of these therapies are very selective for specific patient populations and hence the search for improved therapeutics and refinement of techniques for delivery are ongoing and fervent research areas. Most of these agents are directed at protein/peptide epitopes, but glycans-based targets are gaining in popularity, and a handful of approved immunotherapies owe their activity to oligosaccharide targets. In addition, nanotechnology and nanoparticle-derived systems can help improve the delivery of these agents to specific organs and cell types based on tumor-selective approaches. This review will first outline some of the historical beginnings of this research area and subsequently concentrate on the last 5 years of work. Based on the progress in therapeutic design, predictions can be made as to what the future holds for increasing the percentage of positive patient outcomes for optimized systems.
Collapse
Affiliation(s)
- Joseph J. Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
2
|
Peng Y, Zhan XX, Cao Y, Zhang HW, Cao WH, Su YJ, Diao C, Sun QM, Cheng RC. The Potential Action of Thomsen-Friedenreich Monoclonal Antibody (A78-G/A7) in Thyroid Cancer. Onco Targets Ther 2020; 13:8677-8689. [PMID: 32982276 PMCID: PMC7500363 DOI: 10.2147/ott.s261685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/07/2020] [Indexed: 11/23/2022] Open
Abstract
Background Thomsen–Friedenreich antibody (TF-Ab) is a specific antibody against the Thomsen–Friedenreich antigen (TF-Ag). At present, studies on a number of other tumors have shown that TF-Ab can effectively inhibit metastasis and induce apoptosis in tumor cells. However, the role of TF-Ab in thyroid cancer (TC) remains unclear. Materials and Methods Normal subjects and patients with primary papillary TC with or without lymph node metastasis were tested for TF-Ab expression by enzyme-linked immunosorbent assays (ELISAs). Immunofluorescence was used to assess the expression of TF-Ag in thyroid papillary carcinoma with or without lymph node metastasis and undifferentiated cancer tissues. To evaluate the role of TF-Ab in TC, the effects of TF monoclonal antibody (mAb A78-G/A7) on cell biological function were investigated by MTT assays, flow cytometry, adhesion assays and transwell experiments. Results Compared with normal individuals, TF-Ab levels in patients with TC were decreased, but no changes were observed with respect to lymph node metastasis. The expression of TF-Ag in TC tissues was relatively higher than that detected in adjacent tissues, but it was not affected by the presence or absence of lymph node metastasis. Upon treatment mAb A78-G/A7 treating, TC cell cycles were affected, meanwhile the abilities to adhere, invade and migrate were also significantly reduced. Conclusion The results of the present study showed that mAb A78-G/A7 could affect the invasion and migration of all assayed TC cell lines. The effects of mAb A78-G/A7 on the cell cycle, adhesion, invasion and migration of TC cells were more significant than those observed for proliferation and apoptosis.
Collapse
Affiliation(s)
- Ying Peng
- Kunming Medical University of Yunnan Province, Kunming, Yunnan 650500, People's Republic of China
| | - Xiang-Xiang Zhan
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| | - Yi Cao
- Longyan Jianhai Medical and Pharmaceutical Technology Co., Ltd., Longyan, Fujian 364000, People's Republic of China
| | - Han-Wen Zhang
- Kunming Medical University of Yunnan Province, Kunming, Yunnan 650500, People's Republic of China
| | - Wei-Han Cao
- Kunming Medical University of Yunnan Province, Kunming, Yunnan 650500, People's Republic of China.,Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| | - Yan-Jun Su
- Kunming Medical University of Yunnan Province, Kunming, Yunnan 650500, People's Republic of China.,Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| | - Chang Diao
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| | - Qiang-Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, People's Republic of China
| | - Ruo-Chuan Cheng
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| |
Collapse
|
3
|
Moffett S, Shiao TC, Mousavifar L, Mignani S, Roy R. Aberrant glycosylation patterns on cancer cells: Therapeutic opportunities for glycodendrimers/metallodendrimers oncology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1659. [PMID: 32776710 DOI: 10.1002/wnan.1659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 01/29/2023]
Abstract
Despite exciting discoveries and progresses in drug design against cancer, its cure is still rather elusive and remains one of the humanities major challenges in health care. The safety profiles of common small molecule anti-cancer therapeutics are less than at acceptable levels and limiting deleterious side-effects have to be urgently addressed. This is mainly caused by their incapacity to differentiate healthy cells from cancer cells; hence, the use of high dosage becomes necessary. One possible solution to improve the therapeutic windows of anti-cancer agents undoubtedly resides in modern nanotechnology. This review presents a discussion concerning multivalent carbohydrate-protein interactions as this topic pertains to the fundamental aspects that lead glycoscientists to tackle glyconanoparticles. The second section describes the detailed properties of cancer cells and how their aberrant glycan surfaces differ from those of healthy cells. The third section briefly describes the immune systems, both innate and adaptative, because the numerous displays of cell surface protein receptors necessitate to be addressed from the multivalent angles, a strength full characteristic of nanoparticles. The next chapter presents recent advances in glyconanotechnologies, including glycodendrimers in particular, as they apply to glycobiology and carbohydrate-based cancer vaccines. This was followed by an overview of metallodendrimers and how this rapidly evolving field may contribute to our arsenal of therapeutic tools to fight cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | | | | | | | - René Roy
- Glycovax Pharma Inc, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Hossain F, Andreana PR. Developments in Carbohydrate-Based Cancer Therapeutics. Pharmaceuticals (Basel) 2019; 12:ph12020084. [PMID: 31167407 PMCID: PMC6631729 DOI: 10.3390/ph12020084] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells of diverse origins express extracellular tumor-specific carbohydrate antigens (TACAs) because of aberrant glycosylation. Overexpressed TACAs on the surface of tumor cells are considered biomarkers for cancer detection and have always been prioritized for the development of novel carbohydrate-based anti-cancer vaccines. In recent years, progress has been made in developing synthetic, carbohydrate-based antitumor vaccines to improve immune responses associated with targeting these specific antigens. Tumor cells also exhaust more energy for proliferation than normal cells, by consuming excessive amounts of glucose via overexpressed sugar binding or transporting receptors located in the cellular membrane. Furthermore, inspired by the Warburg effect, glycoconjugation strategies of anticancer drugs have gained considerable attention from the scientific community. This review highlights a small cohort of recent efforts which have been made in carbohydrate-based cancer treatments, including vaccine design and the development of glycoconjugate prodrugs, glycosidase inhibiting iminosugars, and early cancer diagnosis.
Collapse
Affiliation(s)
- Farzana Hossain
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| | - Peter R Andreana
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
5
|
Stergiou N, Glaffig M, Jonuleit H, Schmitt E, Kunz H. Immunization with a Synthetic Human MUC1 Glycopeptide Vaccine against Tumor‐Associated MUC1 Breaks Tolerance in Human MUC1 Transgenic Mice. ChemMedChem 2017; 12:1424-1428. [DOI: 10.1002/cmdc.201700387] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Natascha Stergiou
- Johannes Gutenberg University MainzUniversity Medical Center – Institute of Immunology Langenbeckstraße 1, Building 708 55131 Mainz Germany
| | - Markus Glaffig
- Johannes Gutenberg University MainzInstitute of Organic Chemistry Duesbergweg 10–14 55128 Mainz Germany
| | - Helmut Jonuleit
- Johannes Gutenberg University MainzUniversity Medical Center – Dermatology Langenbeckstraße 1, Building 401 55116 Mainz Germany
| | - Edgar Schmitt
- Johannes Gutenberg University MainzUniversity Medical Center – Institute of Immunology Langenbeckstraße 1, Building 708 55131 Mainz Germany
| | - Horst Kunz
- Johannes Gutenberg University MainzInstitute of Organic Chemistry Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
6
|
Bednarska NG, Wren BW, Willcocks SJ. The importance of the glycosylation of antimicrobial peptides: natural and synthetic approaches. Drug Discov Today 2017; 22:919-926. [PMID: 28212948 DOI: 10.1016/j.drudis.2017.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 12/16/2022]
Abstract
Glycosylation is one of the most prevalent post-translational modifications of a protein, with a defining impact on its structure and function. Many of the proteins involved in the innate or adaptive immune response, including cytokines, chemokines, and antimicrobial peptides (AMPs), are glycosylated, contributing to their myriad activities. The current availability of synthetic coupling and glycoengineering technology makes it possible to customise the most beneficial glycan modifications for improved AMP stability, microbicidal potency, pathogen specificity, tissue or cell targeting, and immunomodulation.
