1
|
Lawler W, Castellanos T, Engel E, Alvizo CR, Kasler A, Bshara-Corson S, Jameson JM. Impact of Obesity on the CCR6-CCL20 Axis in Epidermal γδ T Cells and IL-17A Production in Murine Wound Healing and Psoriasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588780. [PMID: 38645150 PMCID: PMC11030331 DOI: 10.1101/2024.04.09.588780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Obesity is associated with comorbidities including type 2 diabetes, chronic nonhealing wounds and psoriasis. Normally skin homeostasis and repair is regulated through the production of cytokines and growth factors derived from skin-resident cells including epidermal γδ T cells. However epidermal γδ T cells exhibit reduced proliferation and defective growth factor and cytokine production during obesity and type 2 diabetes. One of the genes modulated in epidermal γδ T cells during obesity and type 2 diabetes is CCR6, which is the receptor for CCL20. CCL20 is elevated in the skin during obesity and type 2 diabetes. Here we identify a subset of murine epidermal γδ T cells that expresses CCR6 in response to activation in vitro and post-wounding or psoriasis induction with imiquimod in vivo. We show that CCL20 stimulates epidermal γδ T cells to produce IL-17 suggesting CCR6 regulates the IL-17 axis as in dermal γδ T cells. Further, epidermal γδ T cells upregulate CCR6 and produce IL-17 during murine models of wound repair and psoriasis. Obesity increases CCR6 and IL-17 expression by epidermal γδ T cells during wound repair but has less of an effect during psoriasis. These findings have novel implications for the regulation of a specific population of IL-17-producing epidermal γδ T cells during skin damage and inflammation.
Collapse
Affiliation(s)
- William Lawler
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096
| | - Tanya Castellanos
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096
| | - Emma Engel
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096
| | - Cristian R Alvizo
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096
| | - Antolette Kasler
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096
| | - Savannah Bshara-Corson
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096
| | - Julie M Jameson
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096
| |
Collapse
|
2
|
Wang Z, Heid B, He J, Xie H, Reilly CM, Dai R, Ahmed SA. Egr2 Deletion in Autoimmune-Prone C57BL6/lpr Mice Suppresses the Expression of Methylation-Sensitive Dlk1-Dio3 Cluster MicroRNAs. Immunohorizons 2023; 7:898-907. [PMID: 38153351 PMCID: PMC10759154 DOI: 10.4049/immunohorizons.2300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
We previously demonstrated that the upregulation of microRNAs (miRNAs) at the genomic imprinted Dlk1-Dio3 locus in murine lupus is correlated with global DNA hypomethylation. We now report that the Dlk1-Dio3 genomic region in CD4+ T cells of MRL/lpr mice is hypomethylated, linking it to increased Dlk1-Dio3 miRNA expression. We evaluated the gene expression of methylating enzymes, DNA methyltransferases (DNMTs), and demethylating ten-eleven translocation proteins (TETs) to elucidate the molecular basis of DNA hypomethylation in lupus CD4+ T cells. There was a significantly elevated expression of Dnmt1 and Dnmt3b, as well as Tet1 and Tet2, in CD4+ T cells of three different lupus-prone mouse strains compared to controls. These findings suggest that the hypomethylation of murine lupus CD4+ T cells is likely attributed to a TET-mediated active demethylation pathway. Moreover, we found that deletion of early growth response 2 (Egr2), a transcription factor gene in B6/lpr mice markedly reduced maternally expressed miRNA genes but not paternally expressed protein-coding genes at the Dlk1-Dio3 locus in CD4+ T cells. EGR2 has been shown to induce DNA demethylation by recruiting TETs. Surprisingly, we found that deleting Egr2 in B6/lpr mice induced more hypomethylated differentially methylated regions at either the whole-genome level or the Dlk1-Dio3 locus in CD4+ T cells. Although the role of methylation in EGR2-mediated regulation of Dlk1-Dio3 miRNAs is not readily apparent, these are the first data to show that in lupus, Egr2 regulates Dlk1-Dio3 miRNAs, which target major signaling pathways in autoimmunity. These data provide a new perspective on the role of upregulated EGR2 in lupus pathogenesis.
Collapse
Affiliation(s)
- Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Bettina Heid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Jianlin He
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA
| | - Christopher M. Reilly
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Blacksburg, VA
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| |
Collapse
|
3
|
Gao Y, Wang Y, Chauss D, Villarino AV, Link VM, Nagashima H, Spinner CA, Koparde VN, Bouladoux N, Abers MS, Break TJ, Chopp LB, Park JH, Zhu J, Wiest DL, Leonard WJ, Lionakis MS, O'Shea JJ, Afzali B, Belkaid Y, Lazarevic V. Transcription factor EGR2 controls homing and pathogenicity of T H17 cells in the central nervous system. Nat Immunol 2023; 24:1331-1344. [PMID: 37443284 PMCID: PMC10500342 DOI: 10.1038/s41590-023-01553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/08/2023] [Indexed: 07/15/2023]
Abstract
CD4+ T helper 17 (TH17) cells protect barrier tissues but also trigger autoimmunity. The mechanisms behind these opposing processes remain unclear. Here, we found that the transcription factor EGR2 controlled the transcriptional program of pathogenic TH17 cells in the central nervous system (CNS) but not that of protective TH17 cells at barrier sites. EGR2 was significantly elevated in myelin-reactive CD4+ T cells from patients with multiple sclerosis and mice with autoimmune neuroinflammation. The EGR2 transcriptional program was intricately woven within the TH17 cell transcriptional regulatory network and showed high interconnectivity with core TH17 cell-specific transcription factors. Mechanistically, EGR2 enhanced TH17 cell differentiation and myeloid cell recruitment to the CNS by upregulating pathogenesis-associated genes and myelomonocytic chemokines. T cell-specific deletion of Egr2 attenuated neuroinflammation without compromising the host's ability to control infections. Our study shows that EGR2 regulates tissue-specific and disease-specific functions in pathogenic TH17 cells in the CNS.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yan Wang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro V Villarino
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIH Center for Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hiroyuki Nagashima
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Camille A Spinner
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vishal N Koparde
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael S Abers
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Timothy J Break
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura B Chopp
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Wiest
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Zhou X, Gu Y, Wang H, Zhou W, Zou L, Li S, Hua C, Gao S. From bench to bedside: targeting lymphocyte activation gene 3 as a therapeutic strategy for autoimmune diseases. Inflamm Res 2023:10.1007/s00011-023-01742-y. [PMID: 37314518 DOI: 10.1007/s00011-023-01742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/12/2023] [Accepted: 05/12/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Immune checkpoints negatively regulate immune response, thereby playing an important role in maintaining immune homeostasis. Substantial studies have confirmed that blockade or deficiency of immune checkpoint pathways contributes to the deterioration of autoimmune diseases. In this context, focusing on immune checkpoints might provide alternative strategies for the treatment of autoimmunity. Lymphocyte activation gene 3 (LAG3), as a member of immune checkpoint, is critical in regulating immune responses as manifested in multiple preclinical studies and clinical trials. Recent success of dual-blockade of LAG3 and programmed death-1 in melanoma also supports the notion that LAG3 is a crucial regulator in immune tolerance. METHODS We wrote this review article by searching the PubMed, Web of Science and Google Scholar databases. CONCLUSION In this review, we summarize the molecular structure and the action mechanisms of LAG3. Additionally, we highlight its roles in diverse autoimmune diseases and discuss how the manipulation of the LAG3 pathway can serve as a promising therapeutic strategy as well as its specific mechanism with the aim of filling the gaps from bench to bedside.
Collapse
Affiliation(s)
- Xueyin Zhou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yiming Gu
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huihong Wang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Zhou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Zou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuting Li
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
5
|
Zheng Y, Yu M, Chen Y, Xue L, Zhu W, Fu G, Morris SW, Wen R, Wang D. CARD19, a Novel Regulator of the TAK1/NF-κB Pathway in Self-Reactive B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1222-1235. [PMID: 36961449 PMCID: PMC10156913 DOI: 10.4049/jimmunol.2200639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
The caspase recruitment domain family member (CARD)11-Bcl10-Malt1 signalosome controls TGF-β-activated kinase 1 (TAK1) activation and regulates BCR-induced NF-κB activation. In this study, we discovered that CARD19 interacted with TAK1 and inhibited TAB2-mediated TAK1 ubiquitination and activation. Although CARD19 deficiency in mice did not affect B cell development, it enhanced clonal deletion, receptor editing, and anergy of self-reactive B cells, and it reduced autoantibody production. Mechanistically, CARD19 deficiency increased BCR/TAK1-mediated NF-κB activation, leading to increased expression of transcription factors Egr2/3, as well as the E3 ubiquitin ligases c-Cbl/Cbl-b, which are known inducers of B cell tolerance in self-reactive B cells. RNA sequencing analysis revealed that although CARD19 deficiency did not affect the overall Ag-induced gene expression in naive B cells, it suppressed BCR signaling and increased hyporesponsiveness of self-reactive B cells. As a result, CARD19 deficiency prevented Bm12-induced experimental systemic lupus erythematosus. In summary, CARD19 negatively regulates BCR/TAK1-induced NF-κB activation and its deficiency increases Egr2/3 and c-Cbl/Cbl-b expression in self-reactive B cells, thereby enhancing B cell tolerance.
Collapse
Affiliation(s)
| | - Mei Yu
- Versiti Blood Research Institute, Milwaukee, WI
| | - Yuhong Chen
- Versiti Blood Research Institute, Milwaukee, WI
| | | | - Wen Zhu
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Guoping Fu
- Versiti Blood Research Institute, Milwaukee, WI
| | | | - Renren Wen
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
6
|
Dai R, Wang Z, Heid B, Eden K, Reilly CM, Ahmed SA. EGR2 Deletion Suppresses Anti-DsDNA Autoantibody and IL-17 Production in Autoimmune-Prone B6/lpr Mice: A Differential Immune Regulatory Role of EGR2 in B6/lpr Versus Normal B6 Mice. Front Immunol 2022; 13:917866. [PMID: 35784356 PMCID: PMC9241489 DOI: 10.3389/fimmu.2022.917866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Previous studies have reported that deletion of the transcription factor, early growth response protein 2 (EGR2), in normal C57BL/6 (B6) resulted in the development of lupus-like autoimmune disease. However, increased EGR2 expression has been noted in human and murine lupus, which challenges the notion of the autoimmune suppressive role of EGR2 in B6 mice. In this study, we derived both conditional EGR2-/-B6/lpr and EGR2-/-B6 mice to elucidate the immune and autoimmune regulatory roles of EGR2 in autoinflammation (B6/lpr) versus physiologically normal (B6) conditions. We found that conditional EGR2 deletion increased spleen weight, enhanced T cell activation and IFNγ production, and promoted germinal center B cells and LAG3+ regulatory T cells development in both B6/lpr and B6 mice. Nevertheless, EGR2 deletion also showed strikingly differential effects in these two strains on T lymphocyte subsets profile, Foxp3+ Tregs and plasma cell differentiation, anti-dsDNA autoantibodies and immunoglobulins production, and on the induction of IL-17 in in vitro activated splenocytes. Specifically, EGR2 deletion in B6/lpr mice significantly decreased serum levels of anti-dsDNA autoantibodies, total IgG, IgM, IgG1, and IgG2a with reduced plasma cells differentiation. Furthermore, EGR2 deletion in B6/lpr mice had no obvious effect on IgG immunocomplex deposition, medium caliber vessel, and glomeruli inflammation but increased complement C3 immunocomplex deposition and large caliber vessel inflammation in the kidneys. Importantly, we demonstrated that EGR2 deletion in B6/lpr mice significantly reduced pathogenic CD4-CD8-CD3+B220+ double negative T cells, which correlated with the reduced anti-dsDNA autoantibodies in serum and decreased IL-17 production in splenocytes of EGR2-/-B6/lpr mice. Together, our data strongly suggest that the role of EGR2 is complex. The immunoregulatory role of EGR2 varies at normal or autoinflammation conditions and should not be generalized in differential experimental settings.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
- *Correspondence: S. Ansar Ahmed, ; Rujuan Dai,
| | - Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - Bettina Heid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - Kristin Eden
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Christopher M. Reilly
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
- *Correspondence: S. Ansar Ahmed, ; Rujuan Dai,
| |
Collapse
|
7
|
p21 restricts influenza A virus by perturbing the viral polymerase complex and upregulating type I interferon signaling. PLoS Pathog 2022; 18:e1010295. [PMID: 35180274 PMCID: PMC8920271 DOI: 10.1371/journal.ppat.1010295] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/14/2022] [Accepted: 01/20/2022] [Indexed: 11/19/2022] Open
Abstract
Many cellular genes and networks induced in human lung epithelial cells infected with the influenza virus remain uncharacterized. Here, we find that p21 levels are elevated in response to influenza A virus (IAV) infection, which is independent of p53. Silencing, pharmacological inhibition or deletion of p21 promotes virus replication in vitro and in vivo, indicating that p21 is an influenza restriction factor. Mechanistically, p21 binds to the C-terminus of IAV polymerase subunit PA and competes with PB1 to limit IAV polymerase activity. Besides, p21 promotes IRF3 activation by blocking K48-linked ubiquitination degradation of HO-1 to enhance type I interferons expression. Furthermore, a synthetic p21 peptide (amino acids 36 to 43) significantly inhibits IAV replication in vitro and in vivo. Collectively, our findings reveal that p21 restricts IAV by perturbing the viral polymerase complex and activating the host innate immune response, which may aid the design of desperately needed new antiviral therapeutics. Influenza A virus (IAV) poses a continuous threat to public health and economic stability. The ribonucleoprotein (RNP) of IAV is responsible for the transcription and replication of the viral RNA. These processes require interplay between host factors and RNP components. Here, we report that p21 can be activated by IAV infection and is controlled by a p53-independent pathway. We demonstrate that p21 directly binds to the viral polymerase acidic protein and limits IAV polymerase activity through disrupting the formation of the ribonucleoprotein complex. Additionally, p21 activation promotes IRF3 activation by blocking K48-linked polyubiquitination degradation of HO-1, thereby activating the type I interferon pathway. We further identify an 8-amino-acid peptide of p21 as the minimum motif that effectively inhibits IAV replication and presents therapeutic efficacy both in vitro and in vivo. Thus, our studies not only identify p21 as an antiviral protein, but also provide mechanistic insight to facilitate drug development.
