1
|
Li Q, Nie H. Advances in lung ischemia/reperfusion injury: unraveling the role of innate immunity. Inflamm Res 2024; 73:393-405. [PMID: 38265687 DOI: 10.1007/s00011-023-01844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Lung ischemia/reperfusion injury (LIRI) is a common occurrence in clinical practice and represents a significant complication following pulmonary transplantation and various diseases. At the core of pulmonary ischemia/reperfusion injury lies sterile inflammation, where the innate immune response plays a pivotal role. This review aims to investigate recent advancements in comprehending the role of innate immunity in LIRI. METHODS A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning lung ischemia/reperfusion injury, cell death, damage-associated molecular pattern molecules (DAMPs), innate immune cells, innate immunity, inflammation. RESULTS During the process of lung ischemia/reperfusion, cellular injury even death can occur. When cells are injured or undergo cell death, endogenous ligands known as DAMPs are released. These molecules can be recognized and bound by pattern recognition receptors (PRRs), leading to the recruitment and activation of innate immune cells. Subsequently, a cascade of inflammatory responses is triggered, ultimately exacerbating pulmonary injury. These steps are complex and interrelated rather than being in a linear relationship. In recent years, significant progress has been made in understanding the immunological mechanisms of LIRI, involving novel types of cell death, the ability of receptors other than PRRs to recognize DAMPs, and a more detailed mechanism of action of innate immune cells in ischemia/reperfusion injury (IRI), laying the groundwork for the development of novel diagnostic and therapeutic approaches. CONCLUSIONS Various immune components of the innate immune system play critical roles in lung injury after ischemia/reperfusion. Preventing cell death and the release of DAMPs, interrupting DAMPs receptor interactions, disrupting intracellular inflammatory signaling pathways, and minimizing immune cell recruitment are essential for lung protection in LIRI.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
2
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Schneider DF, Palmer JL, Tulley JM, Kovacs EJ, Gamelli RL, Faunce DE. Prevention of NKT cell activation accelerates cutaneous wound closure and alters local inflammatory signals. J Surg Res 2011; 171:361-73. [PMID: 21067780 PMCID: PMC3324976 DOI: 10.1016/j.jss.2010.03.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/02/2010] [Accepted: 03/11/2010] [Indexed: 12/01/2022]
Abstract
We previously reported that in the absence of NKT cells, wound closure was accelerated in a murine excisional punch wound model. Here, we explored whether purposefully inhibiting NKT cell activation had similar effects on wound closure and the dermal inflammatory response to injury. We found that prevention of NKT cell activation accelerated wound closure in a dose-responsive manner. If anti-CD1d was administered before wounding, NKT cell infiltration into cutaneous wounds was diminished without quantitative changes in cellular infiltrates. Furthermore, prevention of NKT cell activation transiently enhanced the local production of a subset of chemokines, including MIP-2, MCP-1, MIP-1α, and MIP-1β, and altered the relative expression of CD69 and CXCR2 on the surface of both circulating and wound NKT cells. Taken together, these findings suggest that wounding activates NKT cells via CD1d presentation of glycolipid antigen and help further define a role for NKT cells in the regulation of wound inflammation and closure. Many soluble factors have been targeted as potential wound healing therapies, but their clinical success has been limited. Given our findings, the NKT cell may be an attractive target for wound healing therapies.