Collapse
Affiliation(s)
| | - Brendan W Wren
- London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Sam J Willcocks
- London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| |
Collapse
|
7
|
Aberrant Glycosylation of Anchor-Optimized MUC1 Peptides Can Enhance Antigen Binding Affinity and Reverse Tolerance to Cytotoxic T Lymphocytes. Biomolecules 2016; 6:biom6030031. [PMID: 27367740 PMCID: PMC5039417 DOI: 10.3390/biom6030031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/22/2022] Open
Abstract
Cancer vaccines have often failed to live up to their promise, although recent results with checkpoint inhibitors are reviving hopes that they will soon fulfill their promise. Although mutation-specific vaccines are under development, there is still high interest in an off-the-shelf vaccine to a ubiquitous antigen, such as MUC1, which is aberrantly expressed on most solid and many hematological tumors, including more than 90% of breast carcinomas. Clinical trials for MUC1 have shown variable success, likely because of immunological tolerance to a self-antigen and to poor immunogenicity of tandem repeat peptides. We hypothesized that MUC1 peptides could be optimized, relying on heteroclitic optimizations of potential anchor amino acids with and without tumor-specific glycosylation of the peptides. We have identified novel MUC1 class I peptides that bind to HLA-A*0201 molecules with significantly higher affinity and function than the native MUC1 peptides. These peptides elicited CTLs from normal donors, as well as breast cancer patients, which were highly effective in killing MUC1-expressing MCF-7 breast cancer cells. Each peptide elicited lytic responses in greater than 6/8 of normal individuals and 3/3 breast cancer patients. The CTLs generated against the glycosylated-anchor modified peptides cross reacted with the native MUC1 peptide, STAPPVHNV, suggesting these analog peptides may offer substantial improvement in the design of epitope-based vaccines.
Collapse
|
8
|
Liesche F, Kölbl AC, Ilmer M, Hutter S, Jeschke U, Andergassen U. Role of N-acetylgalactosaminyltransferase 6 in early tumorigenesis and formation of metastasis. Mol Med Rep 2016; 13:4309-14. [PMID: 27035742 DOI: 10.3892/mmr.2016.5044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/18/2016] [Indexed: 11/05/2022] Open
Abstract
Glycosylation is one of the most important posttranslational modifications of proteins and lipids that contributes to the structural diversity of cellular molecules. Enzymes of the glycosyltransferase class are responsible for altering glycosylation patterns by adding carbohydrate chains to the respective acceptor molecules. It is well known that glycosylation is commonly altered in cancerous tissue. Therefore, the present study aimed to determine the incidence of N‑acetylgalactosaminyltransferase 6 (GALNT6), a prominent member of the glycosyltransferase class, in breast cancer tissue of different developmental stages by immunohistochemistry. Although no correlation was identified between tumour characteristics and GALNT6 staining intensity, to the best of our knowledge, this is the first study to demonstrate that tissue from carcinoma in situ‑tumours and metastases were more heavily stained than late‑stage breast cancers. This may indicate an important role of glycosylation aberration in escaping the immune system at early phases of tumour development. The present study also hypothesised that nascent or early metastasizing tumours are normally recognized by the immune system of the patient, but glycosylation pattern changes may facilitate tumor escape from immune recognition. In follow‑up studies, our group will aim to confirm and consolidate these results in a larger patient cohort that may give greater insight into breast cancer characterization as well as tumour treatment.
Collapse
Affiliation(s)
- Friederike Liesche
- Department of Obstetrics and Gynaecology, Ludwig Maximilians University Munich, D-80337 Munich, Germany
| | - Alexandra C Kölbl
- Department of Obstetrics and Gynaecology, Ludwig Maximilians University Munich, D-80337 Munich, Germany
| | - Matthias Ilmer
- Department of Surgery, Klinikum Grosshadern, Ludwig Maximilians University Munich, D-81377 Munich, Germany
| | - Stefan Hutter
- Department of Obstetrics and Gynaecology, Ludwig Maximilians University Munich, D-80337 Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, Ludwig Maximilians University Munich, D-80337 Munich, Germany
| | - Ulrich Andergassen
- Department of Obstetrics and Gynaecology, Ludwig Maximilians University Munich, D-80337 Munich, Germany
| |
Collapse
|
9
|
Chia J, Goh G, Bard F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochim Biophys Acta Gen Subj 2016; 1860:1623-39. [PMID: 26968459 DOI: 10.1016/j.bbagen.2016.03.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND While the underlying causes of cancer are genetic modifications, changes in cellular states mediate cancer development. Tumor cells display markedly changed glycosylation states, of which the O-GalNAc glycans called the Tn and TF antigens are particularly common. How these antigens get over-expressed is not clear. The expression levels of glycosylation enzymes fail to explain it. SCOPE OF REVIEW We describe the regulation of O-GalNAc glycosylation initiation and extension with emphasis on the initiating enzymes ppGalNAcTs (GALNTs), and introduce the GALA pathway--a change in GALNTs compartmentation within the secretory pathway that regulates Tn levels. We discuss the roles of O-GalNAc glycans and GALNTs in tumorigenic processes and finally consider diagnostic and therapeutic perspectives. MAJOR CONCLUSIONS Contrary to a common hypothesis, short O-glycans in tumors are not the result of an incomplete glycosylation process but rather reveal the activation of regulatory pathways. Surprisingly, high Tn levels reveal a major shift in the O-glycoproteome rather than a shortening of O-glycans. These changes are driven by membrane trafficking events. GENERAL SIGNIFICANCE Many attempts to use O-glycans for biomarker, antibody and therapeutic vaccine development have been made, but suffer limitations including poor sensitivity and/or specificity that may in part derive from lack of a mechanistic understanding. Deciphering how short O-GalNAc glycans are regulated would open new perspectives to exploit this biology for therapeutic usage. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge, Road, 119077, Singapore.
| |
Collapse
|
10
|
Lakshminarayanan V, Supekar NT, Wei J, McCurry DB, Dueck AC, Kosiorek HE, Trivedi PP, Bradley JM, Madsen CS, Pathangey LB, Hoelzinger DB, Wolfert MA, Boons GJ, Cohen PA, Gendler SJ. MUC1 Vaccines, Comprised of Glycosylated or Non-Glycosylated Peptides or Tumor-Derived MUC1, Can Circumvent Immunoediting to Control Tumor Growth in MUC1 Transgenic Mice. PLoS One 2016; 11:e0145920. [PMID: 26788922 PMCID: PMC4720451 DOI: 10.1371/journal.pone.0145920] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/05/2015] [Indexed: 01/21/2023] Open
Abstract
It remains challenging to produce decisive vaccines against MUC1, a tumor-associated antigen widely expressed by pancreas, breast and other tumors. Employing clinically relevant mouse models, we ruled out such causes as irreversible T-cell tolerance, inadequate avidity, and failure of T-cells to recognize aberrantly glycosylated tumor MUC1. Instead, every tested MUC1 preparation, even non-glycosylated synthetic 9mer peptides, induced interferon gamma-producing CD4+ and CD8+ T-cells that recognized glycosylated variants including tumor-associated MUC1. Vaccination with synthetic peptides conferred protection as long as vaccination was repeated post tumor challenge. Failure to revaccinate post challenge was associated with down-regulated tumor MUC1 and MHC molecules. Surprisingly, direct admixture of MUC1-expressing tumor with MUC1-hyperimmune T-cells could not prevent tumor outgrowth or MUC1 immunoediting, whereas ex vivo activation of the hyperimmune T-cells prior to tumor admixture rendered them curative. Therefore, surrogate T-cell preactivation outside the tumor bed, either in culture or by repetitive vaccination, can overcome tumor escape.
Collapse
Affiliation(s)
- Vani Lakshminarayanan
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Nitin T. Supekar
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
| | - Jie Wei
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Dustin B. McCurry
- Hematology/Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Amylou C. Dueck
- Biostatistics, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Heidi E. Kosiorek
- Biostatistics, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Priyanka P. Trivedi
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Judy M. Bradley
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Cathy S. Madsen
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | - Latha B. Pathangey
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
| | | | - Margreet A. Wolfert
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
- * E-mail: (SJG); (PAC); (GJB)
| | - Peter A. Cohen
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- Hematology/Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- * E-mail: (SJG); (PAC); (GJB)
| | - Sandra J. Gendler
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- Department of Biochemistry/Molecular Biology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- Hematology/Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, United States of America
- * E-mail: (SJG); (PAC); (GJB)
| |
Collapse
|
11
|
Rangappa S, Artigas G, Miyoshi R, Yokoi Y, Hayakawa S, Garcia-Martin F, Hinou H, Nishimura SI. Effects of the multiple O-glycosylation states on antibody recognition of the immunodominant motif in MUC1 extracellular tandem repeats. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00100a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The conformational impact of the clusteredO-glycans strongly influences recognition by antibodies of the cancer-relevant epitope in the MUC1 extracellular tandem repeat domain.
