1
|
Zurmühl N, Schmitt A, Formentini U, Weiss J, Appel H, Debatin KM, Fabricius D. Differential uptake of three clinically relevant allergens by human plasmacytoid dendritic cells. Clin Mol Allergy 2021; 19:23. [PMID: 34789269 PMCID: PMC8597288 DOI: 10.1186/s12948-021-00163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022] Open
Abstract
Background Human plasmacytoid dendritic cells (pDC) have a dual role as interferon-producing and antigen-presenting cells. Their relevance for allergic diseases is controversial. and the impact of pDC on allergic immune responses is poorly understood. Methods This in vitro study on human pDC isolated from peripheral blood was designed to compare side by side the uptake of three clinically relevant representative allergens: fluorochrome-labeled house dust mite Der p 1, Bee venom extract from Apis mellifera (Api) and the food allergen OVA analyzed flow cytometry and confocal microscopy. Results We found that the internalization and its regulation by TLR9 ligation was significantly different between allergens in terms of time course and strength of uptake. Api and OVA uptake in pDC of healthy subjects was faster and reached higher levels than Der p 1 uptake. CpG ODN 2006 suppressed OVA uptake and to a lesser extent Der p 1, while Api internalization was not affected. All allergens colocalized with LAMP1 and EEA1, with Api being internalized particularly fast and reaching highest intracellular levels in pDC. Of note, we could not determine any specific differences in antigen uptake in allergic compared with healthy subjects. Conclusions To our knowledge this is the first study that directly compares uptake regulation of clinically relevant inhalative, injective and food allergens in pDC. Our findings may help to explain differences in the onset and severity of allergic reactions as well as in the efficiency of AIT. Supplementary Information The online version contains supplementary material available at 10.1186/s12948-021-00163-8.
Collapse
Affiliation(s)
- Noelle Zurmühl
- Department of Pediatrics, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Anna Schmitt
- Department of Pediatrics, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Ulrike Formentini
- Department of Pediatrics, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Johannes Weiss
- Department of Dermatology and Allergic Diseases, University Medical Center Ulm, Ulm, Germany
| | - Heike Appel
- Department of Otolaryngology, Ulm University, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Dorit Fabricius
- Department of Pediatrics, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany.
| |
Collapse
|
2
|
Entwicklung der subkutanen Allergen-Immuntherapie (Teil 2): präventive Aspekte der SCIT und Innovationen. ALLERGO JOURNAL 2019. [DOI: 10.1007/s15007-019-1847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
3
|
Development of subcutaneous allergen immunotherapy (part 2): preventive aspects and innovations. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40629-019-0097-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Virus-like particles in der Prophylaxe und Immuntherapie allergischer Erkrankungen. ALLERGO JOURNAL 2018. [DOI: 10.1007/s15007-018-1763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Kell SA, Kachura MA, Renn A, Traquina P, Coffman RL, Campbell JD. Preclinical development of the TLR9 agonist DV281 as an inhaled aerosolized immunotherapeutic for lung cancer: Pharmacological profile in mice, non-human primates, and human primary cells. Int Immunopharmacol 2018; 66:296-308. [PMID: 30502651 DOI: 10.1016/j.intimp.2018.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 11/18/2022]
Abstract
CpG-motif-containing oligodeoxynucleotides (CpG-ODN) activate innate immunity through Toll-Like Receptor (TLR) 9 signaling and generate local immune responses when delivered directly to the lung. Herein we describe pharmacological studies in mice, cynomolgus monkeys, and in human primary cells which support the development of DV281, a C-class CpG-ODN, as an inhaled aerosolized immunotherapeutic for lung cancer to be combined with an inhibitor of the anti-programmed cell death protein 1 (PD‑1) immune checkpoint. In vitro, DV281 potently induced Interferon (IFN)‑α from monkey and human peripheral blood mononuclear cells (PBMCs), stimulated interleukin‑6 production and proliferation in human B cells, and induced TLR9-dependent cytokine responses from mouse splenocytes. Intranasal delivery of DV281 to mice led to substantial but transient cytokine and chemokine responses in the lung. Lung responses to repeated intranasal DV281 were partially to fully reversible 2 weeks after the final dose and were absent in TLR9-deficient mice. Single escalating doses of aerosolized DV281 in monkeys induced dose-dependent induction of IFN-regulated genes in bronchoalveolar lavage cells and blood. In a repeat-dose safety study in monkeys, inhaled DV281 was well-tolerated, and findings were mechanism of action-related and non-adverse. Co-culture of human PBMC with DV281 and anti-PD‑1 antibody did not augment cytokine or cellular proliferation responses compared to DV281 alone, indicating that the combination did not lead to dysregulated cytokine responses. These studies support clinical development of inhaled aerosolized DV281 as a combination therapy with anti-PD‑1 antibody for lung cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Alex Renn
- Dynavax Technologies, Berkeley, CA, USA
| | | | | | | |
Collapse
|
6
|
Huang C, Wang J, Zheng X, Chen Y, Wei H, Sun R, Tian Z. Activation of TLR Signaling in Sensitization-Recruited Inflammatory Monocytes Attenuates OVA-Induced Allergic Asthma. Front Immunol 2018; 9:2591. [PMID: 30510553 PMCID: PMC6252340 DOI: 10.3389/fimmu.2018.02591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
The activation of Toll-like receptor (TLR) signaling is widely reported to be involved in preventing the development of allergic asthma. However, the mechanism of the protective function of TLR signaling remains limited. Here, we studied the mouse model of ovalbumin (OVA)-induced allergic asthma and found that deficiency of TLR signaling or activating TLR signaling with agonist would aggravate or attenuate OVA-induced allergic asthma, respectively, and TLR signaling-mediated protective effect mainly affected the sensitization phase. After OVA/alum sensitization, neutrophils and inflammatory monocytes were recruited into peritoneal cavity and up-regulated TLRs expression. However, adoptive transfer of inflammatory monocytes but not peritoneal macrophages or neutrophils induced allergic symptoms in recipient mice after OVA challenge even without OVA/alum sensitization, and treating the inflammatory monocytes with TLR agonist in vitro before transfer could abolish this effect, indicating that recruited inflammatory monocytes played a determinant role in OVA-induced allergic asthma, and activation of TLR signaling in them could attenuate allergic symptoms. Finally, we found that activation of TLR signaling could increase the expression of T-helper (Th) 1-associated cytokines in inflammatory monocytes. Our results suggest that activation of TLR signaling in sensitization-recruited inflammatory monocytes attenuates OVA-induced allergic asthma by promoting the expression of Th1-associated cytokines.
Collapse
Affiliation(s)
- Chao Huang
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Jian Wang
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Xiaodong Zheng
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Yongyan Chen
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Scheiblhofer S, Thalhamer J, Weiss R. DNA and mRNA vaccination against allergies. Pediatr Allergy Immunol 2018; 29:679-688. [PMID: 30063806 PMCID: PMC6283005 DOI: 10.1111/pai.12964] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/09/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
Abstract
Allergen-specific immunotherapy, which is performed by subcutaneous injection or sublingual application of allergen extracts, represents an effective treatment against type I allergic diseases. However, due to the long duration and adverse reactions, only a minority of patients decides to undergo this treatment. Alternatively, early prophylactic intervention in young children has been proposed to stop the increase in patient numbers. Plasmid DNA and mRNA vaccines encoding allergens have been shown to induce T helper 1 as well as T regulatory responses, which modulate or counteract allergic T helper 2-biased reactions. With regard to prophylactic immunization, additional safety measurements are required. In contrast to crude extracts, genetic vaccines provide the allergen at high purity. Moreover, by targeting the encoded allergen to subcellular compartments for degradation, release of native allergen can be avoided. Due to inherent safety features, mRNA vaccines could be the candidates of choice for preventive allergy immunizations. The subtle priming of T helper 1 immunity induced by this vaccine type closely resembles responses of non-allergic individuals and-by boosting via natural allergen exposure-could suffice for long-term protection from type I allergy.
Collapse
Affiliation(s)
| | - Josef Thalhamer
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
8
|
Klimek L, Kündig T, Kramer MF, Guethoff S, Jensen-Jarolim E, Schmidt-Weber CB, Palomares O, Mohsen MO, Jakob T, Bachmann M. Virus-like particles (VLP) in prophylaxis and immunotherapy of allergic diseases. ALLERGO JOURNAL INTERNATIONAL 2018; 27:245-255. [PMID: 30546996 PMCID: PMC6267129 DOI: 10.1007/s40629-018-0074-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/17/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Apart from active allergen avoidance, immunotherapy is regarded as the most effective form of treatment available for type I allergies. Such treatments involve the administration of allergen preparations in various forms and by various routes. Virus-like particles (VLPs) offer a very effective platform for immunization with the allergen and are characterized by high immunogenicity, low allergenicity and high clinical efficacy. Formulations that include Toll-like receptor ligands, T cell stimulatory epitopes and/or depot-forming adjuvants appear to enhance activation of the relevant immune cells. Short nucleotide sequences including CpG motifs have also been intensively explored as potent stimulators of dendritic cells and B cells. METHODS The present paper is based on a systematic literature search in PubMed and MEDLINE, and focuses on the pertinent immunological processes and on clinical data relating to use of VLPs and CpG motifs for the treatment of allergic rhinitis (AR). RESULTS Many published studies have reported positive clinical results following administration of VLPs, either alone or in combination with CpG motifs and, in some cases, even in the absence of the allergen-specific allergen. CONCLUSIONS These results indicate that VLPs modulate immune responses in ways which underline their exceptional promise as a platform for the immunotherapy of allergic disorders. However, clinical evaluations remain limited, and further large-scale and longer-term studies will be necessary to substantiate the efficacy and safety of these novel therapies.
