1
|
Almeida KH, Andrews ME, Sobol RW. AP endonuclease 1: Biological updates and advances in activity analysis. Methods Enzymol 2024; 705:347-376. [PMID: 39389669 DOI: 10.1016/bs.mie.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1, APEX1, REF1, HAP1) is an abasic site-specific endonuclease holding critical roles in numerous biological functions including base excision repair, the DNA damage response, redox regulation of transcription factors, RNA processing, and gene regulation. Pathologically, APE1 expression and function is linked with numerous human diseases including cancer, highlighting the importance of sensitive and quantitative assays to measure APE1 activity. Here, we summarize biochemical and biological roles for APE1 and expand on the discovery of APE1 inhibitors. Finally, we highlight the development of assays to monitor APE1 activity, detailing a recently improved and stabilized DNA Repair Molecular Beacon assay to analyze APE1 activity. The assay is amenable to analysis of purified protein, to measure changes in APE1 activity in cell lysates, to monitor human patient samples for defects in APE1 function, or the cellular and biochemical response to APE1 inhibitors.
Collapse
Affiliation(s)
- Karen H Almeida
- Physical Sciences Department, Rhode Island College, Providence, RI, United States
| | - Morgan E Andrews
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, United States.
| |
Collapse
|
2
|
Zhao H, Li J, You Z, Lindsay HD, Yan S. Distinct regulation of ATM signaling by DNA single-strand breaks and APE1. Nat Commun 2024; 15:6517. [PMID: 39112456 PMCID: PMC11306256 DOI: 10.1038/s41467-024-50836-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
In response to DNA double-strand breaks or oxidative stress, ATM-dependent DNA damage response (DDR) is activated to maintain genome integrity. However, it remains elusive whether and how DNA single-strand breaks (SSBs) activate ATM. Here, we provide direct evidence in Xenopus egg extracts that ATM-mediated DDR is activated by a defined SSB structure. Our mechanistic studies reveal that APE1 promotes the SSB-induced ATM DDR through APE1 exonuclease activity and ATM recruitment to SSB sites. APE1 protein can form oligomers to activate the ATM DDR in Xenopus egg extracts in the absence of DNA and can directly stimulate ATM kinase activity in vitro. Our findings reveal distinct mechanisms of the ATM-dependent DDR activation by SSBs in eukaryotic systems and identify APE1 as a direct activator of ATM kinase.
Collapse
Affiliation(s)
- Haichao Zhao
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Jia Li
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Howard D Lindsay
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
- School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
- Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, USA.
| |
Collapse
|
3
|
McMahon A, Zhao J, Yan S. Ubiquitin-mediated regulation of APE2 protein abundance. J Biol Chem 2024; 300:107337. [PMID: 38705397 PMCID: PMC11157268 DOI: 10.1016/j.jbc.2024.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
APE2 plays important roles in the maintenance of genomic and epigenomic stability including DNA repair and DNA damage response. Accumulating evidence has suggested that APE2 is upregulated in multiple cancers at the protein and mRNA levels and that APE2 upregulation is correlative with higher and lower overall survival of cancer patients depending on tumor type. However, it remains unknown how APE2 protein abundance is maintained and regulated in cells. Here, we provide the first evidence of APE2 regulation via the posttranslational modification ubiquitin. APE2 is poly-ubiquitinated via K48-linked chains and degraded via the ubiquitin-proteasome system where K371 is the key residue within APE2 responsible for its ubiquitination and degradation. We further characterize MKRN3 as the E3 ubiquitin ligase for APE2 ubiquitination in cells and in vitro. In summary, this study offers the first definition of the APE2 proteostasis network and lays the foundation for future studies pertaining to the posttranslational modification regulation and functions of APE2 in genome integrity and cancer etiology/treatment.
Collapse
Affiliation(s)
- Anne McMahon
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA; School of Data Science, University of North Carolina at Charlotte, Charlotte, North Carolina, USA; Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina, USA.
| |
Collapse
|
4
|
Mu Y, Chen Z, Plummer JB, Zelazowska MA, Dong Q, Krug LT, McBride KM. UNG-RPA interaction governs the choice between high-fidelity and mutagenic uracil repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591927. [PMID: 38746347 PMCID: PMC11092621 DOI: 10.1101/2024.04.30.591927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Mammalian Uracil DNA glycosylase (UNG) removes uracils and initiates high-fidelity base excision repair to maintain genomic stability. During B cell development, activation-induced cytidine deaminase (AID) creates uracils that UNG processes in an error-prone fashion to accomplish immunoglobulin (Ig) somatic hypermutation (SHM) or class switch recombination (CSR). The mechanism that governs high-fidelity versus mutagenic uracil repair is not understood. The B cell tropic gammaherpesvirus (GHV) encodes a functional homolog of UNG that can process AID induced genomic uracils. GHVUNG does not support hypermutation, suggesting intrinsic properties of UNG influence repair outcome. Noting the structural divergence between the UNGs, we define the RPA interacting motif as the determinant of mutation outcome. UNG or RPA mutants unable to interact with each other, only support high-fidelity repair. In B cells, transversions at the Ig variable region are abated while CSR is supported. Thus UNG-RPA governs the generation of mutations and has implications for locus specific mutagenesis in B cells and deamination associated mutational signatures in cancer.
Collapse
|
5
|
Schrader CE, Williams T, Pechhold K, Linehan EK, Tsuchimoto D, Nakabeppu Y. APE2 Promotes AID-Dependent Somatic Hypermutation in Primary B Cell Cultures That Is Suppressed by APE1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1804-1814. [PMID: 37074207 PMCID: PMC10234595 DOI: 10.4049/jimmunol.2100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/29/2023] [Indexed: 04/20/2023]
Abstract
Somatic hypermutation (SHM) is necessary for Ab diversification and involves error-prone DNA repair of activation-induced cytidine deaminase-induced lesions in germinal center (GC) B cells but can also cause genomic instability. GC B cells express low levels of the DNA repair protein apurinic/apyrimidinic (AP) endonuclease (APE)1 and high levels of its homolog APE2. Reduced SHM in APE2-deficient mice suggests that APE2 promotes SHM, but these GC B cells also exhibit reduced proliferation that could impact mutation frequency. In this study, we test the hypothesis that APE2 promotes and APE1 suppresses SHM. We show how APE1/APE2 expression changes in primary murine spleen B cells during activation, impacting both SHM and class-switch recombination (CSR). High levels of both APE1 and APE2 early after activation promote CSR. However, after 2 d, APE1 levels decrease steadily with each cell division, even with repeated stimulation, whereas APE2 levels increase with each stimulation. When GC-level APE1/APE2 expression was engineered by reducing APE1 genetically (apex1+/-) and overexpressing APE2, bona fide activation-induced cytidine deaminase-dependent VDJH4 intron SHM became detectable in primary B cell cultures. The C terminus of APE2 that interacts with proliferating cell nuclear Ag promotes SHM and CSR, although its ATR-Chk1-interacting Zf-GRF domain is not required. However, APE2 does not increase mutations unless APE1 is reduced. Although APE1 promotes CSR, it suppresses SHM, suggesting that downregulation of APE1 in the GC is required for SHM. Genome-wide expression data compare GC and cultured B cells and new models depict how APE1 and APE2 expression and protein interactions change during B cell activation and affect the balance between accurate and error-prone repair during CSR and SHM.
Collapse
Affiliation(s)
- Carol E. Schrader
- Department of Microbiology and Physiological Systems, Program in Immunology and Microbiology, UMassChan Medical School, Worcester, MA 01655
| | - Travis Williams
- Department of Microbiology and Physiological Systems, Program in Immunology and Microbiology, UMassChan Medical School, Worcester, MA 01655
| | - Klaus Pechhold
- Department of Microbiology and Physiological Systems, Program in Immunology and Microbiology, UMassChan Medical School, Worcester, MA 01655
| | - Erin K. Linehan
- Department of Microbiology and Physiological Systems, Program in Immunology and Microbiology, UMassChan Medical School, Worcester, MA 01655
| | - Daisuke Tsuchimoto
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusaku Nakabeppu
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Shadfar S, Parakh S, Jamali MS, Atkin JD. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl Neurodegener 2023; 12:18. [PMID: 37055865 PMCID: PMC10103468 DOI: 10.1186/s40035-023-00350-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023] Open
Abstract
Redox homeostasis refers to the balance between the production of reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), and their elimination by antioxidants. It is linked to all important cellular activities and oxidative stress is a result of imbalance between pro-oxidants and antioxidant species. Oxidative stress perturbs many cellular activities, including processes that maintain the integrity of DNA. Nucleic acids are highly reactive and therefore particularly susceptible to damage. The DNA damage response detects and repairs these DNA lesions. Efficient DNA repair processes are therefore essential for maintaining cellular viability, but they decline considerably during aging. DNA damage and deficiencies in DNA repair are increasingly described in age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Furthermore, oxidative stress has long been associated with these conditions. Moreover, both redox dysregulation and DNA damage increase significantly during aging, which is the biggest risk factor for neurodegenerative diseases. However, the links between redox dysfunction and DNA damage, and their joint contributions to pathophysiology in these conditions, are only just emerging. This review will discuss these associations and address the increasing evidence for redox dysregulation as an important and major source of DNA damage in neurodegenerative disorders. Understanding these connections may facilitate a better understanding of disease mechanisms, and ultimately lead to the design of better therapeutic strategies based on preventing both redox dysregulation and DNA damage.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Sonam Parakh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
7
|
Refaat AM, Nakata M, Husain A, Kosako H, Honjo T, Begum NA. HNRNPU facilitates antibody class-switch recombination through C-NHEJ promotion and R-loop suppression. Cell Rep 2023; 42:112284. [PMID: 36943867 DOI: 10.1016/j.celrep.2023.112284] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/23/2022] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
B cells generate functionally different classes of antibodies through class-switch recombination (CSR), which requires classical non-homologous end joining (C-NHEJ) to join the DNA breaks at the donor and acceptor switch (S) regions. We show that the RNA-binding protein HNRNPU promotes C-NHEJ-mediated S-S joining through the 53BP1-shieldin DNA-repair complex. Notably, HNRNPU binds to the S region RNA/DNA G-quadruplexes, contributing to regulating R-loop and single-stranded DNA (ssDNA) accumulation. HNRNPU is an intrinsically disordered protein that interacts with both C-NHEJ and R-loop complexes in an RNA-dependent manner. Strikingly, recruitment of HNRNPU and the C-NHEJ factors is highly sensitive to liquid-liquid phase separation inhibitors, suggestive of DNA-repair condensate formation. We propose that HNRNPU facilitates CSR by forming and stabilizing the C-NHEJ ribonucleoprotein complex and preventing excessive R-loop accumulation, which otherwise would cause persistent DNA breaks and aberrant DNA repair, leading to genomic instability.