Collapse
|
8
|
Xu J, Xu Y. Identifying of miRNA–mRNA Regulatory Networks Associated with Acute Kidney Injury by Weighted Gene Co-Expression Network Analysis. Int J Gen Med 2022; 15:1853-1864. [PMID: 35221717 PMCID: PMC8865863 DOI: 10.2147/ijgm.s353484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/10/2022] [Indexed: 01/07/2023] Open
Abstract
Background Acute kidney injury (AKI) is a clinical emergency characterized by a dramatic decline in renal function and the accumulation of metabolic waste products in the body, with a high morbidity and mortality rate. The pathogenesis of AKI remains unclear and there are no effective treatment options. Methods We aimed to identify critical genes involved in the pathogenesis of AKI and construct a miRNA–mRNA regulatory network using gene expression data downloaded from Gene Expression Omnibus (GSE85957) for 38 kidneys of AKI and 19 control rats and cisplatin treated kidneys of 3 AKI and 3 control rats. Data in GSE85957 were processed using weighted gene co-expression network analysis (WGCNA), and biological function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to analyze the functions associated with critical genes. Results Twenty-eight modules in the GSE85957 dataset were identified by WGCNA, of which 103 genes in the orange module and 30 genes in the black module were closely associated with AKI and dose. Biological function analysis of genes in the orange and black modules revealed that skeletal muscle cell differentiation, tissue development and organ development were involved in the pathological changes of AKI. Combining with our experimentally processed AKI rat kidney data, eight genes (Atf3, Egr1, Egr2, Fos, Fosb, Gdf15, Serpine1 and Nr1d1) were identified as potential biomarkers of AKI, and miRNA–mRNA regulatory networks were constructed based on the above eight critical genes. Further tissue validation revealed that Egr1 and Fos were highly expressed in AKI. Conclusion Our study identified potential biomarkers of AKI and constructed an associated miRNA–mRNA regulatory network, which may provide new insights into the molecular pathogenesis of AKI.
Collapse
Affiliation(s)
- Jie Xu
- Department of Urology, Pudong New Area People’s Hospital, Shanghai, 201299, People’s Republic of China
- Correspondence: Jie Xu, Department of Urology, Pudong New Area People’s Hospital, No. 490, Chuanhuan South Road, Pudong New Area, Shanghai, 201299, People’s Republic of China, Tel/Fax +86-13816833210, Email
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
- Yunfei Xu, Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, No. 301, Yanchang Road, Jing’an District, Shanghai, 200072, People’s Republic of China, Email
| |
Collapse
|
9
|
Di Napoli A, Vacca D, Bertolazzi G, Lopez G, Piane M, Germani A, Rogges E, Pepe G, Santanelli Di Pompeo F, Salgarello M, Jobanputra V, Hsiao S, Wrzeszczynski KO, Berti E, Bhagat G. RNA Sequencing of Primary Cutaneous and Breast-Implant Associated Anaplastic Large Cell Lymphomas Reveals Infrequent Fusion Transcripts and Upregulation of PI3K/AKT Signaling via Neurotrophin Pathway Genes. Cancers (Basel) 2021; 13:cancers13246174. [PMID: 34944796 PMCID: PMC8699465 DOI: 10.3390/cancers13246174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Cutaneous and breast implant-associated anaplastic large-cell lymphomas are usually localized neoplasms with an indolent clinical course compared to systemic ALCL. However comparative analyses of the molecular features of these two entities have not yet been reported. We performed targeted RNA sequencing, which revealed that fusion transcripts, although infrequent, might represent additional pathogenetic events in both diseases. We also found that these entities display upregulation of the PI3K/Akt pathway and show enrichment in genes of the neurotrophin signaling pathway. These findings advance our knowledge regarding the pathobiology of cALCL and BI-ALCL and point to additional therapeutic targets. Abstract Cutaneous and breast implant-associated anaplastic large-cell lymphomas (cALCLs and BI-ALCLs) are two localized forms of peripheral T-cell lymphomas (PTCLs) that are recognized as distinct entities within the family of ALCL. JAK-STAT signaling is a common feature of all ALCL subtypes, whereas DUSP22/IRF4, TP63 and TYK gene rearrangements have been reported in a proportion of ALK-negative sALCLs and cALCLs. Both cALCLs and BI-ALCLs differ in their gene expression profiles compared to PTCLs; however, a direct comparison of the genomic alterations and transcriptomes of these two entities is lacking. By performing RNA sequencing of 1385 genes (TruSight RNA Pan-Cancer, Illumina) in 12 cALCLs, 10 BI-ALCLs and two anaplastic lymphoma kinase (ALK)-positive sALCLs, we identified the previously reported TYK2-NPM1 fusion in 1 cALCL (1/12, 8%), and four new intrachromosomal gene fusions in 2 BI-ALCLs (2/10, 20%) involving genes on chromosome 1 (EPS15-GNG12 and ARNT-GOLPH3L) and on chromosome 17 (MYO18A-GIT1 and NF1-GOSR1). One of the two BI-ALCL samples showed a complex karyotype, raising the possibility that genomic instability may be responsible for intra-chromosomal fusions in BI-ALCL. Moreover, transcriptional analysis revealed similar upregulation of the PI3K/Akt pathway, associated with enrichment in the expression of neurotrophin signaling genes, which was more conspicuous in BI-ALCL, as well as differences, i.e., over-expression of genes involved in the RNA polymerase II transcription program in BI-ALCL and of the RNA splicing/processing program in cALCL.
Collapse
Affiliation(s)
- Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
- Correspondence:
| | - Davide Vacca
- Department of Surgical, Oncological and Oral Sciences, Palermo University, 90134 Palermo, Italy;
| | - Giorgio Bertolazzi
- Tumour Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University, 90134 Palermo, Italy;
| | - Gianluca Lopez
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Maria Piane
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Aldo Germani
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Evelina Rogges
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Giuseppina Pepe
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | | | - Marzia Salgarello
- Department of Plastic Surgery, Catholic University of Sacred Heart, University Hospital Agostino Gemelli, 00168 Roma, Italy;
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
- New York Genome Center, New York, NY 10013, USA;
| | - Susan Hsiao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
| | | | - Emilio Berti
- Department of Dermatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
| |
Collapse
|
10
|
Kerr J. Early Growth Response Gene Upregulation in Epstein-Barr Virus (EBV)-Associated Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Biomolecules 2020; 10:biom10111484. [PMID: 33114612 PMCID: PMC7692278 DOI: 10.3390/biom10111484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic multisystem disease exhibiting a variety of symptoms and affecting multiple systems. Psychological stress and virus infection are important. Virus infection may trigger the onset, and psychological stress may reactivate latent viruses, for example, Epstein-Barr virus (EBV). It has recently been reported that EBV induced gene 2 (EBI2) was upregulated in blood in a subset of ME/CFS patients. The purpose of this study was to determine whether the pattern of expression of early growth response (EGR) genes, important in EBV infection and which have also been found to be upregulated in blood of ME/CFS patients, paralleled that of EBI2. EGR gene upregulation was found to be closely associated with that of EBI2 in ME/CFS, providing further evidence in support of ongoing EBV reactivation in a subset of ME/CFS patients. EGR1, EGR2, and EGR3 are part of the cellular immediate early gene response and are important in EBV transcription, reactivation, and B lymphocyte transformation. EGR1 is a regulator of immune function, and is important in vascular homeostasis, psychological stress, connective tissue disease, mitochondrial function, all of which are relevant to ME/CFS. EGR2 and EGR3 are negative regulators of T lymphocytes and are important in systemic autoimmunity.
Collapse
Affiliation(s)
- Jonathan Kerr
- Department of Microbiology, Norfolk & Norwich University Hospital (NNUH), Colney Lane, Norwich, Norfolk NR4 7UY, UK
| |
Collapse
|
11
|
Taefehshokr N, Miao T, Symonds ALJ, Wang P, Li S. Egr2 regulation in T cells is mediated through IFNγ/STAT1 and IL-6/STAT3 signalling pathway. Pathol Res Pract 2020; 216:153259. [PMID: 33099163 DOI: 10.1016/j.prp.2020.153259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/18/2022]
Abstract
The immune system is a host defence system to protect the body against foreign invaders. T cells are one of the major components of the immune cells and they are essential for immune responses. Early growth response gene (Egr2) in T cells is important for maintaining immune functions of T cells by promoting adaptive immune responses while controlling inflammation and preventing the development of autoimmune diseases. A study by our group demonstrated the function of Egr2 as a checkpoint regulator controlling the proliferation and differentiation of the T cells. In association, Egr2 and 3 play indispensable role in T cell immune response, but the mechanism regulating Egr2 expression in T cells is still unclear. In this study, we analysed the Egr2 expression mechanism in CD4 T cells under antigen stimulation. We found that Egr2 expression is regulated by different cytokines including IL-2 and IL-4, which increased Egr2 induction in activated T cells. However, inflammatory cytokines, including INFγ and IL-6, suppressed Egr2 expression through STAT1 and STAT3 signalling pathway respectively, highlighting a mechanism for tolergenic immune response on T cells.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Division of Biosciences, Department of Life Sciences, Brunel University London, Kingston Lane, UB8 3PH, UK.