Collapse
Affiliation(s)
- Shobith Rangappa
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Gerard Artigas
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Risho Miyoshi
- Medicinal Chemistry Pharmaceuticals Co., Ltd
- Sapporo 001-0021
- Japan
| | - Yasuhiro Yokoi
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Shun Hayakawa
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Fayna Garcia-Martin
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| |
Collapse
|
12
|
Rughetti A, Rahimi H, Belleudi F, Napoletano C, Battisti F, Zizzari IG, Antonilli M, Bellati F, Wandall HH, Benedetti Panici P, Burchell JM, Torrisi MR, Nuti M. Microvesicle cargo of tumor-associated MUC1 to dendritic cells allows cross-presentation and specific carbohydrate processing. Cancer Immunol Res 2013; 2:177-86. [PMID: 24778281 DOI: 10.1158/2326-6066.cir-13-0112-t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor-associated glycoproteins are a group of antigens with high immunogenic interest: The glycoforms generated by the aberrant glycosylation are tumor-specific and the novel glycoepitopes exposed can be targets of tumor-specific immune responses. The MUC1 antigen is one of the most relevant tumor-associated glycoproteins. In cancer, MUC1 loses polarity and becomes overexpressed and hypoglycosylated. Changes in glycan moieties contribute to MUC1 immunogenicity and can modify the interactions of tumor cells with antigen-presenting cells such as dendritic cells that would affect the overall antitumor immune response. Here, we show that the form of the MUC1 antigen, i.e., soluble or as microvesicle cargo, influences MUC1 processing in dendritic cells. In fact, MUC1 carried by microvesicles translocates from the endolysosomal/HLA-II to the HLA-I compartment and is presented by dendritic cells to MUC1-specific CD8(+) T cells stimulating IFN-γ responses, whereas the soluble MUC1 is retained in the endolysosomal/HLA-II compartment independently by the glycan moieties and by the modality of internalization (receptor-mediated or non-receptor mediated). MUC1 translocation to the HLA-I compartment is accompanied by deglycosylation that generates novel MUC1 glycoepitopes. Microvesicle-mediated transfer of tumor-associated glycoproteins to dendritic cells may be a relevant biologic mechanism in vivo contributing to define the type of immunogenicity elicited. Furthermore, these results have important implications for the design of glycoprotein-based immunogens for cancer immunotherapy.
Collapse
Affiliation(s)
- Aurelia Rughetti
- Authors' Affiliations: Departments of Research Oncology, King's College of London, Guy's Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
YI BIN, ZHANG ZHE, ZHANG MIN, SCHWARTZ-ALBIEZ REINHARD, CAO YI. CD176 antiserum treatment leads to a therapeutic response in a murine model of leukemia. Oncol Rep 2013; 30:1841-7. [DOI: 10.3892/or.2013.2639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/21/2013] [Indexed: 11/06/2022] Open
|
14
|
Monzavi-Karbassi B, Pashov A, Kieber-Emmons T. Tumor-Associated Glycans and Immune Surveillance. Vaccines (Basel) 2013; 1:174-203. [PMID: 26343966 PMCID: PMC4515579 DOI: 10.3390/vaccines1020174] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 04/18/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023] Open
Abstract
Changes in cell surface glycosylation are a hallmark of the transition from normal to inflamed and neoplastic tissue. Tumor-associated carbohydrate antigens (TACAs) challenge our understanding of immune tolerance, while functioning as immune targets that bridge innate immune surveillance and adaptive antitumor immunity in clinical applications. T-cells, being a part of the adaptive immune response, are the most popular component of the immune system considered for targeting tumor cells. However, for TACAs, T-cells take a back seat to antibodies and natural killer cells as first-line innate defense mechanisms. Here, we briefly highlight the rationale associated with the relative importance of the immune surveillance machinery that might be applicable for developing therapeutics.
Collapse
Affiliation(s)
- Behjatolah Monzavi-Karbassi
- Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Anastas Pashov
- Stephan Angeloff Institute of Microbiology, BAS, Sofia 1113, Bulgaria
| | - Thomas Kieber-Emmons
- Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
15
|
Ulsemer P, Henderson G, Toutounian K, Löffler A, Schmidt J, Karsten U, Blaut M, Goletz S. Specific humoral immune response to the Thomsen-Friedenreich tumor antigen (CD176) in mice after vaccination with the commensal bacterium Bacteroides ovatus D-6. Cancer Immunol Immunother 2013; 62:875-87. [PMID: 23381581 PMCID: PMC11029541 DOI: 10.1007/s00262-013-1394-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 01/12/2013] [Indexed: 01/09/2023]
Abstract
The tumor-specific Thomsen-Friedenreich antigen (TFα, CD176) is an attractive target for a cancer vaccine, especially as TF-directed antibodies play an important role in cancer immunosurveillance. However, synthetic TF vaccines have not overcome the low intrinsic immunogenicity of TF. Since natural TF-directed antibodies present in human sera are generated in response to microbes found in the gastrointestinal tract, microbial TF structures are obviously more immunogenic than synthetic TF. We recently isolated a new strain (D-6) of the human gut bacterium Bacteroides ovatus, which carries the true TFα antigen. Here, we present experimental data on the immunogenicity of this strain. Mice immunized with B. ovatus D-6 in the absence of adjuvants developed specific anti-TFα IgM and IgG antibodies which also bound to human cancer cells carrying TFα. Our data suggest that B. ovatus D-6 presents a unique TFα-specific immunogenicity based on a combination of several inherent properties including: expression of the true TFα antigen, clustering and accessible presentation of TFα as repetitive side chains on a capsular polysaccharide, and intrinsic adjuvant properties. Therefore, B. ovatus strain D-6 is an almost perfect candidate for the development of the first adjuvant-free TFα-specific anti-tumor vaccine.
Collapse
Affiliation(s)
- Philippe Ulsemer
- Glycotope GmbH, Robert-Rössle-Str. 10, 13125, Berlin-Buch, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Madsen CB, Petersen C, Lavrsen K, Harndahl M, Buus S, Clausen H, Pedersen AE, Wandall HH. Cancer associated aberrant protein O-glycosylation can modify antigen processing and immune response. PLoS One 2012. [PMID: 23189185 PMCID: PMC3506546 DOI: 10.1371/journal.pone.0050139] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aberrant glycosylation of mucins and other extracellular proteins is an important event in carcinogenesis and the resulting cancer associated glycans have been suggested as targets in cancer immunotherapy. We assessed the role of O-linked GalNAc glycosylation on antigen uptake, processing, and presentation on MHC class I and II molecules. The effect of GalNAc O-glycosylation was monitored with a model system based on ovalbumin (OVA)-MUC1 fusion peptides (+/- glycosylation) loaded onto dendritic cells co-cultured with IL-2 secreting OVA peptide-specific T cell hybridomas. To evaluate the in vivo response to a cancer related tumor antigen, Balb/c or B6.Cg(CB)-Tg(HLA-A/H2-D)2Enge/J (HLA-A2 transgenic) mice were immunized with a non-glycosylated or GalNAc-glycosylated MUC1 derived peptide followed by comparison of T cell proliferation, IFN-γ release, and antibody induction. GalNAc-glycosylation promoted presentation of OVA-MUC1 fusion peptides by MHC class II molecules and the MUC1 antigen elicited specific Ab production and T cell proliferation in both Balb/c and HLA-A2 transgenic mice. In contrast, GalNAc-glycosylation inhibited the presentation of OVA-MUC1 fusion peptides by MHC class I and abolished MUC1 specific CD8+ T cell responses in HLA-A2 transgenic mice. GalNAc glycosylation of MUC1 antigen therefore facilitates uptake, MHC class II presentation, and antibody response but might block the antigen presentation to CD8+ T cells.
Collapse
Affiliation(s)
- Caroline B. Madsen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Petersen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Lavrsen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Harndahl
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Buus
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders E. Pedersen
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (HHW); (AEP)
| | - Hans H. Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (HHW); (AEP)
| |
Collapse
|
17
|
Kumagai H, Pham W, Kataoka M, Hiwatari KI, McBride J, Wilson KJ, Tachikawa H, Kimura R, Nakamura K, Liu EH, Gore JC, Sakuma S. Multifunctional nanobeacon for imaging Thomsen-Friedenreich antigen-associated colorectal cancer. Int J Cancer 2012; 132:2107-17. [PMID: 23055136 DOI: 10.1002/ijc.27903] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 09/24/2012] [Indexed: 01/04/2023]
Abstract
This research aimed to validate the specificity of the newly developed nanobeacon for imaging the Thomsen-Friedenreich (TF) antigen, a potential biomarker of colorectal cancer. The imaging agent is comprised of a submicron-sized polystyrene nanosphere encapsulated with a Coumarin 6 dye. The surface of the nanosphere was modified with peanut agglutinin (PNA) and poly(N-vinylacetamide (PNVA) moieties. The former binds to Gal-β(1-3)GalNAc with high affinity while the latter enhances the specificity of PNA for the carbohydrates. The specificity of the nanobeacon was evaluated in human colorectal cancer cells and specimens, and the data were compared with immunohistochemical staining and flow cytometric analysis. Additionally, distribution of the nanobeacon in vivo was assessed using an "intestinal loop" mouse model. Quantitative analysis of the data indicated that approximately 2 μg of PNA were detected for each milligram of the nanobeacon. The nanobeacon specifically reported colorectal tumors by recognizing the tumor-specific antigen through the surface-immobilized PNA. Removal of TF from human colorectal cancer cells and tissues resulted in a loss of fluorescence signal, which suggests the specificity of the probe. Most importantly, the probe was not absorbed systematically in the large intestine upon topical application. As a result, no registered toxicity was associated with the probe. These data demonstrate the potential use of this novel nanobeacon for imaging the TF antigen as a biomarker for the early detection and prediction of the progression of colorectal cancer at the molecular level.
