1
|
Xia P, Dubrovska A. CD98 heavy chain as a prognostic biomarker and target for cancer treatment. Front Oncol 2023; 13:1251100. [PMID: 37823053 PMCID: PMC10562705 DOI: 10.3389/fonc.2023.1251100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
The SLC3A2 gene encodes for a cell-surface transmembrane protein CD98hc (4F2). CD98hc serves as a chaperone for LAT1 (SLC7A5), LAT2 (SLC7A8), y+LAT1 (SLC7A7), y+LAT2 (SLC7A6), xCT (SLC7A11) and Asc1 (SLC7A10) providing their recruitment to the plasma membrane. Together with the light subunits, it constitutes heterodimeric transmembrane amino acid transporters. CD98hc interacts with other surface molecules, such as extracellular matrix metalloproteinase inducer CD147 (EMMPRIN) and adhesion receptors integrins, and regulates glucose uptake. In this way, CD98hc connects the signaling pathways sustaining cell proliferation and migration, biosynthesis and antioxidant defense, energy production, and stem cell properties. This multifaceted role makes CD98hc one of the critical regulators of tumor growth, therapy resistance, and metastases. Indeed, the high expression levels of CD98hc were confirmed in various tumor tissues, including head and neck squamous cell carcinoma, glioblastoma, colon adenocarcinoma, pancreatic ductal adenocarcinoma, and others. A high expression of CD98hc has been linked to clinical prognosis and response to chemo- and radiotherapy in several types of cancer. In this mini-review, we discuss the physiological functions of CD98hc, its role in regulating tumor stemness, metastases, and therapy resistance, and the clinical significance of CD98hc as a tumor marker and therapeutic target.
Collapse
Affiliation(s)
- Pu Xia
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
2
|
Fort J, Nicolàs-Aragó A, Palacín M. The Ectodomains of rBAT and 4F2hc Are Fake or Orphan α-Glucosidases. Molecules 2021; 26:6231. [PMID: 34684812 PMCID: PMC8537225 DOI: 10.3390/molecules26206231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022] Open
Abstract
It is known that 4F2hc and rBAT are the heavy subunits of the heteromeric amino acid transporters (HATs). These heavy subunits are N-glycosylated proteins, with an N-terminal domain, one transmembrane domain and a bulky extracellular domain (ectodomain) that belongs to the α-amylase family. The heavy subunits are covalently linked to a light subunit from the SLC7 family, which is responsible for the amino acid transport activity, forming a heterodimer. The functions of 4F2hc and rBAT are related mainly to the stability and trafficking of the HATs in the plasma membrane of vertebrates, where they exert the transport activity. Moreover, 4F2hc is a modulator of integrin signaling, has a role in cell fusion and it is overexpressed in some types of cancers. On the other hand, some mutations in rBAT are found to cause the malfunctioning of the b0,+ transport system, leading to cystinuria. The ectodomains of 4F2hc and rBAT share both sequence and structure homology with α-amylase family members. Very recently, cryo-EM has revealed the structure of several HATs, including the ectodomains of rBAT and 4F2hc. Here, we analyze available data on the ectodomains of rBAT and 4Fhc and their relationship with the α-amylase family. The physiological relevance of this relationship remains largely unknown.
Collapse
Affiliation(s)
- Joana Fort
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Adrià Nicolàs-Aragó
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
| | - Manuel Palacín
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Shi YN, Liu LP, Deng CF, Zhao TJ, Shi Z, Yan JY, Gong YZ, Liao DF, Qin L. Celastrol ameliorates vascular neointimal hyperplasia through Wnt5a-involved autophagy. Int J Biol Sci 2021; 17:2561-2575. [PMID: 34326694 PMCID: PMC8315023 DOI: 10.7150/ijbs.58715] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Neointimal hyperplasia caused by the excessive proliferation of vascular smooth muscle cells (VSMCs) is the pathological basis of restenosis. However, there are few effective strategies to prevent restenosis. Celastrol, a pentacyclic triterpene, has been recently documented to be beneficial to certain cardiovascular diseases. Based on its significant effect on autophagy, we proposed that celastrol could attenuate restenosis through enhancing autophagy of VSMCs. In the present study, we found that celastrol effectively inhibited the intimal hyperplasia and hyperproliferation of VSMCs by inducing autophagy. It was revealed that autophagy promoted by celastrol could induce the lysosomal degradation of c-MYC, which might be a possible mechanism contributing to the reduction of VSMCs proliferation. The Wnt5a/PKC/mTOR signaling pathway was found to be an underlying mechanism for celastrol to induce autophagy and inhibit the VSMCs proliferation. These observations indicate that celastrol may be a novel drug with a great potential to prevent restenosis.
Collapse
MESH Headings
- Animals
- Autophagy/drug effects
- Cells, Cultured
- Disease Models, Animal
- Femoral Artery/injuries
- Humans
- Hyperplasia/metabolism
- Hyperplasia/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Neointima
- Pentacyclic Triterpenes/pharmacology
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
- Wnt-5a Protein/metabolism
- Wound Healing/drug effects
Collapse
Affiliation(s)
- Ya-Ning Shi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Le-Ping Liu
- Institue of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chang-Feng Deng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tan-Jun Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhe Shi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jian-Ye Yan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yong-Zhen Gong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li Qin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Dunér P, Mattisson IY, Fogelstrand P, Glise L, Ruiz S, Farina C, Borén J, Nilsson J, Bengtsson E. Antibodies against apoB100 peptide 210 inhibit atherosclerosis in apoE -/- mice. Sci Rep 2021; 11:9022. [PMID: 33907226 PMCID: PMC8079692 DOI: 10.1038/s41598-021-88430-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/09/2021] [Indexed: 01/08/2023] Open
Abstract
Atherosclerotic plaques are characterized by an accumulation and subsequent oxidation of LDL, resulting in adaptive immune responses against formed or exposed neoepitopes of the LDL particle. Autoantibodies against native p210, the 3136–3155 amino acid sequence of the LDL protein apolipoprotein B-100 (apoB100) are common in humans and have been associated with less severe atherosclerosis and decreased risk for cardiovascular events in clinical studies. However, whether apoB100 native p210 autoantibodies play a functional role in atherosclerosis is not known. In the present study we immunized apoE-/- mice with p210-PADRE peptide to induce an antibody response against native p210. We also injected mice with murine monoclonal IgG against native p210. Control groups were immunized with PADRE peptide alone or with control murine monoclonal IgG. Immunization with p210-PADRE induced an IgG1 antibody response against p210 that was associated with reduced atherosclerotic plaque formation in the aorta and reduced MDA-LDL content in the lesions. Treatment with monoclonal p210 IgG produced a similar reduction in atherosclerosis as immunization with p210-PADRE. Our findings support an atheroprotective role of antibodies against the apoB100 native p210 and suggest that vaccines that induce the expression of native p210 IgG represent a potential therapeutic strategy for lowering cardiovascular risk.
