1
|
Wu L, Chai Y, Gao A, Lin Y, Han J, Li L, Li C, Ye J. IL-21 signaling promotes IgM + B cell proliferation and antibody production via JAK/STAT3 and AKT pathways in early vertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 164:105325. [PMID: 39870186 DOI: 10.1016/j.dci.2025.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
IL-21 is a type I cytokine that is produced by activated CD4+ T cells and has a significant impact on the growth, survival, and functional activation of B lymphocytes. While IL-21 has been identified in several teleost fish species, its function and associated mechanisms focus on teleost fish B cells remain largely unknown. In this study, we aimed to investigate the effects of IL-21 (OnIL-21) on IgM+ B cells from Nile tilapia (Oreochromis niloticus), as well as the intracellular signaling transduction pathway involved. Through intraperitoneal injection of recombinant OnIL-21 (rOnIL-21), we observed that IL-21 exerted significant effects on Nile tilapia IgM+ B cells, including the promotion of IgM+ B cell proliferation, induction of IgM secretion, and up-regulation of inflammatory cytokines. These findings suggest that OnIL-21 enhances the ability of IgM+ B cells in humoral immunity. Furthermore, when IgM + B cells were stimulated with rOnIL-21 in vitro, we observed a significant up-regulation in antibody secretion ability (sIgM), as well as increased expression of IFN-γ and IL-10. To further understand the regulatory mechanism of OnIL-21, we demonstrated that OnIL-21 binds to its heterodimer receptor complex (OnIL-21R/Onγc) to exert its function. This binding triggers the conserved JAK/STAT3 and AKT pathways, which in turn regulate the expression of genes involved in B cell proliferation, antibody secretion, and cytokine expression. Collectively, our findings establish that IL-21 plays a crucial role in the regulation of humoral immunity in lower vertebrates, and this regulation is mediated through conserved signaling pathways across vertebrates.
Collapse
Affiliation(s)
- Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, 510631, China
| | - Yiwen Chai
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Along Gao
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yuhua Lin
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jugan Han
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lan Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chao Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Kim Y, Manara F, Grassmann S, Belcheva KT, Reyes K, Kim H, Downs-Canner S, Yewdell WT, Sun JC, Chaudhuri J. IL-21 shapes the B cell response in a context-dependent manner. Cell Rep 2025; 44:115190. [PMID: 39792552 DOI: 10.1016/j.celrep.2024.115190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
The T-cell-derived cytokine IL-21 is crucial for germinal center (GC) responses, but its precise role in B cell function has remained elusive. Using IL-21 receptor (Il21r) conditional knockout mice and ex vivo culture systems, we demonstrate that IL-21 has dual effects on B cells. While IL-21 induced apoptosis in a STAT3-dependent manner in naive B cells, it promoted the robust proliferation of pre-activated B cells, particularly IgG1+ B cells. In vivo, B-cell-specific Il21r deletion impaired IgG1 responses post-immunization and disrupted progression from pre-GC to GC states. Although Il21r deficiency did not affect the proportion of IgG1+ cells among GC B cells, it greatly diminished the proportion of IgG1+ cells among the plasmablast/plasma cell population. Collectively, our findings suggest that IL-21 serves as a critical regulator of B cell fates, influencing B cell apoptosis and proliferation in a context-dependent manner.
Collapse
Affiliation(s)
- Youngjun Kim
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| | - Francesca Manara
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kalina T Belcheva
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Kanelly Reyes
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hyunu Kim
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | | | - William T Yewdell
- Department of Immunology Discovery, Genentech Inc, South San Francisco, CA 94080, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA.
| |
Collapse
|
3
|
Ayers KN, Lauver MD, Alexander KM, Jin G, Paraiso K, Ochetto A, Garg S, Goetschius DJ, Hafenstein SL, Wang JCY, Lukacher AE. The CD4 T cell-independent IgG response during persistent virus infection favors emergence of neutralization-escape variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.629980. [PMID: 39763786 PMCID: PMC11703251 DOI: 10.1101/2024.12.22.629980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
How changes in the quality of anti-viral antibody (Ab) responses due to pre-existing or acquired CD4 T cell insufficiency affect virus evolution during persistent infection are unknown. Using mouse polyomavirus (MuPyV), we found that CD4 T cell depletion before infection results in short-lived plasma cells secreting low-avidity antiviral IgG with limited BCR diversity and weak virus-neutralizing ability. CD4 T cell deficiency during persistent infection incurs a shift from a T-dependent (TD) to T-independent (TI) Ab response, resembling the pre-existing TI Ab response. CD4 T cell loss before infection or during persistent infection is conducive for emergence of Ab-escape variants. Cryo-EM reconstruction of complexes of MuPyV virions with polyclonal IgG directly from infected mice with pre-existing or acquired CD4 T cell deficiency enabled visualization of shortfalls in TI IgG binding. By debilitating the antiviral IgG response, CD4 T cell deficiency sets the stage for outgrowth of variant viruses resistant to neutralization.
Collapse
Affiliation(s)
- Katelyn N Ayers
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Matthew D Lauver
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Kalynn M Alexander
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ge Jin
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Alyssa Ochetto
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Sonal Garg
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Daniel J Goetschius
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Susan L Hafenstein
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Joseph Che-Yen Wang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Todd LA, Le Dreff-Kerwin E, Bui-Marinos MP, Dharmasiddhi IPW, Vo NTK, Katzenback BA. Development and use of two Xenopus laevis spleen stromal cell lines to study the role of splenic stromal cells in anuran immune processes. Mol Immunol 2024; 176:96-110. [PMID: 39602982 DOI: 10.1016/j.molimm.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
The spleen is an important immune organ in adult Xenopus laevis, supporting the differentiation of B cells and acting as the main peripheral lymphoid organ. Key to these processes are the supporting non-hematopoietic cells, or stromal cells, within the spleen tissue. Despite the importance of the spleen to frog immunity, few frog cell lines originating from spleen tissue have been reported. In this study, we report on the establishment and characterization of two cell lines originating from X. laevis spleen tissue, Xela S5F and Xela S5E. Morphological observations and gene expression profiling suggest that Xela S5F is fibroblast-like and Xela S5E is epithelial-like. Both cell lines express transcripts corresponding to a variety of hematopoietic growth factors, suggesting their potential utility as a feeder cell line to support ex vivo myelopoietic cell differentiation. Xela S5F and Xela S5E produce transcripts for a diversity of pattern recognition receptors including toll-like receptors, scavenger receptors, and cytosolic nucleic acid sensors, suggesting anuran spleen stromal cells may be important cellular sensors of pathogens filtered through the spleen. This idea is supported by the increase in transcript levels for antiviral and proinflammatory genes in both cell lines in response to treatment with the commercially available toll-like receptor ligands, flagellin and poly(I:C). However, despite the ability to sense extracellular synthetic analogues of viral nucleic acids [i.e. poly(I:C)] and susceptibility and permissibility of both cell lines to frog virus 3 (FV3), a large double-stranded DNA virus that infects amphibians, neither cell line upregulates key antiviral or proinflammatory transcripts when challenged with FV3. The establishment of Xela S5F and S5E cell lines expands the current X. laevis invitrome and provides new in vitro cell model systems to investigate the role of splenic stromal cells in anuran immune functions.
Collapse
Affiliation(s)
- Lauren A Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | | | | | - Nguyen T K Vo
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | |
Collapse
|
5
|
Sanchez GM, Hirsch ES, VanValkenburg A, Mayer DP, Gbedande K, Francis RL, Song W, Antao OQ, Brimmer KE, Lemenze A, Stephens R, Johnson WE, Weinstein JS. Aberrant zonal recycling of germinal center B cells impairs appropriate selection in lupus. Cell Rep 2024; 43:114978. [PMID: 39527476 PMCID: PMC11682828 DOI: 10.1016/j.celrep.2024.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/28/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Autoimmune diseases such as lupus are characterized by polyclonal B cell activation, leading to the production of autoantibodies. The mechanism leading to B cell dysregulation is unclear; however, the defect may lie in selection within germinal centers (GCs). GC B cells cycle between proliferation and mutation in the dark zone and selection in the light zone (LZ). Temporal assessment of GCs from mice with either persistent infection or lupus showed an accumulation of LZ B cells. Yet, only in lupus, GC B cells exhibited reduced proliferation and progressive loss of MYC and FOXO1, which regulate zonal recycling and differentiation. As lupus progressed, decreased mutational frequency and repertoire diversity were associated with reduced responsiveness to CD40 signaling, despite accumulation of plasma cells. Collectively, these findings suggest that lupus disease progression coincides with an intrinsic defect in LZ B cell signaling, altering the zonal recycling, selection, and differentiation of autoreactive B cells.
Collapse
Affiliation(s)
- Gina M Sanchez
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Eden S Hirsch
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Arthur VanValkenburg
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Daniel P Mayer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Komi Gbedande
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Rebecca L Francis
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Olivia Q Antao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Kyleigh E Brimmer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Robin Stephens
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - W Evan Johnson
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jason S Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
6
|
Iwata M, Takada A, Sakamoto R, Song SY, Ito E. The active form of vitamin D (calcitriol) promotes CXCR5 expression during follicular helper T cell differentiation. Int Immunol 2024; 37:53-70. [PMID: 39101520 PMCID: PMC11587897 DOI: 10.1093/intimm/dxae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/03/2024] [Indexed: 08/06/2024] Open
Abstract
Follicular helper T (Tfh) cells promote B cell differentiation and antibody production in the B cell follicles of secondary lymphoid organs. Tfh cells express their signature transcription factor BCL6, interleukin (IL)-21, and surface molecules including inducible T cell costimulator (ICOS), programmed cell death-1 (PD-1), and C-X-C motif chemokine receptor 5 (CXCR5). Migration of Tfh cells to B cell follicles largely depends on the CXCR5 expression induced by interactions with antigen-presenting dendritic cells in the T cell area. How Tfh cells acquire sufficient levels of CXCR5 expression, however, has remained unclear. Using our in vitro culture system to generate CXCR5low Tfh-like cells from naive CD4+ T cells with IL-6 in the absence of other cell types, we found that the active form of vitamin D, calcitriol, markedly enhanced CXCR5 expression after the release from persistent T cell receptor (TCR) stimulation. CH-223191, an aryl hydrocarbon receptor antagonist, further enhanced CXCR5 expression. IL-12 but not IL-4, in place of IL-6, also supported calcitriol to enhance CXCR5 expression even before the release from TCR stimulation, whereas the cell viability sharply decreased after the release. The Tfh-like cells generated with IL-6 and calcitriol exhibited chemotaxis toward C-X-C motif chemokine ligand 13 (CXCL13), expressed IL-21, and helped B cells to produce IgG antibodies in vitro more efficiently than Tfh-like cells generated without added calcitriol. Calcitriol injections into antigen-primed mice increased the proportion of CXCR5+PD-1+CD4+ cells in their lymphoid organs, and enhanced T cell entry into B cell follicles. These results suggest that calcitriol promotes CXCR5 expression in developing Tfh cells and regulates their functional differentiation.