Collapse
Affiliation(s)
- David F. Schneider
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Medical Center, Maywood, IL
| | - Jessica L. Palmer
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Medical Center, Maywood, IL
| | - Julia M. Tulley
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Medical Center, Maywood, IL
| | - Elizabeth J. Kovacs
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Medical Center, Maywood, IL
| | - Richard L. Gamelli
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Medical Center, Maywood, IL
| | - Douglas E. Faunce
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Medical Center, Maywood, IL
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL
| |
Collapse
|
4
|
Yang SH, Lee JP, Jang HR, Cha RH, Han SS, Jeon US, Kim DK, Song J, Lee DS, Kim YS. Sulfatide-reactive natural killer T cells abrogate ischemia-reperfusion injury. J Am Soc Nephrol 2011; 22:1305-14. [PMID: 21617126 DOI: 10.1681/asn.2010080815] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There is a significant immune response to ischemia-reperfusion injury (IRI), but the role of immunomodulatory natural killer T (NKT) cell subtypes is not well understood. Here, we compared the severity of IRI in mice deficient in type I/II NKT cells (CD1d(-/-)) or type I NKT cells (Jα18(-/-)). The absence of NKT cells, especially type II NKT cells, accentuated the severity of renal injury, whereas repletion of NKT cells attenuated injury. Adoptively transferred NKT cells trafficked into the tubulointerstitium, which is the primary area of injury. Sulfatide-induced activation of type II NKT cells protected kidneys from IRI, but inhibition of NKT cell recruitment enhanced injury. In co-culture experiments, sulfatide-induced activation of NKT cells from either mice or humans attenuated apoptosis of renal tubular cells after transient hypoxia via hypoxia-inducible factor (HIF)-1α and IL-10 pathways. Renal tissue of patients with acute tubular necrosis (ATN) frequently contained NKT cells, and the number of these cells tended to negatively correlate with ATN severity. In summary, sulfatide-reactive type II NKT cells are renoprotective in IRI, suggesting that pharmacologic modulation of NKT cells may protect against ischemic injury.
Collapse
Affiliation(s)
- Seung Hee Yang
- Kidney Research Institute, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Mesnard L, Keller AC, Michel ML, Vandermeersch S, Rafat C, Letavernier E, Tillet Y, Rondeau E, Leite-de-Moraes MC. Invariant natural killer T cells and TGF-beta attenuate anti-GBM glomerulonephritis. J Am Soc Nephrol 2009; 20:1282-92. [PMID: 19470687 DOI: 10.1681/asn.2008040433] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Invariant natural killer T (iNKT) cells represent a particular subset of T lymphocytes capable of producing several cytokines, which exert regulatory or effector functions, following stimulation of the T cell receptor. In this study, we investigated the influence of iNKT cells on the development of experimental anti-glomerular basement membrane glomerulonephritis (anti-GBM GN). After injection of anti-GBM serum, the number of kidney iNKT cells rapidly increased. iNKT cell-deficient mice (Jalpha18-/-) injected with anti-GBM serum demonstrated worse renal function, increased proteinuria, and greater glomerular and tubular injury compared with similarly treated wild-type mice. We did not detect significant differences in Th1/Th2 polarization in renal tissue that might have explained the severity of disease in Jalpha18-/- mice. Interestingly, expression of both TGF-beta and TGF-beta-induced (TGFBI) mRNA was higher in wild-type kidneys compared with Jalpha18-/- kidneys, suggesting a possible protective role for TGF-beta in anti-GBM GN. Administration of an anti-TGF-beta neutralizing antibody significantly enhanced the severity of disease in wild-type, but not Jalpha18-/-, mice. In conclusion, in experimental anti-GBM GN, iNKT cells attenuate disease severity and TGF-beta has a renoprotective role.
Collapse
|
6
|
Balato A, Unutmaz D, Gaspari AA. Natural killer T cells: an unconventional T-cell subset with diverse effector and regulatory functions. J Invest Dermatol 2009; 129:1628-42. [PMID: 19262602 DOI: 10.1038/jid.2009.30] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Natural killer T (NKT) cells are a unique subset of lymphocytes that express NK cell markers such as CD161 and CD94, as well as a T-cell receptor (TCR) alpha/beta, with a restricted repertoire, which distinguishes them from NK cells, which lack a TCR. In contrast to conventional T-lymphocytes, the TCR of NKT cells does not interact with that of peptide antigens presented by classical major histocompatibility complex-encoded class I or II molecules. Instead, this TCR recognizes glycolipids presented by CD1d, a non-classical antigen-presenting molecule. The rapid response of NKT cells to their cognate antigens is characteristic of an innate immune response, and allows the polarizing cytokines (IFN-gamma and/or IL-4) to regulate adaptive immunity. NKT cells have been found to be critical in the immune response against viral infections and malaria, as well as in tumor immunity, and certain autoimmune diseases. NKT cells have been assessed to represent the "trait d'union" between innate and adaptive immunity. They play an active role in skin diseases, such as contact sensitivity, which have been implicated in UV-induced immunosuppression and psoriasis. Thus, NKT-cells are emerging as an important subset of lymphocytes, with a protective role in host defense and a pathogenic role in certain immune-mediated disease states.