Collapse
Affiliation(s)
- Pontus Dunér
- Department of Clinical Sciences Malmö, Clinical Research Centre, Lund University, Jan Waldenströms street 35, 20502, Malmö, Sweden.
| | - Ingrid Yao Mattisson
- Department of Clinical Sciences Malmö, Clinical Research Centre, Lund University, Jan Waldenströms street 35, 20502, Malmö, Sweden.,Redoxis AB, Medicon Village, Lund, Sweden
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Göteborg, Sweden
| | - Lars Glise
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Göteborg, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Clinical Research Centre, Lund University, Jan Waldenströms street 35, 20502, Malmö, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences Malmö, Clinical Research Centre, Lund University, Jan Waldenströms street 35, 20502, Malmö, Sweden
| |
Collapse
|
5
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
6
|
Alonso-Herranz L, Sahún-Español Á, Paredes A, Gonzalo P, Gkontra P, Núñez V, Clemente C, Cedenilla M, Villalba-Orero M, Inserte J, García-Dorado D, Arroyo AG, Ricote M. Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction. eLife 2020; 9:57920. [PMID: 33063665 PMCID: PMC7609061 DOI: 10.7554/elife.57920] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Macrophages (Mφs) produce factors that participate in cardiac repair and remodeling after myocardial infarction (MI); however, how these factors crosstalk with other cell types mediating repair is not fully understood. Here we demonstrated that cardiac Mφs increased the expression of Mmp14 (MT1-MMP) 7 days post-MI. We selectively inactivated the Mmp14 gene in Mφs using a genetic strategy (Mmp14f/f:Lyz2-Cre). This conditional KO (MAC-Mmp14 KO) resulted in attenuated post-MI cardiac dysfunction, reduced fibrosis, and preserved cardiac capillary network. Mechanistically, we showed that MT1-MMP activates latent TGFβ1 in Mφs, leading to paracrine SMAD2-mediated signaling in endothelial cells (ECs) and endothelial-to-mesenchymal transition (EndMT). Post-MI MAC-Mmp14 KO hearts contained fewer cells undergoing EndMT than their wild-type counterparts, and Mmp14-deficient Mφs showed a reduced ability to induce EndMT in co-cultures with ECs. Our results indicate the contribution of EndMT to cardiac fibrosis and adverse remodeling post-MI and identify Mφ MT1-MMP as a key regulator of this process.
Collapse
Affiliation(s)
- Laura Alonso-Herranz
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Álvaro Sahún-Español
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Paredes
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pilar Gonzalo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Polyxeni Gkontra
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Vanessa Núñez
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Clemente
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Marta Cedenilla
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María Villalba-Orero
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Vall d'Hebron University Hospital and Research Institute (VHIR), Barcelona, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - David García-Dorado
- Cardiovascular Diseases Research Group, Vall d'Hebron University Hospital and Research Institute (VHIR), Barcelona, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Mercedes Ricote
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
7
|
Lu X. The Role of Large Neutral Amino Acid Transporter (LAT1) in Cancer. Curr Cancer Drug Targets 2019; 19:863-876. [DOI: 10.2174/1568009619666190802135714] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
Background:
The solute carrier family 7 (SLC7) can be categorically divided into two
subfamilies, the L-type amino acid transporters (LATs) including SLC7A5-13, and SLC7A15, and
the cationic amino acid transporters (CATs) including SLC7A1-4 and SLC7A14. Members of the
CAT family transport predominantly cationic amino acids by facilitating diffusion with intracellular
substrates. LAT1 (also known as SLC7A5), is defined as a heteromeric amino acid transporter
(HAT) interacting with the glycoprotein CD98 (SLC3A2) through a conserved disulfide to uptake
not only large neutral amino acids, but also several pharmaceutical drugs to cells.
Methods:
In this review, we provide an overview of the interaction of the structure-function of
LAT1 and its essential role in cancer, specifically, its role at the blood-brain barrier (BBB) to facilitate
the transport of thyroid hormones, pharmaceuticals (e.g., I-DOPA, gabapentin), and metabolites
into the brain.
Results:
LAT1 expression increases as cancers progress, leading to higher expression levels in highgrade
tumors and metastases. In addition, LAT1 plays a crucial role in cancer-associated
reprogrammed metabolic networks by supplying tumor cells with essential amino acids.
Conclusion:
The increasing understanding of the role of LAT1 in cancer has led to an increase in
interest surrounding its potential as a drug target for cancer treatment.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, SW3 6LR, United Kingdom
| |
Collapse
|
8
|
Jeong G, Kwon DH, Shin S, Choe N, Ryu J, Lim YH, Kim J, Park WJ, Kook H, Kim YK. Long noncoding RNAs in vascular smooth muscle cells regulate vascular calcification. Sci Rep 2019; 9:5848. [PMID: 30971745 PMCID: PMC6458154 DOI: 10.1038/s41598-019-42283-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/27/2019] [Indexed: 01/10/2023] Open
Abstract
Vascular calcification is characterized by the accumulation of hydroxyapatite crystals, which is a result of aberrant mineral metabolism. Although many clinical studies have reported its adverse effects on cardiovascular morbidity, the molecular mechanism of vascular calcification, especially the involvement of long noncoding RNAs (lncRNAs), is not yet reported. From the transcriptomic analysis, we discovered hundreds of lncRNAs differentially expressed in rat vascular smooth muscle cells (VSMCs) treated with inorganic phosphate, which mimics vascular calcification. We focused on Lrrc75a-as1 and elucidated its transcript structure and confirmed its cytoplasmic localization. Our results showed that calcium deposition was elevated after knockdown of Lrrc75a-as1, while its overexpression inhibited calcium accumulation in A10 cells. In addition, Lrrc75a-as1 attenuated VSMCs calcification by decreasing the expression of osteoblast-related factors. These findings suggest that Lrrc75a-as1 acts as a negative regulator of vascular calcification, and may serve as a possible therapeutic target in vascular calcification.
Collapse
Affiliation(s)
- Geon Jeong
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Duk-Hwa Kwon
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Sera Shin
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Nakwon Choe
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Juhee Ryu
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Yeong-Hwan Lim
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Jaetaek Kim
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Woo Jin Park
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea. .,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea. .,Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.
| | - Young-Kook Kim
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea. .,Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea. .,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.
| |
Collapse
|
9
|
Jia W, Liang D, Li N, Liu M, Dong Z, Li J, Dong X, Yue Y, Hu P, Yao J, Zhao Q. Zebrafish microRNA miR-210-5p inhibits primitive myelopoiesis by silencing foxj1b and slc3a2a mRNAs downstream of gata4/5/6 transcription factor genes. J Biol Chem 2018; 294:2732-2743. [PMID: 30593510 DOI: 10.1074/jbc.ra118.005079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/22/2018] [Indexed: 12/21/2022] Open
Abstract
Zebrafish gata4/5/6 genes encode transcription factors that lie on the apex of the regulatory hierarchy in primitive myelopoiesis. However, little is known about the roles of microRNAs in gata4/5/6-regulated processes. Performing RNA-Seq deep sequencing analysis of the expression changes of microRNAs in gata4/5/6-knockdown embryos, we identified miR-210-5p as a regulator of zebrafish primitive myelopoiesis. Knocking down gata4/5/6 (generating gata5/6 morphants) significantly increased miR-210-5p expression, whereas gata4/5/6 overexpression greatly reduced its expression. Consistent with inhibited primitive myelopoiesis in the gata5/6 morphants, miR-210-5p overexpression repressed primitive myelopoiesis, indicated by reduced numbers of granulocytes and macrophages. Moreover, knocking out miR-210 partially rescued the defective primitive myelopoiesis in zebrafish gata4/5/6-knockdown embryos. Furthermore, we show that the restrictive role of miR-210-5p in zebrafish primitive myelopoiesis is due to impaired differentiation of hemangioblast into myeloid progenitor cells. By comparing the set of genes with reduced expression levels in the gata5/6 morphants to the predicted target genes of miR-210-5p, we found that foxj1b and slc3a2a, encoding a forkhead box transcription factor and a solute carrier family 3 protein, respectively, are two direct downstream targets of miR-210-5p that mediate its inhibitory roles in zebrafish primitive myelopoiesis. In summary, our results reveal that miR-210-5p has an important role in the genetic network controlling zebrafish primitive myelopoiesis.