Collapse
Affiliation(s)
- Makoto Iwata
- Research Organization for Nano and Life Innovation, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| | - Ayumi Takada
- Department of Biology, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| | - Rei Sakamoto
- Department of Biology, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| | - Si-Young Song
- Waseda Research Institute for Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| | - Etsuro Ito
- Research Organization for Nano and Life Innovation, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
- Department of Biology, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
7
|
Bick F, Brenis Gómez CM, Lammens I, Van Moorleghem J, De Wolf C, Dupont S, Dumoutier L, Smith NP, Villani AC, Browaeys R, Alladina J, Haring AM, Medoff BD, Cho JL, Bigirimana R, Vieira J, Hammad H, Blanchetot C, Schuijs MJ, Lambrecht BN. IL-2 family cytokines IL-9 and IL-21 differentially regulate innate and adaptive type 2 immunity in asthma. J Allergy Clin Immunol 2024; 154:1129-1145. [PMID: 39147327 DOI: 10.1016/j.jaci.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Asthma is often accompanied by type 2 immunity rich in IL-4, IL-5, and IL-13 cytokines produced by TH2 lymphocytes or type 2 innate lymphoid cells (ILC2s). IL-2 family cytokines play a key role in the differentiation, homeostasis, and effector function of innate and adaptive lymphocytes. OBJECTIVE IL-9 and IL-21 boost activation and proliferation of TH2 and ILC2s, but the relative importance and potential synergism between these γ common chain cytokines are currently unknown. METHODS Using newly generated antibodies, we inhibited IL-9 and IL-21 alone or in combination in various murine models of asthma. In a translational approach using segmental allergen challenge, we recently described elevated IL-9 levels in human subjects with allergic asthma compared with nonasthmatic controls. Here, we also measured IL-21 in both groups. RESULTS IL-9 played a central role in controlling innate IL-33-induced lung inflammation by promoting proliferation and activation of ILC2s in an IL-21-independent manner. Conversely, chronic house dust mite-induced airway inflammation, mainly driven by adaptive immunity, was solely dependent on IL-21, which controlled TH2 activation, eosinophilia, total serum IgE, and formation of tertiary lymphoid structures. In a model of innate on adaptive immunity driven by papain allergen, a clear synergy was found between both pathways, as combined anti-IL-9 or anti-IL-21 blockade was superior in reducing key asthma features. In human bronchoalveolar lavage samples we measured elevated IL-21 protein within the allergic asthmatic group compared with the allergic control group. We also found increased IL21R transcripts and predicted IL-21 ligand activity in various disease-associated cell subsets. CONCLUSIONS IL-9 and IL-21 play important and nonredundant roles in allergic asthma by boosting ILC2s and TH2 cells, revealing a dual IL-9 and IL-21 targeting strategy as a new and testable approach.
Collapse
Affiliation(s)
- Fabian Bick
- argenx BV, Zwijnaarde, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Claudia M Brenis Gómez
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Inés Lammens
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Caroline De Wolf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sam Dupont
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Laure Dumoutier
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Neal P Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | - Robin Browaeys
- Bioinformatics Expertise Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Jehan Alladina
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Alexis M Haring
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Josalyn L Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | | | | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | - Martijn J Schuijs
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Booth JS, Rapaka RR, McArthur MA, Fresnay S, Darton TC, Blohmke CJ, Jones C, Waddington CS, Levine MM, Pollard AJ, Sztein MB. Role of circulating T follicular helper subsets following Ty21a immunization and oral challenge with wild type S. Typhi in humans. Front Immunol 2024; 15:1384642. [PMID: 39328410 PMCID: PMC11424897 DOI: 10.3389/fimmu.2024.1384642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
Despite decades of intense research, our understanding of the correlates of protection against Salmonella Typhi (S. Typhi) infection and disease remains incomplete. T follicular helper cells (TFH), an important link between cellular and humoral immunity, play an important role in the development and production of high affinity antibodies. While traditional TFH cells reside in germinal centers, circulating TFH (cTFH) (a memory subset of TFH) are present in blood. We used specimens from a typhoid controlled human infection model whereby participants were immunized with Ty21a live attenuated S. Typhi vaccine and then challenged with virulent S. Typhi. Some participants developed typhoid disease (TD) and some did not (NoTD), which allowed us to assess the association of cTFH subsets in the development and prevention of typhoid disease. Of note, the frequencies of cTFH were higher in NoTD than in TD participants, particularly 7 days after challenge. Furthermore, the frequencies of cTFH2 and cTFH17, but not cTFH1 subsets were higher in NoTD than TD participants. However, we observed that ex-vivo expression of activation and homing markers were higher in TD than in NoTD participants, particularly after challenge. Moreover, cTFH subsets produced higher levels of S. Typhi-specific responses (cytokines/chemokines) in both the immunization and challenge phases. Interestingly, unsupervised analysis revealed unique clusters with distinct signatures for each cTFH subset that may play a role in either the development or prevention of typhoid disease. Importantly, we observed associations between frequencies of defined cTFH subsets and anti-S. Typhi antibodies. Taken together, our results suggest that circulating TFH2 and TFH17 subsets might play an important role in the development or prevention of typhoid disease. The contribution of these clusters was found to be distinct in the immunization and/or challenge phases. These results have important implications for vaccines aimed at inducing long-lived protective T cell and antibody responses.
Collapse
Affiliation(s)
- Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rekha R. Rapaka
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Monica A. McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Global Clinical Development, Sanofi, Swiftwater, PA, United States
| | - Stephanie Fresnay
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Rockville Center for Vaccine Research, GlaxsoSmithKline (GSK), Rockville, MD, United States
| | - Thomas C. Darton
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- Clinical Infection Research Group, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, and the National Institute for Health and Care Research (NIHR), Sheffield Biomedical Research Centre, Sheffield, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- GlaxsoSmithKline (GSK) Vaccines, London, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Claire S. Waddington
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infection, Imperial College Healthcare, National Health Service (NHS) Trust, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Myron M. Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
9
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
10
|
Hashiguchi M, Asatsuma-Okumura T, Iwai Y. Interleukin 21 promotes IgG1 + plasma cell differentiation instead of class switching to IgE via Blimp1 expression. Eur J Immunol 2024; 54:e2451041. [PMID: 38794862 DOI: 10.1002/eji.202451041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
IgE is induced by the presence of IL-4 by class switching from IgM through IgG1 to IgE. IL-21 inhibits the IgE class switch by induction of Blimp1 leading to Stat6 and AID downregulation, and plasmablast/plasma cell differentiation.
Collapse
Affiliation(s)
- Masaaki Hashiguchi
- Department of Cell Biology, Institute for Advanced Medical Sciences, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Tomoko Asatsuma-Okumura
- Department of Cell Biology, Institute for Advanced Medical Sciences, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Yoshiko Iwai
- Department of Cell Biology, Institute for Advanced Medical Sciences, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
11
|
Kim Y, Manara F, Grassmann S, Belcheva KT, Reyes K, Kim H, Downs-Canner S, Yewdell WT, Sun JC, Chaudhuri J. IL-21 Shapes the B Cell Response in a Context-Dependent Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.600808. [PMID: 39026745 PMCID: PMC11257567 DOI: 10.1101/2024.07.13.600808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The cytokine interleukin-21 (IL-21) is a pivotal T cell-derived signal crucial for germinal center (GC) responses, but the precise mechanisms by which IL-21 influences B cell function remain elusive. Here, we investigated the B cell-intrinsic role of IL-21 signaling by employing a novel IL-21 receptor ( Il21r ) conditional knock-out mouse model and ex vivo culture systems and uncovered a surprising duality of IL-21 signaling in B cells. While IL-21 stimulation of naïve B cells led to Bim-dependent apoptosis, it promoted robust proliferation of pre-activated B cells, particularly class-switched IgG1 + B cells ex vivo . Consistent with this, B cell-specific deletion of Il21r led to a severe defect in IgG1 responses in vivo following immunization. Intriguingly, Il21r -deleted B cells are significantly impaired in their ability to transition from a pre-GC to a GC state following immunization. Although Il21r -deficiency did not affect the proportion of IgG1 + B cells among GC B cells, it greatly diminished the proportion of IgG1 + B cells among the plasmablast/plasma cell population. Collectively, our data suggest that IL-21 serves as a critical regulator of B cell fates, influencing B cell apoptosis and proliferation in a context-dependent manner.
Collapse
|
12
|
Bufan B, Arsenović-Ranin N, Živković I, Ćuruvija I, Blagojević V, Dragačević L, Kovačević A, Kotur-Stevuljević J, Leposavić G. Modulation of T-Cell-Dependent Humoral Immune Response to Influenza Vaccine by Multiple Antioxidant/Immunomodulatory Micronutrient Supplementation. Vaccines (Basel) 2024; 12:743. [PMID: 39066381 PMCID: PMC11281378 DOI: 10.3390/vaccines12070743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Notwithstanding prevalence gaps in micronutrients supporting immune functions, the significance of their deficits/supplementation for the efficacy of vaccines is underinvestigated. Thus, the influence of supplementation combining vitamins C and D, zinc, selenium, manganese, and N-acetyl cysteine on immune correlates/surrogates of protection conferred by a quadrivalent influenza vaccine (QIV) in mice was investigated. The supplementation starting 5 days before the first of two QIV injections given 28 days apart increased the serum titres of total and neutralizing IgG against each of four influenza strains from QIV. Accordingly, the frequencies of germinal center B cells, follicular CD4+ T helper (Th) cells, and IL-21-producing Th cells increased in secondary lymphoid organs (SLOs). Additionally, the supplementation improved already increased IgG response to the second QIV injection by augmenting not only neutralizing antibody production, but also IgG2a response, which is important for virus clearance, through favoring Th1 differentiation as indicated by Th1 (IFN-γ)/Th2 (IL-4) signature cytokine level ratio upon QIV restimulation in SLO cell cultures. This most likely partly reflected antioxidant action of the supplement as indicated by splenic redox status analyses. Thus, the study provides a solid scientific background for further research aimed at repurposing the use of this safe and inexpensive micronutrient combination to improve response to the influenza vaccine.
Collapse
Affiliation(s)
- Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (B.B.); (N.A.-R.)
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (B.B.); (N.A.-R.)
| | - Irena Živković
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ž.); (I.Ć.); (V.B.); (L.D.)
| | - Ivana Ćuruvija
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ž.); (I.Ć.); (V.B.); (L.D.)
| | - Veljko Blagojević
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ž.); (I.Ć.); (V.B.); (L.D.)
| | - Luka Dragačević
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ž.); (I.Ć.); (V.B.); (L.D.)
| | - Ana Kovačević
- Department for Virology Control, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia;
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| |
Collapse
|
13
|
Labeur-Iurman L, Harker JA. Mechanisms of antibody mediated immunity - Distinct in early life. Int J Biochem Cell Biol 2024; 172:106588. [PMID: 38768890 DOI: 10.1016/j.biocel.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Immune responses in early life are characterized by a failure to robustly generate long-lasting protective responses against many common pathogens or upon vaccination. This is associated with a reduced ability to generate T-cell dependent high affinity antibodies. This review highlights the differences in T-cell dependent antibody responses observed between infants and adults, in particular focussing on the alterations in immune cell function that lead to reduced T follicular helper cell-B cell crosstalk within germinal centres in early life. Understanding the distinct functional characteristics of early life humoral immunity, and how these are regulated, will be critical in guiding age-appropriate immunological interventions in the very young.