Collapse
Affiliation(s)
- Anna Balato
- Department of Dermatology, University of Naples Federico II, Naples, Italy
| | | | | |
Collapse
|
7
|
Immune regulatory mechanisms in allergic conjunctivitis: insights from mouse models. Curr Opin Allergy Clin Immunol 2008; 8:472-6. [PMID: 18769204 DOI: 10.1097/aci.0b013e32830edbcb] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review highlights recent findings regarding the immune regulation of allergic conjunctivitis. Mouse models have facilitated prospective studies that have not been possible in patients. The availability of gene knockout mice and the wealth of monoclonal antibodies have permitted exquisite dissection of the pathophysiology and immune regulation of allergic conjunctivitis. RECENT FINDINGS New insights have emerged in three areas: role of costimulatory molecules in the induction of Th2 immune responses; crucial role of IFN-gamma in the expression of allergic conjunctivitis; and the function of T regulatory cells in shaping conjunctival inflammation once the immune response has been initiated. SUMMARY Allergic conjunctivitis involves early phase and late phase reactions. The early phase reaction is IgE antibody-dependent, whereas the late phase reaction is IgE-independent and is mediated by inflammatory cells, especially eosinophils. Recent studies on mouse models of allergic conjunctivitis have provided important insights into the immune regulation of both the early phase reaction and late phase reaction of allergic conjunctivitis. Mounting evidence suggests that IFN-gamma is crucial for optimum expression of allergic conjunctivitis. Costimulatory molecules influence the induction of Th2 immune responses and the early phase reaction, whereas regulatory T cells shape the expression of the late phase reaction of allergic conjunctivitis.
Collapse
|
8
|
Tsunoda I, Tanaka T, Fujinami RS. Regulatory role of CD1d in neurotropic virus infection. J Virol 2008; 82:10279-10289. [PMID: 18684818 PMCID: PMC2566251 DOI: 10.1128/jvi.00734-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 07/29/2008] [Indexed: 02/05/2023] Open
Abstract
The GDVII strain of Theiler's murine encephalomyelitis virus (TMEV) causes an acute fatal polioencephalomyelitis in mice. Infection of susceptible mice with the DA strain of TMEV results in an acute polioencephalomyelitis followed by chronic immune-mediated demyelination with virus persistence in the central nervous system (CNS); DA virus infection is used as an animal model for multiple sclerosis. CD1d-restricted natural killer T (NKT) cells can contribute to viral clearance and regulation of autoimmune responses. To investigate the role of CD1d in TMEV infection, we first infected CD1d-deficient mice (CD1(-/-)) and wild-type BALB/c mice with GDVII virus. Wild-type mice were more resistant to virus than CD1(-/-) mice (50% lethal dose titers: wild-type mice, 10 PFU; CD1(-/-) mice, 1.6 PFU). Wild-type mice had fewer viral antigen-positive cells with greater inflammation in the CNS than CD1(-/-) mice. Second, an analysis of DA virus infection in CD1(-/-) mice was conducted. Although both wild-type and CD1(-/-) mice had similar clinical signs during the first 2 weeks after infection, CD1(-/-) mice had an increase in neurological deficits over those observed in wild-type mice at 3 to 5 weeks after infection. Although wild-type mice had no demyelination, 20 and 60% of CD1(-/-) mice developed demyelination at 3 and 5 weeks after infection, respectively. TMEV-specific lymphoproliferative responses, interleukin-4 (IL-4) production, and IL-4/gamma interferon ratios were higher in CD1(-/-) mice than in wild-type mice. Thus, CD1d-restricted NKT cells may play a protective role in TMEV-induced neurological disease by alteration of the cytokine profile and virus-specific immune responses.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Pathology, Division of Cell Biology & Immunology, University of Utah School of Medicine, 30 North 1900 East, MREB, Room 218, Salt Lake City, UT 84132, USA.