Collapse
Affiliation(s)
- Ludger Klimek
- Center for Rhinology & Allergology, Wiesbaden, Germany
| | - Thomas Kündig
- Department for Dermatology, University Hospital Zürich, Zurich, Switzerland
| | - Matthias F. Kramer
- Bencard Allergie GmbH, Munich, Germany
- Allergy Therapeutics plc, Worthing, UK
| | - Sonja Guethoff
- Bencard Allergie GmbH, Munich, Germany
- Allergy Therapeutics plc, Worthing, UK
| | - Erika Jensen-Jarolim
- Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Inter-University Messerli Science Institute, Veterinary University Vienna, Vienna, Austria
| | - Carsten B. Schmidt-Weber
- Center for Allergy and Environmental Resarch (ZAUM), Technical University and Helmholtz-Center, Munich, Germany
| | - Oskar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | | | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center Gießen and Marburg, Campus Gießen, Justus-Liebig-University, Gießen, Germany
| | - Martin Bachmann
- Jenner Institute, University of Oxford, Oxford, UK
- Inselspital, University Department for Rheumatology, Immunology and Allergology, Sahlihaus 1, 3010 Bern, Switzerland
| |
Collapse
|
9
|
Huang C, Wang J, Zheng X, Chen Y, Zhou R, Wei H, Sun R, Tian Z. Commensal bacteria aggravate allergic asthma via NLRP3/IL-1β signaling in post-weaning mice. J Autoimmun 2018; 93:104-113. [PMID: 30146006 DOI: 10.1016/j.jaut.2018.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/01/2018] [Indexed: 12/20/2022]
Abstract
Perturbation of commensal bacteria by antibiotic exposure aggravates ovalbumin (OVA)-induced allergic asthma in pre-weaning mice. However, the influence of dysbiosis of commensal bacteria on asthma development in post-weaning mice is still limited. Here, we treated 3-week-old post-weaning mice with antibiotics to disrupt commensal bacteria and then established OVA-induced allergic asthma by peritoneal sensitization using OVA/alum and intranasal challenge with OVA. Contrary to the protective function in pre-weaning mice, commensal bacteria in post-weaning mice aggravated OVA-induced asthma. Commensal bacteria in post-weaning mice promoted OVA-induced allergic asthma through maintenance of NLRP3/IL-1β expression in peritoneal macrophages (pMφ), which promoted recruitment of inflammatory cells, especially inflammatory monocytes, into the peritoneal cavity after OVA/alum sensitization. Further study showed that metronidazole- and vancomycin-sensitive bacteria are involved in maintenance of NLRP3/IL-1β signal in pMφ. Our results suggest that certain species of commensal bacteria in post-weaning mice aggravate OVA-induced allergic asthma through NLRP3/IL-1β signal pathway.
Collapse
Affiliation(s)
- Chao Huang
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jian Wang
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Xiaodong Zheng
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yongyan Chen
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Rongbin Zhou
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haiming Wei
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Rui Sun
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhigang Tian
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
10
|
Li SL, Yu Y, Yang P, Wang H, Zhang C, Liu M, Zhang JX, Shen T, Wu C, Zhu QX. Trichloroethylene Alters Th1/Th2/Th17/Treg Paradigm in Mice: A Novel Mechanism for Chemically Induced Autoimmunity. Int J Toxicol 2018; 37:155-163. [PMID: 29554824 DOI: 10.1177/1091581818757036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The role of environmental factors in autoimmune diseases has been increasingly recognized. While major advance has been made in understanding biological pathogen-induced autoimmune diseases, chemically triggered autoimmunity is poorly understood. Trichloroethylene (TCE), a common environmental pollutant, has recently been shown to induce autoimmunity. This study explored whether TCE could cause imbalance of T helper (Th) cell subsets which would contribute to the pathogenesis of TCE-induced medicamentosa-like dermatitis. BALB/c mice were treated with TCE via drinking water at doses of 2.5 or 5.0 mg/mL for 2, 4, 8, 12, and 16 weeks. Trichloroethylene exposure caused time- and dose-dependent increase in Th1, Th2, and Th17 and decrease in regulatory cell (Treg) in the spleen at 2, 4, 8, 12, and 16 weeks, with greatest changes mainly at 4 weeks. These effects were mirrored by similar changes in the expression of their corresponding cytokines interferon-γ, interleukin 4 (IL-4), IL-17A, and IL-10. Mechanistically, these phenotypic changes were accounted for by alterations to their respective master transcription factors T-box expressed in T cells, GATA-binding protein 3, Retinoic acid-related orphan receptor ct (RORct), and forkhead box P3. Of interest, TCE treatment shifted the ratios of Th1/Th2 and Th17/Treg; specifically, TCE increased Th17/Treg. These findings provide the first evidence that TCE exposure significantly changes the Th1/Th2/Th17/Treg paradigm and their specific cytokines driven by altered master transcription factors. This may promote autoimmune reactions in the pathogenesis of TCE-induced skin sensitization and associated damage to other tissues.
Collapse
Affiliation(s)
- Shu-Long Li
- 1 Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- 2 Center for Scientific Research, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yun Yu
- 1 Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Peng Yang
- 3 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hui Wang
- 4 Department of Nutrition, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Cheng Zhang
- 3 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Min Liu
- 3 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jia-Xiang Zhang
- 1 Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- 3 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Tong Shen
- 1 Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- 3 Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Changhao Wu
- 5 Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Qi-Xing Zhu
- 1 Institute of Dermatology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
11
|
Kachura MA, Hickle C, Kell SA, Sathe A, Calacsan C, Kiwan R, Hall B, Milley R, Ott G, Coffman RL, Kanzler H, Campbell JD. A CpG-Ficoll Nanoparticle Adjuvant for Anthrax Protective Antigen Enhances Immunogenicity and Provides Single-Immunization Protection against Inhaled Anthrax in Monkeys. THE JOURNAL OF IMMUNOLOGY 2015; 196:284-97. [PMID: 26608924 DOI: 10.4049/jimmunol.1501903] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/30/2015] [Indexed: 01/07/2023]
Abstract
Nanoparticulate delivery systems for vaccine adjuvants, designed to enhance targeting of secondary lymphoid organs and activation of APCs, have shown substantial promise for enhanced immunopotentiation. We investigated the adjuvant activity of synthetic oligonucleotides containing CpG-rich motifs linked to the sucrose polymer Ficoll, forming soluble 50-nm particles (DV230-Ficoll), each containing >100 molecules of the TLR9 ligand, DV230. DV230-Ficoll was evaluated as an adjuvant for a candidate vaccine for anthrax using recombinant protective Ag (rPA) from Bacillus anthracis. A single immunization with rPA plus DV230-Ficoll induced 10-fold higher titers of toxin-neutralizing Abs in cynomolgus monkeys at 2 wk compared with animals immunized with equivalent amounts of monomeric DV230. Monkeys immunized either once or twice with rPA plus DV230-Ficoll were completely protected from challenge with 200 LD50 aerosolized anthrax spores. In mice, DV230-Ficoll was more potent than DV230 for the induction of innate immune responses at the injection site and draining lymph nodes. DV230-Ficoll was preferentially colocalized with rPA in key APC populations and induced greater maturation marker expression (CD69 and CD86) on these cells and stronger germinal center B and T cell responses, relative to DV230. DV230-Ficoll was also preferentially retained at the injection site and draining lymph nodes and produced fewer systemic inflammatory responses. These findings support the development of DV230-Ficoll as an adjuvant platform, particularly for vaccines such as for anthrax, for which rapid induction of protective immunity and memory with a single injection is very important.
Collapse
Affiliation(s)
| | | | | | - Atul Sathe
- Dynavax Technologies, Berkeley, CA 94710; and
| | | | | | - Brian Hall
- Amnis Corp., EMD Millipore, Seattle, WA 98119
| | | | - Gary Ott
- Dynavax Technologies, Berkeley, CA 94710; and
| | | | | | | |
Collapse
|
12
|
Nencini F, Pratesi S, Petroni G, Filì L, Cardilicchia E, Casini A, Occhiato EG, Calosi L, Bani D, Romagnani S, Maggi E, Parronchi P, Vultaggio A. Treatment with 8-OH-modified adenine (TLR7 ligand)-allergen conjugates decreases T helper type 2-oriented murine airway inflammation. Immunology 2015; 145:570-82. [PMID: 25930741 PMCID: PMC4515136 DOI: 10.1111/imm.12475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 04/09/2015] [Accepted: 04/27/2015] [Indexed: 01/16/2023] Open
Abstract
A strategy to improve allergen-specific immunotherapy is to employ new adjuvants stably linked to allergens. The study is addressed to evaluate the in vivo and in vitro effects of allergens [natural Dermatophagoides pteronyssinus 2 (nDer p 2) and ovalbumin (OVA)] chemically bound to an 8-OH-modified adenine. Humoral and cellular responses were analysed in allergen-sensitized and challenged mice by using conjugates (Conj) in a therapeutic setting. The in vitro activity of the conjugates on cytokine production induced by bone marrow dendritic cells and the co-culture system was also investigated. The nDer p 2-Conj treatment in nDer p 2-primed and challenged BALB/c mice reduced the numbers of eosinophils in bronchoalveolar lavage fluid and lung, airway allergen-driven interleukin-13 (IL-13) production in lung mononuclear cells and IgE, in comparison with nDer p 2-treated mice. The increase of IgG2a paralleled that of interferon-γ (IFN-γ) and IL-10 in allergen-stimulated spleen cells. Similar effects were elicited by treatment with OVA-Conj in an OVA-driven BALB/c model. The nDer p 2-Conj or OVA-Conj redirected memory T helper type 2 cells towards the production of IL-10 and IFN-γ also in C57BL/6 mice and when subcutaneously administered. Interleukin-10, IL-12 and IL-27 were produced in vitro by Conj-stimulated bone marrow dendritic cells, whereas IL-10 and IFN-γ were up-regulated in co-cultures of CD11c+ and CD4+ T cells from Conj-treated mice stimulated with allergen. Cytofluorometric analysis indicated that the Conj expanded IFN-γ- and IL-10- producing memory T cells. The Conj effects on IL-10−/− and IL-12−/− mice confirmed the role of IL-10 and IFN-γ in inducing a protective and balanced redirection the T helper type 2-mediated airway inflammation.