Collapse
Affiliation(s)
- Lucia Labeur-Iurman
- National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - James A Harker
- National Heart & Lung Institute, Imperial College London, London, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
14
|
Wang JN, Zheng G, Wu W, Huang H. Follicular helper T cells: emerging roles in lymphomagenesis. J Leukoc Biol 2024; 116:54-63. [PMID: 37939814 DOI: 10.1093/jleuko/qiad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
Follicular helper T cells are a subset of CD4+ T cells that are fundamental to forming germinal centers, which are the primary sites of antibody affinity maturation and the proliferation of activated B cells. Follicular helper T cells have been extensively studied over the past 10 years, especially regarding their roles in cancer genesis. This review describes the characteristics of normal follicular helper T cells and focuses on the emerging link between follicular helper T cells and lymphomagenesis. Advances in lymphoma genetics have substantially expanded our understanding of the role of follicular helper T cells in lymphomagenesis. Moreover, we detail a range of agents and new therapies, with a major focus on chimeric antigen receptor T-cell therapy; these novel approaches may offer new treatment opportunities for patients with lymphomas.
Collapse
Affiliation(s)
- Ji-Nuo Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - Gaofeng Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| |
Collapse
|
15
|
Manakkat Vijay GK, Zhou M, Thakkar K, Rothrauff A, Chawla AS, Chen D, Lau LCW, Gerges PH, Chetal K, Chhibbar P, Fan J, Das J, Joglekar A, Borghesi L, Salomonis N, Xu H, Singh H. Temporal dynamics and genomic programming of plasma cell fates. Nat Immunol 2024; 25:1097-1109. [PMID: 38698087 DOI: 10.1038/s41590-024-01831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/04/2024] [Indexed: 05/05/2024]
Abstract
Affinity-matured plasma cells (PCs) of varying lifespans are generated through a germinal center (GC) response. The developmental dynamics and genomic programs of antigen-specific PC precursors remain to be elucidated. Here, using a model antigen in mice, we demonstrate biphasic generation of PC precursors, with those generating long-lived bone marrow PCs preferentially produced in the late phase of GC response. Clonal tracing using single-cell RNA sequencing and B cell antigen receptor sequencing in spleen and bone marrow compartments, coupled with adoptive transfer experiments, reveals a new PC transition state that gives rise to functionally competent PC precursors. The latter undergo clonal expansion, dependent on inducible expression of TIGIT. We propose a model for the proliferation and programming of precursors of long-lived PCs, based on extended antigen encounters in the GC.
Collapse
Affiliation(s)
| | - Ming Zhou
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, Westlake University, Hangzhou, China
| | - Kairavee Thakkar
- Division of Biomedical Informatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
- Department of Pharmacology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Abigail Rothrauff
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanpreet Singh Chawla
- Division of Immunobiology, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
| | - Dianyu Chen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, Westlake University, Hangzhou, China
| | - Louis Chi-Wai Lau
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Habib Gerges
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
| | - Prabal Chhibbar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingyu Fan
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa Borghesi
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA.
| | - Heping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- School of Medicine, Westlake University, Hangzhou, China.
| | - Harinder Singh
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Zhang B, Chen S, Yin X, McBride CD, Gertie JA, Yurieva M, Bielecka AA, Hoffmann B, Travis Hinson J, Grassmann J, Xu L, Siniscalco ER, Soldatenko A, Hoyt L, Joseph J, Norton EB, Uthaman G, Palm NW, Liu E, Eisenbarth SC, Williams A. Metabolic fitness of IgA + plasma cells in the gut requires DOCK8. Mucosal Immunol 2024; 17:431-449. [PMID: 38159726 PMCID: PMC11571232 DOI: 10.1016/j.mucimm.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Dedicator of cytokinesis 8 (DOCK8) mutations lead to a primary immunodeficiency associated with recurrent gastrointestinal infections and poor antibody responses but, paradoxically, heightened IgE to food antigens, suggesting that DOCK8 is central to immune homeostasis in the gut. Using Dock8-deficient mice, we found that DOCK8 was necessary for mucosal IgA production to multiple T cell-dependent antigens, including peanut and cholera toxin. Yet DOCK8 was not necessary in T cells for this phenotype. Instead, B cell-intrinsic DOCK8 was required for maintenance of antigen-specific IgA-secreting plasma cells (PCs) in the gut lamina propria. Unexpectedly, DOCK8 was not required for early B cell activation, migration, or IgA class switching. An unbiased interactome screen revealed novel protein partners involved in metabolism and apoptosis. Dock8-deficient IgA+ B cells had impaired cellular respiration and failed to engage glycolysis appropriately. These results demonstrate that maintenance of the IgA+ PC compartment requires DOCK8 and suggest that gut IgA+ PCs have unique metabolic requirements for long-term survival in the lamina propria.
Collapse
Affiliation(s)
- Biyan Zhang
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Shuting Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiangyun Yin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Caleb D McBride
- The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jake A Gertie
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Agata A Bielecka
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Microbial Immunoregulation, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Brian Hoffmann
- Mass Spectrometry and Protein Chemistry, The Jackson Laboratory for Genomic Medicine, Bar Harbor, ME 04609, USA
| | - J Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Cardiology center, Department of Medicine, UConn Health, Farmington, CT, USA
| | - Jessica Grassmann
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Lan Xu
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emily R Siniscalco
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arielle Soldatenko
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Laura Hoyt
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie Joseph
- Department of Laboratory Medicine, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gowthaman Uthaman
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elise Liu
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Adam Williams
- The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
17
|
Kim YJ, Choi J, Choi YS. Transcriptional regulation of Tfh dynamics and the formation of immunological synapses. Exp Mol Med 2024; 56:1365-1372. [PMID: 38825646 PMCID: PMC11263543 DOI: 10.1038/s12276-024-01254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Inside germinal centers (GCs), antigen-specific B cells rely on precise interactions with immune cells and strategic localization between the dark and light zones to clonally expand, undergo affinity maturation, and differentiate into long-lived plasma cells or memory B cells. Follicular helper T (Tfh) cells, the key gatekeepers of GC-dependent humoral immunity, exhibit remarkable dynamic positioning within secondary lymphoid tissues and rely on intercellular interactions with antigen-presenting cells (APCs) during their differentiation and execution of B-cell-facilitating functions within GCs. In this review, we briefly cover the transcriptional regulation of Tfh cell differentiation and function and explore the molecular mechanisms governing Tfh cell motility, their interactions with B cells within GCs, and the impact of their dynamic behavior on humoral responses.
Collapse
Affiliation(s)
- Ye-Ji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jinyong Choi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea.
- Transplantation Research Institute, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
18
|
Ferreira-Gomes M, Chen Y, Durek P, Rincon-Arevalo H, Heinrich F, Bauer L, Szelinski F, Guerra GM, Stefanski AL, Niedobitek A, Wiedemann A, Bondareva M, Ritter J, Lehmann K, Hardt S, Hipfl C, Hein S, Hildt E, Matz M, Mei HE, Cheng Q, Dang VD, Witkowski M, Lino AC, Kruglov A, Melchers F, Perka C, Schrezenmeier EV, Hutloff A, Radbruch A, Dörner T, Mashreghi MF. Recruitment of plasma cells from IL-21-dependent and IL-21-independent immune reactions to the bone marrow. Nat Commun 2024; 15:4182. [PMID: 38755157 PMCID: PMC11099182 DOI: 10.1038/s41467-024-48570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.
Collapse
Affiliation(s)
- Marta Ferreira-Gomes
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Yidan Chen
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Hector Rincon-Arevalo
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Laura Bauer
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Franziska Szelinski
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Maria Guerra
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Ana-Luisa Stefanski
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Antonia Niedobitek
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Annika Wiedemann
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marina Bondareva
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Jacob Ritter
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Lehmann
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Sebastian Hardt
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Hipfl
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sascha Hein
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Langen, Germany
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Langen, Germany
| | - Mareen Matz
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik E Mei
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Qingyu Cheng
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Van Duc Dang
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Witkowski
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreia C Lino
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrey Kruglov
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
| | - Carsten Perka
- Department of Orthopedic Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eva V Schrezenmeier
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Hutloff
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz Gemeinschaft, Berlin, Germany.
| |
Collapse
|
19
|
Mitul MT, Kastenschmidt JM, Sureshchandra S, Wagoner ZW, Sorn AM, Mcllwain DR, Hernandez-Davies JE, Jain A, de Assis R, Trask D, Davies DH, Wagar LE. Tissue-specific sex differences in pediatric and adult immune cell composition and function. Front Immunol 2024; 15:1373537. [PMID: 38812520 PMCID: PMC11133680 DOI: 10.3389/fimmu.2024.1373537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Sex-based differences in immune cell composition and function can contribute to distinct adaptive immune responses. Prior work has quantified these differences in peripheral blood, but little is known about sex differences within human lymphoid tissues. Here, we characterized the composition and phenotypes of adaptive immune cells from male and female ex vivo tonsils and evaluated their responses to influenza antigens using an immune organoid approach. In a pediatric cohort, female tonsils had more memory B cells compared to male tonsils direct ex vivo and after stimulation with live-attenuated but not inactivated vaccine, produced higher influenza-specific antibody responses. Sex biases were also observed in adult tonsils but were different from those measured in children. Analysis of peripheral blood immune cells from in vivo vaccinated adults also showed higher frequencies of tissue homing CD4 T cells in female participants. Together, our data demonstrate that distinct memory B and T cell profiles are present in male vs. female lymphoid tissues and peripheral blood respectively and suggest that these differences may in part explain sex biases in response to vaccines and viruses.
