1
|
Endo S, Nishimura N, Toyoda K, Komohara Y, Carreras J, Yuki H, Shichijo T, Ueno S, Ueno N, Hirata S, Kawano Y, Nosaka K, Miyaoka M, Nakamura N, Sato A, Ando K, Mitsuya H, Akashi K, Tenen DG, Yasunaga JI, Matsuoka M, Okuno Y, Tatetsu H. Decreased PU.1 expression in mature B cells induces lymphomagenesis. Cancer Sci 2024. [PMID: 39321027 DOI: 10.1111/cas.16344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/13/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma, accounting for 30% of non-Hodgkin lymphomas. Although comprehensive analysis of genetic abnormalities has led to the classification of lymphomas, the exact mechanism of lymphomagenesis remains elusive. The Ets family transcription factor, PU.1, encoded by Spi1, is essential for the development of myeloid and lymphoid cells. Our previous research illustrated the tumor suppressor function of PU.1 in classical Hodgkin lymphoma and myeloma cells. In the current study, we found that patients with DLBCL exhibited notably reduced PU.1 expression in their lymphoma cells, particularly in the non-germinal center B-cell-like (GCB) subtype. This observation suggests that downregulation of PU.1 may be implicated in DLBCL tumor growth. To further assess PU.1's role in mature B cells in vivo, we generated conditional Spi1 knockout mice using Cγ1-Cre mice. Remarkably, 13 of the 23 knockout mice (56%) showed splenomegaly, lymphadenopathy, or masses, with some having histologically confirmed B-cell lymphomas. In contrast, no wild-type mice developed B-cell lymphoma. In addition, RNA-seq analysis of lymphoma cells from Cγ1-Cre Spi1F/F mice showed high frequency of each monoclonal CDR3 sequence, indicating that these lymphoma cells were monoclonal tumor cells. When these B lymphoma cells were transplanted into immunodeficient recipient mice, all mice died within 3 weeks. Lentiviral-transduced Spi1 rescued 60% of the recipient mice, suggesting that PU.1 has a tumor suppressor function in vivo. Collectively, PU.1 is a tumor suppressor in mature B cells, and decreased PU.1 results in mature B-cell lymphoma development.
Collapse
Affiliation(s)
- Shinya Endo
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Nao Nishimura
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Kosuke Toyoda
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Joaquim Carreras
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Hiromichi Yuki
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Takafumi Shichijo
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Shikiko Ueno
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Niina Ueno
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Shinya Hirata
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Yawara Kawano
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Kisato Nosaka
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Masashi Miyaoka
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Ai Sato
- Department of Hematology-Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Kiyoshi Ando
- Department of Hematology-Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Hiroaki Mitsuya
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Daniel G Tenen
- Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jun-Ichirou Yasunaga
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Yutaka Okuno
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Hiro Tatetsu
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| |
Collapse
|
2
|
Mattos MS, Vandendriessche S, Waisman A, Marques PE. The immunology of B-1 cells: from development to aging. Immun Ageing 2024; 21:54. [PMID: 39095816 PMCID: PMC11295433 DOI: 10.1186/s12979-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
B-1 cells have intricate biology, with distinct function, phenotype and developmental origin from conventional B cells. They generate a B cell receptor with conserved germline characteristics and biased V(D)J recombination, allowing this innate-like lymphocyte to spontaneously produce self-reactive natural antibodies (NAbs) and become activated by immune stimuli in a T cell-independent manner. NAbs were suggested as "rheostats" for the chronic diseases in advanced age. In fact, age-dependent loss of function of NAbs has been associated with clinically-relevant diseases in the elderly, such as atherosclerosis and neurodegenerative disorders. Here, we analyzed comprehensively the ontogeny, phenotypic characteristics, functional properties and emerging roles of B-1 cells and NAbs in health and disease. Additionally, after navigating through the complexities of B-1 cell biology from development to aging, therapeutic opportunities in the field are discussed.
Collapse
Affiliation(s)
- Matheus Silvério Mattos
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Centre of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium.
| |
Collapse
|
3
|
Rani R, Nayak M, Nayak B. Exploring the reprogramming potential of B cells and comprehending its clinical and therapeutic perspective. Transpl Immunol 2023; 78:101804. [PMID: 36921730 DOI: 10.1016/j.trim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
Initiating from multipotent progenitors, the lineages extrapolated from hematopoietic stem cells are determined by transcription factors specific to each of them. The commitment factors assist in the differentiation of progenitor cells into terminally differentiated cells. B lymphocytes constitute a population of cells that expresses clonally diverse cell surface immunoglobulin (Ig) receptors specific to antigenic epitopes. B cells are a significant facet of the adaptive immune system. The secreted antibodies corresponding to the B cell recognize the antigens via the B cell receptor (BCR). Following antigen recognition, the B cell is activated and thereafter undergoes clonal expansion and proliferation to become memory B cells. The essence of 'cellular reprogramming' has aided in reliably altering the cells to desired tissue type. The potential of reprogramming has been harnessed to decipher and find solutions for various genetically inherited diseases and degenerative disorders. B lymphocytes can be reprogrammed to their initial naive state from where they get differentiated into any lineage or cell type similar to a pluripotent stem cell which can be accomplished by the deletion of master regulators of the B cell lineage. B cells can be reprogrammed into pluripotent stem cells and also can undergo transdifferentiation at the midway of cell differentiation to other cell types. Mandated expression of C/EBP in specialized B cells corresponds to their fast and effective reprogramming into macrophages, reversing the cell fate of these lymphocytes and allowing them to differentiate freshly into other types of cells. The co-expression of C/EBPα and OKSM (Oct4, Sox2, Klf4, c-Myc) amplified the reprogramming efficiency of B lymphocytes. Various human somatic cells including the immune cells are compliant to reprogramming which paves a path for opportunities like autologous tissue grafts, blood transfusion, and cancer immunotherapy. The ability to reprogram B cells offers an unprecedented opportunity for developing a therapeutic approach for several human diseases. Here, we will focus on all the proteins and transcription factors responsible for the developmental commitment of B lymphocytes and how it is harnessed in various applications.
Collapse
Affiliation(s)
- Reetika Rani
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Madhusmita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India.
| |
Collapse
|
4
|
Abstract
Traditional models of lymphopoiesis present B and T cell development as a linear process that initiates in the fetus and continues after birth in the bone marrow and thymus, respectively. However, this view of lymphocyte development is not in accord with reports, dating back several decades, indicating that the types of lymphocytes generated before and after birth differ. In this regard, selected γδ T cells, and those that utilize the Vγ3 receptor in particular, and innate-like B-1 B cells preferentially arise during fetal blood cell development. This review synthesizes data from multiple laboratories, with an emphasis on our own work using mouse models, demonstrating that innate and conventional B and T cells emerge in hematopoietic stem cell independent and dependent waves of development that are differentially regulated. This layering of lymphocyte development has implications for understanding the composition of the adult immune system and may provide insights into the origin of various lymphocytic leukemias.
Collapse
Affiliation(s)
- Encarnacion Montecino-Rodriguez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Aivalioti MM, Bartholdy BA, Pradhan K, Bhagat TD, Zintiridou A, Jeong JJ, Thiruthuvanathan VJ, Pujato M, Paranjpe A, Zhang C, Levine RL, Viny AD, Wickrema A, Verma A, Will B. PU.1-Dependent Enhancer Inhibition Separates Tet2-Deficient Hematopoiesis from Malignant Transformation. Blood Cancer Discov 2022; 3:444-467. [PMID: 35820129 PMCID: PMC9894728 DOI: 10.1158/2643-3230.bcd-21-0226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/05/2022] [Accepted: 07/07/2022] [Indexed: 12/17/2022] Open
Abstract
Cytosine hypermethylation in and around DNA-binding sites of master transcription factors, including PU.1, occurs in aging hematopoietic stem cells following acquired loss-of-function mutations of DNA methyl-cytosine dioxygenase ten-eleven translocation-2 (TET2), albeit functional relevance has been unclear. We show that Tet2-deficient mouse hematopoietic stem and progenitor cells undergo malignant transformation upon compromised gene regulation through heterozygous deletion of an upstream regulatory region (UREΔ/WT) of the PU.1 gene. Although compatible with multilineage blood formation at young age, Tet2-deficient PU.1 UREΔ/WT mice develop highly penetrant, transplantable acute myeloid leukemia (AML) during aging. Leukemic stem and progenitor cells show hypermethylation at putative PU.1-binding sites, fail to activate myeloid enhancers, and are hallmarked by a signature of genes with impaired expression shared with human AML. Our study demonstrates that Tet2 and PU.1 jointly suppress leukemogenesis and uncovers a methylation-sensitive PU.1-dependent gene network as a unifying molecular vulnerability associated with AML. SIGNIFICANCE We identify moderately impaired PU.1 mRNA expression as a biological modality predisposing Tet2-deficient hematopoietic stem and progenitor cells to malignant transformation. Our study furthermore uncovers a methylation-sensitive PU.1 gene network as a common feature of myeloid leukemia potentially allowing for the identification of patients at risk for malignant transformation. See related commentary by Schleicher and Pietras, p. 378. This article is highlighted in the In This Issue feature, p. 369.