Collapse
Affiliation(s)
- Hironori Kumagai
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Julien S, Videira PA, Delannoy P. Sialyl-tn in cancer: (how) did we miss the target? Biomolecules 2012; 2:435-66. [PMID: 24970145 PMCID: PMC4030860 DOI: 10.3390/biom2040435] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/27/2012] [Accepted: 09/30/2012] [Indexed: 11/16/2022] Open
Abstract
Sialyl-Tn antigen (STn) is a short O-glycan containing a sialic acid residue α2,6-linked to GalNAcα-O-Ser/Thr. The biosynthesis of STn is mediated by a specific sialyltransferase termed ST6GalNAc I, which competes with O-glycans elongating glycosyltransferases and prevents cancer cells from exhibiting longer O-glycans. While weakly expressed by fetal and normal adult tissues, STn is expressed by more than 80% of human carcinomas and in all cases, STn detection is associated with adverse outcome and decreased overall survival for the patients. Because of its pan-carcinoma expression associated with an adverse outcome, an anti-cancer vaccine, named Theratope, has been designed towards the STn epitope. In spite of the great enthusiasm around this immunotherapy, Theratope failed on Phase III clinical trial. However, in lieu of missing this target, one should consider to revise the Theratope design and the actual facts. In this review, we highlight the many lessons that can be learned from this failure from the immunological standpoint, as well as from the drug design and formulation and patient selection. Moreover, an irrefutable knowledge is arising from novel immunotherapies targeting other carbohydrate antigens and STn carrier proteins, such as MUC1, that will warrantee the future development of more successful anti-STn immunotherapy strategies.
Collapse
Affiliation(s)
- Sylvain Julien
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Sciences and Technologies of Lille, 59655 Villeneuve d'Ascq, France.
| | - Paula A Videira
- CEDOC, Departamento de Imunologia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | - Philippe Delannoy
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Sciences and Technologies of Lille, 59655 Villeneuve d'Ascq, France.
| |
Collapse
|
19
|
Brinãs RP, Sundgren A, Sahoo P, Morey S, Rittenhouse-Olson K, Wilding GE, Deng W, Barchi JJ. Design and synthesis of multifunctional gold nanoparticles bearing tumor-associated glycopeptide antigens as potential cancer vaccines. Bioconjug Chem 2012; 23:1513-23. [PMID: 22812418 DOI: 10.1021/bc200606s] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of vaccines against specific types of cancers will offer new modalities for therapeutic intervention. Here, we describe the synthesis of a novel vaccine construction prepared from spherical gold nanoparticles of 3-5 nm core diameters. The particles were coated with both the tumor-associated glycopeptides antigens containing the cell-surface mucin MUC4 with Thomsen Friedenreich (TF) antigen attached at different sites and a 28-residue peptide from the complement derived protein C3d to act as a B-cell activating "molecular adjuvant". The synthesis entailed solid-phase glycopeptide synthesis, design of appropriate linkers, and attachment chemistry of the various molecules to the particles. Attachment to the gold surface was mediated by a novel thiol-containing 33 atom linker which was further modified to be included as a third "spacer" component in the synthesis of several three-component vaccine platforms. Groups of mice were vaccinated either with one of the nanoplatform constructs or with control particles without antigen coating. Evaluation of sera from the immunized animals in enzyme immunoassays (EIA) against each glycopeptide antigen showed a small but statistically significant immune response with production of both IgM and IgG isotypes. Vaccines with one carbohydrate antigen (B, C, and E) gave more robust responses than the one with two contiguous disaccharides (D), and vaccine E with a TF antigen attached to threonine at the 10th position of the peptide was selected for IgG over IgM suggesting isotype switching. The data suggested that this platform may be a viable delivery system for tumor-associated glycopeptide antigens.
Collapse
Affiliation(s)
- Raymond P Brinãs
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Carbohydrate signatures on tumor cells have functional implications in tumor growth and metastasis and constitute valuable tools in cancer diagnosis and immunotherapy. Increasing data regarding the mechanisms by which they are recognized by the immune system are facilitating the design of more efficient immunotherapeutic protocols based on cancer-associated glycan structures. Recent molecular and proteomic studies revealed that carbohydrates are recognized, not only by B cells and antibodies, but also by cells from the innate arm of immunity, as well as by T cells, and are able to induce specific T-cell immunity and cytotoxicity. In this review, we discuss and update the different strategies targeting tumor-associated carbohydrate antigens that are being evaluated for antitumor immunotherapy, an approach that will be highly relevant, especially when combined with other strategies, in the future fight against cancer.
Collapse
Affiliation(s)
- Teresa Freire
- UdelaR, Facultad de Medicina, Dept. Inmunobiología, Gral. Flores 2125, 11800, Montevideo, Uruguay
| | - Eduardo Osinaga
- UdelaR, Facultad de Medicina, Dept. Inmunobiología, Gral. Flores 2125, 11800, Montevideo, Uruguay
- Institut Pasteur Montevideo, Laboratorio de Glicobiología e Inmunología tumoral, Mataojo 2020, 11400, Montevideo, Uruguay
| |
Collapse
|
21
|
Medeiros A, Berois N, Incerti M, Bay S, Franco Fraguas L, Osinaga E. A Tn antigen binding lectin from Myrsine coriacea displays toxicity in human cancer cell lines. J Nat Med 2012; 67:247-54. [PMID: 22645079 DOI: 10.1007/s11418-012-0671-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/11/2012] [Indexed: 02/06/2023]
Abstract
The Tn antigen (GalNAc-O-Ser/Thr) is one of the most specific human cancer-associated structures. In the present study we characterize the biochemical and functional properties of the Myrsine coriacea lectin (McL). We show that McL is an unusual high molecular weight highly glycosylated protein, which displays a strong Tn binding activity. The lectin exhibits in vitro inhibition of proliferation in the six cancer cell lines evaluated, in a dose-dependent manner (the strongest activity being against HT-29 and HeLa cells), whereas it does not exhibit toxicity against normal lymphocytes. McL could be exploited in the design of potential new tools for the diagnosis or treatment of cancer.
Collapse
Affiliation(s)
- Andrea Medeiros
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, 11800, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
22
|
Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proc Natl Acad Sci U S A 2011; 109:261-6. [PMID: 22171012 DOI: 10.1073/pnas.1115166109] [Citation(s) in RCA: 437] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mucin MUC1 is typically aberrantly glycosylated by epithelial cancer cells manifested by truncated O-linked saccharides. The resultant glycopeptide epitopes can bind cell surface major histocompatibility complex (MHC) molecules and are susceptible to recognition by cytotoxic T lymphocytes (CTLs), whereas aberrantly glycosylated MUC1 protein on the tumor cell surface can be bound by antibodies to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). Efforts to elicit CTLs and IgG antibodies against cancer-expressed MUC1 have not been successful when nonglycosylated MUC1 sequences were used for vaccination, probably due to conformational dissimilarities. Immunizations with densely glycosylated MUC1 peptides have also been ineffective due to impaired susceptibility to antigen processing. Given the challenges to immuno-target tumor-associated MUC1, we have identified the minimum requirements to consistently induce CTLs and ADCC-mediating antibodies specific for the tumor form of MUC1 resulting in a therapeutic response in a mouse model of mammary cancer. The vaccine is composed of the immunoadjuvant Pam(3)CysSK(4), a peptide T(helper) epitope and an aberrantly glycosylated MUC1 peptide. Covalent linkage of the three components was essential for maximum efficacy. The vaccine produced CTLs, which recognized both glycosylated and nonglycosylated peptides, whereas a similar nonglycosylated vaccine gave CTLs which recognized only nonglycosylated peptide. Antibodies elicited by the glycosylated tripartite vaccine were significantly more lytic compared with the unglycosylated control. As a result, immunization with the glycosylated tripartite vaccine was superior in tumor prevention. Besides its own aptness as a clinical target, these studies of MUC1 are likely predictive of a covalent linking strategy applicable to many additional tumor-associated antigens.
Collapse
|
23
|
Blixt O, Lavrova OI, Mazurov DV, Cló E, Kracun SK, Bovin NV, Filatov AV. Analysis of Tn antigenicity with a panel of new IgM and IgG1 monoclonal antibodies raised against leukemic cells. Glycobiology 2011; 22:529-42. [PMID: 22143985 DOI: 10.1093/glycob/cwr178] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CD175 or Tn antigen is a carbohydrate moiety of N-acetylgalactosamine (GalNAc)α1-O- linked to the residue of amino acid serine or threonine in a polypeptide chain. Despite the chemical simplicity of the Tn antigen, its antigenic structure is considered to be complex and the clear determinants of Tn antigenicity remain poorly understood. As a consequence, a broad variety of anti-Tn monoclonal antibodies (mAbs) have been generated. To further investigate the nature and complexity of the Tn antigen, we generated seven different anti-Tn mAbs of IgM and IgG classes raised against human Jurkat T cells, which are Tn-positive due to the low activity of T-synthase and mutation in specific chaperone Cosmc. The binding analysis of anti-Tn mAbs with the array of synthetic saccharides, glycopeptides and O-glycoproteins revealed unexpected differences in specificities of anti-Tn mAbs. IgM mAbs bound the terminal GalNAc residue of the Tn antigen irrespective of the peptide context or with low selectivity to the glycoproteins. In contrast, IgG mAbs recognized the Tn antigen in the context of a specific peptide motif. Particularly, JA3 mAb reacted to the GSPP or GSPAPP, and JA5 mAb recognized specifically the GSP motif (glycosylation sites are underlined). The major O-glycan carrier proteins CD43 and CD162 and isoforms of CD45 expressed on Jurkat cells were precipitated by anti-Tn mAbs with different affinities. In summary, our data suggest that Tn antigen-Ab binding capacity is determined by the peptide context of the Tn antigen, antigenic specificity of the Ab and class of the immunoglobulin. The newly generated anti-Tn IgG mAbs with the strong specificity to glycoprotein CD43 can be particularly interesting for the application in leukemia diagnostics and therapy.