Collapse
Affiliation(s)
- Mahina Tabassum Mitul
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - Jenna M. Kastenschmidt
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - Suhas Sureshchandra
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - Zachary W. Wagoner
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - Andrew M. Sorn
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - David R. Mcllwain
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Jenny E. Hernandez-Davies
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - Aarti Jain
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - Rafael de Assis
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - Douglas Trask
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA, United States
| | - D. Huw Davies
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| | - Lisa E. Wagar
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
- Vaccine Research and Development Center, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
20
|
Johnson JT, Surette FA, Ausdahl GR, Shah M, Minns AM, Lindner SE, Zander RA, Butler NS. CD4 T Cell-Derived IL-21 Is Critical for Sustaining Plasmodium Infection-Induced Germinal Center Responses and Promoting the Selection of Memory B Cells with Recall Potential. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1467-1478. [PMID: 38477614 PMCID: PMC11018477 DOI: 10.4049/jimmunol.2300683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
Development of Plasmodium-specific humoral immunity is critically dependent on CD4 Th cell responses and germinal center (GC) reactions during blood-stage Plasmodium infection. IL-21, a cytokine primarily produced by CD4 T cells, is an essential regulator of affinity maturation, isotype class-switching, B cell differentiation, and maintenance of GC reactions in response to many infection and immunization models. In models of experimental malaria, mice deficient in IL-21 or its receptor IL-21R fail to develop memory B cell populations and are not protected against secondary infection. However, whether sustained IL-21 signaling in ongoing GCs is required for maintaining GC magnitude, organization, and output is unclear. In this study, we report that CD4+ Th cells maintain IL-21 expression after resolution of primary Plasmodium yoelii infection. We generated an inducible knockout mouse model that enabled cell type-specific and timed deletion of IL-21 in peripheral, mature CD4 T cells. We found that persistence of IL-21 signaling in active GCs had no impact on the magnitude of GC reactions or their capacity to produce memory B cell populations. However, the memory B cells generated in the absence of IL-21 exhibited reduced recall function upon challenge. Our data support that IL-21 prevents premature cellular dissolution within the GC and promotes stringency of selective pressures during B cell fate determination required to produce high-quality Plasmodium-specific memory B cells. These data are additionally consistent with a temporal requirement for IL-21 in fine-tuning humoral immune memory responses during experimental malaria.
Collapse
Affiliation(s)
- Jordan T. Johnson
- Graduate Program in Immunology, University of Iowa, Iowa City, Iowa USA
- These authors contributed equally
| | - Fionna A. Surette
- Graduate Program in Immunology, University of Iowa, Iowa City, Iowa USA
- These authors contributed equally
| | - Graham R. Ausdahl
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa USA
| | - Manan Shah
- Graduate Program in Immunology, University of Iowa, Iowa City, Iowa USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa USA
| | - Allen M. Minns
- Department of Biochemistry & Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania USA
| | - Scott E. Lindner
- Department of Biochemistry & Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania USA
| | - Ryan A. Zander
- Graduate Program in Immunology, University of Iowa, Iowa City, Iowa USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa USA
| | - Noah S. Butler
- Graduate Program in Immunology, University of Iowa, Iowa City, Iowa USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa USA
| |
Collapse
|
21
|
Wang Y, Zhang Q, Deng X, Wang Y, Tian X, Zhang S, Shen Y, Zhou X, Zeng X, Chen Q, Jiang L, Li J. PA28γ induces dendritic cell maturation and activates T-cell immune responses in oral lichen planus. MedComm (Beijing) 2024; 5:e561. [PMID: 38721005 PMCID: PMC11077662 DOI: 10.1002/mco2.561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 01/06/2025] Open
Abstract
Oral lichen planus (OLP) is a common chronic inflammatory disease of the oral mucosa, the mechanism of its inflammatory progression has not yet been fully elucidated. PA28γ plays a significant role in a variety of immune-related diseases. However, the exact role of PA28γ in the pathogenesis of OLP remains unclear. Here, we demonstrated that PA28γ is overexpressed in epithelial cells and inflammatory cells of OLP tissues but has no significant relationship with OLP subtypes. Functionally, keratinocytes with high PA28γ expression could induce dendritic cell (DC) maturation and promote the T-cell differentiation into Th1 cells in response to the immune response. In addition, we found that a high level of PA28γ expression is associated with high numbers of infiltrating mature DCs and activated T-cells in OLP tissues. Mechanistically, keratinocytes with high PA28γ expression could promote the secretion of C-C motif chemokine (CCL)5, blocking CCL5 or/and its receptor CD44 could inhibit the induction of T-cell differentiation by keratinocytes with high PA28γ expression. In conclusion, we reveal that keratinocytes with high expression of PA28γ in OLP can induce DC maturation and promote T-cell differentiation through the CCL5-CD44 pathway, providing previously unidentified mechanistic insights into the mechanism of inflammatory progression in OLP.
Collapse
Affiliation(s)
- Yimei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Qiyue Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Xiaoting Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
- Yunnan Maternal and Child Health HospitalKunmingPR China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Xin Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Shiyu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Yingqiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduPR China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of StomatologySichuan UniversityChengduSichuanPR China
| |
Collapse
|
22
|
Shehata L, Thouvenel CD, Hondowicz BD, Pew LA, Pritchard GH, Rawlings DJ, Choi J, Pepper M. Interleukin-4 downregulates transcription factor BCL6 to promote memory B cell selection in germinal centers. Immunity 2024; 57:843-858.e5. [PMID: 38513666 PMCID: PMC11104266 DOI: 10.1016/j.immuni.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/04/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Germinal center (GC)-derived memory B cells (MBCs) are critical for humoral immunity as they differentiate into protective antibody-secreting cells during re-infection. GC formation and cellular interactions within the GC have been studied in detail, yet the exact signals that allow for the selection and exit of MBCs are not understood. Here, we showed that IL-4 cytokine signaling in GC B cells directly downregulated the transcription factor BCL6 via negative autoregulation to release cells from the GC program and to promote MBC formation. This selection event required additional survival cues and could therefore result in either GC exit or death. We demonstrate that both increasing IL-4 bioavailability or limiting IL-4 signaling disrupted MBC selection stringency. In this way, IL-4 control of BCL6 expression serves as a tunable switch within the GC to tightly regulate MBC selection and affinity maturation.
Collapse
Affiliation(s)
- Laila Shehata
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Christopher D Thouvenel
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Brian D Hondowicz
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Lucia A Pew
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | - David J Rawlings
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Jinyong Choi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
23
|
Yi XY, Hou XR, Huang ZX, Zhu P, Liu BY. Immunization with a peptide mimicking lipoteichoic acid induces memory B cells in BALB/c mice. BMC Infect Dis 2024; 24:371. [PMID: 38566017 PMCID: PMC10986077 DOI: 10.1186/s12879-024-09262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND There is an urgent clinical need for developing novel immunoprophylaxis and immunotherapy strategies against Staphylococcus aureus (S. aureus). In our previous work, immunization with a tetra-branched multiple antigenic peptide, named MAP2-3 that mimics lipoteichoic acid, a cell wall component of S. aureus, successfully induced a humoral immune response and protected BALB/c mice against S. aureus systemic infection. In this study, we further investigated whether vaccination with MAP2-3 can elicit immunologic memory. METHODS BALB/c mice were immunized with MAP2-3 five times. After one month of the last vaccination, mice were challenged with heat-killed S. aureus via intraperitoneal injection. After a 7-day inoculation, the percentage of plasma cells, memory B cells, effector memory T cells, and follicular helper T cells were detected by flow cytometry. The levels of IL-6, IL-21, IL-2, and IFN-γ were measured by real-time PCR and ELISA. Flow cytometry results were compared by using one-way ANOVA or Mann-Whitney test, real-time PCR results were compared by using one-way ANOVA, and ELISA results were compared by using one-way ANOVA or student's t-test. RESULTS The percentage of plasma cells and memory B cells in the spleen and bone marrow from the MAP2-3 immunized mice was significantly higher than that from the control mice. The percentage of effector memory T cells in spleens and lymphoid nodes as well as follicular helper T cells in spleens from the MAP2-3 immunized mice were also higher. Moreover, the levels of IL-6 and IL-21, two critical cytokines for the development of memory B cells, were significantly higher in the isolated splenocytes from immunized mice after lipoteichoic acid stimulation. CONCLUSIONS Immunization with MAP2-3 can efficiently induce memory B cells and memory T cells.
Collapse
Affiliation(s)
- Xia-Yu Yi
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Clinical Laboratory, The First People's Hospital of Wuhu, Wuhu, Anhui, P.R. China
| | - Xiao-Rui Hou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zhao-Xia Huang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| | - Ping Zhu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Bei-Yi Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
24
|
Fitzpatrick Z, Ghabdan Zanluqui N, Rosenblum JS, Tuong ZK, Lee CYC, Chandrashekhar V, Negro-Demontel ML, Stewart AP, Posner DA, Buckley M, Allinson KSJ, Mastorakos P, Chittiboina P, Maric D, Donahue D, Helmy A, Tajsic T, Ferdinand JR, Portet A, Peñalver A, Gillman E, Zhuang Z, Clatworthy MR, McGavern DB. Venous-plexus-associated lymphoid hubs support meningeal humoral immunity. Nature 2024; 628:612-619. [PMID: 38509366 PMCID: PMC11482273 DOI: 10.1038/s41586-024-07202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.
Collapse
Affiliation(s)
- Zachary Fitzpatrick
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nagela Ghabdan Zanluqui
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
| | | | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Colin Y C Lee
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | | | - Maria Luciana Negro-Demontel
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
| | - Andrew P Stewart
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - David A Posner
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Monica Buckley
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
| | - Kieren S J Allinson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Panagiotis Mastorakos
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
- Department of Surgical Neurology, NINDS, NIH, Bethesda, MD, USA
| | | | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, NINDS, NIH, Bethesda, MD, USA
| | | | - Adel Helmy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tamara Tajsic
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Anais Portet
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ana Peñalver
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Eleanor Gillman
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
25
|
Syeda MZ, Hong T, Huang C, Huang W, Mu Q. B cell memory: from generation to reactivation: a multipronged defense wall against pathogens. Cell Death Discov 2024; 10:117. [PMID: 38453885 PMCID: PMC10920759 DOI: 10.1038/s41420-024-01889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Development of B cell memory is a conundrum that scientists are still exploring. Studies have been conducted in vitro and using advanced animal models to elucidate the mechanism underlying the generation of memory B cells (MBCs), the precise roles of MBCs against pathogens, and their protective functions against repeated infections throughout life. Lifelong immunity against invading diseases is mainly the result of overcoming a single infection. This protection is largely mediated by the two main components of B cell memory-MBCs and long-lived plasma cells (PCs). The chemical and cellular mechanisms that encourage fat selection for MBCs or long-lived PCs are an area of active research. Despite the fact that nearly all available vaccinations rely on the capacity to elicit B-cell memory, we have yet to develop successful vaccines that can induce broad-scale protective MBCs against some of the deadliest diseases, including malaria and AIDS. A deeper understanding of the specific cellular and molecular pathways that govern the generation, function, and reactivation of MBCs is critical for overcoming the challenges associated with vaccine development. Here, we reviewed literature on the development of MBCs and their reactivation, interaction with other cell types, strategies against invading pathogens, and function throughout life and discussed the recent advances regarding the key signals and transcription factors which regulate B cell memory and their relevance to the quest for vaccine development.