| | | | | |
Collapse
|
9
|
Yang SH, Kim SJ, Kim N, Oh JE, Lee JG, Chung NH, Kim S, Kim YS. NKT cells inhibit the development of experimental crescentic glomerulonephritis. J Am Soc Nephrol 2008; 19:1663-71. [PMID: 18525002 DOI: 10.1681/asn.2007101117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CD1d is an MHC class I-like, beta2-microglobulin-associated protein, constitutively expressed by antigen-presenting cells and some epithelial cells, which is recognized by NKT cells, a subpopulation of T cells. CD1d-dependent NKT cells confer protection in immune-mediated disorders, but whether these cells modulate the development of glomerulonephritis is unknown. Experimental crescentic glomerulonephritis was induced by administering anti-glomerular basement membrane antibodies to NKT cell-deficient (CD1d(-/-)) and wild-type mice. Compared with wild-type mice, NKT cell-deficient mice had an accelerated course of glomerulonephritis measured by renal function and crescent formation, and this was abrogated by adoptive transfer of NKT cells. Reconstitution with NKT cells also attenuated intraglomerular expression of TGF-beta1 and decreased phosphorylation of the transcription factors NF-kappaB and IkappaB. Adopted transfer of fluorescence-labeled NKT cells demonstrated their distribution to glomeruli damaged by anti-glomerular basement membrane antibodies but not to the tubulointerstitium. The chemokine CXCL16, which is the ligand for CXCR6 on NKT cells, was upregulated in glomeruli after induction of glomerulonephritis, and NKT cells were present in the same glomeruli. In vitro, NKT cells inhibited LPS-stimulated proliferation of mesangial cells, an affect that was reduced by co-current treatment with an anti-CXCL16 monoclonal antibody. In summary, these findings highlight the regulatory capacity of CD1d-dependent NKT cells in experimental glomerulonephritis and suggest that CXCL16 is involved in the recruitment of these cells to the site of injury.
Collapse
Affiliation(s)
- Seung Hee Yang
- Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Asthma is an immunological disease with multiple inflammatory and clinical phenotypes, characterized by symptoms of wheezing, shortness of breath, and coughing due to airway hyperreactivity (AHR) and reversible airway obstruction. In allergic asthma, the most common form of asthma, airway inflammation is mediated by adaptive immune recognition of protein allergens by Th2 cells, resulting in airway eosinophilia. However, in other forms of asthma, inflammation is associated with immune responses to respiratory infections and airway neutrophilia. A central feature common to all forms of asthma is AHR, the heightened responsiveness of the airways to nonspecific stimuli. AHR has been shown recently in animal models of asthma to require the presence of CD1d-restricted, invariant T cell receptor-positive, natural killer T (iNKT) cells. Although allergen-specific Th2 cells and iNKT cells have many phenotypic similarities (e.g., expression of CD4 and production of Th2 cytokines), they have complementary activities, such as production of Th2 cytokines under different conditions, differential sensitivity to corticosteroids, and responsiveness to different classes of antigen (proteins versus glycolipids). We hypothesize that Th2 cells and iNKT cells interact synergistically to induce asthma but that different forms of asthma result from distinct roles of CD4(+) iNKT cells versus Th2 cells.
Collapse
Affiliation(s)
- Everett H Meyer
- Immunology Program, Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
11
|
Gober MD, Fishelevich R, Zhao Y, Unutmaz D, Gaspari AA. Human natural killer T cells infiltrate into the skin at elicitation sites of allergic contact dermatitis. J Invest Dermatol 2007; 128:1460-9. [PMID: 18079745 DOI: 10.1038/sj.jid.5701199] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of this study is to identify invariant natural killer T cells (NKT cells) in cellular infiltrate of human allergic contact dermatitis (ACD) skin challenge sites. Skin biopsy specimens were taken from positive patch test reactions from 10 different patients (9 different allergens) and studied by immunochemistry, real-time PCR, nested PCR, and in situ hybridization to identify NKT cells and the cytokines associated with this cell type. Invariant NKT cells were identified in all the 10 skin biopsy specimens studied, ranging from 1.72 to 33% of the cellular infiltrate. These NKT cells were activated in all cases, as they expressed cytokine transcripts for IFN-gamma and IL-4. Invariant NKT cells are present in ACD, regardless of the allergen that triggers the reaction, and are in an activated state. We conclude that innate immunity plays a role in late phases of type IV hypersensitivity reactions and may be responding to self-lipids released during allergic inflammation. These data complement the previous work by other investigators that suggest that NKT cells are important in the early cellular response during primary immune responses to allergens. Herein, it is demonstrated that NKT cells are constantly present during the late elicitation phase of human type IV hypersensitivity reactions.