Collapse
Affiliation(s)
- Ola Blixt
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, dept. 24.6.48, DK-2200 N Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
24
|
Heimburg-Molinaro J, Lum M, Vijay G, Jain M, Almogren A, Rittenhouse-Olson K. Cancer vaccines and carbohydrate epitopes. Vaccine 2011; 29:8802-26. [PMID: 21964054 PMCID: PMC3208265 DOI: 10.1016/j.vaccine.2011.09.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022]
Abstract
Tumor-associated carbohydrate antigens (TACA) result from the aberrant glycosylation that is seen with transformation to a tumor cell. The carbohydrate antigens that have been found to be tumor-associated include the mucin related Tn, Sialyl Tn, and Thomsen-Friedenreich antigens, the blood group Lewis related Lewis(Y), Sialyl Lewis(X) and Sialyl Lewis(A), and Lewis(X) (also known as stage-specific embryonic antigen-1, SSEA-1), the glycosphingolipids Globo H and stage-specific embryonic antigen-3 (SSEA-3), the sialic acid containing glycosphingolipids, the gangliosides GD2, GD3, GM2, fucosyl GM1, and Neu5GcGM3, and polysialic acid. Recent developments have furthered our understanding of the T-independent type II response that is seen in response to carbohydrate antigens. The selection of a vaccine target antigen is based on not only the presence of the antigen in a variety of tumor tissues but also on the role this antigen plays in tumor growth and metastasis. These roles for TACAs are being elucidated. Newly acquired knowledge in understanding the T-independent immune response and in understanding the key roles that carbohydrates play in metastasis are being applied in attempts to develop an effective vaccine response to TACAs. The role of each of the above mentioned carbohydrate antigens in cancer growth and metastasis and vaccine attempts using these antigens will be described.
Collapse
Affiliation(s)
| | - Michelle Lum
- Department of Cellular and Molecular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Geraldine Vijay
- University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
| | - Miten Jain
- Department of Biomolecular Engineering, University of California Santa Cruz, CA 95064
| | - Adel Almogren
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
| | - Kate Rittenhouse-Olson
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
25
|
Costantino P, Rappuoli R, Berti F. The design of semi-synthetic and synthetic glycoconjugate vaccines. Expert Opin Drug Discov 2011; 6:1045-66. [PMID: 22646863 DOI: 10.1517/17460441.2011.609554] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Glycoconjugate vaccines are among the safest and most efficacious vaccines developed during the last 30 years. They are a potent tool for prevention of life-threatening bacterial infectious diseases like meningitis and pneumonia. The concept of hapten-carrier conjugation is now being extended to other disease areas. AREAS COVERED This is an overview of the history and current status of glycoconjugate vaccines. The authors discuss the approaches for their preparation and quality control as well as those variables which might affect their product profile. The authors also look at the potential to develop fully synthetic conjugate vaccines based on the progress of organic chemistry. Additionally, new applications of conjugate vaccines technology in the field of non-infectious diseases are discussed. Through this review, the reader will have an insight regarding the issues and complexities involved in the preparation and characterization of conjugate vaccines, the variables that might affect their immunogenicity and the potential for future applications. EXPERT OPINION The immunogenicity of weak T-independent antigens can be increased in quantity and quality by conjugation to protein carriers, which provide T-cell help. Glycoconjugate vaccines are among the safest and most efficacious vaccines developed so far. Various conjugation procedures and carrier proteins can be used. Many variables impact on the immunogenicity of conjugate vaccines and a tight control through physicochemical tests is important to ensure manufacturing and clinical consistency. New and challenging targets for conjugate vaccines are represented by cancer and other non-infectious diseases.
Collapse
|
26
|
Mester G, Hoffmann V, Stevanović S. Insights into MHC class I antigen processing gained from large-scale analysis of class I ligands. Cell Mol Life Sci 2011; 68:1521-32. [PMID: 21387142 PMCID: PMC11114492 DOI: 10.1007/s00018-011-0659-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 01/06/2023]
Abstract
Short peptides derived from intracellular proteins and presented on MHC class I molecules on the cell surface serve as a showcase for the immune system to detect pathogenic or malignant alterations inside the cell, and the sequencing and analysis of the presented peptide pool has received considerable attention over the last two decades. In this review, we give a comprehensive presentation of the methods employed for the large-scale qualitative and quantitative analysis of the MHC class I ligandome. Furthermore, we focus on insights gained into the underlying processing pathway, especially involving the roles of the proteasome, the TAP complex, and the peptide specificities and motifs of MHC molecules. The identification of post-translational modifications in MHC ligands and their implications for processing are also considered. Finally, we review the correlations of the ligandome to the proteome and the transcriptome.
Collapse
Affiliation(s)
- Gabor Mester
- Institute for Cell Biology, Department of Immunology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Vanessa Hoffmann
- Institute for Cell Biology, Department of Immunology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Institute for Cell Biology, Department of Immunology, Eberhard Karls University Tübingen, Tübingen, Germany
- Abteilung für Immunologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
27
|
Wilkinson BL, Day S, Malins LR, Apostolopoulos V, Payne RJ. Self-Adjuvanting Multicomponent Cancer Vaccine Candidates Combining Per-Glycosylated MUC1 Glycopeptides and the Toll-like Receptor 2 Agonist Pam3CysSer. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006115] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Wilkinson BL, Day S, Malins LR, Apostolopoulos V, Payne RJ. Self-Adjuvanting Multicomponent Cancer Vaccine Candidates Combining Per-Glycosylated MUC1 Glycopeptides and the Toll-like Receptor 2 Agonist Pam3CysSer. Angew Chem Int Ed Engl 2011; 50:1635-9. [DOI: 10.1002/anie.201006115] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 10/27/2010] [Indexed: 11/09/2022]
|
29
|
Abstract
The overexpression and aberrant glycosylation of MUC1 is associated with a wide variety of cancers, making it an ideal target for immunotherapeutic strategies. This review highlights the main avenues of research in this field, focusing on adenocarcinomas, from the preclinical to clinical; the problems and possible solutions associated with each approach; and speculates on the direction of MUC1 immunotherapeutic research over the next 5-10 years.
Collapse
Affiliation(s)
- Richard E Beatson
- Breast Cancer Biology Group, King's College London, Guy's Hospital, London SE1 9RT, UK
| | | | | |
Collapse
|
30
|
Bolscher JGM, Brevoord J, Nazmi K, Ju T, Veerman ECI, van Wijk JAE, Cummings RD, van Die I. Solid-phase synthesis of a pentavalent GalNAc-containing glycopeptide (Tn antigen) representing the nephropathy-associated IgA hinge region. Carbohydr Res 2010; 345:1998-2003. [PMID: 20719305 DOI: 10.1016/j.carres.2010.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/08/2010] [Accepted: 07/12/2010] [Indexed: 11/28/2022]
Abstract
Incomplete or aberrant glycosylation leading to Tn antigen (GalNAcalpha1-Ser/Thr) expression on human glycoproteins is strongly associated with human pathological conditions, including tumors, certain autoimmune diseases, such as the idiopathic IgA nephropathy, and may modulate immune homeostasis. In addition, the Tn antigen is highly expressed by certain pathogens and plays a role in host-pathogen interactions. To enable experimental approaches to study interactions of the Tn antigen with the immune system and analyze anti-Tn antibody responses in infection or disorders, we generated a Tn-expressing resource that can be used for high-throughput screening. In consideration of IgA nephropathy in which the hinge region is incompletely glycosylated, we used this hinge sequence that encodes five potential glycosylation sites as the ideal template for the synthesis of a Tn antigen-expressing glycopeptide. Inclusion of an N-terminal biotin in the peptide enabled binding to streptavidin-coated ELISA plates as monitored using Helix pomatia agglutinin or anti-Tn monoclonal antibody. We also found that the biotinylated IgA-Tn peptide is a functional acceptor for beta1-3-galactosylation using recombinant T-synthase (beta1-3-galactosyltransferase). Besides its immunochemical functionality as a possible diagnostic tool for IgA nephropathy, the peptide is an excellent substrate for glycan elongation and represents a novel template applicable for glycan-antigen-associated diseases.