Collapse
Affiliation(s)
- Wenshuang Jia
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Dong Liang
- the Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, and
| | - Nan Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Meijing Liu
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Zhangji Dong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Jingyun Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Xiaohua Dong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Yunyun Yue
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061
| | - Ping Hu
- the Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, and
| | - Jihua Yao
- the State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qingshun Zhao
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061,
| |
Collapse
|
10
|
Kijani S, Vázquez AM, Levin M, Borén J, Fogelstrand P. Intimal hyperplasia induced by vascular intervention causes lipoprotein retention and accelerated atherosclerosis. Physiol Rep 2018; 5:5/14/e13334. [PMID: 28716818 PMCID: PMC5532481 DOI: 10.14814/phy2.13334] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 01/20/2023] Open
Abstract
Accelerated atherosclerosis diminishes the long term patency of vascular interventions, such as percutaneous coronary intervention and implantation of saphenous vein grafts. However, the cause of this accelerated atherosclerosis is unclear. In this study, we tested the hypothesis that intimal hyperplasia formed following vascular intervention promotes retention of atherogenic lipoproteins. Intimal hyperplasia was surgically induced in the mouse common carotid artery. The surgery was combined with different mouse models of hypercholesterolemia to obtain different cholesterol levels and to control the onsets of hypercholesterolemia. Three weeks after surgery, samples were immunostained for apoB lipoproteins, smooth muscle cells and leukocytes. Already at mild hypercholesterolemia (193 mg/dL), pronounced apoB lipoprotein retention was found in the extracellular matrix in both intimal hyperplasia and the injured underlying media. In contrast, minimal retention was detected in the uninjured proximal region of the same vessel, or in vessels from mice with normal cholesterol levels (81 mg/dL). Induction of aggravated hypercholesterolemia 3 weeks after surgery, when a mature intimal hyperplasia had been formed, caused a very rapid development of atherosclerotic lesions. Mechanistically, we show that lipoprotein retention was almost exclusively dependent on electrostatic interactions to proteoglycan glycosaminoglycans, and the lipoprotein retention to intimal hyperplasia could be inhibited in vivo using glycosaminoglycan‐binding antibodies. Thus, formation of intimal hyperplasia following vascular intervention makes the vessel wall highly susceptible for lipoprotein retention and accelerated atherosclerosis. The increased lipoprotein retention in intimal hyperplasia can be targeted by blocking the interaction between apoB lipoproteins and glycosaminoglycans in the extracellular matrix.
Collapse
Affiliation(s)
- Siavash Kijani
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ana Maria Vázquez
- Innovation Managing Direction, Center of Molecular Immunology, Havana, Cuba
| | - Malin Levin
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
El Ansari R, Craze ML, Diez-Rodriguez M, Nolan CC, Ellis IO, Rakha EA, Green AR. The multifunctional solute carrier 3A2 (SLC3A2) confers a poor prognosis in the highly proliferative breast cancer subtypes. Br J Cancer 2018; 118:1115-1122. [PMID: 29545595 PMCID: PMC5931111 DOI: 10.1038/s41416-018-0038-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is a heterogeneous disease characterised by variant biology, metabolic activity and patient outcome. This study aimed to evaluate the biological and prognostic value of the membrane solute carrier, SLC3A2 in BC with emphasis on the intrinsic molecular subtypes. SLC3A2 was assessed at the genomic level, using METABRIC data (n = 1980), and at the proteomic level, using immunohistochemistry on tissue microarray (TMA) sections constructed from a large well-characterised primary BC cohort (n = 2500). SLC3A2 expression was correlated with clinicopathological parameters, molecular subtypes and patient outcome. SLC3A2 mRNA and protein expression were strongly correlated with higher tumour grade and poor Nottingham prognostic index (NPI). High expression of SLC3A2 was observed in triple-negative (TN), HER2+ and ER+ high-proliferation subtypes. SLC3A2 mRNA and protein expression were significantly associated with the expression of c-MYC in all BC subtypes (p < 0.001). High expression of SLC3A2 protein was associated with poor patient outcome (p < 0.001), but only in the ER+ high-proliferation (p = 0.01) and TN (p = 0.04) subtypes. In multivariate analysis SLC3A2 protein was an independent risk factor for shorter BC-specific survival (p < 0.001). SLC3A2 appears to play a role in the aggressive BC subtypes driven by MYC and could act as a potential prognostic marker. Functional assessment is necessary to reveal its potential therapeutic value in the different BC subtypes.
Collapse
Affiliation(s)
- Rokaya El Ansari
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Madeleine L Craze
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Maria Diez-Rodriguez
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Christopher C Nolan
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ian O Ellis
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
- Breast Institute, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Emad A Rakha
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
- Breast Institute, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Andrew R Green
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
12
|
Visualization of Synthetic Vascular Smooth Muscle Cells in Atherosclerotic Carotid Rat Arteries by F-18 FDG PET. Sci Rep 2017; 7:6989. [PMID: 28765576 PMCID: PMC5539104 DOI: 10.1038/s41598-017-07073-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023] Open
Abstract
Synthetic vascular smooth muscle cells (VSMCs) play important roles in atherosclerosis, in-stent restenosis, and transplant vasculopathy. We investigated the synthetic activity of VSMCs in the atherosclerotic carotid artery using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Atherosclerosis was induced in rats by partial ligation of the right carotid artery coupled with an atherogenic diet and vitamin D injections (2 consecutive days, 600,000 IU/day). One month later, rats were imaged by F-18 FDG PET. The atherosclerotic right carotid arteries showed prominent luminal narrowing with neointimal hyperplasia. The regions with neointimal hyperplasia were composed of α-smooth muscle actin-positive cells with decreased expression of smooth muscle myosin heavy chain. Surrogate markers of synthetic VSMCs such as collagen type III, cyclophilin A, and matrix metallopeptidase-9 were increased in neointima region. However, neither macrophages nor neutrophils were observed in regions with neointimal hyperplasia. F-18 FDG PET imaging and autoradiography showed elevated FDG uptake into the atherosclerotic carotid artery. The inner vessel layer showed higher tracer uptake than the outer layer. Consistently, the expression of glucose transporter 1 was highly increased in neointima. The present results indicate that F-18 FDG PET may be a useful tool for evaluating synthetic activities of VSMCs in vascular remodeling disorders.