Collapse
Affiliation(s)
- Michael D Gober
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland 21030, USA
| | | | | | | | | |
Collapse
|
12
|
Yang SH, Jin JZ, Lee SH, Park H, Kim CH, Lee DS, Kim S, Chung NH, Kim YS. Role of NKT cells in allogeneic islet graft survival. Clin Immunol 2007; 124:258-66. [PMID: 17662658 DOI: 10.1016/j.clim.2007.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
Although NKT cells expressing CD1d-reactive TCR exerted protective role in autoimmune diseases, the regulatory function of CD1d-dependent NKT cells in alloimmune responses has not been investigated thoroughly. Here, we demonstrated the regulatory effects of NKT cells using a pancreas islet transplantation model. CD40/CD154 blocking induced long-term graft survival in most B6 recipients, but B6.CD1d(-/-) recipients showed co-stimulation blockade-resistant rejection. Adoptive transfer of NKT cells into B6.CD1d(-/-) restored tolerizing capacity of co-stimulatory blockade. Activation of NKT cells was effective for the prolongation of graft survival and up-regulated membrane-bound TGF-beta expression transiently on their cell surface. The activated CD1d-dependent NKT cells inhibited alloantigen-driven cell proliferation through cell contacts and the beneficial effect of CD154 blocking for allograft survival was related to TGF-beta pathway. Thus, we can conclude that NKT cells are essential for the stable allograft survival and the regulatory function is dependent on, at least in part, TGF-beta engagement.
Collapse
Affiliation(s)
- Seung Hee Yang
- Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Recent studies indicate that invariant TCR+ CD1d-restricted natural killer T (iNKT) cells play an important role in regulating the development of asthma and allergy. iNKT cells can function to skew adaptive immunity toward Th2 responses, or can act directly as effector cells at mucosal surfaces in diseases such as ulcerative colitis and bronchial asthma. In mouse models of asthma, NKT cell-deficient strains fail to develop allergen-induced airway hyperreactivity (AHR), a cardinal feature of asthma, and NKT cells are found in the lungs of patients with chronic asthma, suggesting a critical role for NKT cells in the development of AHR. However, much work remains in characterizing iNKT cells and their function in asthma, and in understanding the relationship between the iNKT cells and conventional CD4+ T cells.
Collapse
Affiliation(s)
- E H Meyer
- Division of Immunology, Children's Hospital Boston, Harvard Medical School, One Blackfan Circle, Boston, MA 02115, USA
| | | | | |
Collapse
|
14
|
Umetsu DT, Meyer EH, DeKruyff RH. Natural killer T cells regulate the development of asthma. Int Rev Immunol 2007; 26:121-40. [PMID: 17454267 DOI: 10.1080/08830180601070237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Dale T Umetsu
- Division of Immunology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
15
|
Zhang C, Lou J, Li N, Todorov I, Lin CL, Cao YA, Contag CH, Kandeel F, Forman S, Zeng D. Donor CD8+ T cells mediate graft-versus-leukemia activity without clinical signs of graft-versus-host disease in recipients conditioned with anti-CD3 monoclonal antibody. THE JOURNAL OF IMMUNOLOGY 2007; 178:838-50. [PMID: 17202345 DOI: 10.4049/jimmunol.178.2.838] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Donor CD8(+) T cells play a critical role in mediating graft-vs-leukemia (GVL) activity, but also induce graft-vs-host disease (GVHD) in recipients conditioned with total body irradiation (TBI). In this study, we report that injections of donor C57BL/6 (H-2(b)) or FVB/N (H-2(q)) CD8(+) T with bone marrow cells induced chimerism and eliminated BCL1 leukemia/lymphoma cells without clinical signs of GVHD in anti-CD3-conditioned BALB/c (H-2(d)) recipients, but induced lethal GVHD in TBI-conditioned recipients. Using in vivo and ex vivo bioluminescent imaging, we observed that donor CD8(+) T cells expanded rapidly and infiltrated GVHD target tissues in TBI-conditioned recipients, but donor CD8(+) T cell expansion in anti-CD3-conditioned recipients was confined to lymphohematological tissues. This confinement was associated with lack of up-regulated expression of alpha(4)beta(7) integrin and chemokine receptors (i.e., CXCR3) on donor CD8(+) T cells. In addition, donor CD8(+) T cells in anti-CD3-conditioned recipients were rendered unresponsive, anergic, Foxp3(+), or type II cytotoxic T phenotype. Those donor CD8(+) T cells showed strong suppressive activity in vitro and mediated GVL activity without clinical signs of GVHD in TBI-conditioned secondary recipients. These results indicate that anti-CD3 conditioning separates GVL activity from GVHD via confining donor CD8(+) T cell expansion to host lymphohemological tissues as well as tolerizing them in the host.