Collapse
Affiliation(s)
- Francesca Nencini
- Department of Experimental and Clinical Medicine, Centre for Research, Transfer and High Education DENOTHE, Florence, Italy
| | - Sara Pratesi
- Department of Experimental and Clinical Medicine, Centre for Research, Transfer and High Education DENOTHE, Florence, Italy
| | - Giulia Petroni
- Department of Experimental and Clinical Medicine, Centre for Research, Transfer and High Education DENOTHE, Florence, Italy
| | - Lucia Filì
- Department of Experimental and Clinical Medicine, Centre for Research, Transfer and High Education DENOTHE, Florence, Italy
| | - Elisa Cardilicchia
- Department of Experimental and Clinical Medicine, Centre for Research, Transfer and High Education DENOTHE, Florence, Italy
| | - Andrea Casini
- Department of Chemistry 'Ugo Schiff', University of Florence, Florence, Italy
| | | | - Laura Calosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Sergio Romagnani
- Department of Experimental and Clinical Medicine, Centre for Research, Transfer and High Education DENOTHE, Florence, Italy
| | - Enrico Maggi
- Department of Experimental and Clinical Medicine, Centre for Research, Transfer and High Education DENOTHE, Florence, Italy
| | - Paola Parronchi
- Department of Experimental and Clinical Medicine, Centre for Research, Transfer and High Education DENOTHE, Florence, Italy
| | - Alessandra Vultaggio
- Immunoallergology Unit, Department of Biomedicine, Careggi Hospital, Florence, Italy
| |
Collapse
|
13
|
Abstract
Type 2 immune responses are defined by the cytokines interleukin-4 (IL-4), IL-5, IL-9 and IL-13, which can either be host protective or have pathogenic activity. Type 2 immunity promotes antihelminth immunity, suppresses type 1-driven autoimmune disease, neutralizes toxins, maintains metabolic homeostasis, and regulates wound repair and tissue regeneration pathways following infection or injury. Nevertheless, when type 2 responses are dysregulated, they can become important drivers of disease. Type 2 immunity induces a complex inflammatory response characterized by eosinophils, mast cells, basophils, type 2 innate lymphoid cells, IL-4-and/or IL-13-conditioned macrophages and T helper 2 (TH2) cells, which are crucial to the pathogenesis of many allergic and fibrotic disorders. As chronic type 2 immune responses promote disease, the mechanisms that regulate their maintenance are thought to function as crucial disease modifiers. This Review discusses the many endogenous negative regulatory mechanisms that antagonize type 2 immunity and highlights how therapies that target some of these pathways are being developed to treat type 2-mediated disease.
Collapse
Affiliation(s)
- Thomas A Wynn
- Immunopathogenesis Section, Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| |
Collapse
|
14
|
Abstract
Type 2 immune responses are defined by the cytokines interleukin-4 (IL-4), IL-5, IL-9 and IL-13, which can either be host protective or have pathogenic activity. Type 2 immunity promotes antihelminth immunity, suppresses type 1-driven autoimmune disease, neutralizes toxins, maintains metabolic homeostasis, and regulates wound repair and tissue regeneration pathways following infection or injury. Nevertheless, when type 2 responses are dysregulated, they can become important drivers of disease. Type 2 immunity induces a complex inflammatory response characterized by eosinophils, mast cells, basophils, type 2 innate lymphoid cells, IL-4-and/or IL-13-conditioned macrophages and T helper 2 (TH2) cells, which are crucial to the pathogenesis of many allergic and fibrotic disorders. As chronic type 2 immune responses promote disease, the mechanisms that regulate their maintenance are thought to function as crucial disease modifiers. This Review discusses the many endogenous negative regulatory mechanisms that antagonize type 2 immunity and highlights how therapies that target some of these pathways are being developed to treat type 2-mediated disease.
Collapse
|
15
|
Gursel M, Klinman DM. Use of CpG Oligonucleotides as Mucosal Adjuvants. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Kündig TM, Klimek L, Schendzielorz P, Renner WA, Senti G, Bachmann MF. Is The Allergen Really Needed in Allergy Immunotherapy? CURRENT TREATMENT OPTIONS IN ALLERGY 2014; 2:72-82. [PMID: 25722959 PMCID: PMC4335088 DOI: 10.1007/s40521-014-0038-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Immunotherapy for type I allergies is well established and is regarded to be the most efficient treatment option besides allergen avoidance. As of today, different forms of allergen preparations are used in this regard, as well as different routes of application. Virus-like particles (VLPs) represent a potent vaccine platform with proven immunogenicity and clinical efficacy. The addition of toll-like receptor ligands and/or depot-forming adjuvants further enhances activation of innate as well as adaptive immune responses. CpG motifs represent intensively investigated and potent direct stimulators of plasmacytoid dendritic cells and B cells, while T cell responses are enhanced indirectly through increased antigen presentation and cytokine release. This article will focus on the function of VLPs loaded with DNA rich in nonmethylated CG motifs (CpGs) and the clinical experience gained in the treatment of allergic rhinitis, demonstrating clinical efficacy also if administered without allergens. Several published studies have demonstrated a beneficial impact on allergic symptoms by treatment with CpG-loaded VLPs. Subcutaneous injection of VLPs loaded with CpGs was tested with or without the adjuvant alum in the presence or absence of an allergen. The results encourage further investigation of VLPs and CpG motifs in immunotherapy, either as a stand-alone product or as adjuvants for allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Thomas M Kündig
- Dermatology Department, Zurich University Hospital, Gloriastr. 31, 8091 Zurich, Switzerland
| | - Ludger Klimek
- Zentrum für Rhinologie und Allergologie, Wiesbaden, Germany
| | | | | | | | - Martin F Bachmann
- Dermatology Department, Zurich University Hospital, Gloriastr. 31, 8091 Zurich, Switzerland ; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
17
|
Tabeling C, Scheer H, Schönrock SM, Runge F, Gutbier B, Lienau J, Hamelmann E, Opitz B, Suttorp N, Mayer K, Behrens GM, Tschernig T, Witzenrath M. Nucleotide oligomerization domain 1 ligation suppressed murine allergen-specific T-cell proliferation and airway hyperresponsiveness. Am J Respir Cell Mol Biol 2014; 50:903-11. [PMID: 24279792 DOI: 10.1165/rcmb.2013-0333oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The cytosolic nucleotide oligomerization domain (NOD)-like receptors NOD1 and NOD2 are important contributors to the intracellular recognition of pathogens including Chlamydophila pneumoniae, but little is known about their influence on allergen-induced airway inflammation. In BALB/c mice, we observed that infection with C. pneumoniae before systemic sensitization with ovalbumin (OVA) and local OVA airway exposure diminished airway hyperresponsiveness (AHR). Thus, the impact of the NOD1 agonist FK156 and the NOD2 agonist muramyl dipeptide given 6 hours before each sensitization or airway challenge was evaluated regarding AHR, OVA-specific plasma immunoglobulins, bronchoalveolar lavage fluid differentials, and cytokines. Spleen dendritic cells of FK156-treated mice were isolated and cocultured with OVA-specific T cells isolated from DO11.10 mice, and T-cell proliferation was quantified after OVA restimulation. T-cell proliferation was investigated in vivo in lungs and lymph nodes of FK156-treated and OVA-exposed DO11.10 mice. FK156, but not muramyl dipeptide, reduced AHR and pulmonary eosinophilic infiltration if given before OVA sensitization or challenge, whereas T-helper (Th)2 cytokines were not diminished. Dendritic cells from FK156-treated mice evoked less OVA-specific T-cell proliferation as compared with solvent-treated controls. Similarly, antigen-specific T-cell activation in lung tissue was diminished after FK156 treatment. We conclude that NOD1 activation reduced AHR in allergen-induced lung inflammation, which was accompanied by a reduction of allergen-specific T-cell proliferation.
Collapse
Affiliation(s)
- Christoph Tabeling
- 1 Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Klimek L, Bachmann MF, Senti G, Kündig TM. Immunotherapy of type-1 allergies with virus-like particles and CpG-motifs. Expert Rev Clin Immunol 2014; 10:1059-67. [PMID: 24898577 DOI: 10.1586/1744666x.2014.924854] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Immunotherapy of type-I-allergies is regarded as the most efficient treatment option besides allergen avoidance. Different forms of allergen preparations are used as well as different routes of application. Virus-like particles represent a potent vaccine platform with proven immunogenicity and clinical efficacy. The addition of toll-like receptor ligands and/or depot-forming adjuvants further enhances immune cell activation. This article will focus on the function of virus-like particles loaded with DNA rich in CpG-motifs and discuss clinical experience in treatment of allergic rhinitis. Evidence will be presented that clinically effective treatment can be obtained even in the absence of allergens. Results encourage further investigation of virus-like particles and CpG-motifs in immunotherapy, either as a stand alone product, or as adjuvants for allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Ludger Klimek
- Center for Rhinology and Allergology, An den Quellen 10, D-65183 Wiesbaden, Germany
| | | | | | | |
Collapse
|
19
|
Castillo J, Dimov V. Investigational drugs for the treatment of allergic rhinitis. Expert Opin Investig Drugs 2014; 23:823-36. [PMID: 24708183 DOI: 10.1517/13543784.2014.907271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Allergic rhinitis is characterized by paroxysms of sneezing, rhinorrhea and nasal obstruction. Its prevalence is increasing in industrialized countries worldwide and imposes a significant economic burden as a result of reduced school performance, work productivity and medical expenses. Allergic rhinitis impairs the quality of life of those affected, and current treatment regimens are inadequate for those whose symptoms are severe or refractory to standard drug therapies. They mainly include symptom control with intranasal glucocorticoids, oral and intranasal antihistamines. AREAS COVERED This article provides a review of the most current literature on research that has focused on improving the efficacy of current treatment regimens and developing new drugs. It also provides the reader with an improved understanding of the pathogenesis of allergic rhinitis, including the inflammatory mediators and cell types involved, which has led to novel treatment options that are under investigation. These new drugs aim to alter the immunologic response to allergens in order to achieve greater clinical efficacy. EXPERT OPINION It is our opinion that despite developments in new therapies, a multidrug approach is vital for successful treatment of allergic rhinitis. Furthermore, immunotherapy in the form of sublingual immunotherapy is a promising additional therapeutic approach that will potentially make immunotherapy available to a wider selection of eligible patients with allergic rhinitis.