Collapse
|
13
|
SLC3A2 is upregulated in human osteosarcoma and promotes tumor growth through the PI3K/Akt signaling pathway. Oncol Rep 2017; 37:2575-2582. [PMID: 28350098 PMCID: PMC5428444 DOI: 10.3892/or.2017.5530] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/10/2016] [Indexed: 01/06/2023] Open
Abstract
Growing evidence indicates that SLC3A2 (solute carrier family 3 member 2) is upregulated and correlates with tumor growth in multiple types of cancers, while the role of SLC3A2 in human osteosarcoma (OS) is rarely discussed. Thus, the aim of the present study was to demonstrate the expression of SLC3A2 in human osteosarcoma and reveal its biological function and the underlying mechanisms. RT-PCR, western blot analysis and immunohistochemistry (IHC) were used to assess the expression of SLC3A2 in OS samples and cell lines. Cell cycle, Cell Counting Kit-8 (CCK-8) and colony formation assays were used to test the cell survival capacity. To investigate the potential mechanism by which SLC3A2 regulates OS growth, we used a slide-based antibody array. We demonstrated that SLC3A2 was upregulated in OS cell lines as well as OS tissues. High expression of SLC3A2 was correlated with clinical stage and tumor size in OS. Reduced expression of SLC3A2 inhibited OS cell proliferation through G2/M phase arrest. Most importantly, we found that SLC3A2 may regulate OS growth through the PI3K/Akt signaling pathway. In conclusion, SLC3A2 is upregulated in OS and plays a crucial role in tumor growth. Targeting SLC3A2 may provide a new therapeutic strategy for OS.
Collapse
|
14
|
Baumer Y, McCurdy S, Alcala M, Mehta N, Lee BH, Ginsberg MH, Boisvert WA. CD98 regulates vascular smooth muscle cell proliferation in atherosclerosis. Atherosclerosis 2017; 256:105-114. [PMID: 28012647 PMCID: PMC5276722 DOI: 10.1016/j.atherosclerosis.2016.11.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Vascular smooth muscle cells (VSMC) migrate and proliferate to form a stabilizing fibrous cap that encapsulates atherosclerotic plaques. CD98 is a transmembrane protein made of two subunits, CD98 heavy chain (CD98hc) and one of six light chains, and is known to be involved in cell proliferation and survival. Because the influence of CD98hc on atherosclerosis development is unknown, our aim was to determine if CD98hc expressed on VSMC plays a role in shaping the morphology of atherosclerotic plaques by regulating VSMC function. METHODS In addition to determining the role of CD98hc in VSMC proliferation and apoptosis, we utilized mice with SMC-specific deletion of CD98hc (CD98hcfl/flSM22αCre+) to determine the effects of CD98hc deficiency on VSMC function in atherosclerotic plaque. RESULTS After culturing for 5 days in vitro, CD98hc-/- VSMC displayed dramatically reduced cell counts, reduced proliferation, as well as reduced migration compared to control VSMC. Analysis of aortic VSCM after 8 weeks of HFD showed a reduction in CD98hc-/- VSMC proliferation as well as increased apoptosis compared to controls. A long-term atherosclerosis study using SMC-CD98hc-/-/ldlr-/- mice was performed. Although total plaque area was unchanged, CD98hc-/- mice showed reduced presence of VSMC within the plaque (2.1 ± 0.4% vs. 4.3 ± 0.4% SM22α-positive area per plaque area, p < 0.05), decreased collagen content, as well as increased necrotic core area (25.8 ± 1.9% vs. 10.9 ± 1.6%, p < 0.05) compared to control ldlr-/- mice. CONCLUSIONS We conclude that CD98hc is required for VSMC proliferation, and that its deficiency leads to significantly reduced presence of VSMC in the neointima. Thus, CD98hc expression in VSMC contributes to the formation of plaques that are morphologically more stable, and thereby protects against atherothrombosis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Elastin/metabolism
- Fusion Regulatory Protein 1, Heavy Chain/genetics
- Fusion Regulatory Protein 1, Heavy Chain/metabolism
- Genetic Predisposition to Disease
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Necrosis
- Neointima
- Phenotype
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Rupture, Spontaneous
- Time Factors
Collapse
Affiliation(s)
- Yvonne Baumer
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Sara McCurdy
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Martin Alcala
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Nehal Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Bog-Hieu Lee
- Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Seoul, South Korea.
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; Kazan Federal University, Kazan, Russia.
| |
Collapse
|
15
|
Zernecke A. CD98 promotes vascular smooth muscle cell accumulation in atherosclerosis to confer plaque stability. Atherosclerosis 2016; 256:128-130. [PMID: 27939649 DOI: 10.1016/j.atherosclerosis.2016.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/24/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Josef-Schneider-Str. 2, D16, 97080 Würzburg, Germany.
| |
Collapse
|
16
|
Wilhelmson AS, Fagman JB, Johansson I, Zou ZV, Andersson AG, Svedlund Eriksson E, Johansson ME, Lindahl P, Fogelstrand P, Tivesten Å. Increased Intimal Hyperplasia After Vascular Injury in Male Androgen Receptor-Deficient Mice. Endocrinology 2016; 157:3915-3923. [PMID: 27533884 DOI: 10.1210/en.2016-1100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intimal hyperplasia is a vascular pathological process involved in the pathogenesis of atherosclerosis. Data suggest that T, the most important sex steroid hormone in males, protects men from atherosclerotic cardiovascular disease. T mainly acts via the androgen receptor (AR), and in this study we evaluated formation of intimal hyperplasia in male AR knockout (ARKO) mice using a vascular injury model. Two weeks after ligation of the carotid artery, male ARKO mice showed increased intimal area and intimal thickness compared with controls. After endothelial denudation by an in vivo scraping injury, there was no difference in the reendothelialization in ARKO compared with control mice. Ex vivo, we observed increased outgrowth of vascular smooth muscle cells from ARKO compared with control aortic tissue explants; the number of outgrown cells was almost doubled in ARKO. In vitro, stimulation of human aortic vascular smooth muscle cells with a physiological T concentration inhibited both migration and proliferation of the cells. Analyzing the expression of central regulators of cell proliferation and migration, we found that mRNA and protein levels of p27 were lower in uninjured arteries from ARKO mice and that T replacement to castrated male mice increased p27 mRNA in an AR-dependent manner. In conclusion, AR deficiency in male mice increases intimal hyperplasia in response to vascular injury, potentially related to the effects of androgens/AR to inhibit proliferation and migration of smooth muscle cells.