| | - Tizong Miao
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, LONDON E1 2AD, UK
| | - Alistair L J Symonds
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, LONDON E1 2AD, UK
| | - Ping Wang
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, LONDON E1 2AD, UK
| | - Suling Li
- Division of Biosciences, Department of Life Sciences, Brunel University London, Kingston Lane, UB8 3PH, UK
| |
Collapse
|
12
|
Symonds AL, Zheng W, Miao T, Wang H, Wang T, Kiome R, Hou X, Li S, Wang P. Egr2 and 3 control inflammation, but maintain homeostasis, of PD-1 high memory phenotype CD4 T cells. Life Sci Alliance 2020; 3:3/9/e202000766. [PMID: 32709717 PMCID: PMC7391068 DOI: 10.26508/lsa.202000766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 01/13/2023] Open
Abstract
PD-1high memory CD4 T cells are pathogenic in autoimmune disease; here they show their expression of Egr2 is defective in rheumatoid arthritis and Egr2 & 3 control their inflammation and homeostasis. The transcription factors Egr2 and 3 are essential for controlling inflammatory autoimmune responses of memory phenotype (MP) CD4 T cells. However, the mechanism is still unclear. We have now found that the Egr2+ subset (PD-1high MP) of MP CD4 T cells expresses high levels of checkpoint molecules (PD-1 and Lag3) and also markers of effector T cells (CXCR3 and ICAM-1). Egr2/3 are not required for PD-1high MP CD4 cell development but mediate a unique transcriptional programme that effectively controls their inflammatory responses, while promoting homeostatic proliferation and adaptive responses. Egr2 negative PD-1high MP CD4 T cells are impaired in homeostatic proliferation and adaptive responses against viral infection but display inflammatory responses to innate stimulation such as IL-12. PD-1high MP CD4 T cells have recently been implicated in rheumatoid arthritis pathogenesis, and we have now found that Egr2 expression is reduced in PD-1high MP CD4 T cells from patients with active rheumatoid arthritis compared with healthy controls. These findings demonstrate that Egr2/3 control the inflammatory responses of PD-1high MP CD4 T cells and maintain their adaptive immune fitness.
Collapse
Affiliation(s)
- Alistair Lj Symonds
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Wei Zheng
- Division of Rheumatology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tizong Miao
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Haiyu Wang
- Division of Rheumatology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - TieShang Wang
- Division of Rheumatology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruth Kiome
- Bioscience, Brunel University, Uxbridge, UK
| | - Xiujuan Hou
- Division of Rheumatology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Suling Li
- Bioscience, Brunel University, Uxbridge, UK
| | - Ping Wang
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
13
|
Dai R, Heid B, Xu X, Xie H, Reilly CM, Ahmed SA. EGR2 is elevated and positively regulates inflammatory IFNγ production in lupus CD4 + T cells. BMC Immunol 2020; 21:41. [PMID: 32646370 PMCID: PMC7346656 DOI: 10.1186/s12865-020-00370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/30/2020] [Indexed: 01/07/2023] Open
Abstract
Background Recent studies have shown that early growth response 2 (EGR2) is highly induced in activated T cells and regulates T cell functions. In normal C57BL/6 (B6) mice, deletion of EGR2 in lymphocytes results in the development of lupus-like systemic autoimmune disease, which implies indirectly an autoimmune protective role of EGR2. Conversely, increased EGR2 gene expression is suggested to link with high risk of human lupus. In the present studies we sought to clarify the expression and inflammation regulatory role of EGR2 in murine lupus T cells directly. Results We performed RT-qPCR analysis and found a significant increase of EGR2 mRNA expression in human lupus PBMCs and in CD4+ T cells from three different murine lupus models including MRL-lpr, B6-lpr, and B6.sle123 mice at diseased stage when compared to age-matched control MRL or B6 mice. By performing intracellular flow cytometry analysis, we found that EGR2 protein expression was significantly increased in resting lupus (either MRL-lpr or B6.sle123) CD4+ T cells when compared to CD4+ T cells from their respective non-autoimmune controls. However, there was no difference of EGR2 protein expression in anti-CD3 and anti-CD28 stimulated control and lupus CD4+ T cells since there was a stronger induction of EGR2 in activated control CD4+ T cells. EGR2 expression was significantly increased in MRL-lpr mice at an age when lupus is manifested. To understand further the function of elevated EGR2 in lupus CD4+ T cells, we inhibited EGR2 with a specific siRNA in vitro in splenocytes from MRL-lpr and control MRL mice at 15 weeks-of-age. We found that EGR2 inhibition significantly reduced IFNγ production in PMA and ionomycin activated MRL-lpr lupus CD4+ T cells, but not control MRL CD4+ T cells. We also found that inhibition of EGR2 in vitro suppressed the Th1 differentiation in both MRL and MRL-lpr naïve CD4+ T cells. Conclusions EGR2 is highly upregulated in human and murine lupus cells. Our in vitro data suggest a positive role of EGR2 in the regulation of Th1 differentiation and IFNγ production in lupus effector CD4+ T cells.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| | - Bettina Heid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Xiguang Xu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.,Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA, USA
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.,Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA, USA
| | - Christopher M Reilly
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.,Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
14
|
Tamehiro N, Nishida K, Sugita Y, Hayakawa K, Oda H, Nitta T, Nakano M, Nishioka A, Yanobu-Takanashi R, Goto M, Okamura T, Adachi R, Kondo K, Morita A, Suzuki H. Ras homolog gene family H (RhoH) deficiency induces psoriasis-like chronic dermatitis by promoting T H17 cell polarization. J Allergy Clin Immunol 2019; 143:1878-1891. [PMID: 30339851 DOI: 10.1016/j.jaci.2018.09.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Ras homolog gene family H (RhoH) is a membrane-bound adaptor protein involved in proximal T-cell receptor signaling. Therefore RhoH plays critical roles in the differentiation of T cells; however, the function of RhoH in the effecter phase of the T-cell response has not been fully characterized. OBJECTIVE We sought to explore the role of RhoH in inflammatory immune responses and investigated the involvement of RhoH in the pathogenesis of psoriasis. METHODS We analyzed effector T-cell and systemic inflammation in wild-type and RhoH-null mice. RhoH expression in T cells in human PBMCs was quantified by using RT-PCR. RESULTS RhoH deficiency in mice induced TH17 polarization during effector T-cell differentiation, thereby inducing psoriasis-like chronic dermatitis. Ubiquitin protein ligase E3 component N-recognin 5 (Ubr5) and nuclear receptor subfamily 2 group F member 6 (Nr2f6) expression levels decreased in RhoH-deficient T cells, resulting in increased protein levels and DNA binding activity of retinoic acid-related orphan receptor γt. The consequential increase in IL-17 and IL-22 production induced T cells to differentiate into TH17 cells. Furthermore, IL-22 binding protein/Fc chimeric protein reduced psoriatic inflammation in RhoH-deficient mice. Expression of RhoH in T cells was lower in patients with psoriasis with very severe symptoms. CONCLUSION Our results indicate that RhoH inhibits TH17 differentiation and thereby plays a role in the pathogenesis of psoriasis. Additionally, IL-22 binding protein has therapeutic potential for the treatment of psoriasis.
Collapse
Affiliation(s)
- Norimasa Tamehiro
- Department of Immunology and Pathology, National Center for Global health and Medicine, Chiba, Japan
| | - Kyoko Nishida
- Department of Immunology and Pathology, National Center for Global health and Medicine, Chiba, Japan; Department of Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yu Sugita
- Department of Immunology and Pathology, National Center for Global health and Medicine, Chiba, Japan
| | - Kunihiro Hayakawa
- Department of Immunology and Pathology, National Center for Global health and Medicine, Chiba, Japan
| | - Hiroyo Oda
- Department of Immunology and Pathology, National Center for Global health and Medicine, Chiba, Japan
| | - Takeshi Nitta
- Department of Immunology and Pathology, National Center for Global health and Medicine, Chiba, Japan
| | - Miwa Nakano
- Communal laboratory, National Center for Global health and Medicine, Chiba, Japan
| | - Akiko Nishioka
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Reiko Yanobu-Takanashi
- Department of Laboratory Animal Medicine, National Center for Global health and Medicine, Chiba, Japan
| | - Motohito Goto
- Department of Laboratory Animal Medicine, National Center for Global health and Medicine, Chiba, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, National Center for Global health and Medicine, Chiba, Japan; Department of Infectious Diseases, Research Institute, National Center for Global health and Medicine, Chiba, Japan
| | - Reiko Adachi
- Department of Biochemistry, National Institute of Health Sciences, Kawasaki, Japan
| | - Kazunari Kondo
- Department of Biochemistry, National Institute of Health Sciences, Kawasaki, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, National Center for Global health and Medicine, Chiba, Japan.
| |
Collapse
|
15
|
Cai XY, Cheng L, Yu CX, Wu YY, Fang L, Zheng XD, Zhou FS, Sheng YJ, Zhu J, Zheng J, Wu YY, Xiao FL. GWAS Follow-up Study Discovers a Novel Genetic Signal on 10q21.2 for Atopic Dermatitis in Chinese Han Population. Front Genet 2019; 10:174. [PMID: 30915103 PMCID: PMC6422937 DOI: 10.3389/fgene.2019.00174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease with high heritability. Two susceptibility loci have been confirmed in our previous AD genome-wide association study (GWAS). To look for additional genetic factors in Chinese Han ethnicity, we performed a large-scale GWAS follow-up study. Forty-nine top single nucleotide polymorphisms (SNPs) that had never been reported previously were genotyped using Sequenom Massarray system in an independent cohort, which consist of northern Chinese (1634 cases and 1263 controls) and southern Chinese (2985 cases and 9526 controls). Association analyses were performed using PLINK 2 software. Three SNPs in northern and ten SNPs in southern were found exhibiting association evidence with AD (P < 0.05). Finally, SNP rs224108 on 10q21.2 showed high significance for AD in joint analysis of GWAS and replication study (Pmeta = 4.55 × 10−9, OR = 1.21), and was confirmed as an independent genetic marker by Linkage disequilibrium calculation and conditional logistic regression analysis. Bioinformatics analysis strongly suggested that rs224108 may have the potential to alter the target gene expression through non-coding epigenetic regulation effects. Meanwhile, SNP rs11150780 on 17q25.3 was also found suggestive association with AD (Pmeta = 7.64 × 10−7, OR = 1.18). Our findings confirmed a novel susceptibility signal on 10q21.2 for AD in Chinese Han population and advanced the understanding of the genetic contribution to AD.
Collapse
Affiliation(s)
- Xin-Ying Cai
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Lu Cheng
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Chong-Xian Yu
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Yan-Yan Wu
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Ling Fang
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Xiao-Dong Zheng
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Fu-Sheng Zhou
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Yu-Jun Sheng
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Jun Zhu
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Jie Zheng
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Yuan-Yuan Wu
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| | - Feng-Li Xiao
- Institute of Dermatology and Department of Dermatology of First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Komai T, Okamura T, Inoue M, Yamamoto K, Fujio K. Reevaluation of Pluripotent Cytokine TGF-β3 in Immunity. Int J Mol Sci 2018; 19:ijms19082261. [PMID: 30071700 PMCID: PMC6121403 DOI: 10.3390/ijms19082261] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/28/2018] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor (TGF)-βs are pluripotent cytokines with stimulatory and inhibitory properties for multiple types of immune cells. Analyses of genetic knockouts of each isoform of TGF-β have revealed differing expression patterns and distinct roles for the three mammalian isoforms of TGF-β. Considerable effort has been focused on understanding the molecular mechanisms of TGF-β1-mediated immune regulation, given its pivotal role in prohibiting systemic autoimmune disease. In recent years, functional similarities and differences between the TGF-β isoforms have delineated their distinct roles in the development of immunopathology and immune tolerance, with increased recent attention being focused on TGF-β3. In addition to the characteristic properties of each TGF-β isoform, recent progress has identified determinants of context-dependent functionality, including various cellular targets, cytokine concentrations, tissue microenvironments, and cytokine synergy, which combine to shape the physiological and pathophysiological roles of the TGF-βs in immunity. Controlling TGF-β production and signaling is being tested as a novel therapeutic strategy in multiple clinical trials for several human diseases. This review highlights advances in the understanding of the cellular sources, activation processes, contextual determinants, and immunological roles of TGF-β3 with comparisons to other TGF-β isoforms.