Collapse
Affiliation(s)
- Jamee Castillo
- University of Chicago, Department of Internal Medicine , 5841 S. Maryland Ave. MC 7082, Chicago, IL 60637 , USA
| | | |
Collapse
|
20
|
Campbell JD, Kell SA, Kozy HM, Lum JA, Sweetwood R, Chu M, Cunningham CR, Salamon H, Lloyd CM, Coffman RL, Hessel EM. A limited CpG-containing oligodeoxynucleotide therapy regimen induces sustained suppression of allergic airway inflammation in mice. Thorax 2014; 69:565-573. [PMID: 24464743 DOI: 10.1136/thoraxjnl-2013-204605] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND CpG-containing oligodeoxynucleotides (CpG-ODNs) are potent inhibitors of T helper 2 mediated allergic airway disease in sensitised mice challenged with allergen. A single treatment has transient effects but a limited series of treatments has potential to achieve clinically meaningful sustained inhibition of allergic airway disease. OBJECTIVE To optimise the treatment regimen for sustained efficacy and to determine the mechanisms of action in mice of an inhaled form of CpG-ODN being developed for human asthma treatment. METHODS We set up a chronic allergic-asthma model using ragweed-sensitised mice exposed weekly to intranasal ragweed. Using this model, the effects of a limited series of weekly intranasal 1018 ISS (CpG-ODN; B-class) treatments were evaluated during treatment and for several weeks after treatments had stopped but weekly allergen exposures continued. Treatment efficacy was evaluated by measuring effects on lung T helper 2 cytokines and eosinophilia, and lung dendritic cell function and T-cell responses. RESULTS Twelve intranasal 1018 ISS treatments induced significant suppression of bronchoalveolar lavage eosinophilia and interleukin 4, 5 and 13 levels. This suppression of allergic T helper 2 parameters was maintained through 13 weekly ragweed exposures administered after treatment cessation. Subsequent experiments demonstrated that at least five treatments were required for lasting suppression. Although CpG-ODN induced moderate T helper 1 responses, suppression of allergic airway disease did not require interferon γ but was associated with induction of a regulatory T-cell response. CONCLUSIONS A short series of CpG-ODN treatments results in sustained suppression of allergic lung inflammation induced by a clinically relevant allergen.
Collapse
Affiliation(s)
| | | | | | | | | | - Mabel Chu
- Dynavax Technologies, Berkeley, CA 94710
| | | | | | - Clare M Lloyd
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ UK
| | | | | |
Collapse
|
21
|
Wu Q, Chu HW. Role of infections in the induction and development of asthma: genetic and inflammatory drivers. Expert Rev Clin Immunol 2014; 5:97-109. [PMID: 19885377 DOI: 10.1586/1744666x.5.1.97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic and environmental factors interact to initiate and even maintain the course of asthma. As one of the highly risky environmental factors, infections in predisposed individuals can promote asthma development and exacerbations and/or prolong symptoms. This review will describe our current understanding of the genetic markers of innate immunity in the induction and development of asthma, the diverse roles of infections in modulating allergic inflammation, host susceptibility to infections and subsequent acute exacerbations in an allergic setting, and the therapeutic or preventive implications of existing knowledge. Current challenges and future directions in basic and clinical research of asthma are also discussed.
Collapse
Affiliation(s)
- Qun Wu
- Postdoctoral Research Fellow, Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A635, Denver, CO 80206, USA, Tel.: +1 303 398 1589, ,
| | | |
Collapse
|
22
|
Klimek L, Schendzielorz P, Mueller P, Saudan P, Willers J. Immunotherapy of allergic rhinitis: new therapeutic opportunities with virus-like particles filled with CpG motifs. Am J Rhinol Allergy 2013; 27:206-12. [PMID: 23710957 DOI: 10.2500/ajra.2013.27.3875] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The incidence of allergic rhinitis (AR) has increased constantly over the last decades. The disease can significantly lower quality of life and subsequently might progress to allergic asthma. Allergen-specific immunotherapy is mostly used to cope with the cause of the disease. However, incidence of systemic reactions or limited compliance hampers the widespread use of this therapeutic approach. Therefore, new candidates are examined to improve immunotherapy of allergies. Recently, a new technology was developed with the aim to positively influence the immune system of allergic patients. Virus-like particles (VLPs) represent a potent vaccine platform that has been proven to be immunogenic and clinically effective. To enhance immune cell activation, addition of Toll-like receptor ligands and/or depot-forming adjuvants seems to be helpful. In this context, CpG motifs represent intensive investigated and potent stimulators of T cells. This article focuses on the function of VLPs and CpG motifs and their clinical experience for treatment of AR. METHODS A literature review was performed. RESULTS Several published studies showed a beneficial impact of the treatment on allergic symptoms. They tested VLPs filled with or without CpG motifs in combination with or without allergen. CONCLUSION Results encourage further investigations of VLPs and CpG motifs as adjuncts to or even alternative candidates for immunotherapy of allergic disorders.
Collapse
Affiliation(s)
- Ludger Klimek
- Zentrum für Rhinologie and Allergologie, Wiesbaden, Germany.
| | | | | | | | | |
Collapse
|
23
|
Jassies-van der Lee A, Rutten V, Spiering R, van Kooten P, Willemse T, Broere F. The immunostimulatory effect of CpG oligodeoxynucleotides on peripheral blood mononuclear cells of healthy dogs and dogs with atopic dermatitis. Vet J 2013; 200:103-8. [PMID: 24461202 DOI: 10.1016/j.tvjl.2013.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 12/02/2013] [Accepted: 12/14/2013] [Indexed: 11/28/2022]
Abstract
Synthetic oligodeoxynucleotides containing cytosine phosphatidyl guanine-rich DNA sequences (CpG ODN) can promote T-helper type 1 (Th1) responses, reduce T-helper type 2 (Th2) responses and/or favour regulatory T cell (Treg) responses in vitro and in vivo in humans and animals, by acting via Toll-like receptor 9 (TLR9). Since CpG ODN can be used as immune-modulators for canine atopic dermatitis (AD), the aim of the current study was to investigate their immunostimulatory potential on peripheral blood mononuclear cells (PBMC) and their subsets, from AD and healthy dogs. Expression of TLR9 and cytokine mRNA in CpG ODN-stimulated and unstimulated cells was assessed by real-time quantitative PCR. Stimulation of PBMC with CpG class C ODN upregulated mRNA expression of interleukin (IL)-6, interferon (IFN)-γ and IL-12p40 in AD dogs (P<0.05). It also stimulated IFN-γ protein secretion by PBMC of atopic and healthy dogs as measured by ELISA. In healthy dogs only, CpG class C ODN stimulated IFN-α mRNA production by CD21(+) cells, and IL-10, IL-13 and IFN-γ mRNA production by CD3(+) cells. Increased expression of TLR9 mRNA was only observed in CD3(+) cells from AD dogs. No significantly increased gene expression was found in the CD11c(+) subset upon stimulation, for those genes evaluated. The results indicate that PBMC of healthy and atopic dogs are sensitive to stimulation with CpG ODN class C, with a resulting Th1 cytokine response in AD dogs and a mixed Th1/Th2/Treg cytokine response in healthy dogs. From this study, little evidence was found to support the use of CpG ODN class C for therapeutic purposes in dogs affected with AD.
Collapse
Affiliation(s)
- Annette Jassies-van der Lee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Victor Rutten
- Department of Infectious Diseases and Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Rachel Spiering
- Department of Infectious Diseases and Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter van Kooten
- Department of Infectious Diseases and Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ton Willemse
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Department of Infectious Diseases and Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
24
|
Ibañez AE, Smaldini P, Coria LM, Delpino MV, Pacífico LGG, Oliveira SC, Risso GS, Pasquevich KA, Fossati CA, Giambartolomei GH, Docena GH, Cassataro J. Unlipidated outer membrane protein Omp16 (U-Omp16) from Brucella spp. as nasal adjuvant induces a Th1 immune response and modulates the Th2 allergic response to cow's milk proteins. PLoS One 2013; 8:e69438. [PMID: 23861971 PMCID: PMC3703917 DOI: 10.1371/journal.pone.0069438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 06/13/2013] [Indexed: 01/18/2023] Open
Abstract
The discovery of novel mucosal adjuvants will help to develop new formulations to
control infectious and allergic diseases. In this work we demonstrate that
U-Omp16 from Brucella spp. delivered by the nasal
route (i.n.) induced an inflammatory immune response in bronchoalveolar lavage
(BAL) and lung tissues. Nasal co-administration of U-Omp16 with the model
antigen (Ag) ovalbumin (OVA) increased the amount of Ag in lung tissues and
induced OVA-specific systemic IgG and T helper (Th) 1 immune responses. The
usefulness of U-Omp16 was also assessed in a mouse model of food allergy.
U-Omp16 i.n. administration during sensitization ameliorated the
hypersensitivity responses of sensitized mice upon oral exposure to Cow’s Milk
Protein (CMP), decreased clinical signs, reduced anti-CMP IgE serum antibodies
and modulated the Th2 response in favor of Th1 immunity. Thus, U-Omp16 could be
used as a broad Th1 mucosal adjuvant for different Ag formulations.