Collapse
Affiliation(s)
- Anna S Wilhelmson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., J.B.F., I.J., Z.V.Z., A.G.A., E.S.E., P.L., P.F., Å.T.), Institute of Medicine; Sahlgrenska Cancer Center (J.B.F.), Department of Surgery, Institute of Clinical Sciences; and Department of Physiology (M.E.J.), Institute of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; The Finsen Laboratory (A.S.W), Rigshospitalet, Faculty of Health Sciences, Biotech Research and Innovation Centre, Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Johan B Fagman
- Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., J.B.F., I.J., Z.V.Z., A.G.A., E.S.E., P.L., P.F., Å.T.), Institute of Medicine; Sahlgrenska Cancer Center (J.B.F.), Department of Surgery, Institute of Clinical Sciences; and Department of Physiology (M.E.J.), Institute of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; The Finsen Laboratory (A.S.W), Rigshospitalet, Faculty of Health Sciences, Biotech Research and Innovation Centre, Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Inger Johansson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., J.B.F., I.J., Z.V.Z., A.G.A., E.S.E., P.L., P.F., Å.T.), Institute of Medicine; Sahlgrenska Cancer Center (J.B.F.), Department of Surgery, Institute of Clinical Sciences; and Department of Physiology (M.E.J.), Institute of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; The Finsen Laboratory (A.S.W), Rigshospitalet, Faculty of Health Sciences, Biotech Research and Innovation Centre, Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Zhiyuan V Zou
- Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., J.B.F., I.J., Z.V.Z., A.G.A., E.S.E., P.L., P.F., Å.T.), Institute of Medicine; Sahlgrenska Cancer Center (J.B.F.), Department of Surgery, Institute of Clinical Sciences; and Department of Physiology (M.E.J.), Institute of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; The Finsen Laboratory (A.S.W), Rigshospitalet, Faculty of Health Sciences, Biotech Research and Innovation Centre, Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Axel G Andersson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., J.B.F., I.J., Z.V.Z., A.G.A., E.S.E., P.L., P.F., Å.T.), Institute of Medicine; Sahlgrenska Cancer Center (J.B.F.), Department of Surgery, Institute of Clinical Sciences; and Department of Physiology (M.E.J.), Institute of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; The Finsen Laboratory (A.S.W), Rigshospitalet, Faculty of Health Sciences, Biotech Research and Innovation Centre, Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Elin Svedlund Eriksson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., J.B.F., I.J., Z.V.Z., A.G.A., E.S.E., P.L., P.F., Å.T.), Institute of Medicine; Sahlgrenska Cancer Center (J.B.F.), Department of Surgery, Institute of Clinical Sciences; and Department of Physiology (M.E.J.), Institute of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; The Finsen Laboratory (A.S.W), Rigshospitalet, Faculty of Health Sciences, Biotech Research and Innovation Centre, Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Maria E Johansson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., J.B.F., I.J., Z.V.Z., A.G.A., E.S.E., P.L., P.F., Å.T.), Institute of Medicine; Sahlgrenska Cancer Center (J.B.F.), Department of Surgery, Institute of Clinical Sciences; and Department of Physiology (M.E.J.), Institute of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; The Finsen Laboratory (A.S.W), Rigshospitalet, Faculty of Health Sciences, Biotech Research and Innovation Centre, Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Per Lindahl
- Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., J.B.F., I.J., Z.V.Z., A.G.A., E.S.E., P.L., P.F., Å.T.), Institute of Medicine; Sahlgrenska Cancer Center (J.B.F.), Department of Surgery, Institute of Clinical Sciences; and Department of Physiology (M.E.J.), Institute of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; The Finsen Laboratory (A.S.W), Rigshospitalet, Faculty of Health Sciences, Biotech Research and Innovation Centre, Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Per Fogelstrand
- Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., J.B.F., I.J., Z.V.Z., A.G.A., E.S.E., P.L., P.F., Å.T.), Institute of Medicine; Sahlgrenska Cancer Center (J.B.F.), Department of Surgery, Institute of Clinical Sciences; and Department of Physiology (M.E.J.), Institute of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; The Finsen Laboratory (A.S.W), Rigshospitalet, Faculty of Health Sciences, Biotech Research and Innovation Centre, Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Åsa Tivesten
- Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., J.B.F., I.J., Z.V.Z., A.G.A., E.S.E., P.L., P.F., Å.T.), Institute of Medicine; Sahlgrenska Cancer Center (J.B.F.), Department of Surgery, Institute of Clinical Sciences; and Department of Physiology (M.E.J.), Institute of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; The Finsen Laboratory (A.S.W), Rigshospitalet, Faculty of Health Sciences, Biotech Research and Innovation Centre, Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
17
|
Liao Z, Cantor JM. Endothelial Cells Require CD98 for Efficient Angiogenesis-Brief Report. Arterioscler Thromb Vasc Biol 2016; 36:2163-2166. [PMID: 27687603 DOI: 10.1161/atvbaha.116.308335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE CD98 regulates integrin signaling and is critical for tumor cell proliferation. It is also expressed on endothelial cells (EC), but its role in angiogenesis is unclear. APPROACH AND RESULTS We used specific genetic targeting and antibody blockade approaches to examine the function of CD98 in EC proliferation, blood vessel growth, and tumor angiogenesis. It is upregulated on angiogenic ECs, and EC-specific deletion of CD98 in mice inhibited tumor growth, retinal angiogenesis, and EC proliferation. Reconstitution with CD98 mutants showed that integrin and CD98 interaction is necessary for EC survival and growth. Moreover, anti-CD98 treatment inhibited vessel formation and reversed EC-assisted tumor growth. CONCLUSIONS Our findings demonstrate a requirement for CD98 in EC growth and suggest that CD98-specific reagents could have a dual anticancer effect: directly by inhibiting tumor cell proliferation and indirectly by preventing tumor angiogenesis.
Collapse
Affiliation(s)
- Zhongji Liao
- From the Department of Medicine, University of California San Diego, La Jolla
| | - Joseph M Cantor
- From the Department of Medicine, University of California San Diego, La Jolla.
| |
Collapse
|
18
|
In search of underlying mechanisms and potential drugs of melphalan-induced vascular toxicity through retinal endothelial cells using bioinformatics approach. Tumour Biol 2015; 37:6709-18. [PMID: 26662105 DOI: 10.1007/s13277-015-4444-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023] Open
Abstract
We aimed to explore molecular mechanism and drug candidates of vascular toxicities associated with melphalan after treating human retinal endothelial cells (RECs). GSE34381 microarray data was firstly downloaded and used to identify the differentially expressed genes (DEGs) in human REC treated with melphalan vs. untreated cells by limma package in R language. The transcription network was constructed based on TRANSFAC database and the top five transcription factors (TFs) were select with a measure of regulatory impact factor, followed by the construction of function modules. Gene ontology enrichment analyses were performed to explore the enriched functions. Connectivity Map analysis was conducted to predict the potential drugs overcoming the melphalan's actions on REC. Totally, 75 DEGs were identified, including 70 up-regulated and five down-regulated genes. Transcription network with 1311 nodes and 1875 edges was constructed and the top five TFs were CREM, MYC, FLI1, NF-κB1, and JUN. Functional modules indicated that NF-κB1 and MYC were the important nodes. The upregulated genes as well as the genes involved in the modules mainly participated in biological process of immune response, cell proliferation, and cell motion. Five small molecules were predicted to be potential drug candidates, including doxorubicin, fipexide, daunorubicin, tiabendazole, and GW-8510. Based on these results, we speculate that NF-κB1 and MYC might involve in the molecular mechanism of vascular toxicity induced by melphalan through regulating their target genes. Five small molecules might be drug candidates to overcome the melphalan-induced vascular toxicity via targeting to MYC and JUN.
Collapse
|
19
|
Conditional deletion of CD98hc inhibits osteoclast development. Biochem Biophys Rep 2015; 5:203-210. [PMID: 28955825 PMCID: PMC5600448 DOI: 10.1016/j.bbrep.2015.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/31/2015] [Accepted: 11/30/2015] [Indexed: 11/22/2022] Open
Abstract
The CD98 heavy chain (CD98hc) regulates virus-induced cell fusion and monocyte fusion, and is involved in amino acid transportation. Here, we examined the role that CD98hc plays in the formation of osteoclasts using CD98hcflox/floxLysM-cre peritoneal macrophages (CD98hc-defect macrophages). Peritoneal macrophages were stimulated with co-cultured with osteoblasts in the presence of 1,25(OH)2 vitamin D3, and thereafter stained with tartrate-resistant acid phosphatase staining solution. The multinucleated osteoclast formation was severely impaired in the peritoneal macrophages isolated from the CD98hc-defect mice compared with those from wild-type mice. CD98hc mediates integrin signaling and amino acid transport through the CD98 light chain (CD98lc). In integrin signaling, suppression of the M-CSF-RANKL-induced phosphorylation of ERK, Akt, JNK and p130Cas were observed at the triggering phase in the CD98h-defect peritoneal macrophages. Moreover, we showed that the general control non-derepressible (GCN) pathway, which was activated by amino acid starvation, was induced by the CD98hc-defect peritoneal macrophages stimulated with RANKL. These results indicate that CD98 plays two important roles in osteoclast formation through integrin signaling and amino acid transport. The osteoclastogenesis was severely impaired in the CD98hc-defect macrophages. CD98hc-defect peritoneal macrophages fall into amino acid starvation, resulting in inducing the general control non-derepressible (GCN) pathway in the osteoclastogenesis.