Collapse
Affiliation(s)
- Jan G M Bolscher
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Van der Boechorststraat 7, NL-1081 BT, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bridging innate and adaptive antitumor immunity targeting glycans. J Biomed Biotechnol 2010; 2010:354068. [PMID: 20617150 PMCID: PMC2896669 DOI: 10.1155/2010/354068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 04/22/2010] [Indexed: 01/12/2023] Open
Abstract
Effective immunotherapy for cancer depends on cellular responses to tumor antigens. The role of major histocompatibility complex (MHC) in T-cell recognition and T-cell receptor repertoire selection has become a central tenet in immunology. Structurally, this does not contradict earlier findings that T-cells can differentiate between small hapten structures like simple glycans. Understanding T-cell recognition of antigens as defined genetically by MHC and combinatorially by T cell receptors led to the “altered self” hypothesis. This notion reflects a more fundamental principle underlying immune surveillance and integrating evolutionarily and mechanistically diverse elements of the immune system. Danger associated molecular patterns, including those generated by glycan remodeling, represent an instance of altered self. A prominent example is the modification of the tumor-associated antigen MUC1. Similar examples emphasize glycan reactivity patterns of antigen receptors as a phenomenon bridging innate and adaptive but also humoral and cellular immunity and providing templates for immunotherapies.
Collapse
|
32
|
Buskas T, Thompson P, Boons GJ. Immunotherapy for cancer: synthetic carbohydrate-based vaccines. Chem Commun (Camb) 2009:5335-49. [PMID: 19724783 PMCID: PMC2787243 DOI: 10.1039/b908664c] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aberrant glycosylation of glycoproteins and glycolipids of cancer cells, which correlates with poor survival rates, is being exploited for the development of immunotherapies for cancer. In particular, advances in the knowledge of cooperation between the innate and adaptive system combined with the implementation of efficient synthetic methods for assembly of oligosaccharides and glycopeptides is providing avenues for the rationale design of vaccine candidates. In this respect, fully synthetic vaccine candidates show great promise because they incorporate only those elements requires for relevant immune responses, and hence do not suffer from immune suppression observed with classical carbohydrate-protein conjugate vaccines. Such vaccines are chemically well-defined and it is to be expected that they can be produced in a reproducible fashion. In this feature article, recent advances in the development of fully synthetic sub-unit carbohydrate-based cancer vaccines will be discussed.
Collapse
Affiliation(s)
- Therese Buskas
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | |
Collapse
|
33
|
Ryan SO, Vlad AM, Islam K, Gariépy J, Finn OJ. Tumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice. Biol Chem 2009; 390:611-8. [PMID: 19426130 DOI: 10.1515/bc.2009.070] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human adenocarcinomas overexpress a hypoglycosylated, tumor-associated form of the mucin-like glycoprotein MUC1 containing abnormal mono- and disaccharide antigens, such as Tn, sialyl-Tn, and TF, as well as stretches of unglycosylated protein backbone in the variable number of tandem repeats (VNTR) region. Both peptide and glycopeptide epitopes generated from the VNTR are candidates for cancer vaccines and we performed experiments to evaluate their relative potential to elicit tumor-MUC1-specific immunity. We show here that immunization with the 100 amino acid-long VNTR peptide (MUC1p) elicits weaker responses in MUC1 transgenic mice compared to wild type mice suggesting self-tolerance. In contrast, when glycosylated with tumor-associated Tn antigen (GalNAc-O-S/T), TnMUC1 induces glycopeptide-specific T cell and antibody responses in both strains of mice and helps enhance responses to MUC1p in MUC1 transgenic mice. Using newly derived MUC1-specific mouse T cell hybridomas we show that the only antigen-presenting cells able to cross-present TnMUC1 glycopeptide are dendritic cells (DCs). This is likely due to their exclusive expression of receptors capable of binding TnMUC1. We conclude that MUC1 glycopeptides induce stronger immunity in MUC1-Tg mice because they are recognized as 'foreign' rather than ;self' and because they are cross-presented preferentially by DCs.
Collapse
Affiliation(s)
- Sean O Ryan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | | | | | | | | |
Collapse
|
34
|
Identification of O-glycosylated decapeptides within the MUC1 repeat domain as potential MHC class I (A2) binding epitopes. Mol Immunol 2008; 47:131-40. [PMID: 19007994 DOI: 10.1016/j.molimm.2008.09.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Accepted: 09/24/2008] [Indexed: 11/21/2022]
Abstract
The MUC1 glycoprotein is considered a tumor antigen due to its over expression and aberrant glycosylation in cancer tissues. The latter results in appearance of new antigenic tumor specific glycopeptides not found on normal glycoforms of the mucin. MUC1 glycopeptides can be presented by APCs on MHC class II molecules to activate glycopeptide specific helper T-cells. No study has yet reported presentation of MUC1 glycopeptides on MHC class I molecules as stimulators of cytotoxic T-cells. In this study we show that human immunoproteasomes and cathepsin-L can generate octa to undecameric glycopeptides from the MUC1 repeat domain in vitro. We identified glycosylated fragments of which the decameric glycopeptide SAP10 [SAPDT(GalNAc)RPAPG] containing a single sugar binds with comparable strength to the MHC class I allele HLA A*0201 as predicted high-score binding epitopes of the tandem repeat. The same sequence glycosylated with the disaccharide Gal-GalNAc does not bind. The glycan on SAP10 is predicted by molecular modeling to either protrude out or point into the MHC groove. SAPDTRPAPG peptide and the respective glycopeptide stimulated cytotoxic T-cells in vitro. Our findings suggest that MUC1 tandem repeat glycopeptides are capable of activating both helper and cytotoxic T-cells and thus represent good candidates for further development as vaccines.
Collapse
|
35
|
Neller MA, López JA, Schmidt CW. Antigens for cancer immunotherapy. Semin Immunol 2008; 20:286-95. [DOI: 10.1016/j.smim.2008.09.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 01/19/2023]
|
36
|
Niederhafner P, Reinis M, Sebestík J, Jezek J. Glycopeptide dendrimers, part III: a review. Use of glycopeptide dendrimers in immunotherapy and diagnosis of cancer and viral diseases. J Pept Sci 2008; 14:556-87. [PMID: 18275089 DOI: 10.1002/psc.1011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glycopeptide dendrimers containing different types of tumor associated-carbohydrate antigens (T(N), TF, sialyl-T(N), sialyl-TF, sialyl-Le(x), sialyl-Le(a) etc.) were used in diagnosis and therapy of different sorts of cancer. These dendrimeric structures with incorporated T-cell epitopes and adjuvants can be used as antitumor vaccines. Best results were obtained with multiantigenic vaccines, containing, e.g. five or six different TAAs. The topic of TAAs and their dendrimeric forms at molecular level are reviewed, including structure, syntheses, and biological activities. Use of glycopeptide dendrimers as antiviral vaccines against HIV and influenza is also described. Their syntheses, physico-chemical properties, and biological activities are given with many examples.
Collapse
Affiliation(s)
- Petr Niederhafner
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | | | | | | |
Collapse
|
37
|
van Vliet SJ, Saeland E, van Kooyk Y. Sweet preferences of MGL: carbohydrate specificity and function. Trends Immunol 2008; 29:83-90. [PMID: 18249034 DOI: 10.1016/j.it.2007.10.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 01/11/2023]
Abstract
C-type lectins play important roles in both innate and adaptive immune responses. In contrast to the mannose- or fucose-specific C-type lectins DC-SIGN and mannose receptor, the galactose-type lectins, of which only macrophage galactose-type lectin (MGL) is found within the immune system, are less well known. MGL is selectively expressed by immature dendritic cells and macrophages with elevated levels on tolerogenic or alternatively activated subsets. Human MGL has an exclusive specificity for rare terminal GalNAc structures, which are revealed on the tumor-associated mucin MUC1 and CD45 on effector T cells. These findings implicate MGL in the homeostatic control of adaptive immunity. We discuss here the functional similarities and differences between MGL orthologs and compare MGL to its closest homolog, the liver-specific asialoglycoprotein receptor (ASGP-R).
Collapse
Affiliation(s)
- Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
38
|
Napoletano C, Rughetti A, Agervig Tarp MP, Coleman J, Bennett EP, Picco G, Sale P, Denda-Nagai K, Irimura T, Mandel U, Clausen H, Frati L, Taylor-Papadimitriou J, Burchell J, Nuti M. Tumor-associated Tn-MUC1 glycoform is internalized through the macrophage galactose-type C-type lectin and delivered to the HLA class I and II compartments in dendritic cells. Cancer Res 2007; 67:8358-67. [PMID: 17804752 DOI: 10.1158/0008-5472.can-07-1035] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The type of interaction between tumor-associated antigens and specialized antigen-presenting cells such as dendritic cells (DCs) is critical for the type of immunity that will be generated. MUC1, a highly O-glycosylated mucin, is overexpressed and aberrantly glycosylated in several tumor histotypes. This results in the expression of tumor-associated glycoforms and in MUC1 carrying the tumor-specific glycan Tn (GalNAcalpha1-O-Ser/Thr). Glycopeptides corresponding to three tandem repeats of MUC1, enzymatically glycosylated with 9 or 15 mol of GalNAc, were shown to specifically bind and to be internalized by immature monocyte-derived DCs (iDCs). Binding required calcium and the GalNAc residue and was competed out by GalNAc polymer and Tn-MUC1 or Tn-MUC2 glycopeptides. The macrophage galactose-type C-type lectin (MGL) receptor expressed on iDCs was shown to be responsible for the binding. Confocal analysis and ELISA done on subcellular fractions of iDCs showed that the Tn-MUC1 glycopeptides colocalized with HLA class I and II compartments after internalization. Importantly, although Tn-MUC1 recombinant protein was bound and internalized by MGL, the glycoprotein entered the HLA class II compartment, but not the HLA class I pathway. These data indicate that MGL expressed on iDCs is an optimal receptor for the internalization of short GalNAcs carrying immunogens to be delivered into HLA class I and II compartments. Such glycopeptides therefore represent a new way of targeting the HLA class I and II pathways of DCs. These results have possible implications in designing cancer vaccines.