Collapse
Affiliation(s)
- Andrés E. Ibañez
- Laboratorio de Inmunogenética, INIGEM-CONICET, Hospital de Clínicas “José
de San Martín”, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos
Aires, Argentina
| | - Paola Smaldini
- Laboratorio de Investigaciones del Sistema Inmune (LISIN), Facultad de
Ciencias Exactas, Universidad Nacional de la Plata, Buenos Aires,
Argentina
| | - Lorena M. Coria
- Laboratorio de Inmunogenética, INIGEM-CONICET, Hospital de Clínicas “José
de San Martín”, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos
Aires, Argentina
| | - María V. Delpino
- Laboratorio de Inmunogenética, INIGEM-CONICET, Hospital de Clínicas “José
de San Martín”, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos
Aires, Argentina
| | - Lucila G. G. Pacífico
- Department of Biochemistry and Immunology, Institute of Biological
Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais,
Brazil
| | - Sergio C. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological
Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais,
Brazil
| | - Gabriela S. Risso
- Laboratorio de Inmunogenética, INIGEM-CONICET, Hospital de Clínicas “José
de San Martín”, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos
Aires, Argentina
| | - Karina A. Pasquevich
- Laboratorio de Inmunogenética, INIGEM-CONICET, Hospital de Clínicas “José
de San Martín”, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos
Aires, Argentina
| | - Carlos Alberto Fossati
- Laboratorio de Investigaciones del Sistema Inmune (LISIN), Facultad de
Ciencias Exactas, Universidad Nacional de la Plata, Buenos Aires,
Argentina
- Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Facultad
de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires,
Argentina
| | - Guillermo H. Giambartolomei
- Laboratorio de Inmunogenética, INIGEM-CONICET, Hospital de Clínicas “José
de San Martín”, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos
Aires, Argentina
| | - Guillermo H. Docena
- Laboratorio de Investigaciones del Sistema Inmune (LISIN), Facultad de
Ciencias Exactas, Universidad Nacional de la Plata, Buenos Aires,
Argentina
| | - Juliana Cassataro
- Laboratorio de Inmunogenética, INIGEM-CONICET, Hospital de Clínicas “José
de San Martín”, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos
Aires, Argentina
- * E-mail:
| |
Collapse
|
25
|
Soyer OU, Akdis M, Ring J, Behrendt H, Crameri R, Lauener R, Akdis CA. Mechanisms of peripheral tolerance to allergens. Allergy 2013; 68:161-70. [PMID: 23253293 DOI: 10.1111/all.12085] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2012] [Indexed: 12/24/2022]
Abstract
The immune system is regulated to protect the host from exaggerated stimulatory signals establishing a state of tolerance in healthy individuals. The disequilibrium in immune regulatory vs effector mechanisms results in allergic or autoimmune disorders in genetically predisposed subjects under certain environmental conditions. As demonstrated in allergen-specific immunotherapy and in the healthy immune response to high-dose allergen exposure models in humans, T regulatory cells are essential in the suppression of Th2-mediated inflammation, maintenance of immune tolerance, induction of the two suppressive cytokines interleukin-10 and transforming growth factor-β, inhibition of allergen-specific IgE, and enhancement of IgG4 and IgA. Also, suppression of dendritic cells, mast cells, and eosinophils contributes to the construction of peripheral tolerance to allergens. This review focuses on mechanisms of peripheral tolerance to allergens with special emphasis on recent developments in the area of immune regulation.
Collapse
Affiliation(s)
| | | | | | | | - R. Crameri
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos; Switzerland
| | | | | |
Collapse
|
26
|
Matsui H, Tomizawa H, Eiho K, Kashiwazaki Y, Edwards S, Biffen M, Bell JP, Bahl A, Leishman AJ, Murray CM, Takaku H, Ueda Y. Mechanism of action of inhibition of allergic immune responses by a novel antedrug TLR7 agonist. THE JOURNAL OF IMMUNOLOGY 2012; 189:5194-205. [PMID: 23125414 DOI: 10.4049/jimmunol.1101331] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Triggering innate immune responses through TLRs is expected to be a novel therapeutic strategy for the treatment of allergic diseases. TLR agonists are able to modulate Th2 immune responses through undefined mechanisms. We investigated the mechanism of action of the suppression of Th2 immune responses with a novel antedrug TLR7 agonist. The antedrug is rapidly metabolized by plasma esterases to an acid with reduced activity to limit systemic responses. Topical administration of this compound inhibited features of the allergic airway inflammatory response in rat and murine allergic airways model. Type I IFN played a role in the suppression of Th2 cytokines produced from murine splenocytes. Inhibition of Th2 immune responses with the antedrug TLR7 agonist was shown to be via a type I IFN-dependent mechanism following short-term exposure to the compound, although there might be type I IFN-independent mechanisms following long-term exposure. We have demonstrated that local type I IFN signaling and plasmacytoid dendritic cells, but not Th1 immune responses, are required for in vivo efficacy against murine airway Th2-driven eosinophilia. Furthermore, migration of dendritic cell subsets into the lung was related to efficacy and is dependent on type I IFN signaling. Thus, the mechanism of action at the cytokine and cellular level involved in the suppression of Th2 allergic responses has been characterized, providing a potential new approach to the treatment of allergic disease.
Collapse
Affiliation(s)
- Hiroyuki Matsui
- Pharmacology Research Laboratory, Dainippon Sumitomo Pharma Co., Ltd., Osaka 541-0045, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dicke T, Pali-Schöll I, Kaufmann A, Bauer S, Renz H, Garn H. Absence of unspecific innate immune cell activation by GATA-3-specific DNAzymes. Nucleic Acid Ther 2012; 22:117-26. [PMID: 22428550 DOI: 10.1089/nat.2011.0294] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
DNAzymes of the 10-23 family represent an important class of antisense molecules with implications for therapeutic treatment of diseases. These molecules are single-stranded oligodeoxynucleotides combining the high specificity of oligonucleotide base pairing with an inherent RNA-cleaving enzymatic activity. However, like other oligonucleotide-based molecules these substances might exert so-called off-target effects, which have not been investigated so far for this molecule class. Therefore, the present study investigates putative off-target effects of DNAzymes on innate immune mechanisms using GATA-3-specific DNAzymes that have recently been developed as novel therapeutic approach for the treatment of allergic diseases including allergic asthma. The conserved catalytic domain of 10-23 DNAzymes contains a CpG motif that may stimulate innate immune cells via Toll-like receptor 9 (TLR-9). Therefore, potential TLR-9-mediated as well as TLR-9 independent cell activation was investigated using TLR-9-transfected HEK293 cells, macrophage cell lines and primary innate immune cells. Furthermore, putative effects of GATA-3-specific DNAzymes on the activation of neutrophil granulocytes and degranulation of mast cells/basophils were analyzed. In summary, no innate immune cell-stimulating activities of the tested DNAzymes were observed in any of the systems. Consequently, use of GATA-3-specific DNAzymes may represent a novel and highly specific approach for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Tanja Dicke
- Sterna Biologicals GmbH & Co. KG, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Toll- and NOD-like receptor mRNA expression in canine sino-nasal aspergillosis and idiopathic lymphoplasmacytic rhinitis. Vet Immunol Immunopathol 2012; 145:618-24. [PMID: 22321737 DOI: 10.1016/j.vetimm.2012.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 01/10/2012] [Accepted: 01/14/2012] [Indexed: 12/20/2022]
Abstract
The pathogenesis of canine sino-nasal aspergillosis (SNA) and lymphoplasmacytic rhinitis (LPR) remains poorly understood. The innate immune system is implicated in the etiology of human chronic rhinosinusitis. Therefore, we hypothesized that dysfunction in innate immunity could be implicated in the pathogenesis of SNA and LPR. Expression of messenger RNA (mRNA) encoding Toll-like receptors (TLRs) 1-10 and NOD-like receptors (NODs) 1 and 2 in nasal mucosal biopsies from SNA or LPR dogs was compared with mucosa from healthy controls. Gene expression was quantified using quantitative real-time reverse transcriptase polymerase chain reaction normalized against multiple housekeeper genes. All TLR and NOD genes were quantified in all samples. SNA was associated with significantly increased expression of TLRs 1-4, 6-10; and NOD2, relative to controls. LPR was associated with significantly increased expression of TLRs 1, 2, 6-8, relative to controls. There was significantly more expression of TLRs 1, 4, 6-10 and NOD2 in SNA dogs than in LPR dogs. The significance of these differences in the pathogenesis of these diseases is yet to be determined.
Collapse
|
29
|
Chen K, Xiang Y, Yao X, Liu Y, Gong W, Yoshimura T, Wang JM. The active contribution of Toll-like receptors to allergic airway inflammation. Int Immunopharmacol 2011; 11:1391-8. [PMID: 21624504 PMCID: PMC7398422 DOI: 10.1016/j.intimp.2011.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/02/2011] [Indexed: 01/17/2023]
Abstract
Epithelia lining the respiratory tract represent a major portal of entry for microorganisms and allergens and are equipped with innate and adaptive immune signaling receptors for host protection. These include Toll-like receptors (TLRs) that recognize microbial components and evoke diverse responses in cells of the respiratory system. TLR stimulation by microorganism-derived molecules activates antigen presenting cells, control T helper (Th) 1, Th2, and Th17 immune cell differentiation, cytokine production by mast cells, and activation of eosinophils. It is clear that TLR are involved in the pathophysiology of allergic airway diseases such as asthma. Dendritic cells (DCs), a kind of antigen presenting cells, which play a key role in the induction of allergic airway inflammation, are privileged targets for pathogen associated molecular patterns (PAMPs). During the allergic responses, engagement of TLRs on DCs determines the Th2 polarization of the T cells. TLR signaling in mast cells increases the release of IL-5, and TLR activation of airway epithelial cells forces the generation of proallergic Th2 type of cytokines. Although these responses aim to protect the host, they may also result in inflammatory tissue damage in the airway. Under certain conditions, stimulation of TLRs, in particular, TLR9, may reduce Th2-dependent allergic inflammation by induction of Th1 responses. Therefore, understanding the complex regulatory roles of TLRs in the pathogenesis of allergic airway inflammation should facilitate the development of preventive and therapeutic measures for asthmatic patients.