Collapse
|
20
|
Ablack JNG, Metz PJ, Chang JT, Cantor JM, Ginsberg MH. Ubiquitylation of CD98 limits cell proliferation and clonal expansion. J Cell Sci 2015; 128:4273-8. [PMID: 26493331 PMCID: PMC4712820 DOI: 10.1242/jcs.178129] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/19/2015] [Indexed: 01/02/2023] Open
Abstract
CD98 heavy chain (SLC3A2) facilitates lymphocyte clonal expansion that enables adaptive immunity; however, increased expression of CD98 is also a feature of both lymphomas and leukemias and represents a potential therapeutic target in these diseases. CD98 is transcriptionally regulated and ectopic expression of the membrane-associated RING-CH (MARCH) E3 ubiquitin ligases MARCH1 or MARCH8 leads to ubiquitylation and lysosomal degradation of CD98. Here, we examined the potential role of ubiquitylation in regulating CD98 expression and cell proliferation. We report that blocking ubiquitylation by use of a catalytically inactive MARCH or by creating a ubiquitylation-resistant CD98 mutant, prevents MARCH-induced CD98 downregulation in HeLa cells. March1-null T cells display increased CD98 expression. Similarly, T cells expressing ubiquitylation-resistant CD98 manifest increased proliferation in vitro and clonal expansion in vivo. Thus, ubiquitylation and the resulting downregulation of CD98 can limit cell proliferation and clonal expansion.
Collapse
Affiliation(s)
- Jailal N G Ablack
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0726, USA
| | - Patrick J Metz
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0726, USA
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0726, USA
| | - Joseph M Cantor
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0726, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0726, USA
| |
Collapse
|
21
|
Kijani S, Yrlid U, Heyden M, Levin M, Borén J, Fogelstrand P. Filter-Dense Multicolor Microscopy. PLoS One 2015; 10:e0119499. [PMID: 25739088 PMCID: PMC4349739 DOI: 10.1371/journal.pone.0119499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 01/30/2015] [Indexed: 11/19/2022] Open
Abstract
Immunofluorescence microscopy is a unique method to reveal the spatial location of proteins in tissues and cells. By combining antibodies that are labeled with different fluorochromes, the location of several proteins can simultaneously be visualized in one sample. However, because of the risk of bleed-through signals between fluorochromes, standard multicolor microscopy is restricted to a maximum of four fluorescence channels, including one for nuclei staining. This is not always enough to address common scientific questions. In particular, the use of a rapidly increasing number of marker proteins to classify functionally distinct cell populations and diseased tissues emphasizes the need for more complex multistainings. Hence, multicolor microscopy should ideally offer more channels to meet the current needs in biomedical science. Here we present an enhanced multi-fluorescence setup, which we call Filter-Dense Multicolor Microscopy (FDMM). FDMM is based on condensed filter sets that are more specific for each fluorochrome and allow a more economic use of the light spectrum. FDMM allows at least six independent fluorescence channels and can be applied to any standard fluorescence microscope without changing any operative procedures for the user. In the present study, we demonstrate an FDMM setup of six channels that includes the most commonly used fluorochromes for histology. We show that the FDMM setup is specific and robust, and we apply the technique on typical biological questions that require more than four fluorescence microscope channels.
Collapse
Affiliation(s)
- Siavash Kijani
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, The Mucosal Immunobiology and Vaccine Center (MIVAC), University of Gothenburg, Gothenburg, Sweden
| | - Maria Heyden
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Malin Levin
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Per Fogelstrand
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
22
|
|
23
|
Poettler M, Unseld M, Braemswig K, Haitel A, Zielinski CC, Prager GW. CD98hc (SLC3A2) drives integrin-dependent renal cancer cell behavior. Mol Cancer 2013; 12:169. [PMID: 24359579 PMCID: PMC3879186 DOI: 10.1186/1476-4598-12-169] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/29/2013] [Indexed: 11/30/2022] Open
Abstract
Background Overexpression of CD98hc (SLC3A2) occurs in a variety of cancers and is suspected to contribute to tumor growth. CD98, a heterodimeric transmembrane protein, physically associates with certain integrin β subunit cytoplasmic domains via its heavy chain, CD98hc. CD98hc regulates adhesion-induced intracellular signal transduction via integrins, thereby, affecting cell proliferation and clonal expansion. Disruption of CD98hc led to embryonic lethality in mice (E 3.5 and E 9.5) and CD98hc −/− embryonic stem cell transplantation failed to form teratomas, while CD98hc over-expression in somatic cells resulted in anchorage-independent growth. However, it is unclear whether interference with CD98hc expression tumor cell behavior. Methods Renal cell cancer cell lines have been used to determine the effect of CD98hc expression on cancer cell behavior using cell adhesion, cell trans-migration and cell spreading assays. Flow cytometric analysis was performed to study the rate of apoptosis after detachment or serum starvation. shRNA-lentiviral constructs were used to stably knockdown or reconstitute full length or mutated CD98hc. The role of CD98 as a promotor of tumorigenesis was evaluated using an in in vivo tumor transplantation animal model. Immunohistochemical analysis was performed to analyze cell proliferation and CD98 expression in tumors. Results This report shows that CD98hc silencing in clear cell renal cancer cells reverts certain characteristics of tumorigenesis, including cell spreading, migration, proliferation and survival in vitro, and tumor growth in vivo. Acquisition of tumorigenic characteristics in clear cell renal cancer cells occurred through the integrin binding domain of CD98hc. A CD98hc/integrin interaction was required for adhesion-induced sustained FAK phosphorylation and activation of the major downstream signaling pathways PI3k/Akt and MEK/ERK, while overexpression of a constitutive active form of FAK rescued the CD98hc deficiency. Conclusions In this study we demonstrate that loss of CD98hc blocks tumorigenic potential in renal cell cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Gerald W Prager
- Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
24
|
The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med 2013; 34:139-58. [PMID: 23506863 DOI: 10.1016/j.mam.2012.10.007] [Citation(s) in RCA: 475] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/15/2012] [Indexed: 01/18/2023]
Abstract
Amino acids are necessary for all living cells and organisms. Specialized transporters mediate the transfer of amino acids across plasma membranes. Malfunction of these proteins can affect whole-body homoeostasis giving raise to diverse human diseases. Here, we review the main features of the SLC3 and SLC7 families of amino acid transporters. The SLC7 family is divided into two subfamilies, the cationic amino acid transporters (CATs), and the L-type amino acid transporters (LATs). The latter are the light or catalytic subunits of the heteromeric amino acid transporters (HATs), which are associated by a disulfide bridge with the heavy subunits 4F2hc or rBAT. These two subunits are glycoproteins and form the SLC3 family. Most CAT subfamily members were functionally characterized and shown to function as facilitated diffusers mediating the entry and efflux of cationic amino acids. In certain cells, CATs play an important role in the delivery of L-arginine for the synthesis of nitric oxide. HATs are mostly exchangers with a broad spectrum of substrates and are crucial in renal and intestinal re-absorption and cell redox balance. Furthermore, the role of the HAT 4F2hc/LAT1 in tumor growth and the application of LAT1 inhibitors and PET tracers for reduction of tumor progression and imaging of tumors are discussed. Finally, we describe the link between specific mutations in HATs and the primary inherited aminoacidurias, cystinuria and lysinuric protein intolerance.