Collapse
Affiliation(s)
- Chiara Napoletano
- Department of Experimental Medicine, University of Rome Sapienza, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
van Vliet SJ, Aarnoudse CA, Broks-van den Berg VCM, Boks M, Geijtenbeek TBH, van Kooyk Y. MGL-mediated internalization and antigen presentation by dendritic cells: A role for tyrosine-5. Eur J Immunol 2007; 37:2075-81. [PMID: 17616966 DOI: 10.1002/eji.200636838] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Professional antigen-presenting cells are essential for the initiation of adaptive immune responses; however, they also play a vital role in the maintenance of tolerance towards self-antigens. C-type lectins can function as antigen receptors by capturing carbohydrate ligands for processing and presentation. Here, we focused on the dendritic cell (DC)-expressed macrophage galactose-type lectin (MGL), a C-type lectin with a unique specificity for terminal GalNAc residues, such as the tumor-associated Tn antigen. Soluble model antigens are efficiently internalized by MGL and subsequently presented to responder CD4+ T cells. The tyrosine-5 residue in the YENF motif, present in the MGL cytoplasmic domain, was essential for the MGL-mediated endocytosis in CHO cells. In conclusion, MGL contributes to the antigen processing and presentation capacities of DC and may provide a suitable target for the initiation of anti-tumor immune responses.
Collapse
Affiliation(s)
- Sandra J van Vliet
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Yu LG. The oncofetal Thomsen-Friedenreich carbohydrate antigen in cancer progression. Glycoconj J 2007; 24:411-20. [PMID: 17457671 DOI: 10.1007/s10719-007-9034-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 12/11/2022]
Abstract
The oncofetal Thomsen-Friedenreich carbohydrate antigen (Galbeta1-3GalNAcalpha1-Ser/Thr TF or T antigen) is a pan-carcinoma antigen highly expressed by about 90% of all human carcinomas. Its broad expression and high specificity in cancer have attracted many investigations into its potential use in cancer diagnosis and immunotherapy. Over the past few years increasing evidence suggests that the increased TF occurrence in cancer cells may be functionally important in cancer progression by allowing increased interaction/communication of the cells with endogenous carbohydrate-binding proteins (lectins), particularly the members of the galactoside-binding galectin family. This review focuses on the recent progress in understanding of the regulation and functional significance of increased TF occurrence in cancer progression and metastasis.
Collapse
Affiliation(s)
- Lu-Gang Yu
- The Henry Wellcome Laboratory of Molecular and Cellular Gastroenterology, School of Clinical Science, University of Liverpool, Liverpool, L69 3BX, UK.
| |
Collapse
|
41
|
Cloosen S, Arnold J, Thio M, Bos GMJ, Kyewski B, Germeraad WTV. Expression of Tumor-Associated Differentiation Antigens, MUC1 Glycoforms and CEA, in Human Thymic Epithelial Cells: Implications for Self-Tolerance and Tumor Therapy. Cancer Res 2007; 67:3919-26. [PMID: 17440107 DOI: 10.1158/0008-5472.can-06-2112] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Expression of tissue-restricted self-antigens in the thymus, termed promiscuous gene expression, imposes T cell tolerance and protects from autoimmune diseases. This antigen pool also includes various types of tumor-associated antigens (TAA) previously thought to be secluded from the immune system. The scope of promiscuous gene expression has been defined by mRNA analysis at the global level of isolated medullary thymic epithelial cells (mTECs). Information at the protein level on the frequency of mTECs expressing a given antigen, on coexpression patterns, and post-translational modifications is largely missing. We report here promiscuous expression at the protein level of two TAA, MUC1 and CEA, in situ and in purified human mTECs. Both antigens are expressed in 1% to 3% of mTECs, either individually or coexpressed in the same cell. Using a panel of anti-MUC1 monoclonal antibodies recognizing different post-translational modifications, i.e., glycoforms of MUC1, we show that only fully glycosylated forms of MUC1 and the differentiation-dependent glycoforms were detected on mTECs, but not the cancer-associated glycoforms. Our findings imply that MUC1 and CEA are amenable to central tolerance induction, which might, however, be incomplete in case of tumor cell-restricted MUC1 glycoforms. Knowledge of these subtleties in promiscuous gene expression may, in the future, assist the selection of T cell tumor vaccines for clinical trials.
Collapse
Affiliation(s)
- Silvie Cloosen
- Division of Hematology, Department of Internal Medicine, Growth and Development Research Institute, University Hospital Maastricht, the Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Mukherjee P, Pathangey LB, Bradley JB, Tinder TL, Basu GD, Akporiaye ET, Gendler SJ. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model. Vaccine 2006; 25:1607-18. [PMID: 17166639 PMCID: PMC1810513 DOI: 10.1016/j.vaccine.2006.11.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 10/27/2006] [Accepted: 11/02/2006] [Indexed: 02/07/2023]
Abstract
A MUC1-based vaccine was used in a preclinical model of colon cancer. The trial was conducted in a MUC1-tolerant immune competent host injected with MC38 colon cancer cells expressing MUC1. The vaccine included: MHC class I-restricted MUC1 peptides, MHC class II-restricted pan-helper-peptide, unmethylated CpG oligodeoxynucleotide, and granulocyte macrophage-colony stimulating factor. Immunization was successful in breaking MUC1 self-tolerance, and in eliciting a robust anti-tumor response. The vaccine stimulated IFN-gamma-producing CD4(+) helper and CD8(+) cytotoxic T cells against MUC1 and other undefined MC38 tumor antigens. In the prophylactic setting, immunization caused complete rejection of tumor cells, while in the therapeutic regimen, tumor burden was significantly reduced.
Collapse
Affiliation(s)
- P Mukherjee
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, 13400 E. Shea Boulevard, Scottsdale, AZ 85259, United States.
| | | | | | | | | | | | | |
Collapse
|
43
|
Graves CRL, Robertson JFR, Murray A, Price MR, Chapman CJ. Malignancy-induced autoimmunity to MUC1: initial antibody characterization. ACTA ACUST UNITED AC 2006; 66:357-63. [PMID: 16316451 DOI: 10.1111/j.1399-3011.2005.00297.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Numerous reports document the existence of autoantibodies to MUC1 in the circulation of individuals with breast and other solid malignancies, with the majority of researchers utilizing MUC1 peptides in their detection. This report documents the purification, using peptide and whole molecule, and characterization of such autoantibodies from an individual with an unusual, highly MUC1-positive, myosarcoma. Purification of autoantibodies from serum was performed using affinity chromatography against either MUC1 peptide or whole molecule MUC1 [derived both from the patient (Pt-MUC1) and from a pool of sera from patients with advanced breast cancer (ABC-MUC1)]. Enzyme-linked immunosorbent assays (ELISAs) were used to compare specificity of purified autoantibodies. Peptide epitopes were determined by Ptifcan system against 7-mer peptides covering the 20 amino acid repeat of the MUC1 extracellular domain. Substantially higher amounts of autoantibodies were isolated when purifying against Pt-MUC1 rather than either ABC-MUC1 or peptide. Whole molecule purified autoantibodies demonstrated an increased specificity for tumour-derived MUC1. Pt-MUC1 autoantibodies were of both the immunoglobulin (Ig)G and IgM class, whilst autoantibodies purified against ABC-MUC1 and MUC1 peptide were IgG only. A greater range of peptide epitopes was defined by those autoantibodies purified against whole molecule. This report presents data indicating the presence of autoantibodies to MUC1 in an individual diagnosed with a MUC1 over-expressing myosarcoma. Confirmation of these autoantibodies as being specific for tumour-associated MUC1 is given. Further, it suggests that, although autoantibodies are present that recognize core protein determinants, the initial, and dominant, immunizing epitope is not purely pretentious in nature.
Collapse
Affiliation(s)
- C R L Graves
- Division of Breast Surgery, The University of Nottingham, Nottingham NG5 1PB, UK
| | | | | | | | | |
Collapse
|
44
|
Abstract
The cancer-associated antigen MUC1 is overexpressed and modified by tumor cells in over half of all cancer cases. Despite various complexities associated with this antigen, it is well worth pursuing as a vaccine for the immunotherapy of cancer. In this review, the authors describe the discovery of MUC1 and its association with cancer, recent observations showing that the immunology of MUC1 is complicated, animal data showing that it can be a target for immune-mediated tumor rejection, and finally, preliminary clinical results to show that vaccine-based immunotherapy with MUC1 does have an impact on the therapy of cancer.