Collapse
Affiliation(s)
- Maria M Aivalioti
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Graduate Programs in the Biomedical Sciences, Albert Einstein College of Medicine, Bronx, New York
| | - Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Kith Pradhan
- Department of Medicine (Oncology), Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Tushar D Bhagat
- Department of Medicine (Oncology), Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Aliona Zintiridou
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Jong Jin Jeong
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Victor J Thiruthuvanathan
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Mario Pujato
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Aditi Paranjpe
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chi Zhang
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Ross L Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aaron D Viny
- Department of Genetics and Development, Columbia University, New York, New York
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Amit Verma
- Department of Medicine (Oncology), Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Medicine (Oncology), Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| |
Collapse
|
6
|
Jassinskaja M, Hansson J. The Opportunity of Proteomics to Advance the Understanding of Intra- and Extracellular Regulation of Malignant Hematopoiesis. Front Cell Dev Biol 2022; 10:824098. [PMID: 35350382 PMCID: PMC8957922 DOI: 10.3389/fcell.2022.824098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal and adult hematopoiesis are regulated by largely distinct sets of cell-intrinsic gene regulatory networks as well as extracellular cues in their respective microenvironment. These ontogeny-specific programs drive hematopoietic stem and progenitor cells (HSPCs) in fetus and adult to divergent susceptibility to initiation and progression of hematological malignancies, such as leukemia. Elucidating how leukemogenic hits disturb the intra- and extracellular programs in HSPCs along ontogeny will provide a better understanding of the causes for age-associated differences in malignant hematopoiesis and facilitate the improvement of strategies for prevention and treatment of pediatric and adult acute leukemia. Here, we review current knowledge of the intrinsic and extrinsic programs regulating normal and malignant hematopoiesis, with a particular focus on the differences between infant and adult acute leukemia. We discuss the recent advances in mass spectrometry-based proteomics and its opportunity for resolving the interplay of cell-intrinsic and niche-associated factors in regulating malignant hematopoiesis.
Collapse
Affiliation(s)
- Maria Jassinskaja
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden.,York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Jenny Hansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Raczkowski HL, DeKoter RP. Lineage-instructive functions of the E26-transformation-specific-family transcription factor Spi-C in immune cell development and disease. WIREs Mech Dis 2021; 13:e1519. [PMID: 34730294 DOI: 10.1002/wsbm.1519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/10/2022]
Abstract
Cell fate decisions during hematopoiesis are the consequence of a complex mixture of inputs from cell-intrinsic and cell-extrinsic factors. In rare cases, expression of a single transcription factor, or a few key factors, may be sufficient to dictate lineage differentiation in a precursor cell. The E26-transformation-specific-family transcription factor Spi-C has emerged as an example of a lineage-instructive factor involved in the generation of mature, specialized subsets of both myeloid and lymphoid cells. Spi-C can instruct differentiation of splenic precursors into red pulp macrophages responsible for phagocytosing senescent red blood cells. In the B cell compartment, Spi-C acts as a key regulator of cell fate decisions at the pro-B to pre-B cell stage and for plasma cell differentiation. Spi-C regulates key genes including Nfkb1, Bach2, Syk, and Blnk to regulate cell cycle entry and B cell differentiation. Here, we review the biology of the lineage-instructive transcription factor Spi-C and its contribution to mechanisms of disease in macrophages and B cells. This article is categorized under: Cancer > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology Infectious Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Hannah L Raczkowski
- Department of Microbiology & Immunology and the Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada
| | - Rodney P DeKoter
- Department of Microbiology & Immunology and the Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada
| |
Collapse
|
8
|
Abstract
In this issue, Le Coz et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20201750) describe a novel immunodeficiency syndrome caused by mutations in SPI1. Through a series of in-depth studies, the authors provide insights into how SPI1 affects blood lineage specification, highlighting the important role of master transcription factors as cellular fate determinants.
Collapse
Affiliation(s)
- Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
9
|
Mahajan VS, Mattoo H, Sun N, Viswanadham V, Yuen GJ, Allard-Chamard H, Ahmad M, Murphy SJH, Cariappa A, Tuncay Y, Pillai S. B1a and B2 cells are characterized by distinct CpG modification states at DNMT3A-maintained enhancers. Nat Commun 2021; 12:2208. [PMID: 33850140 PMCID: PMC8044213 DOI: 10.1038/s41467-021-22458-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 03/07/2021] [Indexed: 01/29/2023] Open
Abstract
The B1 and B2 lineages of B cells contribute to protection from pathogens in distinct ways. The role of the DNA CpG methylome in specifying these two B-cell fates is still unclear. Here we profile the CpG modifications and transcriptomes of peritoneal B1a and follicular B2 cells, as well as their respective proB cell precursors in the fetal liver and adult bone marrow from wild-type and CD19-Cre Dnmt3a floxed mice lacking DNMT3A in the B lineage. We show that an underlying foundational CpG methylome is stably established during B lineage commitment and is overlaid with a DNMT3A-maintained dynamic methylome that is sculpted in distinct ways in B1a and B2 cells. This dynamic DNMT3A-maintained methylome is composed of novel enhancers that are closely linked to lineage-specific genes. While DNMT3A maintains the methylation state of these enhancers in both B1a and B2 cells, the dynamic methylome undergoes a prominent programmed demethylation event during B1a but not B2 cell development. We propose that the methylation pattern of DNMT3A-maintained enhancers is determined by the coincident recruitment of DNMT3A and TET enzymes, which regulate the developmental expression of B1a and B2 lineage-specific genes.
Collapse
Affiliation(s)
- Vinay S Mahajan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Hamid Mattoo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Immunology and Inflammation Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Na Sun
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Vinayak Viswanadham
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Grace J Yuen
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Maimuna Ahmad
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | - Yesim Tuncay
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Rothenberg EV. Logic and lineage impacts on functional transcription factor deployment for T-cell fate commitment. Biophys J 2021; 120:4162-4181. [PMID: 33838137 PMCID: PMC8516641 DOI: 10.1016/j.bpj.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factors are the major agents that read the regulatory sequence information in the genome to initiate changes in expression of specific genes, both in development and in physiological activation responses. Their actions depend on site-specific DNA binding and are largely guided by their individual DNA target sequence specificities. However, their action is far more conditional in a real developmental context than would be expected for simple reading of local genomic DNA sequence, which is common to all cells in the organism. They are constrained by slow-changing chromatin states and by interactions with other transcription factors, which affect their occupancy patterns of potential sites across the genome. These mechanisms lead to emergent discontinuities in function even for transcription factors with minimally changing expression. This is well revealed by diverse lineages of blood cells developing throughout life from hematopoietic stem cells, which use overlapping combinations of transcription factors to drive strongly divergent gene regulation programs. Here, using development of T lymphocytes from hematopoietic multipotent progenitor cells as a focus, recent evidence is reviewed on how binding specificity and dynamics, transcription factor cooperativity, and chromatin state changes impact the effective regulatory functions of key transcription factors including PU.1, Runx1, Notch-RBPJ, and Bcl11b.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
11
|
RAG-Mediated DNA Breaks Attenuate PU.1 Activity in Early B Cells through Activation of a SPIC-BCLAF1 Complex. Cell Rep 2020; 29:829-843.e5. [PMID: 31644907 PMCID: PMC6870970 DOI: 10.1016/j.celrep.2019.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/10/2019] [Accepted: 09/09/2019] [Indexed: 11/22/2022] Open
Abstract
Early B cell development is regulated by stage-specific transcription
factors. PU.1, an ETS-family transcription factor, is essential for coordination
of early B cell maturation and immunoglobulin gene (Ig)
rearrangement. Here we show that RAG DNA double-strand breaks (DSBs) generated
during Ig light chain gene (Igl) rearrangement
in pre-B cells induce global changes in PU.1 chromatin binding. RAG DSBs
activate a SPIC/BCLAF1 transcription factor complex that displaces PU.1
throughout the genome and regulates broad transcriptional changes. SPIC recruits
BCLAF1 to gene-regulatory elements that control expression of key B cell
developmental genes. The SPIC/BCLAF1 complex suppresses expression of the SYK
tyrosine kinase and enforces the transition from large to small pre-B cells.