Collapse
|
25
|
Santiago-Gómez A, Barrasa JI, Olmo N, Lecona E, Burghardt H, Palacín M, Lizarbe MA, Turnay J. 4F2hc-silencing impairs tumorigenicity of HeLa cells via modulation of galectin-3 and β-catenin signaling, and MMP-2 expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2045-56. [PMID: 23651923 DOI: 10.1016/j.bbamcr.2013.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 01/17/2023]
Abstract
4F2hc is a type-II glycoprotein whose covalent-bound association with one of several described light chains yields a heterodimer mainly involved in large neutral amino acid transport. Likewise, it is well known that the heavy chain interacts with β-integrins mediating integrin-dependent events such as survival, proliferation, migration and even transformation. 4F2hc is a ubiquitous protein whose overexpression has been related to tumor development and progression. Stable silencing of 4F2hc in HeLa cells using an artificial miRNA impairs in vivo tumorigenicity and leads to an ineffective proliferation response to mitogens. 4F2hc colocalizes with β1-integrins and CD147, but this interaction does not occur in lipid rafts in HeLa cells. Moreover, silenced cells present defects in integrin- (FAK, Akt and ERK1/2) and hypoxia-dependent signaling, and reduced expression/activity of MMP-2. These alterations seem to be dependent on the inappropriate formation of CD147/4F2hc/β1-integrin heterocomplexes on the cell surface, arising when CD147 cannot interact with 4F2hc. Although extracellular galectin-3 accumulates due to the decrease in MMP-2 activity, galectin-3 signaling events are blocked due to an impaired interaction with 4F2hc, inducing an increased degradation of β-catenin. Furthermore, cell motility is compromised after protein silencing, suggesting that 4F2hc is related to tumor invasion by facilitating cell motility. Therefore, here we propose a molecular mechanism by which 4F2hc participates in tumor progression, favoring first steps of epithelial-mesenchymal transition by inhibition of β-catenin proteasomal degradation through Akt/GSK-3β signaling and enabling cell motility.
Collapse
Affiliation(s)
- Angélica Santiago-Gómez
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Boulter E, Estrach S, Errante A, Pons C, Cailleteau L, Tissot F, Meneguzzi G, Féral CC. CD98hc (SLC3A2) regulation of skin homeostasis wanes with age. ACTA ACUST UNITED AC 2013; 210:173-90. [PMID: 23296466 PMCID: PMC3549711 DOI: 10.1084/jem.20121651] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Loss of CD98hc expression in young adult skin induces changes similar to those associated with aging, including improper skin homeostasis and epidermal wound healing. Skin aging is linked to reduced epidermal proliferation and general extracellular matrix atrophy. This involves factors such as the cell adhesion receptors integrins and amino acid transporters. CD98hc (SLC3A2), a heterodimeric amino acid transporter, modulates integrin signaling in vitro. We unravel CD98hc functions in vivo in skin. We report that CD98hc invalidation has no appreciable effect on cell adhesion, clearly showing that CD98hc disruption phenocopies neither CD98hc knockdown in cultured keratinocytes nor epidermal β1 integrin loss in vivo. Instead, we show that CD98hc deletion in murine epidermis results in improper skin homeostasis and epidermal wound healing. These defects resemble aged skin alterations and correlate with reduction of CD98hc expression observed in elderly mice. We also demonstrate that CD98hc absence in vivo induces defects as early as integrin-dependent Src activation. We decipher the molecular mechanisms involved in vivo by revealing a crucial role of the CD98hc/integrins/Rho guanine nucleotide exchange factor (GEF) leukemia-associated RhoGEF (LARG)/RhoA pathway in skin homeostasis. Finally, we demonstrate that the deregulation of RhoA activation in the absence of CD98hc is also a result of impaired CD98hc-dependent amino acid transports.
Collapse
Affiliation(s)
- Etienne Boulter
- Institute for Research on Cancer and Aging, Nice, AVENIR Team, University of Nice Sophia-Antipolis, Institut National de la Santé et de la Recherche Médicale U1081, Centre National de la Recherche Scientifique UMR 7284, Centre Antoine Lacassagne, Nice 06107, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Expression of human heteromeric amino acid transporters in the yeast Pichia pastoris. Protein Expr Purif 2012; 87:35-40. [PMID: 23085088 DOI: 10.1016/j.pep.2012.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 11/20/2022]
Abstract
Human heteromeric amino acid transporters (HATs) play key roles in renal and intestinal re-absorption, cell redox balance and tumor growth. These transporters are composed of a heavy and a light subunit, which are connected by a disulphide bridge. Heavy subunits are the two type II membrane N-glycoproteins rBAT and 4F2hc, while L-type amino acid transporters (LATs) are the light and catalytic subunits of HATs. We tested the expression of human 4F2hc and rBAT as well as seven light subunits in the methylotrophic yeast Pichia pastoris. 4F2hc and the light subunit LAT2 showed the highest expression levels and yields after detergent solubilization. Co-transformation of both subunits in Pichia cells resulted in overexpression of the disulphide bridge-linked 4F2hc/LAT2 heterodimer. Two sequential affinity chromatography steps were applied to purify detergent-solubilized heterodimers yielding ~1mg of HAT from 2l of cell culture. Our results indicate that P. pastoris is a convenient system for the expression and purification of human 4F2hc/LAT2 for structural studies.
Collapse
|
28
|
CD98 increases renal epithelial cell proliferation by activating MAPKs. PLoS One 2012; 7:e40026. [PMID: 22768207 PMCID: PMC3386947 DOI: 10.1371/journal.pone.0040026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 05/31/2012] [Indexed: 12/22/2022] Open
Abstract
CD98 heavy chain (CD98hc) is a multifunctional transmembrane spanning scaffolding protein whose extracellular domain binds with light chain amino acid transporters (Lats) to form the heterodimeric amino acid transporters (HATs). It also interacts with β1 and β3 integrins by its transmembrane and cytoplasmic domains. This interaction is proposed to be the mechanism whereby CD98 mediates cell survival and growth via currently undefined signaling pathways. In this study, we determined whether the critical function of CD98-dependent amino acid transport also plays a role in cell proliferation and defined the signaling pathways that mediate CD98-dependent proliferation of murine renal inner medullary collecting duct (IMCD) cells. We demonstrate that downregulating CD98hc expression resulted in IMCD cell death. Utilizing overexpression studies of CD98hc mutants that either lacked a cytoplasmic tail or were unable to bind to Lats we showed that CD98 increases serum-dependent cell proliferation by a mechanism that requires the CD98hc cytoplasmic tail. We further demonstrated that CD98-dependent amino acid transport increased renal tubular epithelial cell proliferation by a mechanism that does not require the CD98hc cytoplasmic tail. Both these mechanisms of increased renal tubular epithelial cell proliferation are mediated by Erk and p38 MAPK signaling. Although increased amino transport markedly activated mTor signaling, this pathway did not alter cell proliferation. Thus, these studies demonstrate that in IMCD cells, the cytoplasmic and extracellular domains of CD98hc regulate cell proliferation by distinct mechanisms that are mediated by common MAPK signaling pathways.