Collapse
Affiliation(s)
- Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
- Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, Tokyo 153-8505, Japan.
| | - Mariko Inoue
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
- Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, Tokyo 153-8505, Japan.
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, RIKEN, Kanagawa 230-0045, Japan.
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| |
Collapse
|
17
|
Lewis MJ, McAndrew MB, Wheeler C, Workman N, Agashe P, Koopmann J, Uddin E, Morris DL, Zou L, Stark R, Anson J, Cope AP, Vyse TJ. Autoantibodies targeting TLR and SMAD pathways define new subgroups in systemic lupus erythematosus. J Autoimmun 2018; 91:1-12. [DOI: 10.1016/j.jaut.2018.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 11/25/2022]
|
18
|
Teruya S, Okamura T, Komai T, Inoue M, Iwasaki Y, Sumitomo S, Shoda H, Yamamoto K, Fujio K. Egr2-independent, Klf1-mediated induction of PD-L1 in CD4 + T cells. Sci Rep 2018; 8:7021. [PMID: 29728568 PMCID: PMC5935736 DOI: 10.1038/s41598-018-25302-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/19/2018] [Indexed: 01/15/2023] Open
Abstract
Programmed death ligand 1 (PD-L1)-mediated induction of immune tolerance has been vigorously investigated in autoimmunity and anti-tumor immunity. However, details of the mechanism by which PD-L1 is induced in CD4+ T cells are unknown. Here, we revealed the potential function of Klf1 and Egr2-mediated induction of PD-L1 in CD4+ T cells. We focused on the molecules specifically expressed in CD4+CD25-LAG3+ regulatory T cells (LAG3+ Tregs) highly express of PD-L1 and transcription factor Egr2. Although ectopic expression of Egr2 induced PD-L1, a deficiency of Egr2 did not affect its expression, indicating the involvement of another PD-L1 induction mechanism. Comprehensive gene expression analysis of LAG3+ Tregs and in silico binding predictions revealed that Krüppel-like factor 1 (Klf1) is a candidate inducer of the PD-L1 gene (Cd274). Klf1 is a transcription factor that promotes β-globin synthesis in erythroid progenitors, and its role in immunological homeostasis is unknown. Ectopic expression of Klf1 induced PD-L1 in CD4+ T cells through activation of the PI3K-mTOR signaling pathway, independent of STATs signaling and Egr2 expression. Our findings indicate that Klf1 and Egr2 are modulators of PD-L1-mediated immune suppression in CD4+ T cells and might provide new insights into therapeutic targets for autoimmune diseases and malignancies.
Collapse
Affiliation(s)
- Shuzo Teruya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Max Planck-University of Tokyo Center for Integrative Inflammology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mariko Inoue
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yukiko Iwasaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Max Planck-University of Tokyo Center for Integrative Inflammology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
19
|
Okamura T, Yamamoto K, Fujio K. Early Growth Response Gene 2-Expressing CD4 +LAG3 + Regulatory T Cells: The Therapeutic Potential for Treating Autoimmune Diseases. Front Immunol 2018. [PMID: 29535721 PMCID: PMC5834469 DOI: 10.3389/fimmu.2018.00340] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Regulatory T cells (Tregs) are necessary for the maintenance of immune tolerance. Tregs are divided into two major populations: one is thymus derived and the other develops in the periphery. Among these Tregs, CD4+CD25+ Tregs, which mainly originate in the thymus, have been extensively studied. Transcription factor Foxp3 is well known as a master regulatory gene for the development and function of CD4+CD25+ Tregs. On the other hand, peripheral Tregs consist of distinct cell subsets including Foxp3-dependent extrathymically developed Tregs and interleukin (IL)-10-producing type I regulatory T (Tr1) cells. Lymphocyte activation gene 3 (LAG3) and CD49b are reliable cell surface markers for Tr1 cells. CD4+CD25−LAG3+ Tregs (LAG3+ Tregs) develop in the periphery and produce a large amount of IL-10. LAG3+ Tregs characteristically express the early growth response gene 2 (Egr2), a zinc-finger transcription factor, and exhibit its suppressive activity in a Foxp3-independent manner. Although Egr2 was known to be essential for hindbrain development and myelination of the peripheral nervous system, recent studies revealed that Egr2 plays vital roles in the induction of T cell anergy and also the suppressive activities of LAG3+ Tregs. Intriguingly, forced expression of Egr2 converts naive CD4+ T cells into IL-10-producing Tregs that highly express LAG3. Among the four Egr gene family members, Egr3 is thought to compensate for the function of Egr2. Recently, we reported that LAG3+ Tregs suppress humoral immune responses via transforming growth factor β3 production in an Egr2- and Egr3-dependent manner. In this review, we focus on the role of Egr2 in Tregs and also discuss its therapeutic potential for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, Tokyo, Japan.,Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Omodho B, Miao T, Symonds ALJ, Singh R, Li S, Wang P. Transcription factors early growth response gene (Egr) 2 and 3 control inflammatory responses of tolerant T cells. IMMUNITY INFLAMMATION AND DISEASE 2018; 6:221-233. [PMID: 29314730 PMCID: PMC5946152 DOI: 10.1002/iid3.210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/07/2023]
Abstract
Introduction Impaired proliferation and production of IL2 are the hallmarks of experimental T cell tolerance. However, in most autoimmune diseases, auto‐reactive T cells do not display hyper proliferation, but inflammatory phenotypes. Methods We have now demonstrated that the transcription factors Egr2 and 3 are important for the control of inflammatory cytokine production by tolerant T cells, but not for tolerance induction. Results In the absence of Egr2 and 3, T cell tolerance, as measured by impaired proliferation and production of IL2, can still be induced, but tolerant T cells produced high levels of inflammatory cytokines. Egr2 and 3 regulate expression of differentiation repressors and directly inhibit T‐bet function in T cells. Indeed, decreased expression of differentiation repressors, such as Id3 and Tcf1, and increased expression of inflammatory transcription factors, such as RORγt and Bhlhe40 were found in Egr2/3 deficient T cells under tolerogenic conditions. In addition, T‐bet was co‐expressed with Egr2 in tolerant T cells and Egr2/3 defects leads to production of high levels of IFNγ in tolerant T cells. Conclusions Our findings demonstrated that despite impaired proliferation and IL2 production, tolerant T cells can display inflammatory responses in response to antigen stimulation and this is controlled at least partly by Egr2 and 3.
Collapse
Affiliation(s)
- Becky Omodho
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, UK.,Bioscience, Brunel University London, Kingston Lane, London, UK
| | - Tizong Miao
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, UK
| | - Alistair L J Symonds
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, UK
| | - Randeep Singh
- Bioscience, Brunel University London, Kingston Lane, London, UK
| | - Suling Li
- Bioscience, Brunel University London, Kingston Lane, London, UK
| | - Ping Wang
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, UK
| |
Collapse
|
21
|
Early growth response 2 and Egr3 are unique regulators in immune system. Cent Eur J Immunol 2017; 42:205-209. [PMID: 28860938 PMCID: PMC5573894 DOI: 10.5114/ceji.2017.69363] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
The immune system is evolved to defend the body against pathogens and is composed of thousands of complicated and intertwined pathways, which are highly controlled by processes such as transcription and repression of cellular genes. Sometimes the immune system malfunctions and a break down in self-tolerance occurs. This lead to the inability to distinguish between self and non-self and cause attacks on host tissues, a condition also known as autoimmunity, which can result in chronic debilitating diseases. Early growth response genes are family of transcription factors comprising of four members, Egr1, Egr2, Egr3 and Egr4. All of which contain three cyc2-His2 zinc fingers. Initially, Egr2 function was identified in the regulation of peripheral nerve myelination, hindbrain segmentation. Egr3, on the other hand, is highly expressed in muscle spindle development. Egr2 and Egr3 are induced due to the antigen stimulation and this signaling is implemented through the B and T cell receptors in the adaptive immunity. T cell receptor signaling plays a key role in Egr 2 and 3 expressions via their interaction with NFAT molecules. Egr 2 and 3 play a crucial role in regulation of the immune system and their involvement in B and T cell activation, anergy induction and preventing the autoimmune disease has been investigated. The deficiency of these transcription factors has been associated to deficient Cbl-b expression, a resistant to anergy phenotype, and expression of effector and activated T cells.
Collapse
|
22
|
Miao T, Symonds ALJ, Singh R, Symonds JD, Ogbe A, Omodho B, Zhu B, Li S, Wang P. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med 2017; 214:1787-1808. [PMID: 28487311 PMCID: PMC5460991 DOI: 10.1084/jem.20160553] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 11/23/2016] [Accepted: 03/24/2017] [Indexed: 12/30/2022] Open
Abstract
Miao et al. report a checkpoint mediated by Egr2 and 3 that controls the transition between T cell clonal expansion and differentiation by regulating genes involved in proliferation and differentiation, which is essential for optimal immune responses with limited immunopathology. Egr2 and 3 are important for maintaining immune homeostasis. Here we define a fundamental function of Egr2 and 3 operating as a checkpoint that controls the transition between clonal expansion and differentiation of effector T cells. Egr2 and 3 deficiency resulted in defective clonal expansion but hyperactivation and excessive differentiation of T cells in response to viral infection. Conversely, sustained Egr2 expression enhanced expansion but severely impaired effector differentiation. Egr2 bound to and controlled the expression of genes regulating proliferation (Myc and Myb) and differentiation repressors (Bcl6, Id3), while repressing transcription factors required for effector function (Zeb2, RORa, RORc, and Bhlhe40). Egr2 and 3 expression in T cells was regulated reciprocally by antigen and IFNγ, providing a mechanism for adjusting proliferation and differentiation of individual T cells. Thus, Egr2 and 3 are upstream regulators of effector CD4 and CD8 T cells that are essential for optimal responses with limited immunopathology.
Collapse
Affiliation(s)
- Tizong Miao
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| | - Alistair L J Symonds
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| | - Randeep Singh
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK.,Bioscience, Brunel University, Uxbridge UB8 3PH, England, UK
| | - Janine D Symonds
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London WC1E 6BT, England, UK
| | - Ane Ogbe
- Bioscience, Brunel University, Uxbridge UB8 3PH, England, UK
| | - Becky Omodho
- Bioscience, Brunel University, Uxbridge UB8 3PH, England, UK
| | - Bo Zhu
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK.,Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Suling Li
- Bioscience, Brunel University, Uxbridge UB8 3PH, England, UK
| | - Ping Wang
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| |
Collapse
|
23
|
Rackov G, Shokri R, De Mon MÁ, Martínez-A C, Balomenos D. The Role of IFN-β during the Course of Sepsis Progression and Its Therapeutic Potential. Front Immunol 2017; 8:493. [PMID: 28533774 PMCID: PMC5420561 DOI: 10.3389/fimmu.2017.00493] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
Sepsis is a complex biphasic syndrome characterized by both pro- and anti-inflammatory immune states. Whereas early sepsis mortality is caused by an acute, deleterious pro-inflammatory response, the second sepsis phase is governed by acute immunosuppression, which predisposes patients to long-term risk for life-threatening secondary infections. Despite extensive basic research and clinical trials, there is to date no specific therapy for sepsis, and mortality rates are on the rise. Although IFN-β is one of the most-studied cytokines, its diverse effects are not fully understood. Depending on the disease or type of infection, it can have beneficial or detrimental effects. As IFN-β has been used successfully to treat diverse diseases, emphasis has been placed on understanding the role of IFN-β in sepsis. Analyses of mouse models of septic shock attribute a pro-inflammatory role to IFN-β in sepsis development. As anti-inflammatory treatments in humans with antibodies to TNF-α or IL1-β resulted disappointing, cytokine modulation approaches were discouraged and neutralization of IFN-β has not been pursued for sepsis treatment. In the case of patients with delayed sepsis and immunosuppression, there is a debate as to whether the use of specific cytokines would restore the deactivated immune response. Recent reports show an association of low IFN-β levels with the hyporesponsive state of monocytes from sepsis patients and after endotoxin tolerance induction. These data, discussed here, project a role for IFN-β in restoring monocyte function and reversing immunosuppression, and suggest IFN-β-based additive immunomodulatory therapy. The dichotomy in putative therapeutic approaches, involving reduction or an increase in IFN-β levels, mirrors the contrasting nature of the early hyperinflammatory state and the delayed immunosuppression phase.