These studies reveal that RAG DSBs direct genome-wide changes in ETS
transcription factor activity to promote early B cell development. ETS-family transcription factors are key regulators of early B cell
development. Soodgupta et al. show that RAG-induced DNA breaks generated during
antigen receptor gene recombination activate a SPIC/BCLAF1 transcription factor
complex that counters PU.1 activity and regulates gene expression changes to
promote transition from large to small pre-B cells.
Collapse
|
12
|
Valeff N, Juriol L, Quadrana F, Muzzio DO, Zygmunt M, Quiroga MF, Ventimiglia MS, Jensen F. Expression of IL-33 Receptor Is Significantly Up-Regulated in B Cells During Pregnancy and in the Acute Phase of Preterm Birth in Mice. Front Immunol 2020; 11:446. [PMID: 32292403 PMCID: PMC7118206 DOI: 10.3389/fimmu.2020.00446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Interleukin-33 (IL-33) is a mucosal alarmin belonging to the IL-1 cytokine family and is now recognized to have a key role in innate and adaptive immunity, contributing to tissue homeostasis and response to environmental stresses. In addition, IL-33 has also been shown to work as a positive regulator that initiates and maintains a Th2 immune response. In the context of pregnancy, it has been recently demonstrated that upon certain stress conditions, such as an infection induced inflammation, IL-33 is released from the uterine mucosa and triggers decidual B cells to produce anti-inflammatory molecules, which in turn restore immune homeostasis and prevents the development of preterm birth. In this study we therefore performed a detailed characterization of IL-33 receptor (Il1rl1 or ST2) expression in B cells during normal pregnancy, as well as in a mouse model of preterm birth. We observed that splenic B cells significantly up-regulate the expression of Il1rl1 during pregnancy and identified the B1 B cell population as the main ST2-expressing B cell subset. A further kinetic analysis showed that percentages of ST2-expressing B1 B cells are significantly augmented on days 12 and 14 of pregnancy, both in the spleen and peritoneal cavity of pregnant mice, and then drop toward the end of pregnancy to the levels observed in non-pregnant animals. Furthermore, using a mouse model of LPS-induced preterm birth, we demonstrated that not only are the percentages of ST2-expressing B1 B cells significantly enlarged in the spleen during the acute phase of preterm birth, but decidual B cells also significantly up-regulate ST2 expression as compared to term-pregnant mice. Overall, our results suggest a functional role of ST2 expression in B cells during pregnancy and reinforce the importance of the IL-33/ST2 axis in B cells as a critical mechanism to control inflammation-induced preterm birth.
Collapse
Affiliation(s)
- Natalin Valeff
- Laboratory for Immunology of Pregnancy, Center for Pharmacological and Botanical Studies (CEFYBO-CONICET-UBA), Buenos Aires, Argentina
| | - Lorena Juriol
- Laboratory for Immunology of Pregnancy, Center for Pharmacological and Botanical Studies (CEFYBO-CONICET-UBA), Buenos Aires, Argentina
| | - Florencia Quadrana
- Laboratory for Immunology of Pregnancy, Center for Pharmacological and Botanical Studies (CEFYBO-CONICET-UBA), Buenos Aires, Argentina
| | - Damián Oscar Muzzio
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Marek Zygmunt
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Maria Florencia Quiroga
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Silvia Ventimiglia
- Laboratory for Immunology of Pregnancy, Center for Pharmacological and Botanical Studies (CEFYBO-CONICET-UBA), Buenos Aires, Argentina
| | - Federico Jensen
- Laboratory for Immunology of Pregnancy, Center for Pharmacological and Botanical Studies (CEFYBO-CONICET-UBA), Buenos Aires, Argentina.,Institute of Health Sciences, National University Arturo Jauretche, Buenos Aires, Argentina
| |
Collapse
|
13
|
Elsaid R, Yang J, Cumano A. The influence of space and time on the establishment of B cell identity. Biomed J 2019; 42:209-217. [PMID: 31627863 PMCID: PMC6818146 DOI: 10.1016/j.bj.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 02/01/2023] Open
Abstract
During embryonic development multiple waves of hematopoietic progenitors with distinct lineage potential are differentially regulated in time and space. Consistent with this view, some specialized lymphocytes emerge during a limited time-window in embryogenesis and migrate to the tissues where they contribute to organogenesis and to tissue homeostasis. These cells are not constantly produced by bone marrow derived hematopoietic stem cells but are maintained in tissues and self-renew throughout life. These particular cell subsets are produced from lymphoid restricted progenitors only found in the first days of fetal liver hematopoietic activity. Growing evidence of the heterogeneity and layered organization of the hematopoietic system is leading to a common view that some lymphocyte subsets are functionally different because they follow distinct developmental programs and emerge from distinct waves of lymphoid progenitors. However, understanding the influence of developmental origin and the relative contribution of local microenvironment on the development of these specialized lymphocyte subsets needs further analysis. In this review, we discuss how different pathways followed by developing B cells during ontogeny may contribute to the diverse functions.
Collapse
Affiliation(s)
- Ramy Elsaid
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Junjie Yang
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; CNBG Company, China
| | - Ana Cumano
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
14
|
Hayakawa K, Li YS, Shinton SA, Bandi SR, Formica AM, Brill-Dashoff J, Hardy RR. Crucial Role of Increased Arid3a at the Pre-B and Immature B Cell Stages for B1a Cell Generation. Front Immunol 2019; 10:457. [PMID: 30930899 PMCID: PMC6428705 DOI: 10.3389/fimmu.2019.00457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/20/2019] [Indexed: 02/03/2023] Open
Abstract
The Lin28b+Let7− axis in fetal/neonatal development plays a role in promoting CD5+ B1a cell generation as a B-1 B cell developmental outcome. Here we identify the Let7 target, Arid3a, as a crucial molecular effector of the B-1 cell developmental program. Arid3a expression is increased at pro-B cell stage and markedly increased at pre-B and immature B cell stages in the fetal/neonatal liver B-1 development relative to that in the Lin28b−Let7+ adult bone marrow (BM) B-2 cell development. Analysis of B-lineage restricted Lin28b transgenic (Tg) mice, Arid3a knockout and Arid3a Tg mice, confirmed that increased Arid3a allows B cell generation without requiring surrogate light chain (SLC) associated pre-BCR stage, and prevents MHC class II cell expression at the pre-B and newly generated immature B cell stages, distinct from pre-BCR dependent B development with MHC class II in adult BM. Moreover, Arid3a plays a crucial role in supporting B1a cell generation. The increased Arid3a leads higher Myc and Bhlhe41, and lower Siglec-G and CD72 at the pre-B and immature B cell stages than normal adult BM, to allow BCR signaling induced B1a cell generation. Arid3a-deficiency selectively blocks the development of B1a cells, while having no detectable effect on CD5− B1b, MZ B, and FO B cell generation resembling B-2 development outcome. Conversely, enforced expression of Arid3a by transgene is sufficient to promote the development of B1a cells from adult BM. Under the environment change between birth to adult, altered BCR repertoire in increased B1a cells occurred generated from adult BM. However, crossed with B1a-restricted VH/D/J IgH knock-in mice allowed to confirm that SLC-unassociated B1a cell increase and CLL/lymphoma generation can occur in aged from Arid3a increased adult BM. These results confirmed that in fetal/neonatal normal mice, increased Arid3a at the pre-B cell and immature B cell stages is crucial for generating B1a cells together with the environment for self-ligand reactive BCR selection, B1a cell maintenance, and potential for development of CLL/Lymphoma in aged mice.
Collapse
Affiliation(s)
- Kyoko Hayakawa
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Yue-Sheng Li
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | | | | | | | | | | |
Collapse
|
15
|
Romero-Ramírez S, Navarro-Hernandez IC, Cervantes-Díaz R, Sosa-Hernández VA, Acevedo-Ochoa E, Kleinberg-Bild A, Valle-Rios R, Meza-Sánchez DE, Hernández-Hernández JM, Maravillas-Montero JL. Innate-like B cell subsets during immune responses: Beyond antibody production. J Leukoc Biol 2018; 105:843-856. [PMID: 30457676 DOI: 10.1002/jlb.mr0618-227r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
B lymphocytes are recognized for their crucial role in the adaptive immunity since they represent the only leukocyte lineage capable of differentiating into Ab-secreting cells. However, it has been demonstrated that these lymphocytes can exert several Ab-independent functions, including engulfing and processing Ags for presentation to T cells, secreting soluble mediators, providing co-stimulatory signals, and even participating in lymphoid tissues development. Beyond that, several reports claiming the existence of multiple B cell subsets contributing directly to innate immune responses have appeared. These "innate-like" B lymphocytes, whose phenotype, development pathways, tissue distribution, and functions are in most cases notoriously different from those of conventional B cells, are crucial to early protective responses against pathogens by exerting "crossover" defensive strategies that blur the established boundaries of innate and adaptive branches of immunity. Examples of these mechanisms include the rapid secretion of the polyspecific natural Abs, increased susceptibility to innate receptors-mediated activation, cytokine secretion, downstream priming of other innate cells, usage of specific variable immunoglobulin gene-segments, and other features. As these new insights emerge, it is becoming preponderant to redefine the functionality of B cells beyond their classical adaptive-immune tasks.