Collapse
Affiliation(s)
- Ahmed M Refaat
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Mikiyo Nakata
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Afzal Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Hidetaka Kosako
- Division of Cell Signaling, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
McMahon A, Zhao J, Yan S. APE2: catalytic function and synthetic lethality draw attention as a cancer therapy target. NAR Cancer 2023; 5:zcad006. [PMID: 36755963 PMCID: PMC9900424 DOI: 10.1093/narcan/zcad006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
AP endonuclease 2 (APE2, APEX2 or APN2) is an emerging critical protein involved in genome and epigenome integrity. Whereas its catalytic function as a nuclease in DNA repair is widely accepted, recent studies have elucidated the function and mechanism of APE2 in the immune response and DNA damage response. Several genome-wide screens have identified APE2 as a synthetic lethal target for deficiencies of BRCA1, BRCA2 or TDP1 in cancer cells. Due to its overexpression in several cancer types, APE2 is proposed as an oncogene and could serve as prognostic marker of overall survival of cancer treatment. However, it remains to be discovered whether and how APE2 catalytic function and synthetic lethality can be modulated and manipulated as a cancer therapy target. In this review, we provide a current understanding of alterations and expression of APE2 in cancer, the function of APE2 in the immune response, and mechanisms of APE2 in ATR/Chk1 DNA damage response. We also summarize the role of APE2 in DNA repair pathways in the removal of heterogenous and complexed 3'-termini and MMEJ. Finally, we provide an updated perspective on how APE2 may be targeted for cancer therapy and future directions of APE2 studies in cancer biology.
Collapse
Affiliation(s)
- Anne McMahon
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
9
|
Sible E, Attaway M, Fiorica G, Michel G, Chaudhuri J, Vuong BQ. Ataxia Telangiectasia Mutated and MSH2 Control Blunt DNA End Joining in Ig Class Switch Recombination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:369-376. [PMID: 36603026 PMCID: PMC9915862 DOI: 10.4049/jimmunol.2200590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
Class-switch recombination (CSR) produces secondary Ig isotypes and requires activation-induced cytidine deaminase (AID)-dependent DNA deamination of intronic switch regions within the IgH (Igh) gene locus. Noncanonical repair of deaminated DNA by mismatch repair (MMR) or base excision repair (BER) creates DNA breaks that permit recombination between distal switch regions. Ataxia telangiectasia mutated (ATM)-dependent phosphorylation of AID at serine 38 (pS38-AID) promotes its interaction with apurinic/apyrimidinic endonuclease 1 (APE1), a BER protein, suggesting that ATM regulates CSR through BER. However, pS38-AID may also function in MMR during CSR, although the mechanism remains unknown. To examine whether ATM modulates BER- and/or MMR-dependent CSR, Atm-/- mice were bred to mice deficient for the MMR gene mutS homolog 2 (Msh2). Surprisingly, the predicted Mendelian frequencies of Atm-/-Msh2-/- adult mice were not obtained. To generate ATM and MSH2-deficient B cells, Atm was conditionally deleted on an Msh2-/- background using a floxed ATM allele (Atmf) and B cell-specific Cre recombinase expression (CD23-cre) to produce a deleted ATM allele (AtmD). As compared with AtmD/D and Msh2-/- mice and B cells, AtmD/DMsh2-/- mice and B cells display a reduced CSR phenotype. Interestingly, Sμ-Sγ1 junctions from AtmD/DMsh2-/- B cells that were induced to switch to IgG1 in vitro showed a significant loss of blunt end joins and an increase in insertions as compared with wild-type, AtmD/D, or Msh2-/- B cells. These data indicate that the absence of both ATM and MSH2 blocks nonhomologous end joining, leading to inefficient CSR. We propose a model whereby ATM and MSH2 function cooperatively to regulate end joining during CSR through pS38-AID.
Collapse
Affiliation(s)
- Emily Sible
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Mary Attaway
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Giuseppe Fiorica
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | - Genesis Michel
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| | | | - Bao Q. Vuong
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY
- Department of Biology, City College of New York, The City University of New York, New York, NY; and
| |
Collapse
|
10
|
Polβ modulates the expression of type I interferon via STING pathway. Biochem Biophys Res Commun 2022; 621:137-143. [DOI: 10.1016/j.bbrc.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022]
|
11
|
Colas L, Magnan A, Brouard S. Immunoglobulin E response in health and disease beyond allergic disorders. Allergy 2022; 77:1700-1718. [PMID: 35073421 DOI: 10.1111/all.15230] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/13/2021] [Accepted: 01/16/2022] [Indexed: 12/24/2022]
Abstract
Immunoglobulin E is the latest discovered of immunoglobulin family and has been long associated with anaphylaxis and worm expulsion. Immunoglobulin E, along with mast cells, basophils, and eosinophils, is also a hallmark of type 2 immunity which is dysregulated in numerous diseases such as asthma, rhinitis, atopic dermatitis, and eosinophilic esophagitis in addition to anaphylaxis as aforementioned. However, recent advances have shed light on IgE regulation and memory explaining the low level of free IgE, the scarcity of IgE plasma cells that are mainly short live and the absence of IgE memory B cells in homeostatic conditions. Furthermore, IgE was implicated in inflammatory conditions beyond allergic disorders where IgE-mediated facilitated antigen presentation can enhance cellular and humoral response against autoantigens in systemic lupus or chronic urticaria leading to more severe disease and even against neoantigen facilitating tumor cell lysis. At last, IgE was unexpectedly associated with allograft rejection or atheromatous cardiovascular diseases where precise mechanisms remain to be deciphered. The purpose of this review is to summarize these recent advances in IgE regulation, biology, and physiopathology beyond allergic diseases opening whole new fields of IgE biology to explore.
Collapse
Affiliation(s)
- Luc Colas
- Plateforme Transversale d'Allergologie et d'immunologie Clinique PFTA Clinique dermatologique CHU de Nantes Nantes France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology Nantes France
| | - Antoine Magnan
- Hôpital Foch, Suresnes; Université de Versailles Saint‐Quentin Paris‐Saclay; INRAe Paris France
| | - Sophie Brouard
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology Nantes France
- Labex IGO Nantes France
- Centre d’Investigation Clinique en Biothérapie Centre de ressources biologiques (CRB) Nantes France
| |
Collapse
|
12
|
Gullickson P, Xu YW, Niedernhofer LJ, Thompson EL, Yousefzadeh MJ. The Role of DNA Repair in Immunological Diversity: From Molecular Mechanisms to Clinical Ramifications. Front Immunol 2022; 13:834889. [PMID: 35432317 PMCID: PMC9010869 DOI: 10.3389/fimmu.2022.834889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
An effective humoral immune response necessitates the generation of diverse and high-affinity antibodies to neutralize pathogens and their products. To generate this assorted immune repertoire, DNA damage is introduced at specific regions of the genome. Purposeful genotoxic insults are needed for the successful completion of multiple immunological diversity processes: V(D)J recombination, class-switch recombination, and somatic hypermutation. These three processes, in concert, yield a broad but highly specific immune response. This review highlights the importance of DNA repair mechanisms involved in each of these processes and the catastrophic diseases that arise from DNA repair deficiencies impacting immune system function. These DNA repair disorders underline not only the importance of maintaining genomic integrity for preventing disease but also for robust adaptive immunity.
Collapse
|
13
|
Oliveira TT, Coutinho LG, de Oliveira LOA, Timoteo ARDS, Farias GC, Agnez-Lima LF. APE1/Ref-1 Role in Inflammation and Immune Response. Front Immunol 2022; 13:793096. [PMID: 35296074 PMCID: PMC8918667 DOI: 10.3389/fimmu.2022.793096] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme that is essential for maintaining cellular homeostasis. APE1 is the major apurinic/apyrimidinic endonuclease in the base excision repair pathway and acts as a redox-dependent regulator of several transcription factors, including NF-κB, AP-1, HIF-1α, and STAT3. These functions render APE1 vital to regulating cell signaling, senescence, and inflammatory pathways. In addition to regulating cytokine and chemokine expression through activation of redox sensitive transcription factors, APE1 participates in other critical processes in the immune response, including production of reactive oxygen species and class switch recombination. Furthermore, through participation in active chromatin demethylation, the repair function of APE1 also regulates transcription of some genes, including cytokines such as TNFα. The multiple functions of APE1 make it an essential regulator of the pathogenesis of several diseases, including cancer and neurological disorders. Therefore, APE1 inhibitors have therapeutic potential. APE1 is highly expressed in the central nervous system (CNS) and participates in tissue homeostasis, and its roles in neurodegenerative and neuroinflammatory diseases have been elucidated. This review discusses known roles of APE1 in innate and adaptive immunity, especially in the CNS, recent evidence of a role in the extracellular environment, and the therapeutic potential of APE1 inhibitors in infectious/immune diseases.