Collapse
Affiliation(s)
- Gorjana Rackov
- Department of Immunology and Oncology, Universidad Autónoma de Madrid, Centro Nacional de Biotecnología - CSIC, Madrid, Spain.,IMDEA Nanoscience, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rahman Shokri
- Department of Immunology and Oncology, Universidad Autónoma de Madrid, Centro Nacional de Biotecnología - CSIC, Madrid, Spain
| | - Melchor Álvarez De Mon
- Immune System Diseases-Rheumatology and Oncology Service, University Hospital Principe de Asturias, Alcalá de Henares, Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Universidad Autónoma de Madrid, Centro Nacional de Biotecnología - CSIC, Madrid, Spain
| | - Dimitrios Balomenos
- Department of Immunology and Oncology, Universidad Autónoma de Madrid, Centro Nacional de Biotecnología - CSIC, Madrid, Spain
| |
Collapse
|
24
|
Singh R, Miao T, Symonds ALJ, Omodho B, Li S, Wang P. Egr2 and 3 Inhibit T-bet-Mediated IFN-γ Production in T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:4394-4402. [PMID: 28455436 PMCID: PMC5439026 DOI: 10.4049/jimmunol.1602010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/26/2017] [Indexed: 12/31/2022]
Abstract
T-bet is important for differentiation of cytotoxic CD8 and Th1 CD4 T cells. We have discovered that Egr2 and 3 are potent inhibitors of T-bet function in CD4 and CD8 effector T cells. Egr2 and 3 were essential to suppress Th1 differentiation in Th2 and Th17 conditions in vitro and also to control IFN-γ–producing CD4 and CD8 T cells in response to virus infection. Together with Egr2 and 3, T-bet is induced in naive T cells by Ag stimulation, but Egr2 and 3 expression was inhibited by Th1–inducing cytokines. We found that Egr2 and 3 physically interact with the T-box domain of T-bet, blocking T-bet DNA binding and inhibiting T-bet–mediated production of IFN-γ. Thus, Egr2 and 3 are antagonists of T-bet function in effector T cells and are important for the control of inflammatory responses of T cells.
Collapse
Affiliation(s)
- Randeep Singh
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom; and.,Bioscience, Brunel University London, London UB8 3PH, United Kingdom
| | - Tizong Miao
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom; and
| | - Alistair L J Symonds
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom; and
| | - Becky Omodho
- Bioscience, Brunel University London, London UB8 3PH, United Kingdom
| | - Suling Li
- Bioscience, Brunel University London, London UB8 3PH, United Kingdom
| | - Ping Wang
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom; and
| |
Collapse
|
25
|
Fujio K, Yamamoto K, Okamura T. Overview of LAG-3-Expressing, IL-10-Producing Regulatory T Cells. Curr Top Microbiol Immunol 2017; 410:29-45. [PMID: 28929191 DOI: 10.1007/82_2017_59] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regulatory T cells (Treg cells) play crucial roles in the induction of peripheral tolerance to self- and foreign-antigens. IL-10-producing regulatory T cells (IL-10-producing Treg cells) constitute a Treg cell subset characterized by the production of high amounts of IL-10, cytokine-mediated immunosuppressive capabilities, and independence of Foxp3 expression for their suppressive activity. In the past decade, identifying naturally occurring IL-10-producing Treg cells was difficult due to the lack of suitable surface markers. More recently, lymphocyte activation gene 3 (LAG-3) is a CD4 homologue that has been identified as a marker for IL-10-producing Treg cells. CD4+CD25-LAG3+ T cells produce large amounts of IL-10 and suppress colitis in a mouse model. These CD4+CD25-LAG3+ Treg cells also exhibit suppressive activity in murine models of lupus and humoral immunity in a TGF-β3-dependent manner. Moreover, the combined expression of LAG-3 and CD49b identifies IL-10-producing Treg cells in mice and humans more specifically. Recently, LAG-3 has gained more attention in the context of immune checkpoints because it believed to be related to T cell tolerance and exhausted T cells that infiltrate the tumor microenvironment. Tumors and the tumor microenvironment promote development of IL-10-producing Treg cells and foster tumor growth. This response might interfere with protective immune responses. Understanding LAG-3-expressing IL-10-producing Treg cells may contribute to the development of novel therapeutic strategies in immune-mediated diseases.
Collapse
Affiliation(s)
- Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
26
|
Egr2 and Egr3 in regulatory T cells cooperatively control systemic autoimmunity through Ltbp3-mediated TGF-β3 production. Proc Natl Acad Sci U S A 2016; 113:E8131-E8140. [PMID: 27911796 DOI: 10.1073/pnas.1611286114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by multiorgan inflammation induced by autoantibodies. Early growth response gene 2 (Egr2), a transcription factor essential for T-cell anergy induction, controls systemic autoimmunity in mice and humans. We have previously identified a subpopulation of CD4+ regulatory T cells, CD4+CD25-LAG3+ cells, that characteristically express both Egr2 and LAG3 and control mice model of lupus via TGF-β3 production. However, due to the mild phenotype of lymphocyte-specific Egr2-deficient mice, the presence of an additional regulator has been speculated. Here, we show that Egr2 and Egr3 expressed in T cells cooperatively prevent humoral immune responses by supporting TGF-β3 secretion. T cell-specific Egr2/Egr3 double-deficient (Egr2/3DKO) mice spontaneously developed an early onset lupus-like disease that was more severe than in T cell-specific Egr2-deficient mice. In accordance with the observation that CD4+CD25-LAG3+ cells from Egr2/3DKO mice completely lost the capacity to produce TGF-β3, the excessive germinal center reaction in Egr2/3DKO mice was suppressed by the adoptive transfer of WT CD4+CD25-LAG3+ cells or treatment with a TGF-β3-expressing vector. Intriguingly, latent TGF-β binding protein (Ltbp)3 expression maintained by Egr2 and Egr3 was required for TGF-β3 production from CD4+CD25-LAG3+ cells. Because Egr2 and Egr3 did not demonstrate cell intrinsic suppression of the development of follicular helper T cells, Egr2- and Egr3-dependent TGF-β3 production by CD4+CD25-LAG3+ cells is critical for controlling excessive B-cell responses. The unique attributes of Egr2/Egr3 in T cells may provide an opportunity for developing novel therapeutics for autoantibody-mediated diseases including SLE.
Collapse
|
27
|
Morita K, Okamura T, Sumitomo S, Iwasaki Y, Fujio K, Yamamoto K. Emerging roles of Egr2 and Egr3 in the control of systemic autoimmunity. Rheumatology (Oxford) 2016; 55:ii76-ii81. [DOI: 10.1093/rheumatology/kew342] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 08/23/2016] [Indexed: 01/04/2023] Open
|
28
|
Pastor F. Aptamers: A New Technological Platform in Cancer Immunotherapy. Pharmaceuticals (Basel) 2016; 9:E64. [PMID: 27783034 PMCID: PMC5198039 DOI: 10.3390/ph9040064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/29/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022] Open
Abstract
The renaissance of cancer immunotherapy is, nowadays, a reality. In the near future, it will be very likely among the first-line treatments for cancer patients. There are several different approaches to modulate the immune system to fight against tumor maladies but, so far, monoclonal antibodies may currently be the most successful immuno-tools used to that end. The number of ongoing clinical trials with monoclonal antibodies has been increasing exponentially over the last few years upon the Food and Drug Administration (FDA) approval of the first immune-checkpoint blockade antibodies. In spite of the proved antitumor effect of these reagents, the unleashing of the immune system to fight cancer cells has a cost, namely auto-inflammatory toxicity. Additionally, only a small fraction of all patients treated with immune-checkpoint antibodies have a clinical benefit. Taking into account all this, it is urgent new therapeutic reagents are developed with a contained toxicity that could facilitate the combination of different immune-modulating pathways to broaden the antitumor effect in most cancer patients. Based on preclinical data, oligonucleotide aptamers could fulfill this need. Aptamers have not only been successfully used as antagonists of immune-checkpoint receptors, but also as agonists of immunostimulatory receptors in cancer immunotherapy. The simplicity of aptamers to be engineered for the specific delivery of different types of cargos to tumor cells and immune cells so as to harvest an efficient antitumor immune response gives aptamers a significant advantage over antibodies. In this review all of the recent applications of aptamers in cancer immunotherapy will be described.
Collapse
Affiliation(s)
- Fernando Pastor
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, Pamplona 31008, Spain.
- Program of Molecular Therapies, Aptamer Unit, Centro de Investigación Medica Aplicada (CIMA), Pamplona 31008, Spain.
| |
Collapse
|
29
|
Rackov G, Hernández-Jiménez E, Shokri R, Carmona-Rodríguez L, Mañes S, Álvarez-Mon M, López-Collazo E, Martínez-A C, Balomenos D. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-κB and IFN-β. J Clin Invest 2016; 126:3089-103. [PMID: 27427981 DOI: 10.1172/jci83404] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 05/24/2016] [Indexed: 01/01/2023] Open
Abstract
M1 and M2 macrophage phenotypes, which mediate proinflammatory and antiinflammatory functions, respectively, represent the extremes of immunoregulatory plasticity in the macrophage population. This plasticity can also result in intermediate macrophage states that support a balance between these opposing functions. In sepsis, M1 macrophages can compensate for hyperinflammation by acquiring an M2-like immunosuppressed status that increases the risk of secondary infection and death. The M1 to M2 macrophage reprogramming that develops during LPS tolerance resembles the pathological antiinflammatory response to sepsis. Here, we determined that p21 regulates macrophage reprogramming by shifting the balance between active p65-p50 and inhibitory p50-p50 NF-κB pathways. p21 deficiency reduced the DNA-binding affinity of the p50-p50 homodimer in LPS-primed and -rechallenged macrophages, impairing their ability to attenuate IFN-β production and acquire an M2-like hyporesponsive status. High p21 levels in sepsis patients correlated with low IFN-β expression, and p21 knockdown in human monocytes corroborated its role in IFN-β regulation. The data demonstrate that p21 adjusts the equilibrium between p65-p50 and p50-p50 NF-κB pathways to mediate macrophage plasticity in LPS tolerance. Identifying p21-related pathways involved in monocyte reprogramming may lead to potential targets for sepsis treatment.
Collapse
|
30
|
Revisiting the regulatory roles of the TGF-β family of cytokines. Autoimmun Rev 2016; 15:917-22. [PMID: 27392504 DOI: 10.1016/j.autrev.2016.07.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/13/2016] [Indexed: 02/04/2023]
Abstract
TGF-β family members are multipotent cytokines that are involved in many cellular processes, including cell differentiation, organ development, wound healing and immune regulation. TGF-β has pleiotropic effects on adaptive immunity, especially in the regulation of CD4(+) T cell and B cell responses. Furthermore, identification of CD4(+) T cell subsets that produce TGF-β3 revealed unexpected roles of TGF-β3 in the control of adaptive immunity. In contrast to TGF-β1, which induces extensive fibrosis, TGF-β3 induces non-scarring wound healing and counteracts tissue fibrosis. Recent progress in the understanding of the activation mechanism of TGF-β may enable us to develop novel biologic therapies based on advanced protein engineering.