Collapse
Affiliation(s)
- Sandra Romero-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Itze C Navarro-Hernandez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodrigo Cervantes-Díaz
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Víctor A Sosa-Hernández
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ernesto Acevedo-Ochoa
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Ari Kleinberg-Bild
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ricardo Valle-Rios
- División de Investigación de la Facultad de Medicina, Universidad Nacional Autónoma de México y Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - David E Meza-Sánchez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José M Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
16
|
Pang SHM, de Graaf CA, Hilton DJ, Huntington ND, Carotta S, Wu L, Nutt SL. PU.1 Is Required for the Developmental Progression of Multipotent Progenitors to Common Lymphoid Progenitors. Front Immunol 2018; 9:1264. [PMID: 29942304 PMCID: PMC6005176 DOI: 10.3389/fimmu.2018.01264] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/22/2018] [Indexed: 01/27/2023] Open
Abstract
The transcription factor PU.1 is required for the development of mature myeloid and lymphoid cells. Due to this essential role and the importance of PU.1 in regulating several signature markers of lymphoid progenitors, its precise function in early lymphopoiesis has been difficult to define. Here, we demonstrate that PU.1 was required for efficient generation of lymphoid-primed multipotent progenitors (LMPPs) from hematopoietic stem cells and was essential for the subsequent formation of common lymphoid progenitors (CLPs). By contrast, further differentiation into the B-cell lineage was independent of PU.1. Examination of the transcriptional changes in conditional progenitors revealed that PU.1 activates lymphoid genes in LMPPs, while repressing genes normally expressed in neutrophils. These data identify PU.1 as a critical regulator of lymphoid priming and the transition between LMPPs and CLPs.
Collapse
Affiliation(s)
- Swee Heng Milon Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Carolyn A de Graaf
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Douglas J Hilton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Sebastian Carotta
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Oncology Research, Boehringer Ingelheim, Vienna, Austria
| | - Li Wu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Institute for Immunology, Tsinghua University School of Medicine, Beijing, China
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Logical modeling of lymphoid and myeloid cell specification and transdifferentiation. Proc Natl Acad Sci U S A 2018; 114:5792-5799. [PMID: 28584084 DOI: 10.1073/pnas.1610622114] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Blood cells are derived from a common set of hematopoietic stem cells, which differentiate into more specific progenitors of the myeloid and lymphoid lineages, ultimately leading to differentiated cells. This developmental process is controlled by a complex regulatory network involving cytokines and their receptors, transcription factors, and chromatin remodelers. Using public data and data from our own molecular genetic experiments (quantitative PCR, Western blot, EMSA) or genome-wide assays (RNA-sequencing, ChIP-sequencing), we have assembled a comprehensive regulatory network encompassing the main transcription factors and signaling components involved in myeloid and lymphoid development. Focusing on B-cell and macrophage development, we defined a qualitative dynamical model recapitulating cytokine-induced differentiation of common progenitors, the effect of various reported gene knockdowns, and the reprogramming of pre-B cells into macrophages induced by the ectopic expression of specific transcription factors. The resulting network model can be used as a template for the integration of new hematopoietic differentiation and transdifferentiation data to foster our understanding of lymphoid/myeloid cell-fate decisions.
Collapse
|
18
|
Underbayev C, Kasar S, Ruezinsky W, Degheidy H, Schneider JS, Marti G, Bauer SR, Fraidenraich D, Lightfoote MM, Parashar V, Raveche E, Batish M. Role of mir-15a/16-1 in early B cell development in a mouse model of chronic lymphocytic leukemia. Oncotarget 2018; 7:60986-60999. [PMID: 27533467 PMCID: PMC5308631 DOI: 10.18632/oncotarget.11290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/01/2016] [Indexed: 01/28/2023] Open
Abstract
In both human chronic lymphocytic leukemia (CLL) and the New Zealand Black (NZB) murine model of CLL, decreased levels of microRNAs miR-15a/16 play an important role in the disease. Here we investigate the effects of this microRNA on early steps of B cell development and the capacity of miR-15a-deficient hematopoietic stem cells (HSC) and B1 progenitor cells (B1P) to reproduce CLL-like phenotype both in vitro and in vivo. Our results demonstrate that both miR-15a deficient HSC and B1P cells are capable of repopulating irradiated recipients and produce higher numbers of B1 cells than sources with normal miR-15a/16 levels. Furthermore, induced pluripotent stem (iPS) cells derived for the first time from NZB mice, provided insights into the B cell differentiation roadblock inherent in this strain. In addition, exogenously delivered miR-15a into the NZB derived B cell line provided valuable clues into novel targets such as Mmp10 and Mt2. Our data supports the hypothesis that miR-15a/16 deficient stem cells and B1Ps experience a maturation blockage, which contributes to B1 cells bias in development. This work will help understand the role of miR-15a in early events of CLL and points to B1P cells as potential cells of origin for this incurable disease.
Collapse
Affiliation(s)
- Chingiz Underbayev
- New Jersey Medical School, Rutgers University, Newark, NJ, USA.,NHLBI, NIH, Bethesda, MD, USA
| | - Siddha Kasar
- New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | | | - Heba Degheidy
- CBER/FDA, Silver Spring, MD, USA.,Faculty of Medicine, Mansoura University, Egypt
| | | | | | | | | | | | - Vijay Parashar
- Rutgers School of Dental Medicine, Rutgers University, Newark, NJ, USA
| | | | - Mona Batish
- New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
19
|
Shukla V, Shukla A, Joshi SS, Lu R. Interferon regulatory factor 4 attenuates Notch signaling to suppress the development of chronic lymphocytic leukemia. Oncotarget 2018; 7:41081-41094. [PMID: 27232759 PMCID: PMC5173044 DOI: 10.18632/oncotarget.9596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/14/2016] [Indexed: 11/25/2022] Open
Abstract
Molecular pathogenesis of Chronic Lymphocytic Leukemia (CLL) is not fully elucidated. Genome wide association studies have linked Interferon Regulatory Factor 4 (IRF4) to the development of CLL. We recently established a causal relationship between low levels of IRF4 and development of CLL. However, the molecular mechanism through which IRF4 suppresses CLL development remains unclear. Deregulation of Notch signaling pathway has been identified as one of the most recurrent molecular anomalies in the pathogenesis of CLL. Yet, the role of Notch signaling as well as its regulation during CLL development remains poorly understood. Previously, we demonstrated that IRF4 deficient mice expressing immunoglobulin heavy chain Vh11 (IRF4−/−Vh11) developed spontaneous CLL with complete penetrance. In this study, we show that elevated Notch2 expression and the resulting hyperactivation of Notch signaling are common features of IRF4−/−Vh11 CLL cells. Our studies further reveal that Notch signaling is indispensable for CLL development in the IRF4−/−Vh11 mice. Moreover, we identify E3 ubiquitin ligase Nedd4, which targets Notch for degradation, as a direct target of IRF4 in CLL cells and their precursors. Collectively, our studies provide the first in vivo evidence for an essential role of Notch signaling in the development of CLL and establish IRF4 as a critical regulator of Notch signaling during CLL development.
Collapse
Affiliation(s)
- Vipul Shukla
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ashima Shukla
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shantaram S Joshi
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Runqing Lu
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
20
|
Environmental sensing by mature B cells is controlled by the transcription factors PU.1 and SpiB. Nat Commun 2017; 8:1426. [PMID: 29127283 PMCID: PMC5681560 DOI: 10.1038/s41467-017-01605-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023] Open
Abstract
Humoral immunity requires B cells to respond to multiple stimuli, including antigen, membrane and soluble ligands, and microbial products. Ets family transcription factors regulate many aspects of haematopoiesis, although their functions in humoral immunity are difficult to decipher as a result of redundancy between the family members. Here we show that mice lacking both PU.1 and SpiB in mature B cells do not generate germinal centers and high-affinity antibody after protein immunization. PU.1 and SpiB double-deficient B cells have a survival defect after engagement of CD40 or Toll-like receptors (TLR), despite paradoxically enhanced plasma cell differentiation. PU.1 and SpiB regulate the expression of many components of the B cell receptor signaling pathway and the receptors for CD40L, BAFF and TLR ligands. Thus, PU.1 and SpiB enable B cells to appropriately respond to environmental cues.