Collapse
Affiliation(s)
- Bruce Acres
- Department of Medical and Regulatory Affairs, Transgene, 67082 Strasbourg, France.
| | | |
Collapse
|
45
|
Stepensky D, Tzehoval E, Vadai E, Eisenbach L. O-glycosylated versus non-glycosylated MUC1-derived peptides as potential targets for cytotoxic immunotherapy of carcinoma. Clin Exp Immunol 2006; 143:139-49. [PMID: 16367945 PMCID: PMC1809564 DOI: 10.1111/j.1365-2249.2005.02965.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Due to the fact that many cellular proteins are extensively glycosylated, processing and presentation mechanisms are expected to produce a pool of major histocompatibility complex (MHC) class I-bound protein-derived peptides, part of which retain sugar moieties. The immunogenic properties of the presented glycosylated peptides in comparison to their non-glycosylated counterparts have not been determined clearly. We assessed the cellular immunogenicity of MUC1 (mucin)-derived peptides O-glycosylated with a Tn epitope (GalNAc) using HLA-A*0201 single chain (HHD)-transfected cell lines and transgenic mice. For part of the compounds Tn moiety did not interfere with the HLA-A*0201 binding. Moreover, part of the glycopeptides elicited effective cytotoxic responses, indicating recognition of the glycopeptide-HLA-A*0201 complex by the T cell receptor (TCR) and subsequent cytotoxic T lymphocyte (CTL) activation. The CTLs exhibited a substantial degree of cross-reactivity against target cells loaded with glycosylated and non-glycosylated forms of the same peptide. The studied (glyco)peptides showed cellular immunogenicity in both MUC1-HHD and HHD mice and induced effective lysis of (glyco)peptide-loaded target cells in CTL assays. However, the elicited CTLs did not induce selective lysis of human MUC1-expressing murine cell lines. Moreover, immunization with (glyco)peptide-loaded dendritic cells (DCs) did not induce significant immunotherapeutic effects. We conclude that Tn glycosylated MUC1-derived peptides can be presented by MHC class I molecules, and may be recognized by specific TCR molecules resulting in cytotoxic immune responses. However, the studied glycopeptides did not offer significant benefit as targets for cytotoxic immune response due apparently to (a) cross-reactivity of the elicited CTLs against the glycosylated and non-glycosylated forms of the same peptide and (b) low abundance of glycopeptides on tumour target cells.
Collapse
Affiliation(s)
- D Stepensky
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
46
|
Engelhard VH, Altrich-Vanlith M, Ostankovitch M, Zarling AL. Post-translational modifications of naturally processed MHC-binding epitopes. Curr Opin Immunol 2005; 18:92-7. [PMID: 16343885 DOI: 10.1016/j.coi.2005.11.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 11/25/2005] [Indexed: 01/21/2023]
Abstract
A variety of different post-translational modifications of peptides displayed by class I and II MHC molecules have now been described. Some modifications promote the binding of peptides to MHC molecules, and might also influence the ability of the peptide to be produced by antigen processing pathways. In some instances, the antigen processing components themselves are actually responsible for generating post-translational modifications. Finally, evidence is accumulating that modifications can be altered as a consequence of inflammation, transformation, apoptosis and aging. This leads to altered repertories of MHC-associated peptides, which may be important in immune responses associated with autoimmune diseases, infection and cancer.
Collapse
Affiliation(s)
- Victor H Engelhard
- Carter Center for Immunology Research and the Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA.
| | | | | | | |
Collapse
|
47
|
Irazoqui FJ, Sendra VG, Lardone RD, Nores GA. Immune response to Thomsen-Friedenreich disaccharide and glycan engineering. Immunol Cell Biol 2005; 83:405-12. [PMID: 16033536 DOI: 10.1111/j.1440-1711.2005.01348.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cancer-associated mucins show frequent alterations of their oligosaccharide chain profile, with a switch to unmask normally cryptic O-glycan backbone and core regions. Epithelial tumour cells typically show overexpression of the uncovered Gal(beta)1-3GalNAc(alpha)-O-Ser/Thr (Core 1) structure, known as the T antigen or the Thomsen-Friedenreich antigen, the oligosaccharide chain of which is called the Thomsen-Friedenreich disaccharide (TFD). T antigen expression has been associated with immunosuppression, metastasis dissemination, and the proliferation of cancer cells. Several different strategies have been used to trigger a specific immune response to TFD. Natural T antigen and synthetic TFD residues have low immunodominance. In the T antigen, flexibility of the glycosidic bond reduces the immunogenicity of the sugar residue. Enhanced rigidity should favour certain glycan conformations and thereby improve TFD immunotargeting. We propose the term 'glycan engineering' for this approach. Such engineering of TFD should reduce the flexibility of its glycan moiety and thereby enhance its stability, rigidity and immunogenicity.
Collapse
Affiliation(s)
- Fernando J Irazoqui
- CIQUIBIC-CONICET/Department of Biological Chemistry, Faculty of Chemical Sciences, National University of Cordoba, Ciudad Universitaria, Cordoba, Argentina.
| | | | | | | |
Collapse
|
48
|
Xu Y, Sette A, Sidney J, Gendler SJ, Franco A. Tumor-associated carbohydrate antigens: a possible avenue for cancer prevention. Immunol Cell Biol 2005; 83:440-8. [PMID: 16033540 DOI: 10.1111/j.1440-1711.2005.01347.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here we examine the use of glycopeptides containing tumour-associated carbohydrate antigens (TACA) as potential preventive vaccines for carcinomas. Our recent results suggest that CD8+ T cells (CTL) are capable of recognizing TACA in a conventional class I MHC-restricted fashion. The ThomsenFriedenreich antigen (TF), a disaccharide, and Tn, its immediate precursor, are TACA largely expressed in carcinomas. TF and Tn can be successfully used as Th-independent vaccines when conjugated to designer peptides with optimal binding affinity for class I MHC molecules. TF- and Tn-specific CTL generated using this strategy are capable of recognizing TACA-expressing tumours in vitro, suggesting that glycopeptides are as effectively presented by class I MHC molecules as non-glycosylated peptides. Because the exact sequences of endogenously synthesized glycopeptides are unknown, the TACA-specific T cell repertoire elicited by carbohydrate-based vaccines is assumed to be degenerate. Here we report that mice genetically manipulated to develop TACA-expressing mammary tumours are not tolerant to glycopeptide vaccination. Moreover, we tested the immunogenicity of designer glycopeptides capable of binding multiple HLA alleles as a novel approach for the development of vaccines potentially useful for vaccination of a large fraction of the general population. Our results have suggested that CTL derived from normal donors respond with high efficiency to glycopeptides in vitro, opening a new avenue for the design of prospective vaccines for cancer prevention.
Collapse
Affiliation(s)
- Yanfei Xu
- Torrey Pines Institute for Molecular Studies, San Diego, California, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
Schistosome glycans induce characteristic innate immune responses in the infected host. The molecular aspects of these responses, the pathways and receptors as well as the schistosome glycans and glycoconjugates involved, form an area of intense research. The relevant schistosome glycan elements and the possible mechanisms through which they act on the innate immune system are discussed in this review.
Collapse
Affiliation(s)
- C H Hokke
- Department of Parasitology, Centre of Infectious Diseases, Leiden University Medical Centre, Leiden, the Netherlands.
| | | |
Collapse
|
50
|
Franco A. CTL-based cancer preventive/therapeutic vaccines for carcinomas: role of tumour-associated carbohydrate antigens. Scand J Immunol 2005; 61:391-7. [PMID: 15882430 DOI: 10.1111/j.1365-3083.2005.01596.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study, we discuss the use of glycopeptides containing tumour-associated carbohydrate antigens (TACA) as preventive vaccines for carcinomas. The results of our recent studies suggest that CD8(+) cytotoxic T cells are capable of recognizing small TACA in a conventional class I MHC-restricted fashion. TACA-specific T-cell receptors are highly degenerate and their fine specificity includes the glycosylated amino acid linker together with the sugar moiety. TF, a disaccharide and Tn, its immediate precursor, are TACA largely expressed in carcinomas that can be successfully used as vaccines when conjugated to designer peptide backbones with optimal binding affinity for class I MHC molecules.
Collapse
MESH Headings
- Animals
- Antigens, Tumor-Associated, Carbohydrate/biosynthesis
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/biosynthesis
- Cancer Vaccines/chemical synthesis
- Carcinoma/immunology
- Carcinoma/prevention & control
- Glycopeptides/chemistry
- Glycopeptides/immunology
- H-2 Antigens/chemistry
- H-2 Antigens/immunology
- Histocompatibility Antigens Class I/immunology
- Humans
- Mice
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccination
Collapse
Affiliation(s)
- A Franco
- Torrey Pines Institute for Molecular Studies; and University of California, San Diego, CA 92121, USA.
| |
Collapse
|