Collapse
|
31
|
Kozela E, Juknat A, Gao F, Kaushansky N, Coppola G, Vogel Z. Pathways and gene networks mediating the regulatory effects of cannabidiol, a nonpsychoactive cannabinoid, in autoimmune T cells. J Neuroinflammation 2016; 13:136. [PMID: 27256343 PMCID: PMC4891926 DOI: 10.1186/s12974-016-0603-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/27/2016] [Indexed: 11/29/2022] Open
Abstract
Background Our previous studies showed that the non-psychoactive cannabinoid, cannabidiol (CBD), ameliorates the clinical symptoms in mouse myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis model of multiple sclerosis (MS) as well as decreases the memory MOG35-55-specific T cell (TMOG) proliferation and cytokine secretion including IL-17, a key autoimmune factor. The mechanisms of these activities are currently poorly understood. Methods Herein, using microarray-based gene expression profiling, we describe gene networks and intracellular pathways involved in CBD-induced suppression of these activated memory TMOG cells. Encephalitogenic TMOG cells were stimulated with MOG35-55 in the presence of spleen-derived antigen presenting cells (APC) with or without CBD. mRNA of purified TMOG was then subjected to Illumina microarray analysis followed by ingenuity pathway analysis (IPA), weighted gene co-expression network analysis (WGCNA) and gene ontology (GO) elucidation of gene interactions. Results were validated using qPCR and ELISA assays. Results Gene profiling showed that the CBD treatment suppresses the transcription of a large number of proinflammatory genes in activated TMOG. These include cytokines (Xcl1, Il3, Il12a, Il1b), cytokine receptors (Cxcr1, Ifngr1), transcription factors (Ier3, Atf3, Nr4a3, Crem), and TNF superfamily signaling molecules (Tnfsf11, Tnfsf14, Tnfrsf9, Tnfrsf18). “IL-17 differentiation” and “IL-6 and IL-10-signaling” were identified among the top processes affected by CBD. CBD increases a number of IFN-dependent transcripts (Rgs16, Mx2, Rsad2, Irf4, Ifit2, Ephx1, Ets2) known to execute anti-proliferative activities in T cells. Interestingly, certain MOG35-55 up-regulated transcripts were maintained at high levels in the presence of CBD, including transcription factors (Egr2, Egr1, Tbx21), cytokines (Csf2, Tnf, Ifng), and chemokines (Ccl3, Ccl4, Cxcl10) suggesting that CBD may promote exhaustion of memory TMOG cells. In addition, CBD enhanced the transcription of T cell co-inhibitory molecules (Btla, Lag3, Trat1, and CD69) known to interfere with T/APC interactions. Furthermore, CBD enhanced the transcription of oxidative stress modulators with potent anti-inflammatory activity that are controlled by Nfe2l2/Nrf2 (Mt1, Mt2a, Slc30a1, Hmox1). Conclusions Microarray-based gene expression profiling demonstrated that CBD exerts its immunoregulatory effects in activated memory TMOG cells via (a) suppressing proinflammatory Th17-related transcription, (b) by promoting T cell exhaustion/tolerance, (c) enhancing IFN-dependent anti-proliferative program, (d) hampering antigen presentation, and (d) inducing antioxidant milieu resolving inflammation. These findings put forward mechanism by which CBD exerts its anti-inflammatory effects as well as explain the beneficial role of CBD in pathological memory T cells and in autoimmune diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0603-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ewa Kozela
- The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel. .,Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Ana Juknat
- The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Fuying Gao
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Nathali Kaushansky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Giovanni Coppola
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Zvi Vogel
- The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
32
|
Abstract
Being a member of the early growth response (Egr) family of transcription factors, Egr-2 is expressed in a variety of cell types of the immune system. Recent findings imply that Egr-2 is important in the development and function of T helper (Th) 17 cell, regulatory T (Treg) cell, as well as dendritic cell (DC). Although these cells perform significantly in the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus, multiple sclerosis, and systemic sclerosis, the roles of Egr-2 in the pathogenesis of autoimmune diseases can not be neglected. In this article, we will discuss recent findings about the important roles of Egr-2 in immune cells and the possible pathological roles of Egr-2 in autoimmune diseases.
Collapse
|
33
|
Ren W, Yin J, Duan J, Liu G, Tan B, Yang G, Wu G, Bazer FW, Peng Y, Yin Y. mTORC1 signaling and IL-17 expression: Defining pathways and possible therapeutic targets. Eur J Immunol 2015; 46:291-9. [PMID: 26558536 DOI: 10.1002/eji.201545886] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/17/2015] [Accepted: 11/06/2015] [Indexed: 12/19/2022]
Abstract
IL-17 mediates immune responses against extracellular pathogens, and it is associated with the development and pathogenesis of various autoimmune diseases. The expression of IL-17 is regulated by various intracellular signaling cascades. Recently, it has been shown that mechanistic target of rapamycin (mTOR) signaling, comprised mainly of mTORC1 signaling, plays a critical role in IL-17 expression. Here, we review the current knowledge regarding mechanisms by which mTORC1 regulates IL-17 expression. mTORC1 positively modulates IL-17 expression through several pathways, i.e. STAT3, -HIF-1α, -S6K1, and -S6K2. Amino acids (AAs) also regulate IL-17 expression by being the energy source for Th17 cells, and by activating mTORC1 signaling. Altogether, the AA-mTORC1-IL-17 axis has broad therapeutic implications for IL-17-associated diseases, such as EAE, allergies, and colitis.
Collapse
Affiliation(s)
- Wenkai Ren
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jie Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
| | - Jielin Duan
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
| | - Gang Liu
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
| | - Bie Tan
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
| | - Guan Yang
- Department of Animal Science, University of Florida, Gainesville, FL, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, TAMU, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, TAMU, TX, USA
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage and Herbivorce, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yulong Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
| |
Collapse
|
34
|
Fujio K, Okamura T, Sumitomo S, Yamamoto K. Therapeutic potential of regulatory cytokines that target B cells. Int Immunol 2015; 28:189-95. [PMID: 26647406 DOI: 10.1093/intimm/dxv069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/15/2015] [Indexed: 12/18/2022] Open
Abstract
Autoreactive B cells play a crucial role in the pathogenesis of autoimmune diseases by producing auto-antibodies and presenting antigens. Regulatory cytokines that simultaneously suppress multiple pathways have the potential to control autoreactive B cells. The generally inhibitory cytokine IL-10 may have a stimulatory effect on human B-cell survival and antibody production. TGF-β family cytokines can decrease or increase antibody production and can suppress B-cell proliferation and differentiation. In contrast to TGF-β1, which induces extensive fibrosis, TGF-β3 and bone morphogenetic protein 6 (BMP-6)/BMP-7 induce non-scarring wound healing and counteract tissue fibrosis. Therefore, TGF-β3 and BMP-6/BMP-7 may be clinically applicable as therapeutic cytokines that target B cells. Recent progress in protein engineering may enable us to generate novel biologic therapies based on TGF-β family cytokines.
Collapse
Affiliation(s)
- Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
35
|
Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2. Nat Commun 2015; 6:8698. [PMID: 26507712 PMCID: PMC4846325 DOI: 10.1038/ncomms9698] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/21/2015] [Indexed: 11/09/2022] Open
Abstract
Induction of T-cell clonal anergy involves serial activation of transcription factors, including NFAT and Egr2/3. However, downstream effector mechanisms of these transcription factors are not fully understood yet. Here we identify Ndrg1 as an anergy factor induced by Egr2. Ndrg1 is upregulated by anergic signalling and maintained at high levels in resting anergic T cells. Overexpression of Ndrg1 mimics the anergic state and knockout of the gene prevents anergy induction. Interestingly, Ndrg1 is phosphorylated and degraded by CD28 signalling in a proteasome-dependent manner, explaining the costimulation dependence of anergy prevention. Similarly, IL-2 treatment of anergic T cells, under conditions that lead to the reversal of anergy, also induces Ndrg1 phosphorylation and degradation. Finally, older Ndrg1-deficient mice show T-cell hyperresponsiveness and Ndrg1-deficient T cells aggravate inducible autoimmune inflammation. Thus, Ndrg1 contributes to the maintenance of clonal anergy and inhibition of T-cell-mediated inflammation.
Collapse
|
36
|
Asashima H, Tsuboi H, Takahashi H, Hirota T, Iizuka M, Kondo Y, Matsui M, Matsumoto I, Sumida T. The anergy induction of M3 muscarinic acetylcholine receptor-reactive CD4+ T cells suppresses experimental sialadenitis-like Sjögren's syndrome. Arthritis Rheumatol 2015; 67:2213-25. [PMID: 25891013 DOI: 10.1002/art.39163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/14/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Autoreactive CD4+ T cells are involved in the pathogenesis of Sjögren's syndrome (SS). The aim of the present study was to clarify the dominant T cell epitopes of M3 muscarinic acetylcholine receptor (M3R) and to establish a new antigen-specific therapy for SS using an experimental mouse model. METHODS Production of cytokines from M3R-reactive CD4+ T cells, after culture with various M3R peptides, was analyzed by enzyme-linked immunosorbent assay. Adoptive cell transfer was performed using splenocytes from M3R(-/-) mice that were immunized with M3R peptides or phosphate buffered saline plus H37Ra as a control. Rag1(-/-) mice were inoculated with the splenocytes and examined for the development of sialadenitis. Altered peptide ligands (APLs) of the T cell epitopes, with substitutions in amino acid residues at T cell receptor contact sites, were synthesized, and the ability of the APLs to suppress sialadenitis was evaluated. The mechanisms underlying such effects were assessed. RESULTS CD4+ M3R-reactive T cells produced interleukin-17 (IL-17) and interferon-γ (IFNγ) in response to the N-terminal 1 (N1) and 1st extracellular loop peptides of M3R, and Rag1(-/-) mice that received N1- and/or 1st peptide-immunized splenocytes developed sialadenitis. Among the designed APLs, N1-APL7 (N→S at amino acid 15) significantly suppressed IFNγ production in vitro, and also suppressed sialadenitis in vivo. Levels of early growth response 2 in CD4+ T cells from the cervical lymph nodes of N1-APL7-treated mice were significantly higher than those of control mice, and cell proliferation was reversed by administration of exogenous IL-2. Levels of the anergy-related molecules itchy homolog E3 ubiquitin-protein ligase, Casitas B-lineage lymphoma b, gene related to anergy in lymphocytes, and Deltex-1 were significantly higher in CD4+ T cells cultured with N1-APL7. CONCLUSION The major T cell epitopes were from the N1 and 1st peptide regions. Moreover, N1-APL7, selected as the antagonistic APL in vitro, also suppressed sialadenitis through the induction of anergy. This is a potentially useful strategy for regulating pathogenic T cell infiltration in SS.
Collapse
|
37
|
Tang H, Jiang H, Zheng J, Li J, Wei Y, Xu G, Li H. MicroRNA-106b regulates pro-allergic properties of dendritic cells and Th2 polarisation by targeting early growth response-2 in vitro. Int Immunopharmacol 2015; 28:866-74. [DOI: 10.1016/j.intimp.2015.03.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 03/31/2015] [Indexed: 01/07/2023]
|
38
|
Ogbe A, Miao T, Symonds ALJ, Omodho B, Singh R, Bhullar P, Li S, Wang P. Early Growth Response Genes 2 and 3 Regulate the Expression of Bcl6 and Differentiation of T Follicular Helper Cells. J Biol Chem 2015; 290:20455-65. [PMID: 25979336 PMCID: PMC4536451 DOI: 10.1074/jbc.m114.634816] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
T follicular helper (Tfh) cells support differentiation of B cells to plasma cells and high affinity antibody production in germinal centers (GCs), and Tfh differentiation requires the function of B cell lymphoma 6 (BCL6). We have now discovered that early growth response gene 2 (EGR2) and EGR3 directly regulate the expression of Bcl6 in Tfh cells, which is required for their function in regulation of GC formation. In the absence of EGR2 and -3, the expression of BCL6 in Tfh cells is defective, leading to impaired differentiation of Tfh cells, resulting in a failure to form GCs following virus infection and defects in production of antiviral antibodies. Enforced expression of BCL6 in EGR2/3-deficient CD4 T cells partially restored Tfh differentiation and GC formation in response to virus infection. Our findings demonstrate a novel function of EGR2/3 that is important for Tfh cell development and Tfh cell-mediated B cell immune responses.