Collapse
Affiliation(s)
- Chunyan Zhang
- Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Meyer EH, Goya S, Akbari O, Berry GJ, Savage PB, Kronenberg M, Nakayama T, DeKruyff RH, Umetsu DT. Glycolipid activation of invariant T cell receptor+ NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4+ T cells. Proc Natl Acad Sci U S A 2006; 103:2782-7. [PMID: 16478801 PMCID: PMC1413796 DOI: 10.1073/pnas.0510282103] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Indexed: 01/22/2023] Open
Abstract
Asthma is an inflammatory lung disease, in which conventional CD4+ T cells producing IL-4/IL-13 appear to play an obligatory pathogenic role. Here we show, in a mouse model of asthma, that activation of pulmonary IL-4/IL-13 producing invariant TCR+ CD1d-restricted natural killer T (NKT) cells is sufficient for the development of airway hyperreactivity (AHR), a cardinal feature of asthma, in the absence of conventional CD4+ T cells and adaptive immunity. Respiratory administration of glycolipid antigens that specifically activate NKT cells (alpha-GalactosylCeramide and a Sphingomonas bacterial glycolipid) rapidly induced AHR and inflammation typically associated with protein allergen administration. Naïve MHC class II-deficient mice, which lack conventional CD4+ T but have NKT cells, showed exaggerated baseline AHR and, when challenged with alpha-GalactosylCeramide, demonstrated even greater AHR. These studies demonstrate an expanded role for NKT cells, in which NKT cells not only produce cytokines that influence adaptive immunity but also function as critical effector cells that can induce AHR. These results suggest that NKT cells responding to glycolipid antigens, as well as conventional CD4+ T cells responding to peptide antigens, may be synergistic in the induction of AHR, although in some cases, each may independently induce AHR.
Collapse
Affiliation(s)
- Everett H. Meyer
- *Division of Immunology, Children’s Hospital, Harvard Medical School, One Blackfan Circle, Boston, MA 02115
- Immunology Program and School of Medicine, Stanford University, Stanford, CA 94305
| | - Sho Goya
- *Division of Immunology, Children’s Hospital, Harvard Medical School, One Blackfan Circle, Boston, MA 02115
| | - Omid Akbari
- *Division of Immunology, Children’s Hospital, Harvard Medical School, One Blackfan Circle, Boston, MA 02115
| | - Gerald J. Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121; and
| | | | - Rosemarie H. DeKruyff
- *Division of Immunology, Children’s Hospital, Harvard Medical School, One Blackfan Circle, Boston, MA 02115
- Immunology Program and School of Medicine, Stanford University, Stanford, CA 94305
| | - Dale T. Umetsu
- *Division of Immunology, Children’s Hospital, Harvard Medical School, One Blackfan Circle, Boston, MA 02115
- Immunology Program and School of Medicine, Stanford University, Stanford, CA 94305
| |
Collapse
|
17
|
Derks RA, Burlingham WJ. In vitro parameters of donor-antigen-specific tolerance. Curr Opin Immunol 2005; 17:560-4. [PMID: 16084707 DOI: 10.1016/j.coi.2005.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 07/21/2005] [Indexed: 11/20/2022]
Abstract
Donor-antigen-specific tolerance to the allograft is increasingly considered a reachable goal in the field of transplantation. As our understanding of the processes that govern donor-specific tolerance increases, so must our understanding of ways to detect this state of affairs. Unfortunately, this is not a straightforward procedure, as the mechanisms which govern tolerance are multiple and varied. Previously, the mixed lymphocyte reaction was used as standard to detect unresponsiveness. This approach is not valid for detecting tolerance because it only measures both direct pathway, naïve and memory responses, whereas the indirect pathway and 'pure' memory responses are more informative parameters for detecting tolerance. Techniques, such as the trans vivo delayed-type hypersensitivity assay, ELISPOT and antigen-specific HLA tetramer analysis address this problem, and the numbers of cell subsets, such as dendritic cells and NKT cells, can also aid us in detecting donor-antigen-specific tolerance.