Collapse
|
21
|
Batista CR, Li SKH, Xu LS, Solomon LA, DeKoter RP. PU.1 Regulates Ig Light Chain Transcription and Rearrangement in Pre-B Cells during B Cell Development. THE JOURNAL OF IMMUNOLOGY 2017; 198:1565-1574. [PMID: 28062693 DOI: 10.4049/jimmunol.1601709] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/12/2016] [Indexed: 12/27/2022]
Abstract
B cell development and Ig rearrangement are governed by cell type- and developmental stage-specific transcription factors. PU.1 and Spi-B are E26-transformation-specific transcription factors that are critical for B cell differentiation. To determine whether PU.1 and Spi-B are required for B cell development in the bone marrow, Spi1 (encoding PU.1) was conditionally deleted in B cells by Cre recombinase under control of the Mb1 gene in Spib (encoding Spi-B)-deficient mice. Combined deletion of Spi1 and Spib resulted in a lack of mature B cells in the spleen and a block in B cell development in the bone marrow at the small pre-B cell stage. To determine target genes of PU.1 that could explain this block, we applied a gain-of-function approach using a PU.1/Spi-B-deficient pro-B cell line in which PU.1 can be induced by doxycycline. PU.1-induced genes were identified by integration of chromatin immunoprecipitation-sequencing and RNA-sequencing data. We found that PU.1 interacted with multiple sites in the Igκ locus, including Vκ promoters and regions located downstream of Vκ second exons. Induction of PU.1 induced Igκ transcription and rearrangement. Upregulation of Igκ transcription was impaired in small pre-B cells from PU.1/Spi-B-deficient bone marrow. These studies reveal an important role for PU.1 in the regulation of Igκ transcription and rearrangement and a requirement for PU.1 and Spi-B in B cell development.
Collapse
Affiliation(s)
- Carolina R Batista
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Stephen K H Li
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and
| | - Li S Xu
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Lauren A Solomon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Rodney P DeKoter
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; .,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| |
Collapse
|
22
|
Montecino-Rodriguez E, Fice M, Casero D, Berent-Maoz B, Barber CL, Dorshkind K. Distinct Genetic Networks Orchestrate the Emergence of Specific Waves of Fetal and Adult B-1 and B-2 Development. Immunity 2016; 45:527-539. [PMID: 27566938 DOI: 10.1016/j.immuni.2016.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/13/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
B cell development is often depicted as a linear process initiating in the fetus and continuing postnatally. Using a PU.1 hypomorphic mouse model, we found that B-1 and B-2 lymphopoiesis occurred in distinct fetal and adult waves differentially dependent on the Sfpi1 14 kB upstream regulatory element. The initial wave of fetal B-1 development was absent in PU.1 hypomorphic mice, while subsequent fetal and adult waves emerged. In contrast, B-2 lymphopoiesis occurred in distinct fetal and adult waves. Whole-transcriptome profiling of fetal and adult B cell progenitors supported the existence of three waves of B-1 and two waves of B-2 development and revealed that the network of transcription factors governing B lineage specification and commitment was highly divergent between B-1 and B-2 progenitors. These findings support the view that the B-1 and B-2 lineages are distinct and provide a genetic basis for layering of immune system development.
Collapse
Affiliation(s)
- Encarnacion Montecino-Rodriguez
- Department of Pathology and Laboratory Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Fice
- Department of Pathology and Laboratory Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David Casero
- Department of Pathology and Laboratory Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Beata Berent-Maoz
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chad L Barber
- Department of Biology, California Lutheran University, Thousand Oaks, CA 91360, USA
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
23
|
Pang SHM, Minnich M, Gangatirkar P, Zheng Z, Ebert A, Song G, Dickins RA, Corcoran LM, Mullighan CG, Busslinger M, Huntington ND, Nutt SL, Carotta S. PU.1 cooperates with IRF4 and IRF8 to suppress pre-B-cell leukemia. Leukemia 2016; 30:1375-87. [PMID: 26932576 PMCID: PMC5179358 DOI: 10.1038/leu.2016.27] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 11/14/2015] [Accepted: 01/08/2016] [Indexed: 12/22/2022]
Abstract
The Ets family transcription factor PU.1 and the interferon regulatory factor (IRF)4 and IRF8 regulate gene expression by binding to composite DNA sequences known as Ets/interferon consensus elements. Although all three factors are expressed from the onset of B-cell development, single deficiency of these factors in B-cell progenitors only mildly impacts on bone marrow B lymphopoiesis. Here we tested whether PU.1 cooperates with IRF factors in regulating early B-cell development. Lack of PU.1 and IRF4 resulted in a partial block in development the pre-B-cell stage. The combined deletion of PU.1 and IRF8 reduced recirculating B-cell numbers. Strikingly, all PU.1/IRF4 and ~50% of PU.1/IRF8 double deficient mice developed pre-B-cell acute lymphoblastic leukemia (B-ALL) associated with reduced expression of the established B-lineage tumor suppressor genes, Ikaros and Spi-B. These genes are directly regulated by PU.1/IRF4/IRF8, and restoration of Ikaros or Spi-B expression inhibited leukemic cell growth. In summary, we demonstrate that PU.1, IRF4 and IRF8 cooperate to regulate early B-cell development and to prevent pre-B-ALL formation.
Collapse
Affiliation(s)
- Swee Heng Milon Pang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martina Minnich
- The Institute of Molecular Pathology, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Pradnya Gangatirkar
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiqiang Zheng
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Anja Ebert
- The Institute of Molecular Pathology, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Guangchun Song
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678, USA
| | - Ross A Dickins
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lynn M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678, USA
| | - Meinrad Busslinger
- The Institute of Molecular Pathology, Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sebastian Carotta
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
24
|
Macias-Garcia A, Heizmann B, Sellars M, Marchal P, Dali H, Pasquali JL, Muller S, Kastner P, Chan S. Ikaros Is a Negative Regulator of B1 Cell Development and Function. J Biol Chem 2016; 291:9073-86. [PMID: 26841869 DOI: 10.1074/jbc.m115.704239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 12/19/2022] Open
Abstract
B1 B cells secrete most of the circulating natural antibodies and are considered key effector cells of the innate immune response. However, B1 cell-associated antibodies often cross-react with self-antigens, which leads to autoimmunity, and B1 cells have been implicated in cancer. How B1 cell activity is regulated remains unclear. We show that the Ikaros transcription factor is a major negative regulator of B1 cell development and function. Using conditional knock-out mouse models to delete Ikaros at different locations, we show that Ikaros-deficient mice exhibit specific and significant increases in splenic and bone marrow B1 cell numbers, and that the B1 progenitor cell pool is increased ∼10-fold in the bone marrow. Ikaros-null B1 cells resemble WT B1 cells at the molecular and cellular levels, but show a down-regulation of signaling components important for inhibiting proliferation and immunoglobulin production. Ikaros-null B1 cells hyper-react to TLR4 stimulation and secrete high amounts of IgM autoantibodies. These results indicate that Ikaros is required to limit B1 cell homeostasis in the adult.
Collapse
Affiliation(s)
- Alejandra Macias-Garcia
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Beate Heizmann
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France,
| | - MacLean Sellars
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Patricia Marchal
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Hayet Dali
- Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, 67000 Strasbourg, France
| | - Jean-Louis Pasquali
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, 67000 Strasbourg, France, UFR Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Sylviane Muller
- Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, 67000 Strasbourg, France, Institut d'Etudes Avancées, Université de Strasbourg, 67000 Strasbourg, France, and
| | - Philippe Kastner
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France, Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Susan Chan
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France,
| |
Collapse
|
25
|
Role of Polycomb RYBP in Maintaining the B-1-to-B-2 B-Cell Lineage Switch in Adult Hematopoiesis. Mol Cell Biol 2015; 36:900-12. [PMID: 26711264 DOI: 10.1128/mcb.00869-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 01/01/2023] Open
Abstract
Polycomb chromatin modifiers regulate hematopoietic pluripotent stem and progenitor cell self-renewal and expansion. Polycomb complex redundancy and biochemical heterogeneity complicate the unraveling of the functional contributions of distinct components. We have studied the hematopoietic activity of RYBP, a direct interactor and proposed modulator of RING1A/RING1B-dependent histone H2A monoubiquitylation (H2AUb). Using a mouse model to conditionally inactivate Rybp in adult hematopoiesis, we have found that RYBP deletion results in a reversion of B-1-to-B-2 B-cell progenitor ratios, i.e., of the innate (predominantly fetal) to acquired (mostly adult) immunity precursors. Increased numbers of B-1 progenitors correlated with a loss of pre-proB cells, the B-2 progenitors. RYBP-deficient stem and progenitor cell populations (LKS) and isolated common lymphoid progenitors (CLP) gave rise to increased numbers of B-1 progenitors in vitro. Rybp inactivation, however, did not result in changes of global H2AUb and did not interact genetically with Ring1A or Ring1B deletions. These results show that a sustained regulation of the B-1-to-B-2 switch is needed throughout adult life and that RYBP plays an important role in keeping B-2 dominance, most likely independently of its Polycomb affiliation.