Collapse
Affiliation(s)
- Ane Ogbe
- From the Division of Biosciences, Department of Life Sciences, Brunel University, Kingston Lane, UB8 3PH, United Kingdom and the Blizard Institute of Cell and Molecular Science, Barts and London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AD, United Kingdom
| | - Tizong Miao
- the Blizard Institute of Cell and Molecular Science, Barts and London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AD, United Kingdom
| | - Alistair L J Symonds
- the Blizard Institute of Cell and Molecular Science, Barts and London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AD, United Kingdom
| | - Becky Omodho
- From the Division of Biosciences, Department of Life Sciences, Brunel University, Kingston Lane, UB8 3PH, United Kingdom and
| | - Randeep Singh
- From the Division of Biosciences, Department of Life Sciences, Brunel University, Kingston Lane, UB8 3PH, United Kingdom and
| | - Punamdip Bhullar
- From the Division of Biosciences, Department of Life Sciences, Brunel University, Kingston Lane, UB8 3PH, United Kingdom and
| | - Suling Li
- From the Division of Biosciences, Department of Life Sciences, Brunel University, Kingston Lane, UB8 3PH, United Kingdom and
| | - Ping Wang
- the Blizard Institute of Cell and Molecular Science, Barts and London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AD, United Kingdom
| |
Collapse
|
39
|
Kozela E, Juknat A, Kaushansky N, Ben-Nun A, Coppola G, Vogel Z. Cannabidiol, a non-psychoactive cannabinoid, leads to EGR2-dependent anergy in activated encephalitogenic T cells. J Neuroinflammation 2015; 12:52. [PMID: 25880134 PMCID: PMC4363052 DOI: 10.1186/s12974-015-0273-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/26/2015] [Indexed: 11/16/2022] Open
Abstract
Background Cannabidiol (CBD), the main non-psychoactive cannabinoid, has been previously shown by us to ameliorate clinical symptoms and to decrease inflammation in myelin oligodendrocyte glycoprotein (MOG)35-55-induced mouse experimental autoimmune encephalomyelitis model of multiple sclerosis as well as to decrease MOG35-55-induced T cell proliferation and IL-17 secretion. However, the mechanisms of CBD anti-inflammatory activities are unclear. Methods Here we analyzed the effects of CBD on splenocytes (source of accessory T cells and antigen presenting cells (APC)) co-cultured with MOG35-55-specific T cells (TMOG) and stimulated with MOG35-55. Using flow cytometry, we evaluated the expression of surface activation markers and inhibitory molecules on T cells and B cells. TMOG cells were purified using CD4 positive microbead selection and submitted for quantitative PCR and microarray of mRNA transcript analyzes. Cell signaling studies in purified TMOG were carried out using immunoblotting. Results We found that CBD leads to upregulation of CD69 and lymphocyte-activation gene 3 (LAG3) regulatory molecules on CD4+CD25− accessory T cells. This subtype of CD4+CD25−CD69+LAG3+ T cells has been recognized as induced regulatory phenotype promoting anergy in activated T cells. Indeed, we observed that CBD treatment results in upregulation of EGR2 (a key T cell anergy inducer) mRNA transcription in stimulated TMOG cells. This was accompanied by elevated levels of anergy promoting genes such as IL-10 (anti-inflammatory cytokine), STAT5 (regulatory factor), and LAG3 mRNAs, as well as of several enhancers of cell cycle arrest (such as Nfatc1, Casp4, Cdkn1a, and Icos). Moreover, CBD exposure leads to a decrease in STAT3 and to an increase in STAT5 phosphorylation in TMOG cells, positive and negative regulators of Th17 activity, respectively. In parallel, we observed decreased levels of major histocompatibility complex class II (MHCII), CD25, and CD69 on CD19+ B cells following CBD treatment, showing diminished antigen presenting capabilities of B cells and reduction in their pro-inflammatory functions. Conclusions Our data suggests that CBD exerts its immunoregulatory effects via induction of CD4+CD25−CD69+LAG3+ cells in MOG35-55-activated APC/TMOG co-cultures. This is accompanied by EGR2-dependent anergy of stimulated TMOG cells as well as a switch in their intracellular STAT3/STAT5 activation balance leading to the previously observed decrease in Th17 activity.
Collapse
Affiliation(s)
- Ewa Kozela
- The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ana Juknat
- The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nathali Kaushansky
- Neurobiology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Avraham Ben-Nun
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| | | | - Zvi Vogel
- The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Neurobiology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
40
|
Okamura T, Sumitomo S, Morita K, Iwasaki Y, Inoue M, Nakachi S, Komai T, Shoda H, Miyazaki JI, Fujio K, Yamamoto K. TGF-β3-expressing CD4+CD25(-)LAG3+ regulatory T cells control humoral immune responses. Nat Commun 2015; 6:6329. [PMID: 25695838 DOI: 10.1038/ncomms7329] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
Autoantibodies induce various autoimmune diseases, including systemic lupus erythematosus (SLE). We previously described that CD4(+)CD25(-)LAG3(+) regulatory T cells (LAG3(+) Treg) are regulated by Egr2, a zinc-finger transcription factor required for the induction of T-cell anergy. We herein demonstrate that LAG3(+) Treg produce high amounts of TGF-β3 in an Egr2- and Fas-dependent manner. LAG3(+) Treg require TGF-β3 to suppress B-cell responses in a murine model of lupus. Moreover, TGF-β3- and LAG3(+) Treg-mediated suppression requires PD-1 expression on B cells. We also show that TGF-β3-expressing human LAG3(+) Treg suppress antibody production and that SLE patients exhibit decreased frequencies of LAG3(+) Treg. These results clarify the mechanism of B-cell regulation and suggest therapeutic strategies.
Collapse
Affiliation(s)
- Tomohisa Okamura
- 1] Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan [2] Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kaoru Morita
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yukiko Iwasaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mariko Inoue
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shinichiro Nakachi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Jun-Ichi Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
41
|
Daszkiewicz L, Vázquez-Mateo C, Rackov G, Ballesteros-Tato A, Weber K, Madrigal-Avilés A, Di Pilato M, Fotedar A, Fotedar R, Flores JM, Esteban M, Martínez-A C, Balomenos D. Distinct p21 requirements for regulating normal and self-reactive T cells through IFN-γ production. Sci Rep 2015; 5:7691. [PMID: 25573673 PMCID: PMC4287747 DOI: 10.1038/srep07691] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/01/2014] [Indexed: 12/30/2022] Open
Abstract
Self/non-self discrimination characterizes immunity and allows responses against pathogens but not self-antigens. Understanding the principles that govern this process is essential for designing autoimmunity treatments. p21 is thought to attenuate autoreactivity by limiting T cell expansion. Here, we provide direct evidence for a p21 role in controlling autoimmune T cell autoreactivity without affecting normal T cell responses. We studied C57BL/6, C57BL/6/lpr and MRL/lpr mice overexpressing p21 in T cells, and showed reduced autoreactivity and lymphadenopathy in C57BL/6/lpr, and reduced mortality in MRL/lpr mice. p21 inhibited effector/memory CD4(+) CD8(+) and CD4(-)CD8(-) lpr T cell accumulation without altering defective lpr apoptosis. This was mediated by a previously non-described p21 function in limiting T cell overactivation and overproduction of IFN-γ, a key lupus cytokine. p21 did not affect normal T cell responses, revealing differential p21 requirements for autoreactive and normal T cell activity regulation. The underlying concept of these findings suggests potential treatments for lupus and autoimmune lymphoproliferative syndrome, without compromising normal immunity.
Collapse
Affiliation(s)
- Lidia Daszkiewicz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Cristina Vázquez-Mateo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Gorjana Rackov
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - André Ballesteros-Tato
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Kathrin Weber
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Adrián Madrigal-Avilés
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Mauro Di Pilato
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Arun Fotedar
- Cancer Cell Biology Program, Sidney Kimmel Cancer Center, San Diego, CA, USA
| | - Rati Fotedar
- Sanford-Burnham Medical Research Institute, San Diego, CA, USA
| | - Juana M Flores
- Animal Biology Department, School of Veterinary Medicine, Universidad Complutense, Madrid, Spain
| | - Mariano Esteban
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Dimitrios Balomenos
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
42
|
Hatano R, Ohnuma K, Otsuka H, Komiya E, Taki I, Iwata S, Dang NH, Okumura K, Morimoto C. CD26-mediated induction of EGR2 and IL-10 as potential regulatory mechanism for CD26 costimulatory pathway. THE JOURNAL OF IMMUNOLOGY 2014; 194:960-72. [PMID: 25548232 DOI: 10.4049/jimmunol.1402143] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CD26 is associated with T cell signal transduction processes as a costimulatory molecule, and CD26(+) T cells have been suggested to be involved in the pathophysiology of diverse autoimmune diseases. Although the cellular and molecular mechanisms involved in CD26-mediated T cell activation have been extensively evaluated by our group and others, potential negative feedback mechanisms to regulate CD26-mediated activation still remain to be elucidated. In the present study, we examine the expression of inhibitory molecules induced via CD26-mediated costimulation. We show that coengagement of CD3 and CD26 induces preferential production of IL-10 in human CD4(+) T cells, mediated through NFAT and Raf-MEK-ERK pathways. A high level of early growth response 2 (EGR2) is also induced following CD26 costimulation, possibly via NFAT and AP-1-mediated signaling, and knockdown of EGR2 leads to decreased IL-10 production. Furthermore, CD3/CD26-stimulated CD4(+) T cells clearly suppress proliferative activity and effector cytokine production of bystander T cells in an IL-10-dependent manner. Taken together, our data suggest that robust CD26 costimulatory signaling induces preferential expression of EGR2 and IL-10 as a potential mechanism for regulating CD26-mediated activation.
Collapse
Affiliation(s)
- Ryo Hatano
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; and
| | - Kei Ohnuma
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Haruna Otsuka
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Eriko Komiya
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Izumi Taki
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Satoshi Iwata
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Nam H Dang
- Division of Hematology/Oncology, University of Florida, Gainesville, FL 32610
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; and
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| |
Collapse
|
43
|
EGR2 is critical for peripheral naïve T-cell differentiation and the T-cell response to influenza. Proc Natl Acad Sci U S A 2014; 111:16484-9. [PMID: 25368162 DOI: 10.1073/pnas.1417215111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Early growth response 2 (EGR2) transcription factor negatively regulates T-cell activation, in contrast to the positive regulation of this process by EGR1. Here, we unexpectedly found that EGR2 promotes peripheral naïve T-cell differentiation, with delayed T-cell receptor-induced proliferation in naïve T cells from Egr2 conditional knockout (CKO) mice and decreased production of IFN-γ, IL-4, IL-9, and IL-17A in cells subjected to T-helper differentiation. Moreover, genes that promote T-cell activation, including Tbx21 and Notch1, had decreased expression in Egr2 CKO T cells and are direct EGR2 target genes. Following influenza infection, Egr2 CKO mice had delayed viral clearance, more weight loss, and more severe pathological changes in the lung than did WT and Egr1 KO mice, with decreased production of effector cytokines, increased infiltration of antigen-specific memory-precursor CD8(+) T cells, and lower numbers of lung-resident memory CD8(+) T cells. Thus, unexpectedly, EGR2 can function as a positive regulator that is essential for naïve T-cell differentiation and in vivo T-cell responses to a viral infection.