Collapse
Affiliation(s)
- Madiha Zahra Syeda
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tu Hong
- The First Affiliated Hospital, Zhejiang University, School of Medicine, 310058, Hangzhou, China
| | - Chunming Huang
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China.
| | - Wenhua Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Qingchun Mu
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China.
| |
Collapse
|
26
|
Okuma K, Oku T, Sasaki C, Kitagori K, Mimori T, Aramori I, Hirayama Y, Yoshifuji H. Similarity and difference between systemic lupus erythematosus and NZB/W F1 mice by multi-omics analysis. Mod Rheumatol 2024; 34:359-368. [PMID: 36869711 DOI: 10.1093/mr/road024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
OBJECTIVES Several animal disease models have been used to understand the mechanisms of systemic lupus erythematosus (SLE); however, the translation of findings from animals to humans has not been sufficiently examined in drug development. To confirm the validity of New Zealand black x New Zealand white (NZB/W) F1 mice as an SLE model, we extensively characterized SLE patients and NZB/W F1 mice by omics analysis. METHODS Peripheral blood from patients and mice and spleen and lymph node tissue from mice were analysed using cell subset analysis, cytokine panel assays, and transcriptome analysis. RESULTS CD4+ effector memory T cells, plasmablasts, and plasma cells were increased in both SLE patients and NZB/W F1 mice. Levels of tumor necrosis factor-α, interferon gamma induced protein-10, and B cell activating factor in plasma were significantly higher in SLE patients and NZB/W F1 mice than in their corresponding controls. Transcriptome analysis revealed an upregulation of genes involved in the interferon signalling pathway and T-cell exhaustion signalling pathway in both SLE patients and the mouse model. In contrast, death receptor signalling genes showed changes in the opposite direction between patients and mice. CONCLUSION NZB/W F1 mice are a generally suitable model of SLE for analysing the pathophysiology and treatment response of T/B cells and monocytes/macrophages and their secreted cytokines.
Collapse
Affiliation(s)
- Kenji Okuma
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Takuma Oku
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Chiyomi Sasaki
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Koji Kitagori
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Takeda General Hospital, Kyoto, Japan
| | - Ichiro Aramori
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Yoshitaka Hirayama
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Petersone L, Walker LSK. T-cell help in the germinal center: homing in on the role of IL-21. Int Immunol 2024; 36:89-98. [PMID: 38164992 PMCID: PMC10880887 DOI: 10.1093/intimm/dxad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/30/2023] [Indexed: 01/03/2024] Open
Abstract
Interleukin 21 (IL-21) is a pleiotropic cytokine that is overproduced in multiple autoimmune settings. Provision of IL-21 from follicular helper T cells is an important component of T-cell help within germinal centers (GC), and the last few years have seen a resurgence of interest in IL-21 biology in the context of the GC environment. While it has been more than a decade since T cell-derived IL-21 was found to upregulate B-cell expression of the GC master transcription factor B-cell lymphoma 6 (Bcl-6) and to promote GC expansion, several recent studies have collectively delivered significant new insights into how this cytokine shapes GC B-cell selection, proliferation, and fate choice. It is now clear that IL-21 plays an important role in GC zonal polarization by contributing to light zone GC B-cell positive selection for dark zone entry as well as by promoting cyclin D3-dependent dark zone inertial cycling. While it has been established that IL-21 can contribute to the modulation of GC output by aiding the generation of antibody-secreting cells (ASC), recent studies have now revealed how IL-21 signal strength shapes the fate choice between GC cycle re-entry and ASC differentiation in vivo. Both provision of IL-21 and sensitivity to this cytokine are finely tuned within the GC environment, and dysregulation of this pathway in autoimmune settings could alter the threshold for germinal center B-cell selection and differentiation, potentially promoting autoreactive B-cell responses.
Collapse
Affiliation(s)
- Lina Petersone
- University College London Division of Infection and Immunity, Institute of Immunity and Transplantation, Pears Building, Royal Free Campus, London NW3 2PP, UK
| | - Lucy S K Walker
- University College London Division of Infection and Immunity, Institute of Immunity and Transplantation, Pears Building, Royal Free Campus, London NW3 2PP, UK
| |
Collapse
|
28
|
Hogan CH, Owens SM, Reynoso GV, Liao Y, Meyer TJ, Zelazowska MA, Liu B, Li X, Grosskopf AK, Khairallah C, Kirillov V, Reich NC, Sheridan BS, McBride KM, Gewurz BE, Hickman HD, Forrest JC, Krug LT. Multifaceted roles for STAT3 in gammaherpesvirus latency revealed through in vivo B cell knockout models. mBio 2024; 15:e0299823. [PMID: 38170993 PMCID: PMC10870824 DOI: 10.1128/mbio.02998-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor signal transducer and activator of transcription 3 (STAT3). To better understand the role of STAT3 during gammaherpesvirus latency and the B cell response to infection, we used the model pathogen murine gammaherpesvirus 68 (MHV68). Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak MHV68 latency approximately sevenfold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to wild-type (WT) littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeric mice consisting of WT and STAT3 knockout B cells. We discovered a dramatic reduction in latency in STAT3 knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that MHV68 infection shifts the gene signature toward proliferation and away from type I and type II IFN responses. Loss of STAT3 largely reversed the virus-driven transcriptional shift without impacting the viral gene expression program. STAT3 promoted B cell processes of the germinal center, including IL-21-stimulated downregulation of surface CD23 on B cells infected with MHV68 or EBV. Together, our data provide mechanistic insights into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.IMPORTANCEThere are no directed therapies to the latency program of the human gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus. Activated host factor signal transducer and activator of transcription 3 (STAT3) is a hallmark of cancers caused by these viruses. We applied the murine gammaherpesvirus pathogen system to explore STAT3 function upon primary B cell infection in the host. Since STAT3 deletion in all CD19+ B cells of infected mice led to altered B and T cell responses, we generated chimeric mice with both normal and STAT3-deleted B cells. B cells lacking STAT3 failed to support virus latency compared to normal B cells from the same infected animal. Loss of STAT3 impaired B cell proliferation and differentiation and led to a striking upregulation of interferon-stimulated genes. These findings expand our understanding of STAT3-dependent processes that are key to its function as a pro-viral latency determinant for oncogenic gammaherpesviruses in B cells and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Chad H. Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Shana M. Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Monika A. Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaofan Li
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Anna K. Grosskopf
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T. Krug
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
29
|
Choi J, Crotty S, Choi YS. Cytokines in Follicular Helper T Cell Biology in Physiologic and Pathologic Conditions. Immune Netw 2024; 24:e8. [PMID: 38455461 PMCID: PMC10917579 DOI: 10.4110/in.2024.24.e8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 03/09/2024] Open
Abstract
Follicular helper T cells (Tfh) play a crucial role in generating high-affinity antibodies (Abs) and establishing immunological memory. Cytokines, among other functional molecules produced by Tfh, are central to germinal center (GC) reactions. This review focuses on the role of cytokines, including IL-21 and IL-4, in regulating B cell responses within the GC, such as differentiation, affinity maturation, and plasma cell development. Additionally, this review explores the impact of other cytokines like CXCL13, IL-10, IL-9, and IL-2 on GC responses and their potential involvement in autoimmune diseases, allergies, and cancer. This review highlights contributions of Tfh-derived cytokines to both protective immunity and immunopathology across a spectrum of diseases. A deeper understanding of Tfh cytokine biology holds promise for insights into biomedical conditions.
Collapse
Affiliation(s)
- Jinyong Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Shane Crotty
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Transplantation Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
30
|
Yang KY, Liao J, Ma Z, Tse HF, Lu L, Graca L, Lui KO. Single-cell transcriptomics of Treg reveals hallmarks and trajectories of immunological aging. J Leukoc Biol 2024; 115:19-35. [PMID: 37675661 DOI: 10.1093/jleuko/qiad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Age-related immunosenescence is characterized by progressive dysfunction of adaptive immune response and increased autoimmunity. Nevertheless, the impact of aging on CD4+ regulatory T cells that are master regulators of the immune system remains largely unclear. Here, we report cellular and molecular hallmarks of regulatory T cells derived from murine lymphoid and adipose tissues at 3, 18, and 24 mo of age, respectively, by analyzing their heterogeneity that displays dynamic changes in transcriptomic effector signatures at a single-cell resolution. Although the proportion of regulatory T cells among total Cd4+ T cells, as well as their expression levels of Foxp3, did not show any global change with time, we have identified 6 transcriptomically distinct clusters of regulatory T cells with cross-tissue conserved hallmarks of aging, including increased numbers of proinflammatory regulatory T cells, reduced precursor cells, increased immature and mature T follicular regulatory cells potentially supported by a metabolic switch from oxidative phosphorylation to glycolysis, a gradual loss of CD150hi regulatory T cells that support hematopoiesis, and increased adipose tissue-specific regulatory T cells that are associated with metabolic disease. To dissect the impact of immunosenescence on humoral immunity, we propose some potential mechanisms underlying T follicular regulatory cell-mediated dysfunction by interactome analysis on T follicular regulatory cells, T follicular helper cells, and B cells during aging. Lastly, spatiotemporal analysis further revealed trajectories of regulatory T-cell aging that demonstrate the most significant changes in marrow and adipose tissues that might contribute to the development of age-related immunosenescence and type 2 diabetes. Taken together, our findings could provide a better understanding of age-associated regulatory T-cell heterogeneity in lymphoid and adipose tissues, as well as regulatory T-cell hallmarks during progressive adaptation to aging that could be therapeutically targeted for rejuvenating the aging immune system in the future.
Collapse
Affiliation(s)
- Kevin Y Yang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Division of Cardiology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Jinyue Liao
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
| | - Zhangjing Ma
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
| | - Hung Fat Tse
- Division of Cardiology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Liwei Lu
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Edifício Egas Moniz, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10 2nd Yuexin Road, Nanshan District, Shenzhen, China
| |
Collapse
|
31
|
Abstract
Recent advances in studies of immune memory in mice and humans have reinforced the concept that memory B cells play a critical role in protection against repeated infections, particularly from variant viruses. Hence, insights into the development of high-quality memory B cells that can generate broadly neutralizing antibodies that bind such variants are key for successful vaccine development. Here, we review the cellular and molecular mechanisms by which memory B cells are generated and how these processes shape the antibody diversity and breadth of memory B cells. Then, we discuss the mechanisms of memory B cell reactivation in the context of established immune memory; the contribution of antibody feedback to this process has now begun to be reappreciated.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
32
|
Xu C, Zhang T, Wang H, Zhu L, Ruan Y, Huang Z, Wang J, Zhu H, Huang C, Pan M. Integrative single-cell analysis reveals distinct adaptive immune signatures in the cutaneous lesions of pemphigus. J Autoimmun 2024; 142:103128. [PMID: 37939532 DOI: 10.1016/j.jaut.2023.103128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Pemphigus, an autoimmune bullous disease affecting the skin and mucosal membranes, is primarily driven by anti-desmoglein (Dsg) autoantibodies. However, the underlying immune mechanisms of this disease remain largely elusive. Here, we compile an unbiased atlas of immune cells in pemphigus cutaneous lesions at single-cell resolution. We reveal clonally expanded antibody-secreting cells (ASCs) that exhibit variable hypermutation and accumulation of IgG4 class-switching in their immunoglobulin genes. Importantly, pathogenic Dsg-specific ASCs are localized within pemphigus lesions and can evolve from both Dsg-autoreactive and non-binding precursors. We observe an altered distribution of CD4+ T cell subsets within pemphigus lesions, including an imbalance of Th17/Th2 cells. Significantly, we identify a distinct subpopulation of Th17 cells expressing CXCL13 and IL-21 within pemphigus lesions, implying its pivotal role in B cell recruitment and local production of autoantibodies. Furthermore, we characterize multiple clonally expanded CD8+ subpopulations, including effector GMZB+ and GMZK+ subsets with augmented cytotoxic activities, within pemphigus lesions. Chemokine-receptor mapping uncovers cell-type-specific signaling programs involved in the recruitment of T/B cells within pemphigus lesions. Our findings significantly contribute to advancing the understanding of the heterogeneous immune microenvironment and the pathogenesis of pemphigus cutaneous lesions, thereby providing valuable insights for potential therapeutic interventions in this disease.