Collapse
|
26
|
Abstract
The regulation of antibody production is linked to the generation and maintenance of plasmablasts and plasma cells from their B cell precursors. Plasmablasts are the rapidly produced and short-lived effector cells of the early antibody response, whereas plasma cells are the long-lived mediators of lasting humoral immunity. An extraordinary number of control mechanisms, at both the cellular and molecular levels, underlie the regulation of this essential arm of the immune response. Despite this complexity, the terminal differentiation of B cells can be described as a simple probabilistic process that is governed by a central gene-regulatory network and modified by environmental stimuli.
Collapse
|
27
|
Solomon LA, Li SKH, Piskorz J, Xu LS, DeKoter RP. Genome-wide comparison of PU.1 and Spi-B binding sites in a mouse B lymphoma cell line. BMC Genomics 2015; 16:76. [PMID: 25765478 PMCID: PMC4334403 DOI: 10.1186/s12864-015-1303-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/29/2015] [Indexed: 01/01/2023] Open
Abstract
Background Spi-B and PU.1 are highly related members of the E26-transformation-specific (ETS) family of transcription factors that have similar, but not identical, roles in B cell development. PU.1 and Spi-B are both expressed in B cells, and have been demonstrated to redundantly activate transcription of genes required for B cell differentiation and function. It was hypothesized that Spi-B and PU.1 occupy a similar set of regions within the genome of a B lymphoma cell line. Results To compare binding regions of Spi-B and PU.1, murine WEHI-279 lymphoma cells were infected with retroviral vectors encoding 3XFLAG-tagged PU.1 or Spi-B. Anti-FLAG chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) was performed. Analysis for high-stringency enriched genomic regions demonstrated that PU.1 occupied 4528 regions and Spi-B occupied 3360 regions. The majority of regions occupied by Spi-B were also occupied by PU.1. Regions bound by Spi-B and PU.1 were frequently located immediately upstream of genes associated with immune response and activation of B cells. Motif-finding revealed that both transcription factors were predominantly located at the ETS core domain (GGAA), however, other unique motifs were identified when examining regions associated with only one of the two factors. Motifs associated with unique PU.1 binding included POU2F2, while unique motifs in the Spi-B regions contained a combined ETS-IRF motif. Conclusions Our results suggest that complementary biological functions of PU.1 and Spi-B may be explained by their interaction with a similar set of regions in the genome of B cells. However, sites uniquely occupied by PU.1 or Spi-B provide insight into their unique functions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1303-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren A Solomon
- Department of Microbiology & Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada.
| | - Stephen K H Li
- Department of Microbiology & Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada.
| | - Jan Piskorz
- Department of Microbiology & Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada.
| | - Li S Xu
- Department of Microbiology & Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada.
| | - Rodney P DeKoter
- Department of Microbiology & Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada. .,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Canada. .,Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
28
|
de Almeida CR, Hendriks RW, Stadhouders R. Dynamic Control of Long-Range Genomic Interactions at the Immunoglobulin κ Light-Chain Locus. Adv Immunol 2015; 128:183-271. [DOI: 10.1016/bs.ai.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Pang SHM, Carotta S, Nutt SL. Transcriptional control of pre-B cell development and leukemia prevention. Curr Top Microbiol Immunol 2014; 381:189-213. [PMID: 24831348 DOI: 10.1007/82_2014_377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The differentiation of early B cell progenitors is controlled by multiple transcriptional regulators and growth-factor receptors. The triad of DNA-binding proteins, E2A, EBF1, and PAX5 is critical for both the early specification and commitment of B cell progenitors, while a larger number of secondary determinants, such as members of the Ikaros, ETS, Runx, and IRF families have more direct roles in promoting stage-specific pre-B gene-expression program. Importantly, it is now apparent that mutations in many of these transcription factors are associated with the progression to acute lymphoblastic leukemia. In this review, we focus on recent studies that have shed light on the transcriptional hierarchy that controls efficient B cell commitment and differentiation as well as focus on the oncogenic consequences of the loss of many of the same factors.
Collapse
Affiliation(s)
- Swee Heng Milon Pang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | | | | |
Collapse
|
30
|
Staber PB, Zhang P, Ye M, Welner RS, Nombela-Arrieta C, Bach C, Kerenyi M, Bartholdy BA, Zhang H, Alberich-Jordà M, Lee S, Yang H, Ng F, Zhang J, Leddin M, Silberstein LE, Hoefler G, Orkin SH, Göttgens B, Rosenbauer F, Huang G, Tenen DG. Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells. Mol Cell 2013; 49:934-46. [PMID: 23395001 DOI: 10.1016/j.molcel.2013.01.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 11/16/2012] [Accepted: 01/04/2013] [Indexed: 12/18/2022]
Abstract
To provide a lifelong supply of blood cells, hematopoietic stem cells (HSCs) need to carefully balance both self-renewing cell divisions and quiescence. Although several regulators that control this mechanism have been identified, we demonstrate that the transcription factor PU.1 acts upstream of these regulators. So far, attempts to uncover PU.1's role in HSC biology have failed because of the technical limitations of complete loss-of-function models. With the use of hypomorphic mice with decreased PU.1 levels specifically in phenotypic HSCs, we found reduced HSC long-term repopulation potential that could be rescued completely by restoring PU.1 levels. PU.1 prevented excessive HSC division and exhaustion by controlling the transcription of multiple cell-cycle regulators. Levels of PU.1 were sustained through autoregulatory PU.1 binding to an upstream enhancer that formed an active looped chromosome architecture in HSCs. These results establish that PU.1 mediates chromosome looping and functions as a master regulator of HSC proliferation.
Collapse
Affiliation(s)
- Philipp B Staber
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Montecino-Rodriguez E, Dorshkind K. B-1 B cell development in the fetus and adult. Immunity 2012; 36:13-21. [PMID: 22284417 DOI: 10.1016/j.immuni.2011.11.017] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/11/2011] [Accepted: 11/02/2011] [Indexed: 02/08/2023]
Abstract
Models of hematopoiesis often depict lymphocyte production as a uniform process in which a homogenous population of hematopoietic stem cells (HSCs) generates progenitors from which all types of lymphocytes are derived. However, it is increasingly evident that these schemes are too simplistic and that the lymphoid potential of HSCs and precursors arising in the embryo, fetus, neonate, and adult is remarkably distinct. We review recent findings regarding the development of B lymphocytes, and the B-1 B cell lineage in particular, as a case in point. These studies show that B-1 and B-2 B cells involved in innate and adaptive immune responses, respectively, arise in staggered waves of development from distinct progenitors. We discuss the implications of this layered model of B cell development for understanding normal and dysregulated B lymphopoiesis.
Collapse
|
32
|
Hodawadekar S, Park K, Farrar MA, Atchison ML. A developmentally controlled competitive STAT5-PU.1 DNA binding mechanism regulates activity of the Ig κ E3' enhancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:2276-84. [PMID: 22279106 PMCID: PMC3288515 DOI: 10.4049/jimmunol.1102239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stage-specific rearrangement of Ig H and L chain genes poses an enigma because both processes use the same recombinatorial machinery, but the H chain locus is accessible at the pro-B cell stage, whereas the L chain loci become accessible at the pre-B cell stage. Transcription factor STAT5 is a positive-acting factor for rearrangement of distal V(H) genes, but attenuation of IL-7 signaling and loss of activated STAT5 at the pre-B cell stage corresponds with Igκ locus accessibility and rearrangement, suggesting that STAT5 plays an inhibitory role at this locus. Indeed, loss of IL-7 signaling correlates with increased activity at the Igκ intron enhancer. However, the κE3' enhancer must also be regulated as this enhancer plays a role in Igκ rearrangement. We show in this study that STAT5 can repress κE3' enhancer activity. We find that STAT5 binds to a site that overlaps the κE3' PU.1 binding site. We observed reciprocal binding by STAT5 and PU.1 to the κE3' enhancer in primary bone marrow cells, STAT5 and PU.1 retrovirally transduced pro-B cell lines, or embryonic stem cells induced to differentiate into B lineage cells. Binding by STAT5 corresponded with low occupancy of other enhancer binding proteins, whereas PU.1 binding corresponded with recruitment of IRF4 and E2A to the κE3' enhancer. We also find that IRF4 expression can override the repressive activity of STAT5. We propose a novel PU.1/STAT5 displacement model during B cell development, and this, coupled with increased IRF4 and E2A activity, regulates κE3' enhancer function.