Collapse
|
29
|
Cantor JM, Ginsberg MH. CD98 at the crossroads of adaptive immunity and cancer. J Cell Sci 2012; 125:1373-82. [PMID: 22499670 DOI: 10.1242/jcs.096040] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adaptive immunity, a vertebrate specialization, adds memory and exquisite specificity to the basic innate immune responses present in invertebrates while conserving metabolic resources. In adaptive immunity, antigenic challenge requires extremely rapid proliferation of rare antigen-specific lymphocytes to produce large, clonally expanded effector populations that neutralize pathogens. Rapid proliferation and resulting clonal expansion are dependent on CD98, a protein whose well-conserved orthologs appear restricted to vertebrates. Thus, CD98 supports lymphocyte clonal expansion to enable protective adaptive immunity, an advantage that could account for the presence of CD98 in vertebrates. CD98 supports lymphocyte clonal expansion by amplifying integrin signals that enable proliferation and prevent apoptosis. These integrin-dependent signals can also provoke cancer development and invasion, anchorage-independence and the rapid proliferation of tumor cells. CD98 is highly expressed in many cancers and contributes to formation of tumors in experimental models. Strikingly, vertebrates, which possess highly conserved CD98 proteins, CD98-binding integrins and adaptive immunity, also display propensity towards invasive and metastatic tumors. In this Commentary, we review the roles of CD98 in lymphocyte biology and cancer. We suggest that the CD98 amplification of integrin signaling in adaptive immunity provides survival benefits to vertebrates, which, in turn, bear the price of increased susceptibility to cancer.
Collapse
Affiliation(s)
- Joseph M Cantor
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
30
|
Homeostatic and innate immune responses: role of the transmembrane glycoprotein CD98. Cell Mol Life Sci 2012; 69:3015-26. [PMID: 22460579 DOI: 10.1007/s00018-012-0963-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 02/14/2012] [Accepted: 03/12/2012] [Indexed: 12/11/2022]
Abstract
The transmembrane glycoprotein CD98 is a potential regulator of multiple functions, including integrin signaling and amino acid transport. Abnormal expression or function of CD98 and disruption of the interactions between CD98 and its binding partners result in defects in cell homeostasis and immune responses. Indeed, expression of CD98 has been correlated with diseases such as inflammation and tumor metastasis. Modulation of CD98 expression and/or function therefore represents a promising therapeutic strategy for the treatment and prevention of such pathologies. Herein, we review the role of CD98 with focus on its functional importance in homeostasis and immune responses, which could help to better understand the pathogenesis of CD98-associated diseases.
Collapse
|
31
|
Tsumura H, Ito M, Li XK, Nakamura A, Ohnami N, Fujimoto JI, Komada H, Ito Y. The role of CD98hc in mouse macrophage functions. Cell Immunol 2012; 276:128-34. [DOI: 10.1016/j.cellimm.2012.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/24/2012] [Accepted: 04/25/2012] [Indexed: 01/23/2023]
|
32
|
Furlan-Freguia C, Marchese P, Gruber A, Ruggeri ZM, Ruf W. P2X7 receptor signaling contributes to tissue factor-dependent thrombosis in mice. J Clin Invest 2011; 121:2932-44. [PMID: 21670495 DOI: 10.1172/jci46129] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 04/27/2011] [Indexed: 12/23/2022] Open
Abstract
Thrombosis is initiated by tissue factor (TF), a coagulation cofactor/receptor expressed in the vessel wall, on myeloid cells, and on microparticles (MPs) with variable procoagulant activity. However, the molecular pathways that generate prothrombotic TF in vivo are poorly defined. The oxidoreductase protein disulfide isomerase (PDI) is thought to be involved in the activation of TF. Here, we found that in mouse myeloid cells, ATP-triggered signaling through purinergic receptor P2X, ligand-gated ion channel, 7 (P2X7 receptor; encoded by P2rx7) induced activation (decryption) of TF procoagulant activity and promoted release of TF+ MPs from macrophages and SMCs. The generation of prothrombotic MPs required P2X7 receptor-dependent production of ROS leading to increased availability of solvent-accessible extracellular thiols. An antibody to PDI with antithrombotic activity in vivo attenuated the release of procoagulant MPs. In addition, P2rx7-/- mice were protected from TF-dependent FeCl3-induced carotid artery thrombosis. BM chimeras revealed that P2X7 receptor prothrombotic function was present in both hematopoietic and vessel wall compartments. In contrast, an alternative anti-PDI antibody showed activities consistent with cellular activation typically induced by P2X7 receptor signaling. This anti-PDI antibody restored TF-dependent thrombosis in P2rx7-/- mice. These data suggest that PDI regulates a critical P2X7 receptor-dependent signaling pathway that generates prothrombotic TF, defining a link between inflammation and thrombosis with potential implications for antithrombotic therapy.
Collapse
Affiliation(s)
- Christian Furlan-Freguia
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
33
|
Cantor J, Slepak M, Ege N, Chang JT, Ginsberg MH. Loss of T cell CD98 H chain specifically ablates T cell clonal expansion and protects from autoimmunity. THE JOURNAL OF IMMUNOLOGY 2011; 187:851-60. [PMID: 21670318 DOI: 10.4049/jimmunol.1100002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CD98 H chain (4F2 Ag, Slc3a2) was discovered as a lymphocyte-activation Ag. Deletion of CD98 H chain in B cells leads to complete failure of B cell proliferation, plasma cell formation, and Ab secretion. In this study, we examined the role of T cell CD98 in cell-mediated immunity and autoimmune disease pathogenesis by specifically deleting it in murine T cells. Deletion of T cell CD98 prevented experimental autoimmune diabetes associated with dramatically reduced T cell clonal expansion. Nevertheless, initial T cell homing to pancreatic islets was unimpaired. In sharp contrast to B cells, CD98-null T cells showed only modestly impaired Ag-driven proliferation and nearly normal homeostatic proliferation. Furthermore, these cells were activated by Ag, leading to cytokine production (CD4) and efficient cytolytic killing of targets (CD8). The integrin-binding domain of CD98 was necessary and sufficient for full clonal expansion, pointing to a role for adhesive signaling in T cell proliferation and autoimmune disease. When we expanded CD98-null T cells in vitro, they adoptively transferred diabetes, establishing that impaired clonal expansion was responsible for protection from disease. Thus, the integrin-binding domain of CD98 is required for Ag-driven T cell clonal expansion in the pathogenesis of an autoimmune disease and may represent a useful therapeutic target.
Collapse
Affiliation(s)
- Joseph Cantor
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0726, USA.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Amino acids are essential building blocks of all mammalian cells. In addition to their role in protein synthesis, amino acids play an important role as energy fuels, precursors for a variety of metabolites and as signalling molecules. Disorders associated with the malfunction of amino acid transporters reflect the variety of roles that they fulfil in human physiology. Mutations of brain amino acid transporters affect neuronal excitability. Mutations of renal and intestinal amino acid transporters affect whole-body homoeostasis, resulting in malabsorption and renal problems. Amino acid transporters that are integral parts of metabolic pathways reduce the function of these pathways. Finally, amino acid uptake is essential for cell growth, thereby explaining their role in tumour progression. The present review summarizes the involvement of amino acid transporters in these roles as illustrated by diseases resulting from transporter malfunction.
Collapse
|
35
|
|