Collapse
|
44
|
Xie A, Zheng X, Khattar M, Schroder P, Stepkowski S, Xia J, Chen W. TCR stimulation without co-stimulatory signals induces expression of "tolerogenic" genes in memory CD4 T cells but does not compromise cell proliferation. Mol Immunol 2014; 63:406-11. [PMID: 25306961 DOI: 10.1016/j.molimm.2014.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 08/14/2014] [Accepted: 09/18/2014] [Indexed: 11/20/2022]
Abstract
Memory T cells resist co-stimulatory blockade and present a unique therapeutic challenge in transplantation and autoimmune diseases. Herein, we determined whether memory T cells express less "tolerogenic" genes than naïve T cells to reinforce a proliferative response under the deprivation of co-stimulatory signals. The expression of ∼40 tolerogenic genes in memory and naïve CD4(+) T cells was thus assessed during an in vitro TCR stimulation without co-stimulation. Briefly, upon TCR stimulation with an anti-CD3 mAb alone, memory CD4(+) T cells exhibited more proliferation than naïve CD4(+) T cells. To our surprise, at 24h upon anti-CD3 mAb stimulation, memory CD4(+) T cells expressed more than a 5-fold higher level of the transcription factor Egr2 and a 20-fold higher level of the transmembrane E3 ubiquitin ligase GRAIL than those in naïve T cells. Hence, the high-level expression of tolerogenic genes, Egr2 and GRAIL, in memory CD4(+) T cells does not prevent cell proliferation. Importantly, anti-CD3 mAb-stimulated memory CD4(+) T cells expressed high protein/gene levels of phosphorylated STAT5, Nedd4, Bcl-2, and Bcl-XL. Therefore, co-stimulation-independent proliferation of memory CD4(+) T cells may be due to elevated expression of molecules that support cell proliferation and survival, but not lack of tolerogenic molecules.
Collapse
Affiliation(s)
- Aini Xie
- Center for Immunobiology and Transplantation Research, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, United States; Department of Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiong Zheng
- Department of Gastroenterology, Shanghai Jiaotong University School of Medicine, Ruijin Hospital, Luwan Branch, Shanghai 200020, China
| | - Mithun Khattar
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo OH 43614, United States
| | - Paul Schroder
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo OH 43614, United States
| | - Stanislaw Stepkowski
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo OH 43614, United States.
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| | - Wenhao Chen
- Center for Immunobiology and Transplantation Research, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, United States; Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo OH 43614, United States
| |
Collapse
|
45
|
Sun Y, Zhu X, Chen X, Liu H, Xu Y, Chu Y, Wang G, Liu X. The mediator subunit Med23 contributes to controlling T-cell activation and prevents autoimmunity. Nat Commun 2014; 5:5225. [PMID: 25301163 DOI: 10.1038/ncomms6225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/10/2014] [Indexed: 12/11/2022] Open
Abstract
T-cell activation is critical for successful immune responses and is controlled at multiple levels. Although many changes of T-cell receptor-associated signalling molecules affect T-cell activation, the transcriptional mechanisms that control this process remain largely unknown. Here we find that T cell-specific deletion of the mediator subunit Med23 leads to hyperactivation of T cells and aged Med23-deficient mice exhibit an autoimmune syndrome. Med23 specifically and consistently promotes the transcription of multiple negative regulators of T-cell activation. In the absence of Med23, the T-cell activation threshold is lower, which results in enhanced antitumour T-cell function. Cumulatively, our data suggest that Med23 contributes to controlling T-cell activation at the transcriptional level and prevents the development of autoimmunity.
Collapse
Affiliation(s)
- Yang Sun
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoyan Zhu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xufeng Chen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Xu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajing Chu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
46
|
Abstract
T cells are the master regulators of adaptive immune responses and maintenance of their tolerance is critical to prevent autoimmunity. However, in the case of carcinogenesis, the tumor microenvironment aids T-cell tolerance, which contributes to uncontrolled tumor growth. Recently, there has been significant progress in understanding the intrinsic extracellular (positive and negative costimulatory molecules on APCs) and intracellular mechanisms (E3 ubiquitin ligases, transcriptional and epigenetic repressors), as well as extrinsic mechanisms (Tregs and tolerogenic dendritic cells) that are required for the implementation and maintenance of T-cell tolerance. Ultimately, understanding and manipulating T-cell tolerance will help to break the tolerance state in cancer.
Collapse
Affiliation(s)
- Roza Nurieva
- Department of Immunology & Center for Inflammation & Cancer, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junmei Wang
- Department of Immunology & Center for Inflammation & Cancer, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anupama Sahoo
- Department of Immunology & Center for Inflammation & Cancer, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
47
|
Sumitomo S, Fujio K, Okamura T, Yamamoto K. Egr2 and Egr3 are the unique regulators for systemic autoimmunity. JAKSTAT 2013; 2:e23952. [PMID: 24058814 PMCID: PMC3710327 DOI: 10.4161/jkst.23952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/11/2013] [Accepted: 02/11/2013] [Indexed: 11/19/2022] Open
Abstract
Systemic autoimmunity is characterized by widespread inflammation, autoantibody production and immune complex deposition. The regulatory mechanisms for the systemic autoimmunity are not fully understood. A paper by Li et al. revealed that Egr2 and Egr3, transcription factors required for T-cell anergy, are the regulators for systemic autoimmune disease. They showed evidence that Egr2 and Egr3 control cytokine productions and cell proliferation via SOCS and Batf regulation.
Collapse
Affiliation(s)
- Shuji Sumitomo
- Department of Allergy and Rheumatology; Graduate School of Medicine; The University of Tokyo; Tokyo, Japan
| | | | | | | |
Collapse
|
48
|
Sumitomo S, Fujio K, Okamura T, Morita K, Ishigaki K, Suzukawa K, Kanaya K, Kondo K, Yamasoba T, Furukawa A, Kitahara N, Shoda H, Shibuya M, Okamoto A, Yamamoto K. Transcription factor early growth response 3 is associated with the TGF-β1 expression and the regulatory activity of CD4-positive T cells in vivo. THE JOURNAL OF IMMUNOLOGY 2013; 191:2351-9. [PMID: 23904169 DOI: 10.4049/jimmunol.1202106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TGF-β1 is an important anti-inflammatory cytokine, and several regulatory T cell (Treg) subsets including CD4(+)CD25(+)Foxp3(+) Tregs and Th3 cells have been reported to exert regulatory activity via the production of TGF-β1. However, it has not yet been elucidated which transcription factor is involved in TGF-β1 transcription. Early growth response 3 (Egr-3) is a zinc-finger transcription factor that creates and maintains T cell anergy. In this study, we found that Egr-3 induces the expression of TGF-β1 in both murine and human CD4(+) T cells. Egr-3 overexpression in murine CD4(+) T cells induced the production of TGF-β1 and enhanced the phosphorylation of STAT3, which is associated with TGF-β1 transcription. Moreover, Egr-3 conferred Ag-specific regulatory activity on murine CD4(+) T cells. In collagen-induced arthritis and delayed-type hypersensitivity model mice, Egr-3-transduced CD4(+) T cells exhibited significant regulatory activity in vivo. In particular, the suppression of delayed-type hypersensitivity depended on TGF-β1. In human tonsils, we found that CD4(+)CD25(-)CD45RO(-)lymphocyte activation gene 3 (LAG3)(-) T cells express membrane-bound TGF-β1 in an EGR3-dependent manner. Gene-expression analysis revealed that CD4(+)CD25(-)CD45RO(-)LAG3(-) T cells are quite different from conventional CD4(+)CD25(+)Foxp3(+) Tregs. Intriguingly, the CD4(+)CD25(-)CD45RO(-)LAG3(-) T cells suppressed graft-versus-host disease in immunodeficient mice transplanted with human PBMCs. Our results suggest that Egr-3 is a transcription factor associated with TGF-β1 expression and in vivo regulatory activity in both mice and humans.
Collapse
Affiliation(s)
- Shuji Sumitomo
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fang F, Shangguan AJ, Kelly K, Wei J, Gruner K, Ye B, Wang W, Bhattacharyya S, Hinchcliff ME, Tourtellotte WG, Varga J. Early growth response 3 (Egr-3) is induced by transforming growth factor-β and regulates fibrogenic responses. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1197-1208. [PMID: 23906810 DOI: 10.1016/j.ajpath.2013.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/01/2013] [Accepted: 06/19/2013] [Indexed: 01/09/2023]
Abstract
Members of the early growth response (Egr) gene family of transcription factors have nonredundant biological functions. Although Egr-3 is implicated primarily in neuromuscular development and immunity, its regulation and role in tissue repair and fibrosis has not been studied. We now show that in normal skin fibroblasts, Egr-3 was potently induced by transforming growth factor-β via canonical Smad3. Moreover, transient Egr-3 overexpression was sufficient to stimulate fibrotic gene expression, whereas deletion of Egr-3 resulted in substantially attenuated transforming growth factor-β responses. Genome-wide expression profiling in fibroblasts showed that genes associated with tissue remodeling and wound healing were prominently up-regulated by Egr-3. Notably, <5% of fibroblast genes regulated by Egr-1 or Egr-2 were found to be coregulated by Egr-3, revealing substantial functional divergence among these Egr family members. In a mouse model of scleroderma, development of dermal fibrosis was accompanied by accumulation of Egr-3-positive myofibroblasts in the lesional tissue. Moreover, skin biopsy samples from patients with scleroderma showed elevated Egr-3 levels in the dermis, and Egr-3 mRNA levels correlated with the extent of skin involvement. These results provide the first evidence that Egr-3, a functionally distinct member of the Egr family with potent effects on inflammation and immunity, is up-regulated in scleroderma and is necessary and sufficient for profibrotic responses, suggesting important and distinct roles in the pathogenesis of fibrosis.
Collapse
Affiliation(s)
- Feng Fang
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anna J Shangguan
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kathleen Kelly
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jun Wei
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Katherine Gruner
- Department of Pathology and Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Boping Ye
- College of Life and Science, China Pharmaceutical University, Nanjing, China
| | - Wenxia Wang
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Swati Bhattacharyya
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Monique E Hinchcliff
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Warren G Tourtellotte
- Department of Pathology and Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John Varga
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
50
|
Miah MA, Byeon SE, Ahmed MS, Yoon CH, Ha SJ, Bae YS. Egr2 induced during DC development acts as an intrinsic negative regulator of DC immunogenicity. Eur J Immunol 2013; 43:2484-96. [PMID: 23716134 DOI: 10.1002/eji.201243046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 05/09/2013] [Accepted: 05/23/2013] [Indexed: 12/18/2022]
Abstract
Early growth response gene 2 (Egr2), which encodes a zinc finger transcription factor, is rapidly and transiently induced in various cell types independently of de novo protein synthesis. Although a role for Egr2 is well established in T-cell development, Egr2 expression and its biological function in dendritic cells (DCs) have not yet been described. Here, we demonstrate Egr2 expression during DC development, and its role in DC-mediated immune responses. Egr2 is expressed in the later stage of DC development from BM precursor cells. Even at steady state, Egr2 is highly expressed in mouse splenic DCs. Egr2-knockdown (Egr2-KD) DCs showed increased levels of major histocompatability complex (MHC) class I and II and co-stimulatory molecules, and enhanced antigen uptake and migratory capacities. Furthermore, Egr2-KD abolished SOCS1 expression and signal transducer and activator of transcription 5 (STAT5) activation during DC development, probably resulting in the enhancement of IL-12 expression and Th1 immunogenicity of a DC vaccine. DC-mediated cytotoxic T lymphocyte (CTL) activation and antitumor immunity were significantly enhanced by Egr2-KD, and impaired by Egr2 overexpression in antigen-pulsed DC vaccines. These data suggest that Egr2 acts as an intrinsic negative regulator of DC immunogenicity and can be an attractive molecular target for DC vaccine development.
Collapse
Affiliation(s)
- Mohammad Alam Miah
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea; Department of Physiology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | | | | | | | | |
Collapse
|