Collapse
Affiliation(s)
- Suchita Hodawadekar
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104
| | - Kyoungsook Park
- Molecular Therapy Research Center, Sungkyunkwan University, B4-193, Samsun Seoul Hospital, 50 Irwon-dong, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Michael A. Farrar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Michael L. Atchison
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104
| |
Collapse
|
33
|
The Transcription Factor PU.1 is a Critical Regulator of Cellular Communication in the Immune System. Arch Immunol Ther Exp (Warsz) 2011; 59:431-40. [DOI: 10.1007/s00005-011-0147-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/25/2011] [Indexed: 12/22/2022]
|
34
|
Deletion of genes encoding PU.1 and Spi-B in B cells impairs differentiation and induces pre-B cell acute lymphoblastic leukemia. Blood 2011; 118:2801-8. [PMID: 21768304 DOI: 10.1182/blood-2011-02-335539] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The E26 transformation-specific (Ets) transcription factor PU.1 is required to generate lymphoid progenitor cells from hematopoietic stem cells, but it is not required to generate B cells from committed B-cell lineage progenitors. We hypothesized that PU.1 function in B-cell differentiation is complemented by the related Ets transcription factor Spi-B. To test this hypothesis, mice were generated lacking both PU.1 and Spi-B in the B-cell lineage. Unlike mice lacking PU.1 or Spi-B, mice deficient in both PU.1 and Spi-B in the B-cell lineage had reduced frequencies of B cells as well as impaired B-cell differentiation. Strikingly, all PU.1 and Spi-B-deficient mice developed pre-B cell acute lymphoblastic leukemia before 30 weeks of age. Pre-B cells accumulated in the thymus resulting in massive thymic enlargement and dyspnea. These findings demonstrate that PU.1 and Spi-B are essential transcriptional regulators of B-cell differentiation as well as novel tumor suppressors in the B-cell lineage.
Collapse
|
35
|
|
36
|
The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 2010; 32:628-41. [PMID: 20510871 DOI: 10.1016/j.immuni.2010.05.005] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/15/2010] [Accepted: 03/31/2010] [Indexed: 12/16/2022]
Abstract
The transcription factor PU.1 plays multiple context and concentration dependent roles in lymphoid and myeloid cell development. Here we showed that PU.1 (encoded by Sfpi1) was essential for dendritic cell (DC) development in vivo and that conditional ablation of PU.1 in defined precursors, including the common DC progenitor, blocked Flt3 ligand-induced DC generation in vitro. PU.1 was also required for the parallel granulocyte-macrophage colony stimulating factor-induced DC pathway from early hematopoietic progenitors. Molecular studies demonstrated that PU.1 directly regulated Flt3 in a concentration-dependent manner, as Sfpi1(+/-) cells displayed reduced expression of Flt3 and impaired DC formation. These studies identify PU.1 as a critical regulator of both conventional and plasmacytoid DC development and provide one mechanism how altered PU.1 concentration can have profound functional consequences for hematopoietic cell development.
Collapse
|
37
|
The role of PU.1 and GATA-1 transcription factors during normal and leukemogenic hematopoiesis. Leukemia 2010; 24:1249-57. [DOI: 10.1038/leu.2010.104] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Samitas K, Lötvall J, Bossios A. B Cells: From Early Development to Regulating Allergic Diseases. Arch Immunol Ther Exp (Warsz) 2010; 58:209-25. [DOI: 10.1007/s00005-010-0073-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 10/27/2009] [Indexed: 01/22/2023]
|
39
|
Abstract
c-Myb is a transcription factor with functions in many hematopoietic lineages. c-Myb-deficient mice display reduced numbers of B cells; however, it is unknown what role c-Myb plays in B lymphopoiesis because no critical target genes have been identified in the B-cell lineage. We demonstrate that conditional deletion of c-Myb in B-cell progenitors completely abolishes B-cell development. c-Myb is required for lymphoid progenitors to respond to the cytokines interleukin-7 and thymic stromal lymphopoietin; in the absence of sufficient c-Myb activity, mice display a B lymphopenia that closely resembles that observed in interleukin-7 receptor alpha-deficient animals. Analysis of the multipotent progenitor compartment indicates that c-Myb is also required for up-regulation of multiple lymphoid-associated genes, including Il7r, and for the subsequent development of the common lymphoid progenitor population. These data show that c-Myb plays a critical role in the regulatory pathways governing lymphoid specification and early B-cell differentiation.
Collapse
|
40
|
Induction of B-cell development in adult mice reveals the ability of bone marrow to produce B-1a cells. Blood 2009; 114:4960-7. [DOI: 10.1182/blood-2009-04-218156] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
To study B-cell development from bone marrow (BM), we generated recombination-activating gene 1 (Rag1)–targeted mice lacking mature lymphocytes. B-cell development can be induced in such mice by B cell–specific restoration of a functional Rag1 transcription unit. Follicular and marginal zone B cells populated the spleen when Rag1 expression was permitted. Notably, the peritoneal cavity was dominated by bona fide B-1a cells, as judged by surface markers and functional properties. These BM-derived B-1a cells exhibited a polyclonal VDJ repertoire with substantial N nucleotide insertions. Nevertheless, physiologic frequencies of phosphatidylcholine-specific B cells were detected. Importantly, the BM of young and 5-month-old mice was indistinguishable with regard to the potential to generate B-1a cells.
Collapse
|
41
|
Abstract
PU.1, IKAROS, E2A, EBF, and PAX5 comprise a transcriptional network that orchestrates B-cell lineage specification, commitment, and differentiation. Here we identify interferon regulatory factor 8 (IRF8) as another component of this complex, and show that it also modulates lineage choice by hematopoietic stem cells (HSCs). IRF8 binds directly to an IRF8/Ets consensus sequence located in promoter regions of Sfpi1 and Ebf1, which encode PU.1 and EBF, respectively, and is associated with transcriptional repression of Sfpi1 and transcriptional activation of Ebf1. Bone marrows of IRF8 knockout mice (IRF8(-/-)) had significantly reduced numbers of pre-pro-B cells and increased numbers of myeloid cells. Although HSCs of IRF8(-/-) mice failed to differentiate to B220(+) B-lineage cells in vitro, the defect could be rescued by transfecting HSCs with wild-type but not with a signaling-deficient IRF8 mutant. In contrast, overexpression of IRF8 in HSC-differentiated progenitor cells resulted in growth inhibition and apoptosis. We also found that IRF8 was expressed at higher levels in pre-pro-B cells than more mature B cells in wild-type mice. Together, these results indicate that IRF8 modulates lineage choice by HSCs and is part of the transcriptional network governing B-cell lineage specification, commitment, and differentiation.
Collapse
|
42
|
Mankaï A, Bordron A, Renaudineau Y, Martins-Carvalho C, Takahashi S, Ghedira I, Berthou C, Youinou P. Purine-Rich Box-1–Mediated Reduced Expression of CD20 Alters Rituximab-Induced Lysis of Chronic Lymphocytic Leukemia B Cells. Cancer Res 2008; 68:7512-9. [DOI: 10.1158/0008-5472.can-07-6446] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros. Nat Immunol 2008; 9:927-36. [PMID: 18568028 DOI: 10.1038/ni.1626] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 05/23/2008] [Indexed: 12/11/2022]
Abstract
The transcription factor Ikaros is essential for B cell development. However, its molecular functions in B cell fate specification and commitment have remained elusive. We show here that the transcription factor EBF restored the generation of CD19(+) pro-B cells from Ikaros-deficient hematopoietic progenitors. Notably, these pro-B cells, despite having normal expression of the transcription factors EBF and Pax5, were not committed to the B cell fate. They also failed to recombine variable gene segments at the immunoglobulin heavy-chain locus. Ikaros promoted heavy-chain gene rearrangements by inducing expression of the recombination-activating genes as well as by controlling accessibility of the variable gene segments and compaction of the immunoglobulin heavy-chain locus. Thus, Ikaros is an obligate component of a network that regulates B cell fate commitment and immunoglobulin heavy-chain gene recombination.