Collapse
Affiliation(s)
- Thais Teixeira Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Leonam Gomes Coutinho
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), São Paulo do Potengi, Brazil
| | | | | | - Guilherme Cavalcanti Farias
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
- *Correspondence: Lucymara Fassarella Agnez-Lima,
| |
Collapse
|
14
|
Fleming A, Castro‐Dopico T, Clatworthy MR. B cell class switching in intestinal immunity in health and disease. Scand J Immunol 2022; 95:e13139. [PMID: 34978077 PMCID: PMC9285483 DOI: 10.1111/sji.13139] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract is colonized by trillions of commensal microorganisms that collectively form the microbiome and make essential contributions to organism homeostasis. The intestinal immune system must tolerate these beneficial commensals, whilst preventing pathogenic organisms from systemic spread. Humoral immunity plays a key role in this process, with large quantities of immunoglobulin (Ig)A secreted into the lumen on a daily basis, regulating the microbiome and preventing bacteria from encroaching on the epithelium. However, there is an increasing appreciation of the role of IgG antibodies in intestinal immunity, including beneficial effects in neonatal immune development, pathogen and tumour resistance, but also of pathological effects in driving chronic inflammation in inflammatory bowel disease (IBD). These antibody isotypes differ in effector function, with IgG exhibiting more proinflammatory capabilities compared with IgA. Therefore, the process that leads to the generation of different antibody isotypes, class-switch recombination (CSR), requires careful regulation and is orchestrated by the immunological cues generated by the prevalent local challenge. In general, an initiating signal such as CD40 ligation on B cells leads to the induction of activation-induced cytidine deaminase (AID), but a second cytokine-mediated signal determines which Ig heavy chain is expressed. Whilst the cytokines driving intestinal IgA responses are well-studied, there is less clarity on how IgG responses are generated in the intestine, and how these cues might become dysfunctional in IBD. Here, we review the key mechanisms regulating class switching to IgA vs IgG in the intestine, processes that could be therapeutically manipulated in infection and IBD.
Collapse
Affiliation(s)
- Aaron Fleming
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
| | - Tomas Castro‐Dopico
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
- The Francis Crick InstituteLondonUK
| | - Menna R. Clatworthy
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
- Cellular GeneticsWellcome Trust Sanger InstituteHinxtonUK
- NIHR Cambridge Biomedical Research CentreCambridgeUK
| |
Collapse
|
15
|
Alexeeva M, Moen MN, Xu XM, Rasmussen A, Leiros I, Kirpekar F, Klungland A, Alsøe L, Nilsen H, Bjelland S. Intrinsic Strand-Incision Activity of Human UNG: Implications for Nick Generation in Immunoglobulin Gene Diversification. Front Immunol 2021; 12:762032. [PMID: 35003074 PMCID: PMC8730318 DOI: 10.3389/fimmu.2021.762032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 12/05/2022] Open
Abstract
Uracil arises in cellular DNA by cytosine (C) deamination and erroneous replicative incorporation of deoxyuridine monophosphate opposite adenine. The former generates C → thymine transition mutations if uracil is not removed by uracil-DNA glycosylase (UDG) and replaced by C by the base excision repair (BER) pathway. The primary human UDG is hUNG. During immunoglobulin gene diversification in activated B cells, targeted cytosine deamination by activation-induced cytidine deaminase followed by uracil excision by hUNG is important for class switch recombination (CSR) and somatic hypermutation by providing the substrate for DNA double-strand breaks and mutagenesis, respectively. However, considerable uncertainty remains regarding the mechanisms leading to DNA incision following uracil excision: based on the general BER scheme, apurinic/apyrimidinic (AP) endonuclease (APE1 and/or APE2) is believed to generate the strand break by incising the AP site generated by hUNG. We report here that hUNG may incise the DNA backbone subsequent to uracil excision resulting in a 3´-α,β-unsaturated aldehyde designated uracil-DNA incision product (UIP), and a 5´-phosphate. The formation of UIP accords with an elimination (E2) reaction where deprotonation of C2´ occurs via the formation of a C1´ enolate intermediate. UIP is removed from the 3´-end by hAPE1. This shows that the first two steps in uracil BER can be performed by hUNG, which might explain the significant residual CSR activity in cells deficient in APE1 and APE2.
Collapse
Affiliation(s)
- Marina Alexeeva
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
| | - Marivi Nabong Moen
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Xiang Ming Xu
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
| | - Anette Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ingar Leiros
- Department of Chemistry, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Lene Alsøe
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
- *Correspondence: Svein Bjelland, ; Hilde Nilsen,
| | - Svein Bjelland
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
- *Correspondence: Svein Bjelland, ; Hilde Nilsen,
| |
Collapse
|
16
|
Hossain MA, Lin Y, Driscoll G, Li J, McMahon A, Matos J, Zhao H, Tsuchimoto D, Nakabeppu Y, Zhao J, Yan S. APE2 Is a General Regulator of the ATR-Chk1 DNA Damage Response Pathway to Maintain Genome Integrity in Pancreatic Cancer Cells. Front Cell Dev Biol 2021; 9:738502. [PMID: 34796173 PMCID: PMC8593216 DOI: 10.3389/fcell.2021.738502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
The maintenance of genome integrity and fidelity is vital for the proper function and survival of all organisms. Recent studies have revealed that APE2 is required to activate an ATR-Chk1 DNA damage response (DDR) pathway in response to oxidative stress and a defined DNA single-strand break (SSB) in Xenopus laevis egg extracts. However, it remains unclear whether APE2 is a general regulator of the DDR pathway in mammalian cells. Here, we provide evidence using human pancreatic cancer cells that APE2 is essential for ATR DDR pathway activation in response to different stressful conditions including oxidative stress, DNA replication stress, and DNA double-strand breaks. Fluorescence microscopy analysis shows that APE2-knockdown (KD) leads to enhanced γH2AX foci and increased micronuclei formation. In addition, we identified a small molecule compound Celastrol as an APE2 inhibitor that specifically compromises the binding of APE2 but not RPA to ssDNA and 3′-5′ exonuclease activity of APE2 but not APE1. The impairment of ATR-Chk1 DDR pathway by Celastrol in Xenopus egg extracts and human pancreatic cancer cells highlights the physiological significance of Celastrol in the regulation of APE2 functionalities in genome integrity. Notably, cell viability assays demonstrate that APE2-KD or Celastrol sensitizes pancreatic cancer cells to chemotherapy drugs. Overall, we propose APE2 as a general regulator for the DDR pathway in genome integrity maintenance.
Collapse
Affiliation(s)
- Md Akram Hossain
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Yunfeng Lin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Garrett Driscoll
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Jia Li
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Anne McMahon
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Joshua Matos
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Haichao Zhao
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Daisuke Tsuchimoto
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
17
|
Aloise DDA, Coura-Vital W, Carneiro M, Rodrigues MV, Toscano GADS, da Silva RB, Silva-Portela RDCB, Fontes-Dantas FL, Agnez-Lima LF, Vitor RWA, Andrade-Neto VFD. Association between ocular toxoplasmosis and APEX1 and MYD88 polymorphism. Acta Trop 2021; 221:106006. [PMID: 34118207 DOI: 10.1016/j.actatropica.2021.106006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Ocular toxoplasmosis (OT) is the most common form of posterior uveitis, and in some countries, it is the most frequent cause of visual impairment. Studies demonstrate that the polymorphism in genes involved with the immune response can be related both to the occurrence and to the recurrence of OT. Thus, the present study aimed to analyze the association between OT and the polymorphism of the APEX1 (rs1130409) and MyD88 (rs7744) genes. The studied sample consisted of 48 volunteers with OT and 96 asymptomatic volunteers, but positive for anti - T. gondii IgG (control group). Blood collection was performed for serological analysis (ELISA) and DNA extraction. Genotyping of the polymorphism was performed using real-time PCR. To analyze the association between gene polymorphism and OT, logistic regression was performed. The results showed no association between the MYD88 gene polymorphism and the development of OT. However, a significant association was found between OT and APEX1 gene polymorphism, indicating that individuals expressing polymorphic (GG) or heterozygous (GT) alleles are more likely to develop the disease (P-value = 0.02 and 0.03 respectively). These results suggest that APEX1 (rs1130409) polymorphism is a risk factor for the occurrence of ocular toxoplasmosis in the studied population.
Collapse
|
18
|
Apurinic/Apyrimidinic Endonuclease 2 (APE2): An ancillary enzyme for contextual base excision repair mechanisms to preserve genome stability. Biochimie 2021; 190:70-90. [PMID: 34302888 DOI: 10.1016/j.biochi.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023]
Abstract
The genome of living organisms frequently undergoes various types of modifications which are recognized and repaired by the relevant repair mechanisms. These repair pathways are increasingly being deciphered to understand the mechanisms. Base excision repair (BER) is indispensable to maintain genome stability. One of the enigmatic repair proteins of BER, Apurinic/Apyrimidinic Endonuclease 2 (APE2), like APE1, is truly multifunctional and demonstrates the independent and non-redundant function in maintaining the genome integrity. APE2 is involved in ATR-Chk1 mediated DNA damage response. It also resolves topoisomerase1 mediated cleavage complex intermediate which is formed while repairing misincorporated ribonucleotides in the absence of functional RNase H2 mediated excision repair pathway. BER participates in the demethylation pathway and the role of Arabidopsis thaliana APE2 is demonstrated in this process. Moreover, APE2 is synthetically lethal to BRCA1, BRCA2, and RNase H2, and its homolog, APE1 fails to complement the function. Hence, the role of APE2 is not just an alternate to the repair mechanisms but has implications in diverse functional pathways related to the maintenance of genome integrity. This review analyses genomic features of APE2 and delineates its enzyme function as error-prone as well as efficient and accurate repair protein based on the studies on mammalian or its homolog proteins from model systems such as Arabidopsis thaliana, Schizosaccharomyces pombe, Trypanosoma curzi, Xenopus laevis, Danio rerio, Mus musculus, and Homo sapiens.