Collapse
Affiliation(s)
- Richard A Derks
- Department of Surgery, University of Wisconsin, Madison, WI 53792, USA
| | | |
Collapse
|
18
|
Yue SC, Shaulov A, Wang R, Balk SP, Exley MA. CD1d ligation on human monocytes directly signals rapid NF-kappaB activation and production of bioactive IL-12. Proc Natl Acad Sci U S A 2005; 102:11811-6. [PMID: 16091469 PMCID: PMC1187978 DOI: 10.1073/pnas.0503366102] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Natural killer T cells (NKT cells) expressing a semi-invariant CD1d-reactive T cell receptor (invariant NKT, iNKT) can be rapidly activated by monocytes or immature dendritic cells (iDCs) bearing a CD1d-presented glycolipid antigen and can in turn stimulate these myeloid cells to mature and produce IL-12. Previous studies have shown that iNKT-produced IFNgamma and CD40 ligand contribute to this dendritic cell maturation. This study demonstrates that CD1d ligation alone, in the absence of iNKT, could rapidly (within 24 h) stimulate production of bioactive IL-12p70 by CD1d+ human peripheral blood monocytes as well as iDCs. IFNgamma alone had no effect, but it markedly enhanced CD1d-stimulated IL-12 production. Monocyte differentiation, as assessed by CD40 and CD1a up-regulation, was also accelerated by CD1d stimulation, consistent with this representing a physiological response. CD1d ligation on the human monocytic cell line THP-1 similarly specifically stimulated IL-12 production. Biochemical studies showed that IL-12 release correlated with rapid phosphorylation of IkappaB, a critical step in NF-kappaB activation. Selective NF-kappaB inhibition blocked this CD1d-stimulated IL-12 production. Finally, CD1d ligation could also enhance IL-12 production in the presence of suboptimal LPS or CD40 stimulation. These findings demonstrate an innate immune signaling function for CD1d and provide a mechanism for the rapid activation of monocytes and iDCs by CD1d-reactive T cells.
Collapse
Affiliation(s)
- Simon C Yue
- Cancer Biology Program, Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
19
|
Nakamura T, Terajewicz A, Stein-Streilein J. Mechanisms of Peripheral Tolerance following Intracameral Inoculation Are Independent of IL-13 or STAT6. THE JOURNAL OF IMMUNOLOGY 2005; 175:2643-6. [PMID: 16081840 DOI: 10.4049/jimmunol.175.4.2643] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The peripheral tolerance that is elicited by the anterior chamber-associated immune deviation (ACAID) protocol is characterized by impairment of Th1 responses such as delayed-type hypersensitivity. It has been proposed that suppression of Th1 responses is mediated by a deviation toward Th2 responses. Because NKT cells have a prominent role in ACAID and NKT cell-derived IL-13 is required in a tumor model of tolerance, we postulated that NKT cell-derived Th2 cytokines might have a role in ACAID. However, contrary to the tumor model, in this study we show that NKT cells from IL-13-deficient mice or IL-4/IL-13 double deficient mice were able to reconstitute the capability of J alpha18-deficient mice (lacking invariant NKT) to develop peripheral tolerance postintracameral inoculation of Ag. Also, we were able to induce peripheral tolerance directly in IL-13-deficient, IL-4/IL-13-double deficient, and STAT6-deficient mice by inoculation of Ag into their eye. We conclude that neither IL-4 nor IL-13 cytokines are required for the generation of efferent CD8+ T regulatory cells during eye-induced peripheral tolerance. We propose that Ags inoculated into the anterior chamber of the eye induce the immunoresponse to deviate from producing immune T effector cells to producing efferent T regulatory cells, rather than deviating from Th1- to Th2-type effector cells.