Collapse
Affiliation(s)
- Keqiang Chen
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Yi Xiang
- Department of Respiration, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Xiaohong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chonqing, 400038, China
| | - Ying Liu
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Wanghua Gong
- SAIC-Frederick, Frederick, MD 21702, United States
| | - Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| |
Collapse
|
30
|
Bosnjak B, Stelzmueller B, Erb KJ, Epstein MM. Treatment of allergic asthma: modulation of Th2 cells and their responses. Respir Res 2011; 12:114. [PMID: 21867534 PMCID: PMC3179723 DOI: 10.1186/1465-9921-12-114] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/25/2011] [Indexed: 02/08/2023] Open
Abstract
Atopic asthma is a chronic inflammatory pulmonary disease characterised by recurrent episodes of wheezy, laboured breathing with an underlying Th2 cell-mediated inflammatory response in the airways. It is currently treated and, more or less, controlled depending on severity, with bronchodilators e.g. long-acting beta agonists and long-acting muscarinic antagonists or anti-inflammatory drugs such as corticosteroids (inhaled or oral), leukotriene modifiers, theophyline and anti-IgE therapy. Unfortunately, none of these treatments are curative and some asthmatic patients do not respond to intense anti-inflammatory therapies. Additionally, the use of long-term oral steroids has many undesired side effects. For this reason, novel and more effective drugs are needed. In this review, we focus on the CD4+ Th2 cells and their products as targets for the development of new drugs to add to the current armamentarium as adjuncts or as potential stand-alone treatments for allergic asthma. We argue that in early disease, the reduction or elimination of allergen-specific Th2 cells will reduce the consequences of repeated allergic inflammatory responses such as lung remodelling without causing generalised immunosuppression.
Collapse
Affiliation(s)
- Berislav Bosnjak
- Department of Dermatology, DIAID, Experimental Allergy Laboratory, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
31
|
Fajt ML, Wenzel SE. Asthma phenotypes in adults and clinical implications. Expert Rev Respir Med 2011; 3:607-25. [PMID: 20477351 DOI: 10.1586/ers.09.57] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is becoming increasingly recognized that asthma is a heterogeneous disease, whether based on clinical factors, including the patient's age at diagnosis, symptom spectrum and treatment response, triggering factors, or the level and type of inflammation. Attempts to analyze the importance of these characteristics to the clinical presentation of asthma have led to the appreciation of numerous separate and overlapping asthma phenotypes. However, these approaches are 'biased' and based on the clinician/scientist's own experience. Recently, unbiased approaches have also been attempted using both molecular and statistical tools. Early results from these approaches have supported and expanded on the clinician's concepts. However, until specific biologic markers are identified for any of these proposed phenotypes, the definitive nature of any phenotype will remain speculative.
Collapse
Affiliation(s)
- Merritt L Fajt
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh Asthma Institute, School of Medicine, UPMC Montefiore, NW 931 Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
32
|
Klimek L, Willers J, Hammann-Haenni A, Pfaar O, Stocker H, Mueller P, Renner WA, Bachmann MF. Assessment of clinical efficacy of CYT003-QbG10 in patients with allergic rhinoconjunctivitis: a phase IIb study. Clin Exp Allergy 2011; 41:1305-12. [PMID: 21672053 DOI: 10.1111/j.1365-2222.2011.03783.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Allergic symptoms are generally caused by exposure to substances to which people have become sensitized. Associated with this is an 'unbalanced' Th1/Th2 immune response with T cell responses skewed towards the production of Th2 cytokines, IL-4, 5, and 13 and high levels of IgE antibodies. Current immune modulating therapies require the use of allergens, carrying the risk to induce potentially severe allergic reactions. OBJECTIVE Goal of the present study was to assess the safety and efficacy of an allergen-free immune modulator in patients suffering from perennial allergy. METHODS In order to be protected from immediate degradation upon injection, a toll-like receptor 9 (TLR9) agonist was packaged into virus-like particles. These nanoparticles loaded with TLR9 ligands (CYT003-QbG10) were injected six times, at weekly intervals, into patients with house dust mite allergy in an attempt to ameliorate allergic symptoms by modifying the immune response towards allergens. Two different doses were compared against placebo in this double-blind, randomized phase IIb study (n=299). Public trial registry: http://clinicaltrials.gov (NCT00800332). RESULTS The treatment was safe and generally well tolerated. Rhinoconjunctivitis symptoms were significantly lower in patients treated with high dose of CYT003-QbG10 as compared with placebo (scores 0.31 vs. 0.52, P=0.04) based on a standardized average combined symptom and medication score. Furthermore, patients in the high dose group reported a significantly better quality of life score post-treatment than patients on placebo (scores 0.71 vs. 1.21, P=0.02). The conjunctival provocation test revealed a median 10-fold increase in allergen tolerance in the high dose group while in the placebo group it remained unchanged. CONCLUSION AND CLINICAL RELEVANCE Treatment with high-dose CYT003-QbG10 improved disease symptoms and reduced medication use in allergic individuals thus providing first evidence for a new potential immunotherapeutic.
Collapse
Affiliation(s)
- L Klimek
- Zentrum fuer Rhinologie & Allergologie, Wiesbaden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Van LP, Bardel E, Gregoire S, Vanoirbeek J, Schneider E, Dy M, Thieblemont N. Treatment with the TLR7 agonist R848 induces regulatory T-cell-mediated suppression of established asthma symptoms. Eur J Immunol 2011; 41:1992-9. [PMID: 21480211 DOI: 10.1002/eji.201040914] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/01/2010] [Accepted: 04/05/2011] [Indexed: 12/27/2022]
Abstract
The evolution of allergic asthma is tightly controlled by effector and regulatory cells, as well as cytokines such as IL-10 and/or TGF-β, and it is widely acknowledged that environmental exposure to allergens and infectious agents can influence these processes. In this context, the recognition of pathogen-associated motifs, which trigger TLR activation pathways, plays a critical role with important consequences for disease progression and outcome. We addressed the question whether the TLR7 ligand resiquimod (R848), which has been shown to be protective in several experimental allergic asthma protocols, can also suppress typical asthma symptoms once the disease is established. To this end, we used an OVA-induced experimental model of murine allergic asthma in which R848 was injected after a series of challenges with aerosolized OVA. We found that the treatment attenuated allergic symptoms through a mechanism that required Tregs, as assessed by the expansion of this population in the lungs of mice having received R848, and the loss of R848-mediated suppression of allergic responses after in vivo Treg depletion. IL-10 provided only a minor contribution to this suppressive effect that was largely mediated through a TGF-β-dependent pathway, a finding that opens new therapeutic opportunities for the pharmacological targeting of Tregs.
Collapse
Affiliation(s)
- Linh Pham Van
- Université Paris Descartes, Hôpital Necker, Paris, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Small animals models for drug discovery. Pulm Pharmacol Ther 2011; 24:513-24. [PMID: 21601000 DOI: 10.1016/j.pupt.2011.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/28/2011] [Accepted: 05/05/2011] [Indexed: 12/17/2022]
Abstract
There has been an explosion of studies of animal models of asthma in the past 20 years. The elucidation of fundamental immunological mechanisms underlying the development of allergy and the complex cytokine and chemokines networks underlying the responses have been substantially unraveled. Translation of findings to human asthma have been slow and hindered by the varied phenotypes that human asthma represents. New areas for expansion of modeling include virally mediated airway inflammation, oxidant stress, and the interactions of stimuli triggering innate immune and adaptive immune responses.
Collapse
|
35
|
Morecki S, Slavin S. Immunoregulation of GVHD by triggering the innate immune system with CpG. Expert Rev Hematol 2011; 2:443-53. [PMID: 21082948 DOI: 10.1586/ehm.09.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Stimulation of Toll-like receptors by oligodeoxynucleotide sequences containing a CpG motif provides signals capable of triggering the innate and adaptive immune systems, thereby leading either to stimulation or suppression of immunoreactivities. Similar immunoregulatory capabilities are necessary for achieving the fine balance between engraftment and graft-versus-host disease required in the setup of allogeneic cell therapy. Ligation of CpG to its Toll-like receptors can be accomplished by treatment of the host or pretransplant treatment of the donor in vivo. These different strategies are presented in this review, which summarizes the attempts to maximize beneficial alloreactivity against malignant or other undesirable host cells, while controlling graft-versus-host disease.
Collapse
Affiliation(s)
- Shoshana Morecki
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Cell Therapy and Transplantation Research Laboratory, Hadassah University Hospital, Jerusalem, Israel.