Collapse
|
19
|
Begum NA, Haque F, Stanlie A, Husain A, Mondal S, Nakata M, Taniguchi T, Taniguchi H, Honjo T. Phf5a regulates DNA repair in class switch recombination via p400 and histone H2A variant deposition. EMBO J 2021; 40:e106393. [PMID: 33938017 PMCID: PMC8204862 DOI: 10.15252/embj.2020106393] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
Antibody class switch recombination (CSR) is a locus-specific genomic rearrangement mediated by switch (S) region transcription, activation-induced cytidine deaminase (AID)-induced DNA breaks, and their resolution by non-homologous end joining (NHEJ)-mediated DNA repair. Due to the complex nature of the recombination process, numerous cofactors are intimately involved, making it important to identify rate-limiting factors that impact on DNA breaking and/or repair. Using an siRNA-based loss-of-function screen of genes predicted to encode PHD zinc-finger-motif proteins, we identify the splicing factor Phf5a/Sf3b14b as a novel modulator of the DNA repair step of CSR. Loss of Phf5a severely impairs AID-induced recombination, but does not perturb DNA breaks and somatic hypermutation. Phf5a regulates NHEJ-dependent DNA repair by preserving chromatin integrity to elicit optimal DNA damage response and subsequent recruitment of NHEJ factors at the S region. Phf5a stabilizes the p400 histone chaperone complex at the locus, which in turn promotes deposition of H2A variant such as H2AX and H2A.Z that are critical for the early DNA damage response and NHEJ, respectively. Depletion of Phf5a or p400 blocks the repair of both AID- and I-SceI-induced DNA double-strand breaks, supporting an important contribution of this axis to programmed as well as aberrant recombination.
Collapse
Affiliation(s)
- Nasim A Begum
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Farazul Haque
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Andre Stanlie
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
- BioMedicine DesignPfizer Inc.CambridgeMAUSA
| | - Afzal Husain
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
- Department of BiochemistryFaculty of Life SciencesAligarh Muslim UniversityAligarhIndia
| | - Samiran Mondal
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
- Department of ChemistryRammohan CollegeKolkataIndia
| | - Mikiyo Nakata
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Takako Taniguchi
- Division of Disease ProteomicsInstitute for Enzyme ResearchUniversity of TokushimaTokushimaJapan
| | - Hisaaki Taniguchi
- Division of Disease ProteomicsInstitute for Enzyme ResearchUniversity of TokushimaTokushimaJapan
| | - Tasuku Honjo
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
20
|
Zheng S, Matthews AJ, Rahman N, Herrick-Reynolds K, Sible E, Choi JE, Wishnie A, Ng YK, Rhodes D, Elledge SJ, Vuong BQ. The uncharacterized SANT and BTB domain-containing protein SANBR inhibits class switch recombination. J Biol Chem 2021; 296:100625. [PMID: 33831416 PMCID: PMC8141524 DOI: 10.1016/j.jbc.2021.100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 01/21/2023] Open
Abstract
Class switch recombination (CSR) is the process by which B cells switch production from IgM/IgD to other immunoglobulin isotypes, enabling them to mount an effective immune response against pathogens. Timely resolution of CSR prevents damage due to an uncontrolled and prolonged immune response. While many positive regulators of CSR have been described, negative regulators of CSR are relatively unknown. Using an shRNA library screen targeting more than 28,000 genes in a mouse B cell line, we have identified a novel, uncharacterized protein of 82kD (KIAA1841, NM_027860), which we have named SANBR (SANT and BTB domain regulator of CSR), as a negative regulator of CSR. The purified, recombinant BTB domain of SANBR exhibited characteristic properties such as homodimerization and interaction with corepressor proteins, including HDAC and SMRT. Overexpression of SANBR inhibited CSR in primary mouse splenic B cells, and inhibition of CSR is dependent on the BTB domain while the SANT domain is largely dispensable. Thus, we have identified a new member of the BTB family that serves as a negative regulator of CSR. Future investigations to identify transcriptional targets of SANBR in B cells will reveal further insights into the specific mechanisms by which SANBR regulates CSR as well as fundamental gene regulatory activities of this protein.
Collapse
Affiliation(s)
- Simin Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Allysia J Matthews
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA; Department of Biology, The Graduate Center and The City College of New York, New York, New York, USA
| | - Numa Rahman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Emily Sible
- Department of Biology, The Graduate Center and The City College of New York, New York, New York, USA
| | - Jee Eun Choi
- Department of Biology, The Graduate Center and The City College of New York, New York, New York, USA
| | - Alec Wishnie
- Department of Biology, The Graduate Center and The City College of New York, New York, New York, USA
| | - Yan Kee Ng
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Daniela Rhodes
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Stephen J Elledge
- Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Bao Q Vuong
- Department of Biology, The Graduate Center and The City College of New York, New York, New York, USA.
| |
Collapse
|
21
|
Patel PS, Algouneh A, Hakem R. Exploiting synthetic lethality to target BRCA1/2-deficient tumors: where we stand. Oncogene 2021; 40:3001-3014. [PMID: 33716297 DOI: 10.1038/s41388-021-01744-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
The principle of synthetic lethality, which refers to the loss of viability resulting from the disruption of two genes, which, individually, do not cause lethality, has become an attractive target approach due to the development and clinical success of Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi). In this review, we present the most recent findings on the use of PARPi in the clinic, which are currently approved for second-line therapy for advanced ovarian and breast cancer associated with mutations of BRCA1 or BRCA2 (BRCA1/2) genes. PARPi efficacy, however, appears to be limited by acquired and inherent resistance, highlighting the need for alternative and synergistic targets to eliminate these tumors. Here, we explore other identified synthetic lethal interactors of BRCA1/2, including DNA polymerase theta (POLQ), Fanconi anemia complementation group D2 (FANDC2), radiation sensitive 52 (RAD52), Flap structure-specific endonuclease 1 (FEN1), and apurinic/apyrimidinic endodeoxyribonuclease 2 (APE2), as well as other protein and nonprotein targets, for BRCA1/2-mutated cancers and their implications for future therapies. A wealth of information now exists for phenotypic and functional characterization of these novel synthetic lethal interactors of BRCA1/2, and leveraging these findings can pave the way for the development of new targeted therapies for patients suffering from these cancers.
Collapse
Affiliation(s)
- Parasvi S Patel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Arash Algouneh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Razq Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
ATM: Translating the DNA Damage Response to Adaptive Immunity. Trends Immunol 2021; 42:350-365. [PMID: 33663955 DOI: 10.1016/j.it.2021.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination.
Collapse
|
23
|
Elsakrmy N, Zhang-Akiyama QM, Ramotar D. The Base Excision Repair Pathway in the Nematode Caenorhabditis elegans. Front Cell Dev Biol 2020; 8:598860. [PMID: 33344454 PMCID: PMC7744777 DOI: 10.3389/fcell.2020.598860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Exogenous and endogenous damage to the DNA is inevitable. Several DNA repair pathways including base excision, nucleotide excision, mismatch, homologous and non-homologous recombinations are conserved across all organisms to faithfully maintain the integrity of the genome. The base excision repair (BER) pathway functions to repair single-base DNA lesions and during the process creates the premutagenic apurinic/apyrimidinic (AP) sites. In this review, we discuss the components of the BER pathway in the nematode Caenorhabditis elegans and delineate the different phenotypes caused by the deletion or the knockdown of the respective DNA repair gene, as well as the implications. To date, two DNA glycosylases have been identified in C. elegans, the monofunctional uracil DNA glycosylase-1 (UNG-1) and the bifunctional endonuclease III-1 (NTH-1) with associated AP lyase activity. In addition, the animal possesses two AP endonucleases belonging to the exonuclease-3 and endonuclease IV families and in C. elegans these enzymes are called EXO-3 and APN-1, respectively. In mammalian cells, the DNA polymerase, Pol beta, that is required to reinsert the correct bases for DNA repair synthesis is not found in the genome of C. elegans and the evidence indicates that this role could be substituted by DNA polymerase theta (POLQ), which is known to perform a function in the microhomology-mediated end-joining pathway in human cells. The phenotypes observed by the C. elegans mutant strains of the BER pathway raised many challenging questions including the possibility that the DNA glycosylases may have broader functional roles, as discuss in this review.
Collapse
Affiliation(s)
- Noha Elsakrmy
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar
| | - Qiu-Mei Zhang-Akiyama
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar
| |
Collapse
|
24
|
Lin Y, McMahon A, Driscoll G, Bullock S, Zhao J, Yan S. Function and molecular mechanisms of APE2 in genome and epigenome integrity. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108347. [PMID: 34083046 DOI: 10.1016/j.mrrev.2020.108347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
APE2 is a rising vital player in the maintenance of genome and epigenome integrity. In the past several years, a series of studies have shown the critical roles and functions of APE2. We seek to provide the first comprehensive review on several aspects of APE2 in genome and epigenome integrity. We first summarize the distinct functional domains or motifs within APE2 including EEP (endonuclease/exonuclease/phosphatase) domain, PIP box and Zf-GRF motifs from eight species (i.e., Homo sapiens, Mus musculus, Xenopus laevis, Ciona intestinalis, Arabidopsis thaliana, Schizosaccharomyces pombe, Saccharomyces cerevisiae, and Trypanosoma cruzi). Then we analyze various APE2 nuclease activities and associated DNA substrates, including AP endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-5' exonuclease activities. We also examine several APE2 interaction proteins, including PCNA, Chk1, APE1, Myh1, and homologous recombination (HR) factors such as Rad51, Rad52, BRCA1, BRCA2, and BARD1. Furthermore, we provide insights into the roles of APE2 in various DNA repair pathways (base excision repair, single-strand break repair, and double-strand break repair), DNA damage response (DDR) pathways (ATR-Chk1 and p53-dependent), immunoglobulin class switch recombination and somatic hypermutation, as well as active DNA demethylation. Lastly, we summarize critical functions of APE2 in growth, development, and diseases. In this review, we provide the first comprehensive perspective which dissects all aspects of the multiple-function protein APE2 in genome and epigenome integrity.