Collapse
|
44
|
PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells. Proc Natl Acad Sci U S A 2008; 105:6057-62. [PMID: 18424555 DOI: 10.1073/pnas.0711961105] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Earlier work has shown that the transcription factor C/EBPalpha induced a transdifferentiation of committed lymphoid precursors into macrophages in a process requiring endogenous PU.1. Here we have examined the effects of PU.1 and C/EBPalpha on fibroblasts, a cell type distantly related to blood cells and akin to myoblasts, adipocytes, osteoblasts, and chondroblasts. The combination of the two factors, as well as PU.1 and C/EBPbeta, induced the up-regulation of macrophage/hematopoietic cell surface markers in a large proportion of NIH 3T3 cells. They also up-regulated these markers in mouse embryo- and adult skin-derived fibroblasts. Based on cell morphology, activation of macrophage-associated genes, and extinction of fibroblast-associated genes, cell lines containing an attenuated form of PU.1 and C/EBPalpha acquired a macrophage-like phenotype. The lines also display macrophage functions: They phagocytose small particles and bacteria, mount a partial inflammatory response, and exhibit strict CSF-1 dependence for growth. The myeloid conversion is primarily induced by PU.1, with C/EBPalpha acting as a modulator of macrophage-specific gene expression. Our data suggest that it might become possible to induce the transdifferentiation of skin-derived fibroblasts into cell types desirable for tissue regeneration.
Collapse
|
45
|
Dose-dependent repression of T-cell and natural killer cell genes by PU.1 enforces myeloid and B-cell identity. Leukemia 2008; 22:1214-25. [PMID: 18354487 DOI: 10.1038/leu.2008.67] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Ets transcription factor PU.1, encoded by the gene Sfpi1, functions in a concentration-dependent manner to promote myeloid and B-cell development and has been implicated in myeloid and lymphoid leukemias. To determine the consequences of reducing PU.1 concentration during hematopoiesis, we analyzed mice with two distinct hypomorphic alleles of Sfpi1 that produce PU.1 at approximately 20% (BN) or approximately 2% (Blac) of wild-type levels. Myeloid development was impaired in these mice, but less severely than in Sfpi1 null mice. To identify the downstream target genes that respond to changes in PU.1 concentration, we analyzed ex vivo interleukin-3 dependent myeloid cell lines established from Sfpi1(BN/BN), Sfpi1(Blac/Blac) and Sfpi1(-/-) fetal liver cells. Unexpectedly, many T-cell and natural killer cell genes were expressed in Sfpi1(-/-) cells and repressed in a dose-dependent manner in Sfpi1(Blac/Blac) and Sfpi1(BN/BN) cells. This pattern of dose-dependent T/NK-cell gene repression also occurred in ex vivo interleukin-7 dependent progenitor B cell lines. These results suggest that PU.1 functions in a concentration-dependent manner to repress T-cell and natural killer cell fates while promoting myeloid and B-cell fates.
Collapse
|
46
|
Abstract
Many fundamental concepts about immune system development have changed substantially in the past few years, and rapid advances with animal models are presenting prospects for further discovery. However, continued progress requires a clearer understanding of the relationships between haematopoietic stem cells and the progenitors that replenish each type of lymphocyte pool. Blood-cell formation has traditionally been described in terms of discrete developmental branch points, and a single route is given for each major cell type. As we discuss in this Review, recent findings suggest that the process of B-cell formation is much more dynamic.
Collapse
|
47
|
Houston IB, Kamath MB, Schweitzer BL, Chlon TM, DeKoter RP. Reduction in PU.1 activity results in a block to B-cell development, abnormal myeloid proliferation, and neonatal lethality. Exp Hematol 2007; 35:1056-68. [PMID: 17588474 PMCID: PMC1975786 DOI: 10.1016/j.exphem.2007.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/05/2007] [Accepted: 04/06/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVE It has been demonstrated that high concentration of the transcription factor PU.1 (encoded by Sfpi1) promotes macrophage development, whereas low concentration induces B-cell development in vitro. This has led to the hypothesis that lower levels of PU.1 activity are required for B cell than for macrophage development in vivo. We utilized an allele of Sfpi1 (termed BN) with a mutation in the first coding exon, which resulted in a reduction of PU.1 expression in order to test this hypothesis. MATERIALS AND METHODS Using gene targeting in embryonic stem cells, two ATG-start site codons of PU.1 were mutated, resulting in reduced PU.1 expression originating from a third start codon. Mice were assayed for phenotypic abnormalities using fluorescence-activated cell sorting, microscopy, and colony-forming ability. In addition, isolated cells were tested for their differentiation potential in vitro and in vivo. RESULTS Lymphoid and myeloid cells derived from cultured Sfpi1(BN/BN) fetal liver cells had reduced levels of PU.1 expression and activity. B-cell development was intrinsically blocked in cells isolated from Sfpi1(BN/BN) mice. In addition, myeloid development was impaired in Sfpi1(BN/BN) fetal liver. However, neonatal Sfpi1(BN/BN) mice had a dramatic expansion and infiltration of immature myeloid cells. CONCLUSION Contrary to our original hypothesis, high levels of PU.1 activity are required to induce both myeloid and B-cell development. In addition, neonatal mice homozygous for the hypomorphic allele acquire a myeloproliferative disorder and die within 1 month of age.
Collapse
Affiliation(s)
- Isaac B Houston
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
48
|
DeKoter RP, Kamath MB, Houston IB. Analysis of concentration-dependent functions of PU.1 in hematopoiesis using mouse models. Blood Cells Mol Dis 2007; 39:316-20. [PMID: 17629523 PMCID: PMC2040501 DOI: 10.1016/j.bcmd.2007.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 06/08/2007] [Indexed: 01/01/2023]
Abstract
The Ets family transcription factor PU.1, encoded by the gene Sfpi1, is essential for normal hematopoiesis. A number of studies have suggested that changes in PU.1 concentration play a role in directing cell fate decisions during hematopoiesis. However, the stages of hematopoietic development at which changes in PU.1 concentration are important have not been defined until recently. Experiments using conditional null alleles, reporter alleles, and hypomorphic alleles of the Sfpi1 gene in mice demonstrate that PU.1 concentration is uniformly high during early stages of hematopoietic development. However, reduction of PU.1 concentration is required for normal development of megakaryocyte-erythroid progenitors, B cell progenitors, and T cell progenitors. PU.1 concentration increases in granulocyte-macrophage progenitors. Furthermore, experimental reduction of PU.1 concentration in the myeloid lineages leads to failed differentiation, abnormal proliferation, and leukemia. In this review, we summarize recent studies to develop a new model of PU.1 function in hematopoiesis.
Collapse
Affiliation(s)
- Rodney P DeKoter
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, The University of Cincinnati, 231 Albert Sabin Way, MSB 3256, Cincinnati, OH 45267-0524, USA.
| | | | | |
Collapse
|
49
|
Abstract
The subdivision of bone marrow (BM) with surface markers and reporter systems and the use of multiple culture and transplantation assays to assess differentiation potential have led to extraordinary progress in defining stages of B lymphopoiesis between the hematopoietic stem cell and B cell receptor (BCR)-expressing lymphocytes. Despite the lack of standard nomenclature and a series of technical issues that still need to be resolved, there seems to be a general consensus regarding the major route to becoming a B cell. Nevertheless, evidence that additional, minor pathways through which B lineage cells are generated exists, and a new appreciation that lymphoid progenitors are protean and able to alter their differentiation potential during embryogenesis and after birth in response to infections suggests that a full understanding of B cell development and how it is regulated has not yet been attained.
Collapse
Affiliation(s)
- Richard R Hardy
- The Division of Basic Sciences, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | |
Collapse
|
50
|
Abstract
The expression of lineage-associated genes, as well as the survival and expansion of committed B cell progenitors, is controlled by multiple transcriptional regulators and growth-factor receptors. Whereas certain DNA-binding proteins, such as Ikaros and PU.1, are required primarily for the formation of more primitive lymphoid progenitors, other factors such as E2A and EBF1 have more direct roles in specifying the B cell-specific gene-expression program. Further, Pax5 functions to promote B cell commitment by repressing lineage-inappropriate gene expression and reinforcing B cell-specific gene expression. In this review, we focus on recent studies that have revealed that instead of a simple transcriptional hierarchy, efficient B cell commitment and differentiation requires the combinatorial activity of multiple transcription factors in a complex gene regulatory network.
Collapse
Affiliation(s)
- Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|