Collapse
Affiliation(s)
- Chuqiao Xu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Zhang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailun Wang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Ruan
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixuan Huang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingying Wang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiqin Zhu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanxin Huang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Meng Pan
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
Zaidi AK, Bajpai S, Dehgani-Mobaraki P. B cell responses to SARS-CoV-2. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 202:155-181. [PMID: 38237985 DOI: 10.1016/bs.pmbts.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This chapter provides an overview of B cell responses in COVID-19, highlighting the structure of SARS-CoV-2 and its impact on B cell immunity. It explores the production and maturation of SARS-CoV-2-specific B cells, with a focus on the two distinct phases of the humoral immune response: the extrafollicular (EF) phase and the germinal center (GC) phase. Furthermore, the interplay between B cells, follicular T helper cells, CD4+ T cells, and plasma cells is discussed, emphasizing their collaborative role in mounting an effective humoral immune response against SARS-CoV-2. The concept of immunological memory is explored, highlighting the roles of plasma cells and B memory cells in providing long-term protection. The chapter delves into the antibody response during SARS-CoV-2 infection, categorizing the types of antibodies generated. This includes a detailed analysis of neutralizing antibodies, such as those directed against the receptor-binding domain (RBD) and the N-terminal domain (NTD), as well as non-neutralizing antibodies. The role of mucosal antibodies, cross-reactive antibodies, and auto-reactive antibodies is also discussed. Factors influencing the dynamics of anti-SARS-CoV-2 antibodies are examined, including the duration and strength of the humoral response. Additionally, the chapter highlights the impact of the Omicron variant on humoral immune responses and its implications for vaccine efficacy and antibody-mediated protection.
Collapse
Affiliation(s)
| | - Sanchit Bajpai
- Consultant ENT & Head and Neck Surgeon at TSM Medical College and Multispeciality Hospital, Lucknow, India.
| | - Puya Dehgani-Mobaraki
- Founder and President, Associazione Naso Sano, Ringgold Institution ID 567754, San Mariano, Italy
| |
Collapse
|
34
|
Deng Y, Ou YY, Mo CJ, Huang L, Qin X. Characteristics and clustering analysis of peripheral blood lymphocyte subsets in children with systemic lupus erythematosus complicated with clinical infection. Clin Rheumatol 2023; 42:3299-3309. [PMID: 37537315 DOI: 10.1007/s10067-023-06716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVES Clinical infection is a common complication in children with systemic lupus erythematosus (SLE). However, few studies have investigated immune alterations in children with SLE complicated with clinical infection. We assessed lymphocyte subsets in children with SLE to explore the possibility of clinical infection. METHODS We retrospectively analyzed the proportion of peripheral lymphocyte subsets in 140 children with SLE. Children with SLE were classified into different clusters according to the proportion of peripheral blood lymphocyte subsets: (CD3 + /CD4 + T cell, CD3 + /CD8 + T cell, CD3 + /CD4 + /CD8 + T cell, CD3 + /CD4-/CD8- T cell, CD19 + B cell, and CD3-/CD16 + /CD56 + NK cell). Differences in the proportion of lymphoid subsets, infection rates, and systemic lupus erythematosus disease activity index (SLEDAI) scores were compared between clusters. In addition, we grouped the subjects according to the presence or absence of infection. Proportions of lymphoid subsets, demographic variables, clinical presentation, and other laboratory variables were compared between the infected and uninfected groups. Finally, the diagnostic ability of lymphocyte subset ratios to distinguish secondary infection in children with SLE was predicted using an ROC curve. RESULTS Cluster C2 had a higher proportion of B cells than Cluster C1, while Cluster C1 had a lower proportion of NK cells, CD3 + T cells, CD3 + /CD4 + T cells, CD3 + /CD8 + T cells, and CD3 + /CD4-/CD8- T cells. Infection rates and SLEDAI scores were higher in Cluster C2 than in Cluster C1. The infected children had a higher proportion of B cells and a lower proportion of CD3 + T cells, CD3 + /CD4 + T cells, CD3 + /CD8 + T cells, and CD3 + /CD4-/CD8- T cells. There were no significant differences in lymphoid subsets between children in Cluster C2 and the infected groups. The area under the ROC curve of B lymphocytes in predicting SLE children with infection was 0.842. The area under the ROC curve was 0.855 when a combination of B cells, NK cells, CD4 + T cells, and CD8 + T cells was used to predict the outcome of coinfection. CONCLUSIONS A high percentage of B cells and a low percentage of CD3 + T cells, CD3 + /CD4 + T cells, CD3 + /CD8 + T cells, CD3 + /CD4 + /CD8 + T cells, and CD3 + /CD4-/CD8- T cells may be associated with infection in children with SLE. B cells was used to predict the outcome of coinfection in children with SLE. Key Points • A high percentage of B cells and a low percentage of CD3 + T cells, CD3 + /CD4 + T cells, CD3 + /CD8 + T cells, CD3 + /CD4 + /CD8 + T cells, and CD3 + /CD4-/CD8- T cells may be associated with infection in children with SLE • B cells was used to predict the outcome of coinfection in children with SLE.
Collapse
Affiliation(s)
- Yan Deng
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ying-Ying Ou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Cui-Ju Mo
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Li Huang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xue Qin
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
35
|
Cha S, Kim MY. The role of cellular prion protein in immune system. BMB Rep 2023; 56:645-650. [PMID: 37817440 PMCID: PMC10761747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Numerous studies have investigated the cellular prion protein (PrPC) since its discovery. These investigations have explained that its structure is predominantly composed of alpha helices and short beta sheet segments, and when its abnormal scrapie isoform (PrPSc) is infected, PrPSc transforms the PrPC, leading to prion diseases, including Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in cattle. Given its ubiquitous distribution across a variety of cellular types, the PrPC manifests a diverse range of biological functions, including cell-cell adhesion, neuroprotection, signalings, and oxidative stress response. PrPC is also expressed in immune tissues, and its functions in these tissues include the activation of immune cells and the formation of secondary lymphoid tissues, such as the spleen and lymph nodes. Moreover, high expression of PrPC in immune cells plays a crucial role in the pathogenesis of prion diseases. In addition, it affects inflammation and the development and progression of cancer via various mechanisms. In this review, we discuss the studies on the role of PrPC from various immunological perspectives. [BMB Reports 2023; 56(12): 645-650].
Collapse
Affiliation(s)
- Seunghwa Cha
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| | - Mi-Yeon Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
36
|
Cha S, Kim MY. The role of cellular prion protein in immune system. BMB Rep 2023; 56:645-650. [PMID: 37817440 PMCID: PMC10761747 DOI: 10.5483/bmbrep.2023-0151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2024] Open
Abstract
Numerous studies have investigated the cellular prion protein (PrPC) since its discovery. These investigations have explained that its structure is predominantly composed of alpha helices and short beta sheet segments, and when its abnormal scrapie isoform (PrPSc) is infected, PrPSc transforms the PrPC, leading to prion diseases, including Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in cattle. Given its ubiquitous distribution across a variety of cellular types, the PrPC manifests a diverse range of biological functions, including cell-cell adhesion, neuroprotection, signalings, and oxidative stress response. PrPC is also expressed in immune tissues, and its functions in these tissues include the activation of immune cells and the formation of secondary lymphoid tissues, such as the spleen and lymph nodes. Moreover, high expression of PrPC in immune cells plays a crucial role in the pathogenesis of prion diseases. In addition, it affects inflammation and the development and progression of cancer via various mechanisms. In this review, we discuss the studies on the role of PrPC from various immunological perspectives. [BMB Reports 2023; 56(12): 645-650].
Collapse
Affiliation(s)
- Seunghwa Cha
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| | - Mi-Yeon Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
37
|
Wu C, Xu J, Zhang Z, Wei D, Xu Y, Zhao Y. The Effects of IL-23/IL-18-Polarized Neutrophils on Renal Ischemia-Reperfusion Injury and Allogeneic-Skin-Graft Rejection in Mice. Biomedicines 2023; 11:3148. [PMID: 38137369 PMCID: PMC10740676 DOI: 10.3390/biomedicines11123148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Neutrophils display heterogeneity and plasticity with different subgroups and immune-regulatory functions under various surrounding conditions. Neutrophils induced by IL-23/IL-18 (referred to N(IL-23+IL-18) neutrophils) have a unique gene-expression profile, with highly expressing IL-17, MHC-II, and costimulatory molecules. The adoptive transfer of N(IL-23+IL-18) neutrophils significantly increased the pathogenesis in a renal ischemia-reperfusion injury mouse model. N(IL-23+IL-18) neutrophils directly and efficiently induced allogeneic T cell proliferation in vitro. N(IL-23+IL-18) neutrophils enhanced the syngeneic T cell response to allogeneic antigens in mixed-lymphocyte reaction assays. The adoptive transfer of the donor or host N(IL-23+IL-18) neutrophils significantly enhanced the antidonor antibody production in an allogeneic-skin-transplanted mouse model, accompanied by increased Tfh cells in the spleens. Therefore, the neutrophil subset induced by IL-23/IL-18 promotes tissue injury and antidonor humoral response in the allogeneic transplantation mouse model.
Collapse
Affiliation(s)
- Changhong Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100045, China; (C.W.); (J.X.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jinglin Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100045, China; (C.W.); (J.X.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhaoqi Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Z.); (D.W.)
| | - Dong Wei
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Z.); (D.W.)
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100045, China; (C.W.); (J.X.); (Y.X.)
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100045, China; (C.W.); (J.X.); (Y.X.)
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Z.); (D.W.)