Collapse
Affiliation(s)
- Yunfeng Lin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Anne McMahon
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Garrett Driscoll
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Sharon Bullock
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, United States
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, United States.
| |
Collapse
|
25
|
Jaiswal A, Singh AK, Tamrakar A, Kodgire P. Unfolding the Role of Splicing Factors and RNA Debranching in AID Mediated Antibody Diversification. Int Rev Immunol 2020; 40:289-306. [PMID: 32924658 DOI: 10.1080/08830185.2020.1815725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Activated B-cells diversify their antibody repertoire via somatic hypermutation (SHM) and class switch recombination (CSR). SHM is restricted to the variable region, whereas, CSR is confined to the constant region of immunoglobulin (Ig) genes. Activation-induced cytidine deaminase (AID) is a crucial player in the diversification of antibodies in the activated B-cell. AID catalyzes the deamination of cytidine (C) into uracil (U) at Ig genes. Subsequently, low fidelity repair of U:G mismatches may lead to mutations. Transcription is essential for the AID action, as it provides a transient single-strand DNA substrate. Since splicing is a co-transcriptional event, various splicing factors or regulators influence the transcription. Numerous splicing factors are known to regulate the AID targeting, function, Ig transcription, and AID splicing, which eventually influence antibody diversification processes. Splicing regulator SRSF1-3, a splicing isoform of serine arginine-rich splicing factor (SRSF1), and CTNNBL1, a spliceosome interacting factor, interact with AID and play a critical role in SHM. Likewise, a splicing regulator polypyrimidine tract binding protein-2 (PTBP2) and the debranching enzyme (DBR1) debranches primary switch transcripts which later forms G-quadruplex structures, and the S region guide RNAs direct AID to S region DNA. Moreover, AID shows several alternate splicing isoforms, like AID devoid of exon-4 (AIDΔE4) that is expressed in various pathological conditions. Interestingly, RBM5, a splicing regulator, is responsible for the skipping of AID exon 4. In this review, we discuss the role and significance of splicing factors in the AID mediated antibody diversification.
Collapse
Affiliation(s)
- Ankit Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Amit Kumar Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Anubhav Tamrakar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
26
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Islam H, Kobayashi M, Honjo T. Apurinic/apyrimidinic endonuclease 1 (APE1) is dispensable for activation-induced cytidine deaminase (AID)-dependent somatic hypermutation in the immunoglobulin gene. Int Immunol 2020; 31:543-554. [PMID: 30877298 DOI: 10.1093/intimm/dxz028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 03/14/2019] [Indexed: 12/13/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates DNA breakage in the variable (V) and switch (S) regions of the immunoglobulin gene, which results in somatic hypermutation (SHM) and class switch recombination (CSR), respectively. Apurinic/apyrimidinic endonuclease 1 (APE1) has been shown to be important for CSR, and is supposed to cleave at abasic sites when AID-dependently deaminated cytidine is removed by uracil DNA glycosylase. However, APE1 is unexpectedly dispensable for SHM in the S region and translocation between immunoglobulin heavy chain (IgH) and c-myc genes in the mouse B lymphoma cell line, CH12F3-2A. This suggested that APE1 is not involved in AID-dependent DNA breakage, but rather, in DNA repair. In order to investigate detailed molecular mechanisms underlying APE1's involvement in CSR and SHM, we measured apurinic/apyrimidinic (AP) sites via aldehyde reactive probe labeling. Results indicated that the frequencies of AP sites in the S regions were not different between APE1-/-/-CH12F3-2A and wild-type CH12F3-2A cells. To carry out similar experiments in SHM of the V region, we generated an APE1 knockout (APE1-/-) human Burkitt's lymphoma cell line, and compared SHM between APE1-proficient and -deficient BL2 lymphoma cells. SHM frequencies in the V regions of APE1-/-BL2 and APE1-proficient cells were also similar. Taken together, we showed that AID does not induce AP sites in the S region of the IgH gene, and that APE1 is not necessary for SHM in the V and S regions; however, it is required for DNA repair following DNA breakage in CSR.
Collapse
Affiliation(s)
- Helena Islam
- Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto, Japan
| | - Maki Kobayashi
- Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto, Japan
| | - Tasuku Honjo
- Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
28
|
Genomic alterations and abnormal expression of APE2 in multiple cancers. Sci Rep 2020; 10:3758. [PMID: 32111912 PMCID: PMC7048847 DOI: 10.1038/s41598-020-60656-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/13/2020] [Indexed: 12/26/2022] Open
Abstract
Although APE2 plays essential roles in base excision repair and ATR-Chk1 DNA damage response (DDR) pathways, it remains unknown how the APE2 gene is altered in the human genome and whether APE2 is differentially expressed in cancer patients. Here, we report multiple-cancer analyses of APE2 genomic alterations and mRNA expression from cancer patients using available data from The Cancer Genome Atlas (TCGA). We observe that APE2 genomic alterations occur at ~17% frequency in 14 cancer types (n = 21,769). Most frequent somatic mutations of APE2 appear in uterus (2.89%) and skin (2.47%) tumor samples. Furthermore, APE2 expression is upregulated in tumor tissue compared with matched non-malignant tissue across 5 cancer types including kidney, breast, lung, liver, and uterine cancers, but not in prostate cancer. We also examine the mRNA expression of 13 other DNA repair and DDR genes from matched samples for 6 cancer types. We show that APE2 mRNA expression is positively correlated with PCNA, APE1, XRCC1, PARP1, Chk1, and Chk2 across these 6 tumor tissue types; however, groupings of other DNA repair and DDR genes are correlated with APE2 with different patterns in different cancer types. Taken together, this study demonstrates alterations and abnormal expression of APE2 from multiple cancers.
Collapse
|
29
|
Paz-Elizur T, Leitner-Dagan Y, Meyer KB, Markus B, Giorgi FM, O’Reilly M, Kim H, Evgy Y, Fluss R, Freedman LS, Rintoul RC, Ponder B, Livneh Z. DNA Repair Biomarker for Lung Cancer Risk and its Correlation With Airway Cells Gene Expression. JNCI Cancer Spectr 2020; 4:pkz067. [PMID: 32064457 PMCID: PMC7012022 DOI: 10.1093/jncics/pkz067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/23/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Improving lung cancer risk assessment is required because current early-detection screening criteria miss most cases. We therefore examined the utility for lung cancer risk assessment of a DNA Repair score obtained from OGG1, MPG, and APE1 blood tests. In addition, we examined the relationship between the level of DNA repair and global gene expression. METHODS We conducted a blinded case-control study with 150 non-small cell lung cancer case patients and 143 control individuals. DNA Repair activity was measured in peripheral blood mononuclear cells, and the transcriptome of nasal and bronchial cells was determined by RNA sequencing. A combined DNA Repair score was formed using logistic regression, and its correlation with disease was assessed using cross-validation; correlation of expression to DNA Repair was analyzed using Gene Ontology enrichment. RESULTS DNA Repair score was lower in case patients than in control individuals, regardless of the case's disease stage. Individuals at the lowest tertile of DNA Repair score had an increased risk of lung cancer compared to individuals at the highest tertile, with an odds ratio (OR) of 7.2 (95% confidence interval [CI] = 3.0 to 17.5; P < .001), and independent of smoking. Receiver operating characteristic analysis yielded an area under the curve of 0.89 (95% CI = 0.82 to 0.93). Remarkably, low DNA Repair score correlated with a broad upregulation of gene expression of immune pathways in patients but not in control individuals. CONCLUSIONS The DNA Repair score, previously shown to be a lung cancer risk factor in the Israeli population, was validated in this independent study as a mechanism-based cancer risk biomarker and can substantially improve current lung cancer risk prediction, assisting prevention and early detection by computed tomography scanning.
Collapse
Affiliation(s)
- Tamar Paz-Elizur
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Leitner-Dagan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Kerstin B Meyer
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Barak Markus
- Bioinformatics Unit, Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Federico M Giorgi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Martin O’Reilly
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Hyunjin Kim
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Yentl Evgy
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Fluss
- Biostatistics Unit, Gertner Institute for Epidemiology and Public Health Policy Sheba Medical Center, Tel Hashomer, Israel
| | - Laurence S Freedman
- Biostatistics Unit, Gertner Institute for Epidemiology and Public Health Policy Sheba Medical Center, Tel Hashomer, Israel
| | - Robert C Rintoul
- Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Thoracic Oncology, Royal Papworth Hospital, Cambridge, UK
| | - Bruce Ponder
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Zvi Livneh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
30
|
Roco JA, Mesin L, Binder SC, Nefzger C, Gonzalez-Figueroa P, Canete PF, Ellyard J, Shen Q, Robert PA, Cappello J, Vohra H, Zhang Y, Nowosad CR, Schiepers A, Corcoran LM, Toellner KM, Polo JM, Meyer-Hermann M, Victora GD, Vinuesa CG. Class-Switch Recombination Occurs Infrequently in Germinal Centers. Immunity 2019; 51:337-350.e7. [PMID: 31375460 DOI: 10.1016/j.immuni.2019.07.001] [Citation(s) in RCA: 315] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 01/06/2023]
Abstract
Class-switch recombination (CSR) is a DNA recombination process that replaces the immunoglobulin (Ig) constant region for the isotype that can best protect against the pathogen. Dysregulation of CSR can cause self-reactive BCRs and B cell lymphomas; understanding the timing and location of CSR is therefore important. Although CSR commences upon T cell priming, it is generally considered a hallmark of germinal centers (GCs). Here, we have used multiple approaches to show that CSR is triggered prior to differentiation into GC B cells or plasmablasts and is greatly diminished in GCs. Despite finding a small percentage of GC B cells expressing germline transcripts, phylogenetic trees of GC BCRs from secondary lymphoid organs revealed that the vast majority of CSR events occurred prior to the onset of somatic hypermutation. As such, we have demonstrated the existence of IgM-dominated GCs, which are unlikely to occur under the assumption of ongoing switching.