| | | |
Collapse
|
36
|
|
37
|
Tanaka S, Koizumi SI, Masuko K, Makiuchi N, Aoyagi Y, Quivy E, Mitamura R, Kano T, Ohkuri T, Wakita D, Chamoto K, Kitamura H, Nishimura T. Toll-like receptor-dependent IL-12 production by dendritic cells is required for activation of natural killer cell-mediated Type-1 immunity induced by Chrysanthemum Coronarium L. Int Immunopharmacol 2011; 11:226-32. [DOI: 10.1016/j.intimp.2010.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/15/2010] [Accepted: 11/20/2010] [Indexed: 12/12/2022]
|
38
|
Duechs MJ, Hahn C, Benediktus E, Werner-Klein M, Braun A, Hoymann HG, Gantner F, Erb KJ. TLR agonist mediated suppression of allergic responses is associated with increased innate inflammation in the airways. Pulm Pharmacol Ther 2010; 24:203-14. [PMID: 21195789 DOI: 10.1016/j.pupt.2010.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/30/2010] [Accepted: 12/23/2010] [Indexed: 12/16/2022]
Abstract
Toll-like receptor (TLR) mediated signaling induces pro-inflammatory responses and can both suppress and exacerbate allergic responses in the airways. The aim of our study was to directly compare the efficacy of different TLR agonists in inhibiting or exacerbating the development of Th2-mediated responses in the airways and investigate if the suppressive effects were associated with increased pro-inflammatory responses. Mice were immunized on day 0, 14 and 21 by intraperitoneal injection of ovalbumin/alum and exposed to ovalbumin aerosol on day 26 and 27. TLR2, TLR3, TLR4, TLR7 and TLR9 agonists (0.001, 0.01, 0.1, or 1 mg/kg) were administered intratracheally 1 h before each allergen exposure. Both the TLR7 and TLR9 agonists dose dependently reduced airway eosinophilia, while the TLR3 agonist only reduced airway eosinophilia at a dose of 1.0 mg/kg. The TLR2 and TLR4 agonists potentiated eosinophilia. All TLR agonists enhanced neutrophil numbers at doses as low as 0.01 mg/kg, in particular TLR2 and TLR4 agonists. TLR7 and TLR9 agonists also significantly reduced IL-4 and IL-5 levels and all TLR agonists, with the exception of TLR7, enhanced the amount IL-1β, IL-6, and TNF-α detected in the whole lung lavage. Only application of TLR9 agonist induced detectable levels of IL-10 in the lung. Suppressive effects of the TLR agonists were not dependent upon IFN-γ and IL-10 or associated with increased numbers of Foxp3(+)CD4(+) Tr cells in the lavage fluid. Airway resistance was reduced significantly only when TLR7 agonist was administered. When applied therapeutically 2 days after allergen exposure, all TLR agonists, except TLR2, similarly reduced airway eosinophilia and IL-4 levels. Taken together our results show that TLR7 agonists had the strongest anti-asthmatic effects with the lowest pro-inflammatory potential, suggesting that activating TLR7 may have the greatest potential to treat allergic disorders in humans.
Collapse
Affiliation(s)
- Matthias J Duechs
- Pulmonary Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, H91-02-01, Birkendorferstr 65, D-88397 Biberach ad Riss, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Asthma has been considered a T helper 2 (T(H)2) cell-associated inflammatory disease, and T(H)2-type cytokines, such as interleukin-4 (IL-4), IL-5 and IL-13, are thought to drive the disease pathology in patients. Although atopic asthma has a substantial T(H)2 cell component, the disease is notoriously heterogeneous, and recent evidence has suggested that other T cells also contribute to the development of asthma. Here, we discuss the roles of different T cell subsets in the allergic lung, consider how each subset can contribute to the development of allergic pathology and evaluate how we might manipulate these cells for new asthma therapies.
Collapse
Affiliation(s)
- Clare M Lloyd
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London SW7 2AZ, UK.
| | | |
Collapse
|
40
|
Karp CL. Guilt by intimate association: what makes an allergen an allergen? J Allergy Clin Immunol 2010; 125:955-60; quiz 961-2. [PMID: 20381850 DOI: 10.1016/j.jaci.2010.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/01/2010] [Accepted: 03/03/2010] [Indexed: 12/20/2022]
Abstract
Why specific, ubiquitous, otherwise innocuous environmental proteins tend to provoke maladaptive, T(H)2-polarized immune responses in susceptible hosts is a fundamental mechanistic question for those interested in the pathogenesis, therapy, and prevention of allergic disease. The current renaissance in the study of innate immunity has provided important insights into this question. The theme emerging from recent studies is that direct (dys)functional interactions with pathways of innate immune activation that evolved to signal the presence of microbial infection are central to the molecular basis for allergenicity. This article reviews these data.
Collapse
Affiliation(s)
- Christopher L Karp
- Division of Molecular Immunology, Department of Pediatrics, Cincinnati Children's Hospital Research Foundation, and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
41
|
Mehra D, Sternberg DI, Jia Y, Canfield S, Lemaitre V, Nkyimbeng T, Wilder J, Sonett J, D'Armiento J. Altered lymphocyte trafficking and diminished airway reactivity in transgenic mice expressing human MMP-9 in a mouse model of asthma. Am J Physiol Lung Cell Mol Physiol 2009; 298:L189-96. [PMID: 19940022 DOI: 10.1152/ajplung.00042.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is hypothesized to facilitate leukocyte extravasation and extracellular remodeling in asthmatic airways. Careful descriptive studies have shown that MMP-9 levels are higher in the sputum of asthmatics; however, the consequence of increased MMP-9 activity has not been determined in this disease. We induced asthma in transgenic mice that express human MMP-9 in the murine lung tissue macrophage to determine the direct effect of human MMP-9 expression on airway inflammation. Transgenic (TG) and wild-type (WT) mice were immunized and challenged with ovalbumin. Forty-eight hours after the ovalbumin challenge, airway hyperresponsiveness (AHR) was measured, and inflammatory cell infiltration was evaluated in bronchoalveolar lavage fluid (BALF) and lung tissue. Baseline levels of inflammation were similar in the TG and WT groups of mice, and pulmonary eosinophilia was established in both groups by sensitization and challenge with ovalbumin. There was a significant reduction in AHR in sensitized and challenged trangenics compared with WT controls. Although total BALF cell counts were similar in both groups, the lymphocyte number in the lavage of the TG group was significantly diminished compared with the WT group (0.25 +/- 0.08 vs. 0.89 +/- 0.53; P = 0.0032). In addition, the draining lymphocytes were found to be larger in the TG animals compared with the WT mice. Equal numbers of macrophages, eosinophils, and neutrophils were seen in both groups. IL-13 levels were found to be lower in the sensitized TG compared with the WT mice. These results demonstrate an inverse relationship between human MMP-9 and AHR and suggest that MMP-9 expression alters leukocyte extravasation by reducing lymphocyte accumulation in the walls of asthmatic airways.
Collapse
Affiliation(s)
- Divya Mehra
- Dept. of Medicine, Division of Pulmonary and Molecular Medicine, Columbia Presbyterian Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Takeda K, Dow SW, Miyahara N, Kodama T, Koya T, Taube C, Joetham A, Park JW, Dakhama A, Kedl RM, Gelfand EW. Vaccine-induced CD8+ T cell-dependent suppression of airway hyperresponsiveness and inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 183:181-90. [PMID: 19542429 DOI: 10.4049/jimmunol.0803967] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Suppressing the abnormalities associated with asthma has been difficult to accomplish using immunotherapy or vaccination once the disease is established. The effector cells necessary for effective immunization/vaccination and immunotherapy of asthma are also not well understood. Therefore, we vaccinated allergen (OVA)-sensitized mice to determine whether therapeutic immunization could suppress airway hyperresponsiveness (AHR) and inflammation and to identify key immune effector cells and cytokines. Mice were immunized with a vaccine comprised of Ag and cationic liposome-DNA complexes (CLDC), a vaccine which has previously been shown to elicit strong CD4(+) and CD8(+) T cell responses and activation of Th1 immunity. We showed that immunization with the OVA-CLDC vaccine significantly suppressed AHR, eosinophilia, goblet cell metaplasia, and Th2 cytokine production. In contrast, immunization with CLDC alone suppressed eosinophilia and Th2 cytokine production, but failed to suppress AHR and goblet cell changes. Using adoptive transfer experiments, we found that suppression of AHR was mediated by Ag-specific CD8(+) T cells and was dependent on IFN-gamma production by the transferred T cells. Thus, we conclude that generation of strong, allergen-specific CD8(+) T cell responses by immunization may be capable of suppressing AHR and allergic airway inflammation, even in previously sensitized and challenged mice.
Collapse
Affiliation(s)
- Katsuyuki Takeda
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Campbell JD, Cho Y, Foster ML, Kanzler H, Kachura MA, Lum JA, Ratcliffe MJ, Sathe A, Leishman AJ, Bahl A, McHale M, Coffman RL, Hessel EM. CpG-containing immunostimulatory DNA sequences elicit TNF-alpha-dependent toxicity in rodents but not in humans. J Clin Invest 2009; 119:2564-76. [PMID: 19726873 DOI: 10.1172/jci38294] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 06/10/2009] [Indexed: 12/11/2022] Open
Abstract
CpG-containing immunostimulatory DNA sequences (ISS), which signal through TLR9, are being developed as a therapy for allergic indications and have proven to be safe and well tolerated in humans when administrated via the pulmonary route. In contrast, ISS inhalation has unexplained toxicity in rodents, which express TLR9 in monocyte/macrophage lineage cells as well as in plasmacytoid DCs (pDCs) and B cells, the principal TLR9-expressing cells in humans. We therefore investigated the mechanisms underlying this rodent-specific toxicity and its implications for humans. Mice responded to intranasally administered 1018 ISS, a representative B class ISS, with strictly TLR9-dependent toxicity, including lung inflammation and weight loss, that was fully reversible and pDC and B cell independent. Knockout mouse experiments demonstrated that ISS-induced toxicity was critically dependent on TNF-alpha, with IFN-alpha required for TNF-alpha induction. In contrast, human PBMCs, human alveolar macrophages, and airway-derived cells from Ascaris suum-allergic cynomolgus monkeys did not produce appreciable TNF-alpha in vitro in response to ISS stimulation. Moreover, sputum of allergic humans exposed to inhaled ISS demonstrated induction of IFN-inducible genes but minimal TNF-alpha induction. These data demonstrate that ISS induce rodent-specific TNF-alpha-dependent toxicity that is absent in humans and reflective of differential TLR9 expression patterns in rodents versus humans.