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
| |
Collapse
|
38
|
Podestà MA, Cavazzoni CB, Hanson BL, Bechu ED, Ralli G, Clement RL, Zhang H, Chandrakar P, Lee JM, Reyes-Robles T, Abdi R, Diallo A, Sen DR, Sage PT. Stepwise differentiation of follicular helper T cells reveals distinct developmental and functional states. Nat Commun 2023; 14:7712. [PMID: 38001088 PMCID: PMC10674016 DOI: 10.1038/s41467-023-43427-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Follicular helper T (Tfh) cells are essential for the formation of high affinity antibodies after vaccination or infection. Although the signals responsible for initiating Tfh differentiation from naïve T cells have been studied, the signals controlling sequential developmental stages culminating in optimal effector function are not well understood. Here we use fate mapping strategies for the cytokine IL-21 to uncover sequential developmental stages of Tfh differentiation including a progenitor-like stage, a fully developed effector stage and a post-effector Tfh stage that maintains transcriptional and epigenetic features without IL-21 production. We find that progression through these stages are controlled intrinsically by the transcription factor FoxP1 and extrinsically by follicular regulatory T cells. Through selective deletion of Tfh stages, we show that these cells control antibody dynamics during distinct stages of the germinal center reaction in response to a SARS-CoV-2 vaccine. Together, these studies demonstrate the sequential phases of Tfh development and how they promote humoral immunity.
Collapse
Affiliation(s)
- Manuel A Podestà
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Renal Division, Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Cecilia B Cavazzoni
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin L Hanson
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elsa D Bechu
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Garyfallia Ralli
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel L Clement
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hengcheng Zhang
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pragya Chandrakar
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeong-Mi Lee
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alos Diallo
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Debattama R Sen
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Peter T Sage
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Álvarez K, Palacio J, Agudelo NA, Anacona CA, Castaño D, Vásquez G, Rojas M. B cell-targeted polylactic acid nanoparticles as platform for encapsulating jakinibs: potential therapeutic strategy for systemic lupus erythematosus. Nanomedicine (Lond) 2023; 18:2001-2019. [PMID: 38084660 DOI: 10.2217/nnm-2023-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Background: B cells are pivotal in systemic lupus erythematosus and autoimmune disease pathogenesis. Materials & methods: To address this, Nile Red-labeled polylactic acid nanoparticles (NR-PLA NPs) loaded with the JAK inhibitor baricitinib (BARI), specifically targeting JAK1 and JAK2 in B cells, were developed. Results: Physicochemical characterization confirmed NP stability over 30 days. NR-PLA NPs were selectively bound and internalized by CD19+ B cells, sparing other leukocytes. In contrast to NR-PLA NPs, BARI-NR-PLA NPs significantly dampened B-cell activation, proliferation and plasma cell differentiation in healthy controls. They also inhibited key cytokine production. These effects often surpassed those of equimolar-free BARI. Conclusion: This study underscores the potential of PLA NPs to regulate autoreactive B cells, offering a novel therapeutic avenue for autoimmune diseases.
Collapse
Affiliation(s)
- Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Universidad de Antioquia, Calle 70 No. 52-21 & Calle 62 No. 52-59, Torre 1, Lab. 510; Medellín, Colombia
| | - Juliana Palacio
- Grupo De Investigación Ciencia de Los Materiales, Instituto de Química, Universidad de Antioquia, Calle 70 No. 52-21 & Calle 62 No. 52-59, Torre 1, Lab. 310; Medellín, Colombia
- Escuela de Química, Universidad Nacional de Colombia, Sede Medellín, Carrera 65A No. 59A-110, Medellín, Colombia
| | - Natalia A Agudelo
- Grupo de Investigación e Innovación en Formulaciones Químicas, Escuela de Ingeniería y Ciencias Básicas, Universidad EIA, Envigado, Colombia
| | - Cristian A Anacona
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Universidad de Antioquia, Calle 70 No. 52-21 & Calle 62 No. 52-59, Torre 1, Lab. 510; Medellín, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Universidad de Antioquia, Calle 70 No. 52-21 & Calle 62 No. 52-59, Torre 1, Lab. 510; Medellín, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Universidad de Antioquia, Calle 70 No. 52-21 & Calle 62 No. 52-59, Torre 1, Lab. 510; Medellín, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Universidad de Antioquia, Calle 70 No. 52-21 & Calle 62 No. 52-59, Torre 1, Lab. 510; Medellín, Colombia
- Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia, Calle 62 No. 52-59, Medellín, 050010, Colombia
| |
Collapse
|
40
|
Shehata L, Thouvenel CD, Hondowicz BD, Pew LA, Rawlings DJ, Choi J, Pepper M. IL-4 downregulates BCL6 to promote memory B cell selection in germinal centers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525749. [PMID: 36747852 PMCID: PMC9900890 DOI: 10.1101/2023.01.26.525749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Germinal center (GC)-derived memory B cells (MBCs) are critical for humoral immunity as they differentiate into protective antibody-secreting cells during re-infection. GC formation and cellular interactions within the GC have been studied in detail, yet the exact signals that allow for the selection and exit of MBCs are not understood. Here, we show that IL-4 signaling in GC B cells directly downregulates BCL6 via negative autoregulation to release cells from the GC program and promote MBC formation. This selection event requires additional survival cues and can therefore result in either GC exit or death. We demonstrate that both increasing IL-4 bioavailability or limiting IL-4 signaling disrupt MBC selection stringency. In this way, IL-4 control of BCL6 expression serves as a tunable switch within the GC to tightly regulate MBC selection and affinity maturation.
Collapse
|
41
|
Petersone L, Wang CJ, Edner NM, Fabri A, Nikou SA, Hinze C, Ross EM, Ntavli E, Elfaki Y, Heuts F, Ovcinnikovs V, Rueda Gonzalez A, Houghton LP, Li HM, Zhang Y, Toellner KM, Walker LSK. IL-21 shapes germinal center polarization via light zone B cell selection and cyclin D3 upregulation. J Exp Med 2023; 220:e20221653. [PMID: 37466652 PMCID: PMC10355162 DOI: 10.1084/jem.20221653] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/06/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Germinal center (GC) dysregulation has been widely reported in the context of autoimmunity. Here, we show that interleukin 21 (IL-21), the archetypal follicular helper T cell (Tfh) cytokine, shapes the scale and polarization of spontaneous chronic autoimmune as well as transient immunization-induced GC. We find that IL-21 receptor deficiency results in smaller GC that are profoundly skewed toward a light zone GC B cell phenotype and that IL-21 plays a key role in selection of light zone GC B cells for entry to the dark zone. Light zone skewing has been previously reported in mice lacking the cell cycle regulator cyclin D3. We demonstrate that IL-21 triggers cyclin D3 upregulation in GC B cells, thereby tuning dark zone inertial cell cycling. Lastly, we identify Foxo1 regulation as a link between IL-21 signaling and GC dark zone formation. These findings reveal new biological roles for IL-21 within GC and have implications for autoimmune settings where IL-21 is overproduced.
Collapse
Affiliation(s)
- Lina Petersone
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Chun Jing Wang
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Natalie M Edner
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Astrid Fabri
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Spyridoula-Angeliki Nikou
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Claudia Hinze
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Ellen M Ross
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Elisavet Ntavli
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Yassin Elfaki
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Frank Heuts
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Vitalijs Ovcinnikovs
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Andrea Rueda Gonzalez
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Luke P Houghton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Hannah M Li
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham , Birmingham, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham , Birmingham, UK
| | - Lucy S K Walker
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| |
Collapse
|
42
|
Xie L, Fang J, Yu J, Zhang W, He Z, Ye L, Wang H. The role of CD4 + T cells in tumor and chronic viral immune responses. MedComm (Beijing) 2023; 4:e390. [PMID: 37829505 PMCID: PMC10565399 DOI: 10.1002/mco2.390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapies are mainly aimed to promote a CD8+ T cell response rather than a CD4+ T cell response as cytotoxic T lymphocytes (CTLs) can directly kill target cells. Recently, CD4+ T cells have received more attention due to their diverse roles in tumors and chronic viral infections. In antitumor and antichronic viral responses, CD4+ T cells relay help signals through dendritic cells to indirectly regulate CD8+ T cell response, interact with B cells or macrophages to indirectly modulate humoral immunity or macrophage polarization, and inhibit tumor blood vessel formation. Additionally, CD4+ T cells can also exhibit direct cytotoxicity toward target cells. However, regulatory T cells exhibit immunosuppression and CD4+ T cells become exhausted, which promote tumor progression and chronic viral persistence. Finally, we also outline immunotherapies based on CD4+ T cells, including adoptive cell transfer, vaccines, and immune checkpoint blockade. Overall, this review summarizes diverse roles of CD4+ T cells in the antitumor or protumor and chronic viral responses, and also highlights the immunotherapies based on CD4+ T cells, giving a better understanding of their roles in tumors and chronic viral infections.
Collapse
Affiliation(s)
- Luoyingzi Xie
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingyi Fang
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Juncheng Yu
- Department of Thoracic SurgeryXinqiao Hospital Third Military Medical University (Army Medical University)ChongqingChina
| | - Weinan Zhang
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Zhiqiang He
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Lilin Ye
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
| |
Collapse
|
43
|
Liu Z, Alexander JL, Le K, Zhou X, Ibraheim H, Anandabaskaran S, Saifuddin A, Lin KW, McFarlane LR, Constable L, Seoane RC, Anand N, Bewshea C, Nice R, D'Mello A, Jones GR, Balarajah S, Fiorentino F, Sebastian S, Irving PM, Hicks LC, Williams HRT, Kent AJ, Linger R, Parkes M, Kok K, Patel KV, Teare JP, Altmann DM, Boyton RJ, Hart AL, Lees CW, Goodhand JR, Kennedy NA, Pollock KM, Ahmad T, Powell N. Neutralising antibody responses against SARS-CoV-2 Omicron BA.4/5 and wild-type virus in patients with inflammatory bowel disease following three doses of COVID-19 vaccine (VIP): a prospective, multicentre, cohort study. EClinicalMedicine 2023; 64:102249. [PMID: 37842172 PMCID: PMC10570718 DOI: 10.1016/j.eclinm.2023.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Background Patients with inflammatory bowel disease (IBD) receiving anti-TNF and JAK-inhibitor therapy have attenuated responses to COVID-19 vaccination. We aimed to determine how IBD treatments affect neutralising antibody responses against the Omicron BA.4/5 variant. Methods In this multicentre cohort study, we prospectively recruited 340 adults (69 healthy controls and 271 IBD) at nine UK hospitals between May 28, 2021 and March 29, 2022. The IBD study population was established (>12 weeks therapy) on either thiopurine (n = 63), infliximab (n = 45), thiopurine and infliximab combination therapy (n = 48), ustekinumab (n = 45), vedolizumab (n = 46) or tofacitinib (n = 24). Patients were excluded if they were being treated with any other immunosuppressive therapies. Participants had two doses of either ChAdOx1 nCoV-19 or BNT162b2 vaccines, followed by a third dose of either BNT162b2 or mRNA1273. Pseudo-neutralisation assays against SARS-CoV-2 wild-type and BA.4/5 were performed. The half maximal inhibitory concentration (NT50) of participant sera was calculated. The primary outcome was anti-SARS-CoV-2 neutralising response against wild-type virus and Omicron BA.4/5 variant after the second and third doses of anti-SARS-CoV-2 vaccine, stratified by immunosuppressive therapy, adjusting for prior infection, vaccine type, age, and interval between vaccination and blood collection. This study is registered with ISRCTN (No. 13495664). Findings Both heterologous (first two doses adenovirus vaccine, third dose mRNA vaccine) and homologous (three doses mRNA vaccine) vaccination strategies significantly increased neutralising titres against both wild-type SARS-CoV-2 virus and the Omicron BA.4/5 variant in healthy participants and patients with IBD. Antibody titres against BA.4/5 were significantly lower than antibodies against wild-type virus in both healthy participants and patients with IBD (p < 0.0001). Multivariable models demonstrated that neutralising antibodies against BA.4/5 after three doses of vaccine were significantly lower in patients with IBD on infliximab (Geometric Mean Ratio (GMR) 0.19 [0.10, 0.36], p < 0.0001), infliximab and thiopurine combination (GMR 0.25 [0.13, 0.49], p < 0.0001) or tofacitinib (GMR 0.43 [0.20, 0.91], p = 0.028), but not in patients on thiopurine monotherapy, ustekinumab, or vedolizumab. Breakthrough infection was associated with lower neutralising antibodies against wild-type (p = 0.037) and BA.4/5 (p = 0.045). Interpretation A third dose of a COVID-19 mRNA vaccine based on the wild-type spike glycoprotein significantly boosts neutralising antibody titres in patients with IBD. However, responses are lower against the Omicron variant BA.4/5, particularly in patients taking anti-TNF and JAK-inhibitor therapy. Breakthrough infections are associated with lower neutralising antibodies and immunosuppressed patients with IBD may receive additional benefit from bivalent vaccine boosters which target Omicron variants. Funding Pfizer.