Collapse
Affiliation(s)
- Jonathan A Roco
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, 10065, USA
| | - Sebastian C Binder
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Rebenring 56, 38106 Braunschweig, Germany
| | - Christian Nefzger
- Department of Anatomy and Developmental Biology and Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton VIC 3800, Australia
| | - Paula Gonzalez-Figueroa
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | - Pablo F Canete
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | - Julia Ellyard
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | - Qian Shen
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | - Philippe A Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Rebenring 56, 38106 Braunschweig, Germany
| | - Jean Cappello
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | - Harpreet Vohra
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Carla R Nowosad
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, 10065, USA
| | - Arien Schiepers
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, 10065, USA
| | - Lynn M Corcoran
- Molecular Immunology Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville VIC 3052, Australia
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Jose M Polo
- Department of Anatomy and Developmental Biology and Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton VIC 3800, Australia
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Rebenring 56, 38106 Braunschweig, Germany; Institute for Biochemistry, Biotechnology, and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, 10065, USA
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease and Centre for Personalised Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia; China-Australia Centre for Personalised Immunology, Department of Rheumatology, Shanghai Renji Hospital, Shanghai JiaoTong University, Shanghai, China.
| |
Collapse
|
31
|
Pilzecker B, Jacobs H. Mutating for Good: DNA Damage Responses During Somatic Hypermutation. Front Immunol 2019; 10:438. [PMID: 30915081 PMCID: PMC6423074 DOI: 10.3389/fimmu.2019.00438] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of Ig genes. The mutation rate of this programmed mutagenesis is ~10-3 base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the Ig loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle.
Collapse
Affiliation(s)
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
32
|
Zanotti KJ, Maul RW, Yang W, Gearhart PJ. DNA Breaks in Ig V Regions Are Predominantly Single Stranded and Are Generated by UNG and MSH6 DNA Repair Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1573-1581. [PMID: 30665938 PMCID: PMC6382588 DOI: 10.4049/jimmunol.1801183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
Antibody diversity is initiated by activation-induced deaminase (AID), which deaminates cytosine to uracil in DNA. Uracils in the Ig gene loci can be recognized by uracil DNA glycosylase (UNG) or mutS homologs 2 and 6 (MSH2-MSH6) proteins, and then processed into DNA breaks. Breaks in switch regions of the H chain locus cause isotype switching and have been extensively characterized as staggered and blunt double-strand breaks. However, breaks in V regions that arise during somatic hypermutation are poorly understood. In this study, we characterize AID-dependent break formation in JH introns from mouse germinal center B cells. We used a ligation-mediated PCR assay to detect single-strand breaks and double-strand breaks that were either staggered or blunt. In contrast to switch regions, V regions contained predominantly single-strand breaks, which peaked 10 d after immunization. We then examined the pathways used to generate these breaks in UNG- and MSH6-deficient mice. Surprisingly, both DNA repair pathways contributed substantially to break formation, and in the absence of both UNG and MSH6, the frequency of breaks was severely reduced. When the breaks were sequenced and mapped, they were widely distributed over a 1000-bp intron region downstream of JH3 and JH4 exons and were unexpectedly located at all 4 nt. These data suggest that during DNA repair, nicks are generated at distal sites from the original deaminated cytosine, and these repair intermediates could generate both faithful and mutagenic repair. During mutagenesis, single-strand breaks would allow entry for low-fidelity DNA polymerases to generate somatic hypermutation.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
33
|
Frossi B, Antoniali G, Yu K, Akhtar N, Kaplan MH, Kelley MR, Tell G, Pucillo CEM. Endonuclease and redox activities of human apurinic/apyrimidinic endonuclease 1 have distinctive and essential functions in IgA class switch recombination. J Biol Chem 2019; 294:5198-5207. [PMID: 30705092 DOI: 10.1074/jbc.ra118.006601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/28/2019] [Indexed: 11/06/2022] Open
Abstract
The base excision repair (BER) pathway is an important DNA repair pathway and is essential for immune responses. In fact, it regulates both the antigen-stimulated somatic hypermutation (SHM) process and plays a central function in the process of class switch recombination (CSR). For both processes, a central role for apurinic/apyrimidinic endonuclease 1 (APE1) has been demonstrated. APE1 acts also as a master regulator of gene expression through its redox activity. APE1's redox activity stimulates the DNA-binding activity of several transcription factors, including NF-κB and a few others involved in inflammation and in immune responses. Therefore, it is possible that APE1 has a role in regulating the CSR through its function as a redox coactivator. The present study was undertaken to address this question. Using the CSR-competent mouse B-cell line CH12F3 and a combination of specific inhibitors of APE1's redox (APX3330) and repair (compound 3) activities, APE1-deficient or -reconstituted cell lines expressing redox-deficient or endonuclease-deficient proteins, and APX3330-treated mice, we determined the contributions of both endonuclease and redox functions of APE1 in CSR. We found that APE1's endonuclease activity is essential for IgA-class switch recombination. We provide evidence that the redox function of APE1 appears to play a role in regulating CSR through the interleukin-6 signaling pathway and in proper IgA expression. Our results shed light on APE1's redox function in the control of cancer growth through modulation of the IgA CSR process.
Collapse
Affiliation(s)
- Barbara Frossi
- From the Laboratory of Immunology, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Giulia Antoniali
- the Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Kefei Yu
- the Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, and
| | - Nahid Akhtar
- the Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Mark H Kaplan
- the Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Mark R Kelley
- the Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Gianluca Tell
- the Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy,
| | - Carlo E M Pucillo
- From the Laboratory of Immunology, Department of Medicine, University of Udine, 33100 Udine, Italy,
| |
Collapse
|
34
|
Apurinic endonuclease-1 preserves neural genome integrity to maintain homeostasis and thermoregulation and prevent brain tumors. Proc Natl Acad Sci U S A 2018; 115:E12285-E12294. [PMID: 30538199 DOI: 10.1073/pnas.1809682115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Frequent oxidative modification of the neural genome is a by-product of the high oxygen consumption of the nervous system. Rapid correction of oxidative DNA lesions is essential, as genome stability is a paramount determinant of neural homeostasis. Apurinic/apyrimidinic endonuclease 1 (APE1; also known as "APEX1" or "REF1") is a key enzyme for the repair of oxidative DNA damage, although the specific role(s) for this enzyme in the development and maintenance of the nervous system is largely unknown. Here, using conditional inactivation of murine Ape1, we identify critical roles for this protein in the brain selectively after birth, coinciding with tissue oxygenation shifting from a placental supply to respiration. While mice lacking APE1 throughout neurogenesis were viable with little discernible phenotype at birth, rapid and pronounced brain-wide degenerative changes associated with DNA damage were observed immediately after birth leading to early death. Unexpectedly, Ape1 Nes-cre mice appeared hypothermic with persistent shivering associated with the loss of thermoregulatory serotonergic neurons. We found that APE1 is critical for the selective regulation of Fos1-induced hippocampal immediate early gene expression. Finally, loss of APE1 in combination with p53 inactivation resulted in a profound susceptibility to brain tumors, including medulloblastoma and glioblastoma, implicating oxidative DNA lesions as an etiologic agent in these diseases. Our study reveals APE1 as a major suppressor of deleterious oxidative DNA damage and uncovers specific and broad pathogenic consequences of respiratory oxygenation in the postnatal nervous system.
Collapse
|
35
|
Abstract
Before a deleterious DNA lesion can be replaced with its undamaged counterpart, the lesion must first be removed from the genome. This process of removing and replacing DNA lesions is accomplished by the careful coordination of several protein factors during DNA repair. One such factor is the multifunctional enzyme human apurinic/apyrimidinic endonuclease 1 (APE1), known best for its DNA backbone cleavage activity at AP sites during base excision repair (BER). APE1 preforms AP site incision with surgical precision and skill, by sculpting the DNA to place the cleavage site in an optimal position for nucleophilic attack within its compact protein active site. APE1, however, has demonstrated broad surgical expertise, and applies its DNA cleavage activity to a wide variety of DNA and RNA substrates. Here, we discuss what is known and unknown about APE1 cleavage mechanisms, focusing on structural and mechanistic considerations. Importantly, disruptions in the biological functions associated with APE1 are linked to numerous human maladies, including cancer and neurodegenerative diseases. The continued elucidation of APE1 mechanisms is required for rational drug design towards novel and strategic ways to target its associated repair pathways.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
36
|
Freudenreich CH. R-loops: targets for nuclease cleavage and repeat instability. Curr Genet 2018; 64:789-794. [PMID: 29327083 PMCID: PMC6039234 DOI: 10.1007/s00294-018-0806-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 01/09/2023]
Abstract
R-loops form when transcribed RNA remains bound to its DNA template to form a stable RNA:DNA hybrid. Stable R-loops form when the RNA is purine-rich, and are further stabilized by DNA secondary structures on the non-template strand. Interestingly, many expandable and disease-causing repeat sequences form stable R-loops, and R-loops can contribute to repeat instability. Repeat expansions are responsible for multiple neurodegenerative diseases, including Huntington's disease, myotonic dystrophy, and several types of ataxias. Recently, it was found that R-loops at an expanded CAG/CTG repeat tract cause DNA breaks as well as repeat instability (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Two factors were identified as causing R-loop-dependent breaks at CAG/CTG tracts: deamination of cytosines and the MutLγ (Mlh1-Mlh3) endonuclease, defining two new mechanisms for how R-loops can generate DNA breaks (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Following R-loop-dependent nicking, base excision repair resulted in repeat instability. These results have implications for human repeat expansion diseases and provide a paradigm for how RNA:DNA hybrids can cause genome instability at structure-forming DNA sequences. This perspective summarizes mechanisms of R-loop-induced fragility at G-rich repeats and new links between DNA breaks and repeat instability.