Collapse
Affiliation(s)
- John D Campbell
- Dynavax Technologies Corporation, Berkeley, California 94710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schmitz N, Dietmeier K, Bauer M, Maudrich M, Utzinger S, Muntwiler S, Saudan P, Bachmann MF. Displaying Fel d1 on virus-like particles prevents reactogenicity despite greatly enhanced immunogenicity: a novel therapy for cat allergy. ACTA ACUST UNITED AC 2009; 206:1941-55. [PMID: 19667059 PMCID: PMC2737174 DOI: 10.1084/jem.20090199] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Allergen-specific desensitization is the only disease-modifying therapy currently available for the treatment of allergies. These therapies require application of allergen over several years and some may induce life-threatening anaphylactic reactions. An ideal vaccine for desensitization should be highly immunogenic and should alleviate allergic symptoms upon few injections while being nonreactogenic. We describe such a vaccine for the treatment of cat allergy, consisting of the major cat allergen Fel d1 coupled to bacteriophage Qβ-derived virus-like particles (Qβ–Fel d1). Qβ–Fel d1 was highly immunogenic, and a single vaccination was sufficient to induce protection against type I allergic reactions. Allergen-specific immunoglobulin G antibodies were shown to be the critical effector molecules and alleviated symptoms by two distinct mechanisms. Although allergen-induced systemic basophil degranulation was inhibited in an FcγRIIb-dependent manner, inhibition of local mast cell degranulation in tissues occurred independently of FcγRIIb. In addition, treatment with Qβ–Fel d1 abolished IgE memory responses upon antigen recall. Despite high immunogenicity, the vaccine was essentially nonreactogenic and vaccination induced neither local nor systemic anaphylactic reactions in sensitized mice. Moreover, Qβ–Fel d1 did not induce degranulation of basophils derived from human volunteers with cat allergies. These data suggest that vaccination with Qβ–Fel d1 may be a safe and effective treatment for cat allergy.
Collapse
Affiliation(s)
- Nicole Schmitz
- Department of Immunodrugs, Cytos Biotechnology AG, 8952 Schlieren-Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Constabel H, Stankov MV, Hartwig C, Tschernig T, Behrens GMN. Impaired lung dendritic cell migration and T cell stimulation induced by immunostimulatory oligonucleotides contribute to reduced allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 183:3443-53. [PMID: 19667097 DOI: 10.4049/jimmunol.0804223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CpG-containing oligonucleotides (CpG) have been shown to reduce key features of allergic airway inflammation in mouse models. Given the inhibitory effects of CpG treatment on Ag presentation of subsequently encountered Ags via MHC class I and II molecules by dendritic cells (DC), we hypothesized that intranasal CpG treatment would lead to reduced Ag-specific T cell stimulation in the lung-draining lymph nodes, thereby reducing the inflammatory response in sensitized mice. Intranasal CpG administration led to phenotypic maturation of lung and mediastinal lymph node DC as determined by expression of MHC class II, CD80, and CD86. This was accompanied by a significant reduction in the proliferation of adoptively transferred Ag-specific CD4(+) and CD8(+) T cells in mediastinal lymph nodes, when CpG was given before inhalative OVA challenges. DC obtained from mediastinal lymph nodes of CpG-treated mice before OVA inhalation led to reduced T cell stimulation via MHC class I and II molecules. In addition, CpG diminished airway eosinophilia and pulmonary infiltration after sensitization or following adoptive transfer of Ag-specific Th2 cells. These results were explained by reduced CCL21 expression and inhibition of lung DC migration following CpG administration, which could be restored by transfer of bone marrow-derived DC, because CpG had no major impact on the constitutive MHC class II Ag presentation of protein-derived Ag by lung tissue-derived DC. We conclude that CpG treatment can effectively impair the DC-mediated Ag transport from the lungs to the lymph nodes, resulting in reduced T cell activation and blunted airway inflammation.
Collapse
Affiliation(s)
- Hannelore Constabel
- Clinic for Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
46
|
Wilson HL, Dar A, Napper SK, Marianela Lopez A, Babiuk LA, Mutwiri GK. Immune Mechanisms and Therapeutic Potential of CpG Oligodeoxynucleotides. Int Rev Immunol 2009; 25:183-213. [PMID: 16818371 DOI: 10.1080/08830180600785868] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Unmethylated CpG motifs in bacterial DNA and synthetic oligodeoxynucleotides activate immune cells that express Toll-like Receptor 9. Activation through this receptor triggers cellular signaling that leads to production of a proinflammatory and a Th1-type, antigen-specific immune response. The immunostimulatory effects of CpG oligodeoxynucleotides confer protection against infectious disease, allergy and cancer in animal models, and clinical trials have been initiated. However, CpG oligodeoxynucleotides may exacerbate disease in some situations. We will review current concepts in the mechanisms of activating Toll-like Receptor 9 with CpG oligodeoxynucleotides and highlight opportunities for using large animal models to better determine the mechanisms of action.
Collapse
Affiliation(s)
- Heather L Wilson
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Kool M, van Nimwegen M, Willart MAM, Muskens F, Boon L, Smit JJ, Coyle A, Clausen BE, Hoogsteden HC, Lambrecht BN, Hammad H. An anti-inflammatory role for plasmacytoid dendritic cells in allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 183:1074-82. [PMID: 19553531 DOI: 10.4049/jimmunol.0900471] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It was previously shown that administration of recombinant human Fms-like tyrosine kinase receptor-3 ligand (Flt3L) before allergen challenge of sensitized mice suppresses the cardinal features of asthma through unclear mechanisms. Here, we show that Flt3L dramatically alters the balance of conventional to plasmacytoid dendritic cells (pDCs) in the lung favoring the accumulation of pDCs. Selective removal of pDCs abolished the antiinflammatory effect of Flt3L, suggesting a regulatory role for these cells in ongoing asthmatic inflammation. In support, we found that immature pDCs are recruited to the lungs of allergen-challenged mice irrespective of Flt3L treatment. Selective removal of pDCs during allergen challenge enhanced airway inflammation, whereas adoptive transfer of cultured pDCs before allergen challenge suppressed inflammation. Experiments in which TLR9 agonist CpG motifs were administered in vitro or in vivo demonstrated that pDCs were antiinflammatory irrespective of their maturation state. These effects were mediated through programmed death-1/programmed death ligand 1 interactions, but not through ICOS ligand, IDO, or IFN-alpha. These findings suggest a specialized immunoregulatory role for pDCs in airway inflammation. Enhancing the antiinflammatory properties of pDCs could be employed as a novel strategy in asthma treatment.
Collapse
Affiliation(s)
- Mirjam Kool
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fowell DJ. Signals for the execution of Th2 effector function. Cytokine 2009; 46:1-6. [PMID: 19237299 PMCID: PMC2955979 DOI: 10.1016/j.cyto.2008.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/10/2008] [Accepted: 12/29/2008] [Indexed: 11/16/2022]
Abstract
Appropriate control of infection depends on the generation of lymphocytes armed with a particular array of cytokine and chemokine effector molecules. The differentiation of naïve T cells into functionally distinct effector subsets is regulated by signals from the T cell receptor (TCR) and cytokine receptors. Using gene knock-out approaches, the initiation of discrete effector programs appears differentially sensitive to the loss of individual TCR signaling components; likely due to differences in the transcription factors needed to activate individual cytokine genes. Less well understood however, are the signal requirements for the execution of effector function. With a focus on Th2 cells and the kinase ITK, we review recent observations that point to differences between the signals needed for the initiation and implementation of cytokine programs in CD4+ T cells. Indeed, Th2 effector cells signal differently from both their naïve counterparts and from Th1 effectors suggesting they may transduce activation signals differently or may be selectively receptive to different activation signals. Potential regulation points for effector function lie at the level of transcription and translation of cytokine genes. We also discuss how provision of these execution signals may be spatially segregated in vivo occurring at tissue sites of inflammation and subject to modulation by the pathogen itself.
Collapse
Affiliation(s)
- Deborah J Fowell
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Box 609, Rochester, NY 14642, USA.
| |
Collapse
|
49
|
Coban C, Ishii KJ, Akira S. Immune interventions of human diseases through toll-like receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 655:63-80. [PMID: 20047036 DOI: 10.1007/978-1-4419-1132-2_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Toll-like receptors (TLRs) are the immune sensors for infections, triggering robust innate immune activation followed by protective adaptive immunity against various infectious diseases. Recent evidence, however, has suggested that TLRs are involved in the pathogenesis of many diseases, including not only infectious diseases but also autoimmune diseases, allergy and atherosclerosis. Therefore, prophylactic or therapeutic application of TLR-based immune interventions should be potent, but their safety must be demonstrated using experimental animal models as well as human resources, including analysis of single nucleotide polymorphisms. Here, we focus on recent advances in understanding of the protective and pathogenic roles of TLRs in human diseases.
Collapse
Affiliation(s)
- Cevayir Coban
- Department of Host Defense and 21st Century COE Program Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | | |
Collapse
|
50
|
Wells JW, Choy K, Lloyd CM, Noble A. Suppression of allergic airway inflammation and IgE responses by a class I restricted allergen peptide vaccine. Mucosal Immunol 2009; 2:54-62. [PMID: 19079334 PMCID: PMC3385352 DOI: 10.1038/mi.2008.69] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CD8 T cells are known to deviate CD4 T-cell responses from Th2 toward Th1. Reduction of Th2 cytokines and increased interferon-gamma ameliorates allergic airway disease. We have developed a novel approach to the suppression of allergic airway inflammation, by designing a MHC class I-restricted allergen peptide vaccine, which induces potent and long-lived CD8 T-cell responses. Vaccination of C57BL/6 mice before allergen sensitization completely prevented allergen-specific immunoglobulin E (IgE) antibody responses. Vaccination after sensitization failed to suppress IgE, but inhibited accumulation of eosinophils and neutrophils in airways after subsequent allergen challenge. Vaccination suppressed Th2 airway infiltration and enhanced the lung Th1 response without inducing excessive CD8 cellular infiltration or interleukin-17, and the combination of class I peptide with adjuvant was more effective than adjuvant alone. Airway hyperreactivity was prevented by vaccination in an allergen-specific fashion. Class I peptide vaccines might therefore represent a robust and long-lasting immunotherapeutic strategy in allergic disease.
Collapse
Affiliation(s)
- JW Wells
- King’s College London, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Guy’s Hospital, London, UK
| | - K Choy
- Imperial College London, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, London, UK
| | - CM Lloyd
- Imperial College London, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, London, UK
| | - A Noble
- King’s College London, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Guy’s Hospital, London, UK
| |
Collapse
|