Collapse
Affiliation(s)
- Takahiko Nakamura
- Ocular Immunology Group, Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
20
|
Nieuwenhuis EES, Gillessen S, Scheper RJ, Exley MA, Taniguchi M, Balk SP, Strominger JL, Dranoff G, Blumberg RS, Wilson SB. CD1d and CD1d-restricted iNKT-cells play a pivotal role in contact hypersensitivity. Exp Dermatol 2005; 14:250-8. [PMID: 15810882 DOI: 10.1111/j.0906-6705.2005.00289.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CD1d-restricted T-cells are activated by glycolipids presented by the major histocompatibility complex class-Ib molecule CD1d, found on the surface of antigen-presenting cells (APC). This interaction between APC, most notably dendritic cells (DC), and CD1d-restricted T-cells is an important regulatory step in the initiation of adaptive immune responses. It is well known that DC play a crucial role in the induction of contact hypersensitivity (CHS), a frequently studied form of in vivo T-cell-mediated immunity. In this study, we show that CD1d-restricted T-cells are also necessary for CHS, because both wild-type mice treated systemically or topically with CD1d glycolipid antagonists and CD1d-restricted T-cell-null mice have markedly diminished CHS responses. Thus, pharmacologic antagonists of CD1d can be used as effective inhibitors of CHS, a prototype for a variety of delayed-type tissue hypersensitivity responses.
Collapse
MESH Headings
- Administration, Topical
- Animals
- Antigen Presentation
- Antigens, CD1/metabolism
- Antigens, CD1/physiology
- Antigens, CD1d
- Cell Line
- Dendritic Cells/cytology
- Dermatitis/pathology
- Dermatitis, Contact/metabolism
- Dose-Response Relationship, Drug
- Glycolipids/chemistry
- Hypersensitivity
- Killer Cells, Natural/cytology
- Killer Cells, Natural/metabolism
- Major Histocompatibility Complex
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Oxazolone/chemistry
- Oxazolone/pharmacology
- Phosphatidylethanolamines/pharmacology
- Polyethylene Glycols/pharmacology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
Collapse
|
21
|
Current World Literature. Curr Opin Allergy Clin Immunol 2005. [DOI: 10.1097/01.all.0000162314.10050.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Huang S, Gilfillan S, Cella M, Miley MJ, Lantz O, Lybarger L, Fremont DH, Hansen TH. Evidence for MR1 antigen presentation to mucosal-associated invariant T cells. J Biol Chem 2005; 280:21183-93. [PMID: 15802267 DOI: 10.1074/jbc.m501087200] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The novel class Ib molecule MR1 is highly conserved in mammals, particularly in its alpha1/alpha2 domains. Recent studies demonstrated that MR1 expression is required for development and expansion of a small population of T cells expressing an invariant T cell receptor (TCR) alpha chain called mucosal-associated invariant T (MAIT) cells. Despite these intriguing properties it has been difficult to determine whether MR1 expression and MAIT cell recognition is ligand-dependent. To address these outstanding questions, monoclonal antibodies were produced in MR1 knock-out mice immunized with recombinant MR1 protein, and a series of MR1 mutations were generated at sites previously shown to disrupt the ability of class Ia molecules to bind peptide or TCR. Here we show that 1) MR1 molecules are detected by monoclonal antibodies in either an open or folded conformation that correlates precisely with peptide-induced conformational changes in class Ia molecules, 2) only the folded MR1 conformer activated 2/2 MAIT hybridoma cells tested, 3) the pattern of MAIT cell activation by the MR1 mutants implies the MR1/TCR orientation is strikingly similar to published major histocompatibility complex/alphabetaTCR engagements, 4) all the MR1 mutations tested and found to severely reduce surface expression of folded molecules were located in the putative ligand binding groove, and 5) certain groove mutants of MR1 that are highly expressed on the cell surface disrupt MAIT cell activation. These combined data strongly support the conclusion that MR1 has an antigen presentation function.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|