Collapse
Affiliation(s)
- Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
- Program in Genetics, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
37
|
Nicolas L, Cols M, Choi JE, Chaudhuri J, Vuong B. Generating and repairing genetically programmed DNA breaks during immunoglobulin class switch recombination. F1000Res 2018; 7:458. [PMID: 29744038 PMCID: PMC5904731 DOI: 10.12688/f1000research.13247.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2018] [Indexed: 01/03/2023] Open
Abstract
Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity.
Collapse
Affiliation(s)
- Laura Nicolas
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Montserrat Cols
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jee Eun Choi
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, NY, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bao Vuong
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, NY, USA
| |
Collapse
|
38
|
The H2B deubiquitinase Usp22 promotes antibody class switch recombination by facilitating non-homologous end joining. Nat Commun 2018. [PMID: 29520062 PMCID: PMC5843634 DOI: 10.1038/s41467-018-03455-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Class switch recombination (CSR) has a fundamental function during humoral immune response and involves the induction and subsequent repair of DNA breaks in the immunoglobulin (Ig) switch regions. Here we show the role of Usp22, the SAGA complex deubiquitinase that removes ubiquitin from H2B-K120, in the repair of programmed DNA breaks in vivo. Ablation of Usp22 in primary B cells results in defects in γH2AX and impairs the classical non-homologous end joining (c-NHEJ), affecting both V(D)J recombination and CSR. Surprisingly, Usp22 depletion causes defects in CSR to various Ig isotypes, but not IgA. We further demonstrate that IgG CSR primarily relies on c-NHEJ, whereas CSR to IgA is more reliant on the alternative end joining pathway, indicating that CSR to different isotypes involves distinct DNA repair pathways. Hence, Usp22 is the first deubiquitinase reported to regulate both V(D)J recombination and CSR in vivo by facilitating c-NHEJ.
Collapse
|
39
|
Double-stranded DNA break polarity skews repair pathway choice during intrachromosomal and interchromosomal recombination. Proc Natl Acad Sci U S A 2018; 115:2800-2805. [PMID: 29472448 DOI: 10.1073/pnas.1720962115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) inflicts DNA damage at Ig genes to initiate class switch recombination (CSR) and chromosomal translocations. However, the DNA lesions formed during these processes retain an element of randomness, and thus knowledge of the relationship between specific DNA lesions and AID-mediated processes remains incomplete. To identify necessary and sufficient DNA lesions in CSR, the Cas9 endonuclease and nickase variants were used to program DNA lesions at a greater degree of predictability than is achievable with conventional induction of CSR. Here we show that Cas9-mediated nicks separated by up to 250 nucleotides on opposite strands can mediate CSR. Staggered double-stranded breaks (DSBs) result in more end resection and junctional microhomology than blunt DSBs. Moreover, Myc-Igh chromosomal translocations, which are carried out primarily by alternative end joining (A-EJ), were preferentially induced by 5' DSBs. These data indicate that DSBs with 5' overhangs skew intrachromosomal and interchromosomal end-joining toward A-EJ. In addition to lending potential insight to AID-mediated phenomena, this work has broader carryover implications in DNA repair and lymphomagenesis.
Collapse
|
40
|
Khan FA, Ali SO. Physiological Roles of DNA Double-Strand Breaks. J Nucleic Acids 2017; 2017:6439169. [PMID: 29181194 PMCID: PMC5664317 DOI: 10.1155/2017/6439169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/24/2017] [Indexed: 12/20/2022] Open
Abstract
Genomic integrity is constantly threatened by sources of DNA damage, internal and external alike. Among the most cytotoxic lesions is the DNA double-strand break (DSB) which arises from the cleavage of both strands of the double helix. Cells boast a considerable set of defences to both prevent and repair these breaks and drugs which derail these processes represent an important category of anticancer therapeutics. And yet, bizarrely, cells deploy this very machinery for the intentional and calculated disruption of genomic integrity, harnessing potentially destructive DSBs in delicate genetic transactions. Under tight spatiotemporal regulation, DSBs serve as a tool for genetic modification, widely used across cellular biology to generate diverse functionalities, ranging from the fundamental upkeep of DNA replication, transcription, and the chromatin landscape to the diversification of immunity and the germline. Growing evidence points to a role of aberrant DSB physiology in human disease and an understanding of these processes may both inform the design of new therapeutic strategies and reduce off-target effects of existing drugs. Here, we review the wide-ranging roles of physiological DSBs and the emerging network of their multilateral regulation to consider how the cell is able to harness DNA breaks as a critical biochemical tool.
Collapse
Affiliation(s)
- Farhaan A. Khan
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| | - Syed O. Ali
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| |
Collapse
|
41
|
Cytosine deamination and base excision repair cause R-loop-induced CAG repeat fragility and instability in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2017; 114:E8392-E8401. [PMID: 28923949 DOI: 10.1073/pnas.1711283114] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CAG/CTG repeats are structure-forming repetitive DNA sequences, and expansion beyond a threshold of ∼35 CAG repeats is the cause of several human diseases. Expanded CAG repeats are prone to breakage, and repair of the breaks can cause repeat contractions and expansions. In this study, we found that cotranscriptional R-loops formed at a CAG-70 repeat inserted into a yeast chromosome. R-loops were further elevated upon deletion of yeast RNaseH genes and caused repeat fragility. A significant increase in CAG repeat contractions was also observed, consistent with previous human cell studies. Deletion of yeast cytosine deaminase Fcy1 significantly decreased the rate of CAG repeat fragility and contractions in the rnh1Δrnh201Δ background, indicating that Fcy1-mediated deamination is one cause of breakage and contractions in the presence of R-loops. Furthermore, base excision repair (BER) is responsible for causing CAG repeat contractions downstream of Fcy1, but not fragility. The Rad1/XPF and Rad2/XPG nucleases were also important in protecting against contractions, but through BER rather than nucleotide excision repair. Surprisingly, the MutLγ (Mlh1/Mlh3) endonuclease caused R-loop-dependent CAG fragility, defining an alternative function for this complex. These findings provide evidence that breakage at expanded CAG repeats occurs due to R-loop formation and reveal two mechanisms for CAG repeat instability: one mediated by cytosine deamination of DNA engaged in R-loops and the other by MutLγ cleavage. Since disease-causing CAG repeats occur in transcribed regions, our results suggest that R-loop-mediated fragility is a mechanism that could cause DNA damage and repeat-length changes in human cells.
Collapse
|
42
|
Bahjat M, Guikema JEJ. The Complex Interplay between DNA Injury and Repair in Enzymatically Induced Mutagenesis and DNA Damage in B Lymphocytes. Int J Mol Sci 2017; 18:ijms18091876. [PMID: 28867784 PMCID: PMC5618525 DOI: 10.3390/ijms18091876] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 11/25/2022] Open
Abstract
Lymphocytes are endowed with unique and specialized enzymatic mutagenic properties that allow them to diversify their antigen receptors, which are crucial sensors for pathogens and mediators of adaptive immunity. During lymphocyte development, the antigen receptors expressed by B and T lymphocytes are assembled in an antigen-independent fashion by ordered variable gene segment recombinations (V(D)J recombination), which is a highly ordered and regulated process that requires the recombination activating gene products 1 & 2 (RAG1, RAG2). Upon activation by antigen, B lymphocytes undergo additional diversifications of their immunoglobulin B-cell receptors. Enzymatically induced somatic hypermutation (SHM) and immunoglobulin class switch recombination (CSR) improves the affinity for antigen and shape the effector function of the humoral immune response, respectively. The activation-induced cytidine deaminase (AID) enzyme is crucial for both SHM and CSR. These processes have evolved to both utilize as well as evade different DNA repair and DNA damage response pathways. The delicate balance between enzymatic mutagenesis and DNA repair is crucial for effective immune responses and the maintenance of genomic integrity. Not surprisingly, disturbances in this balance are at the basis of lymphoid malignancies by provoking the formation of oncogenic mutations and chromosomal aberrations. In this review, we discuss recent mechanistic insight into the regulation of RAG1/2 and AID expression and activity in lymphocytes and the complex interplay between these mutagenic enzymes and DNA repair and DNA damage response pathways, focusing on the base excision repair and mismatch repair pathways. We discuss how disturbances of this interplay induce genomic instability and contribute to oncogenesis.
Collapse
Affiliation(s)
- Mahnoush Bahjat
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| | - Jeroen E J Guikema
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
43
|
Methot S, Di Noia J. Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Adv Immunol 2017; 133:37-87. [DOI: 10.1016/bs.ai.2016.11.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Stratigi K, Chatzidoukaki O, Garinis GA. DNA damage-induced inflammation and nuclear architecture. Mech Ageing Dev 2016; 165:17-26. [PMID: 27702596 DOI: 10.1016/j.mad.2016.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/20/2016] [Accepted: 09/25/2016] [Indexed: 12/12/2022]
Abstract
Nuclear architecture and the chromatin state affect most-if not all- DNA-dependent transactions, including the ability of cells to sense DNA lesions and restore damaged DNA back to its native form. Recent evidence points to functional links between DNA damage sensors, DNA repair mechanisms and the innate immune responses. The latter raises the question of how such seemingly disparate processes operate within the intrinsically complex nuclear landscape and the chromatin environment. Here, we discuss how DNA damage-induced immune responses operate within chromatin and the distinct sub-nuclear compartments highlighting their relevance to chronic inflammation.
Collapse
Affiliation(s)
- Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece
| | - Ourania Chatzidoukaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, GR71409, Heraklion, Crete, Greece.
| |
Collapse
|
45
|
End-processing nucleases and phosphodiesterases: An elite supporting cast for the non-homologous end joining pathway of DNA double-strand break repair. DNA Repair (Amst) 2016; 43:57-68. [PMID: 27262532 DOI: 10.1016/j.dnarep.2016.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 11/20/2022]
Abstract
Nonhomologous end joining (NHEJ) is an error-prone DNA double-strand break repair pathway that is active throughout the cell cycle. A substantial fraction of NHEJ repair events show deletions and, less often, insertions in the repair joints, suggesting an end-processing step comprising the removal of mismatched or damaged nucleotides by nucleases and other phosphodiesterases, as well as subsequent strand extension by polymerases. A wide range of nucleases, including Artemis, Metnase, APLF, Mre11, CtIP, APE1, APE2 and WRN, are biochemically competent to carry out such double-strand break end processing, and have been implicated in NHEJ by at least circumstantial evidence. Several additional DNA end-specific phosphodiesterases, including TDP1, TDP2 and aprataxin are available to resolve various non-nucleotide moieties at DSB ends. This review summarizes the biochemical specificities of these enzymes and the evidence for their participation in the NHEJ pathway.
Collapse
|
46
|
Chen Z, Eder MD, Elos MT, Viboolsittiseri SS, Chen X, Wang JH. Interplay between Target Sequences and Repair Pathways Determines Distinct Outcomes of AID-Initiated Lesions. THE JOURNAL OF IMMUNOLOGY 2016; 196:2335-47. [PMID: 26810227 DOI: 10.4049/jimmunol.1502184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022]
Abstract
Activation-induced deaminase (AID) functions by deaminating cytosines and causing U:G mismatches, a rate-limiting step of Ab gene diversification. However, precise mechanisms regulating AID deamination frequency remain incompletely understood. Moreover, it is not known whether different sequence contexts influence the preferential access of mismatch repair or uracil glycosylase (UNG) to AID-initiated U:G mismatches. In this study, we employed two knock-in models to directly compare the mutability of core Sμ and VDJ exon sequences and their ability to regulate AID deamination and subsequent repair process. We find that the switch (S) region is a much more efficient AID deamination target than the V region. Igh locus AID-initiated lesions are processed by error-free and error-prone repair. S region U:G mismatches are preferentially accessed by UNG, leading to more UNG-dependent deletions, enhanced by mismatch repair deficiency. V region mutation hotspots are largely determined by AID deamination. Recurrent and conserved S region motifs potentially function as spacers between AID deamination hotspots. We conclude that the pattern of mutation hotspots and DNA break generation is influenced by sequence-intrinsic properties, which regulate AID deamination and affect the preferential access of downstream repair. Our studies reveal an evolutionarily conserved role for substrate sequences in regulating Ab gene diversity and AID targeting specificity.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Maxwell D Eder
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Mihret T Elos
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Sawanee S Viboolsittiseri
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Xiaomi Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| |
Collapse
|
47
|
Zanotti KJ, Gearhart PJ. Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases. DNA Repair (Amst) 2016; 38:110-116. [PMID: 26719140 PMCID: PMC4740194 DOI: 10.1016/j.dnarep.2015.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/30/2015] [Indexed: 10/25/2022]
Abstract
The enzyme activation-induced deaminase (AID) targets the immunoglobulin loci in activated B cells and creates DNA mutations in the antigen-binding variable region and DNA breaks in the switch region through processes known, respectively, as somatic hypermutation and class switch recombination. AID deaminates cytosine to uracil in DNA to create a U:G mismatch. During somatic hypermutation, the MutSα complex binds to the mismatch, and the error-prone DNA polymerase η generates mutations at A and T bases. During class switch recombination, both MutSα and MutLα complexes bind to the mismatch, resulting in double-strand break formation and end-joining. This review is centered on the mechanisms of how the MMR pathway is commandeered by B cells to generate antibody diversity.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
48
|
Fontes FL, de Araújo LF, Coutinho LG, Leib SL, Agnez-Lima LF. Genetic polymorphisms associated with the inflammatory response in bacterial meningitis. BMC MEDICAL GENETICS 2015; 16:70. [PMID: 26316174 PMCID: PMC4593216 DOI: 10.1186/s12881-015-0218-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/18/2015] [Indexed: 11/28/2022]
Abstract
Background Bacterial meningitis (BM) is an infectious disease that results in high mortality and morbidity. Despite efficacious antibiotic therapy, neurological sequelae are often observed in patients after disease. Currently, the main challenge in BM treatment is to develop adjuvant therapies that reduce the occurrence of sequelae. In recent papers published by our group, we described the associations between the single nucleotide polymorphisms (SNPs) AADAT +401C > T, APEX1 Asn148Glu, OGG1 Ser326Cys and PARP1 Val762Ala and BM. In this study, we analyzed the associations between the SNPs TNF -308G > A, TNF -857C > T, IL-8 -251A > T and BM and investigated gene-gene interactions, including the SNPs that we published previously. Methods The study was conducted with 54 BM patients and 110 healthy volunteers (as the control group). The genotypes were investigated via primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) or polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. Allelic and genotypic frequencies were also associated with cytokine and chemokine levels, as measured with the x-MAP method, and cell counts. We analyzed gene-gene interactions among SNPs using the generalized multifactor dimensionality reduction (GMDR) method. Results We did not find significant association between the SNPs TNF -857C > T and IL-8 -251A > T and the disease. However, a higher frequency of the variant allele TNF -308A was observed in the control group, associated with changes in cytokine levels compared to individuals with wild type genotypes, suggesting a possible protective role. In addition, combined inter-gene interaction analysis indicated a significant association between certain genotypes and BM, mainly involving the alleles APEX1 148Glu, IL8 -251 T and AADAT +401 T. These genotypic combinations were shown to affect cyto/chemokine levels and cell counts in CSF samples from BM patients. Conclusions In conclusion, this study revealed a significant association between genetic variability and altered inflammatory responses, involving important pathways that are activated during BM. This knowledge may be useful for a better understanding of BM pathogenesis and the development of new therapeutic approaches. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0218-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabrícia Lima Fontes
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.
| | - Luíza Ferreira de Araújo
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.
| | - Leonam Gomes Coutinho
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, CH-3010, Bern, Switzerland.
| | - Lucymara Fassarella Agnez-Lima
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil. .,Departamento de Biologia Celular e Genética, Centro de Biociências - UFRN, Campus Universitário, Lagoa Nova, Natal, RN, 59078-970, Brazil.
| |
Collapse
|
49
|
Individual substitution mutations in the AID C terminus that ablate IgH class switch recombination. PLoS One 2015; 10:e0134397. [PMID: 26267846 PMCID: PMC4534307 DOI: 10.1371/journal.pone.0134397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/08/2015] [Indexed: 11/19/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The C terminus of AID is required for CSR but not for SHM, but the reason for this is not entirely clear. By retroviral transduction of mutant AID proteins into aid-/- mouse splenic B cells, we show that 4 amino acids within the C terminus of mouse AID, when individually mutated to specific amino acids (R190K, A192K, L196S, F198S), reduce CSR about as much or more than deletion of the entire C terminal 10 amino acids. Similar to ΔAID, the substitutions reduce binding of UNG to Ig Sμ regions and some reduce binding of Msh2, both of which are important for introducing S region DNA breaks. Junctions between the IgH donor switch (S)μ and acceptor Sα regions from cells expressing ΔAID or the L196S mutant show increased microhomology compared to junctions in cells expressing wild-type AID, consistent with problems during CSR and the use of alternative end-joining, rather than non-homologous end-joining (NHEJ). Unlike deletion of the AID C terminus, 3 of the substitution mutants reduce DNA double-strand breaks (DSBs) detected within the Sμ region in splenic B cells undergoing CSR. Cells expressing these 3 substitution mutants also have greatly reduced mutations within unrearranged Sμ regions, and they decrease with time after activation. These results might be explained by increased error-free repair, but as the C terminus has been shown to be important for recruitment of NHEJ proteins, this appears unlikely. We hypothesize that Sμ DNA breaks in cells expressing these C terminus substitution mutants are poorly repaired, resulting in destruction of Sμ segments that are deaminated by these mutants. This could explain why these mutants cannot undergo CSR.
Collapse
|
50
|
Abstract
The immunoglobulin diversification processes of somatic hypermutation and class switch recombination critically rely on transcription-coupled targeting of activation-induced cytidine deaminase (AID) to Ig loci in activated B lymphocytes. AID catalyzes deamination of cytidine deoxynucleotides on exposed single-stranded DNA. In addition to driving immunoglobulin diversity, promiscuous targeting of AID mutagenic activity poses a deleterious threat to genomic stability. Recent genome-wide studies have uncovered pervasive AID activity throughout the B cell genome. It is increasingly apparent that AID activity is frequently targeted to genomic loci undergoing early transcription termination where RNA exosome promotes the resolution of stalled transcription complexes via cotranscriptional RNA degradation mechanisms. Here, we review aspects and consequences of eukaryotic transcription that lead to early termination, RNA exosome recruitment, and ultimately targeting of AID mutagenic activity.
Collapse
Affiliation(s)
- Evangelos Pefanis
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| | - Uttiya Basu
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| |
Collapse
|