Collapse
Affiliation(s)
- Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - James L. Alexander
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, London, UK
| | - Kaixing Le
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Xin Zhou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Hajir Ibraheim
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, London, UK
| | - Sulak Anandabaskaran
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Gastroenterology, St Marks Hospital and Academic Institute, Gastroenterology, London, UK
| | - Aamir Saifuddin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Gastroenterology, St Marks Hospital and Academic Institute, Gastroenterology, London, UK
| | - Kathy Weitung Lin
- Department of Infectious Disease, Imperial College London, London, UK
| | - Leon R. McFarlane
- Department of Infectious Disease, Imperial College London, London, UK
| | - Laura Constable
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Rocio Castro Seoane
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Nikhil Anand
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Claire Bewshea
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Rachel Nice
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
- Department of Clinical Chemistry, Exeter Clinical Laboratory International, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Andrea D'Mello
- Division of Medicine & Integrated Care, Imperial College Healthcare NHS Trust, London, UK
| | - Gareth R. Jones
- Department of Gastroenterology, Western General Hospital, NHS Lothian, Edinburgh, UK
- Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Sharmili Balarajah
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, London, UK
| | - Francesca Fiorentino
- Department of Surgery and Cancer, Imperial College London, London, UK
- Nightingale-Saunders Clinical Trials & Epidemiology Unit (King’s Clinical Trials Unit), King’s College London, London, UK
| | - Shaji Sebastian
- Department of Gastroenterology, Hull University Teaching Hospitals NHS Trust, Hull, UK
- Hull York Medical School, University of Hull, Hull, UK
| | - Peter M. Irving
- Department of Gastroenterology, Guy's and St Thomas' NHS Foundation Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Lucy C. Hicks
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, London, UK
| | - Horace RT. Williams
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, London, UK
| | | | - Rachel Linger
- The NIHR Bioresource, University of Cambridge, Cambridge, UK
| | - Miles Parkes
- The NIHR Bioresource, University of Cambridge, Cambridge, UK
- Department of Gastroenterology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Klaartje Kok
- Department of Gastroenterology, Bart's Health NHS Trust, London, UK
| | - Kamal V. Patel
- Department of Gastroenterology, St George's Hospital NHS Trust, London, UK
| | - Julian P. Teare
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, London, UK
| | - Daniel M. Altmann
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Rosemary J. Boyton
- Department of Infectious Disease, Imperial College London, London, UK
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Ailsa L. Hart
- Department of Gastroenterology, St Marks Hospital and Academic Institute, Gastroenterology, London, UK
| | - Charlie W. Lees
- Department of Gastroenterology, Western General Hospital, NHS Lothian, Edinburgh, UK
- Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - James R. Goodhand
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
- Department of Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Nicholas A. Kennedy
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
- Department of Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Katrina M. Pollock
- Department of Infectious Disease, Imperial College London, London, UK
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, UK
| | - Tariq Ahmad
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
- Department of Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Nick Powell
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
44
|
Burke B, Rocha SM, Zhan S, Eckley M, Reasoner C, Addetia A, Lewis J, Fagre A, Charley PA, Richt JA, Weiss SR, Tjalkens RB, Veesler D, Aboellail T, Schountz T. Regulatory T cell-like response to SARS-CoV-2 in Jamaican fruit bats (Artibeus jamaicensis) transduced with human ACE2. PLoS Pathog 2023; 19:e1011728. [PMID: 37856551 PMCID: PMC10617724 DOI: 10.1371/journal.ppat.1011728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 10/31/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Insectivorous Old World horseshoe bats (Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats. Previous experimental challenges of Egyptian fruit bats (Rousettus aegyptiacus) resulted in limited infection restricted to the respiratory tract, whereas insectivorous North American big brown bats (Eptesicus fuscus) showed no evidence of infection. In the present study, we challenged Jamaican fruit bats (Artibeus jamaicensis) with SARS-CoV-2 to determine their susceptibility. Infection was confined to the intestine for only a few days with prominent viral nucleocapsid antigen in epithelial cells, and mononuclear cells of the lamina propria and Peyer's patches, but with no evidence of infection of other tissues; none of the bats showed visible signs of disease or seroconverted. Expression levels of ACE2 were low in the lungs, which may account for the lack of pulmonary infection. Bats were then intranasally inoculated with a replication-defective adenovirus encoding human ACE2 and 5 days later challenged with SARS-CoV-2. Viral antigen was prominent in lungs for up to 14 days, with loss of pulmonary cellularity during this time; however, the bats did not exhibit weight loss or visible signs of disease. From day 7, bats had low to moderate IgG antibody titers to spike protein by ELISA, and one bat on day 10 had low-titer neutralizing antibodies. CD4+ helper T cells became activated upon ex vivo recall stimulation with SARS-CoV-2 nucleocapsid peptide library and exhibited elevated mRNA expression of the regulatory T cell cytokines interleukin-10 and transforming growth factor-β, which may have limited inflammatory pathology. Collectively, these data show that Jamaican fruit bats are poorly susceptible to SARS-CoV-2 but that expression of human ACE2 in their lungs leads to robust infection and an adaptive immune response with low-titer antibodies and a regulatory T cell-like response that may explain the lack of prominent inflammation in the lungs. This model will allow for insight of how SARS-CoV-2 infects bats and how bat innate and adaptive immune responses engage the virus without overt clinical disease.
Collapse
Affiliation(s)
- Bradly Burke
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Savannah M. Rocha
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Shijun Zhan
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Miles Eckley
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Clara Reasoner
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Juliette Lewis
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Anna Fagre
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Phillida A. Charley
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Juergen A. Richt
- Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ronald B. Tjalkens
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Tawfik Aboellail
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
45
|
Topchyan P, Lin S, Cui W. The Role of CD4 T Cell Help in CD8 T Cell Differentiation and Function During Chronic Infection and Cancer. Immune Netw 2023; 23:e41. [PMID: 37970230 PMCID: PMC10643329 DOI: 10.4110/in.2023.23.e41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
CD4 and CD8 T cells are key players in the immune response against both pathogenic infections and cancer. CD4 T cells provide help to CD8 T cells via multiple mechanisms, including licensing dendritic cells (DCs), co-stimulation, and cytokine production. During acute infection and vaccination, CD4 T cell help is important for the development of CD8 T cell memory. However, during chronic viral infection and cancer, CD4 helper T cells are critical for the sustained effector CD8 T cell response, through a variety of mechanisms. In this review, we focus on T cell responses in conditions of chronic Ag stimulation, such as chronic viral infection and cancer. In particular, we address the significant role of CD4 T cell help in promoting effector CD8 T cell responses, emerging techniques that can be utilized to further our understanding of how these interactions may take place in the context of tertiary lymphoid structures, and how this key information can be harnessed for therapeutic utility against cancer.
Collapse
Affiliation(s)
- Paytsar Topchyan
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Siying Lin
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
46
|
Vijay GKM, Zhou M, Thakkar K, Rothrauff A, Chawla AS, Chen D, Lau LCW, Habib P, Chetal K, Chhibbar P, Fan J, Das J, Joglekar A, Borghesi L, Salomonis N, Xu H, Singh H. Temporal dynamics and genomic programming of plasma cell fates. RESEARCH SQUARE 2023:rs.3.rs-3296446. [PMID: 37720050 PMCID: PMC10503833 DOI: 10.21203/rs.3.rs-3296446/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Affinity-matured plasma cells (PCs) of varying lifespans are generated through a germinal center (GC) response. The developmental dynamics and genomic programs of antigen-specific PC precursors remain to be elucidated. Using a model antigen, we demonstrate biphasic generation of PC precursors, with those generating long-lived bone marrow PCs preferentially produced in the late phase of GC response. Clonal tracing using scRNA-seq+BCR-seq in spleen and bone marrow compartments, coupled with adoptive transfer experiments, reveal a novel PC transition state that gives rise to functionally competent PC precursors. The latter undergo clonal expansion, dependent on inducible expression of TIGIT. We propose a model for the proliferation and programming of precursors of long-lived PCs, based on extended antigen encounters followed by reduced antigen availability.
Collapse
Affiliation(s)
- Godhev Kumar Manakkat Vijay
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- These authors contributed equally
| | - Ming Zhou
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- These authors contributed equally
| | - Kairavee Thakkar
- Division of Bioinformatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio, USA
- Department of Pharmacology and Physiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
- These authors contributed equally
| | - Abigail Rothrauff
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanpreet Singh Chawla
- Division of Immunobiology, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dianyu Chen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Louis Chi-Wai Lau
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Habib
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kashish Chetal
- Division of Bioinformatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio, USA
| | - Prabal Chhibbar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingyu Fan
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa Borghesi
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan Salomonis
- Division of Bioinformatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio, USA
| | - Heping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Harinder Singh
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Cui C, Craft J, Joshi NS. T follicular helper cells in cancer, tertiary lymphoid structures, and beyond. Semin Immunol 2023; 69:101797. [PMID: 37343412 DOI: 10.1016/j.smim.2023.101797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
With the emergence and success of checkpoint blockade immunotherapy, immuno-oncology has primarily focused on CD8 T cells, whose cytotoxic programs directly target tumor cells. However, the limited response rate of current immunotherapy regimens has prompted investigation into other types of tumor-infiltrating immune cells, such as CD4 T cells and B cells, and how they interact with CD8 T cells in a coordinated network. Recent studies have demonstrated the potential therapeutic benefits of CD4 T follicular helper (TFH) cells and B cells in cancer, highlighting the important role of their crosstalk and interactions with other immune cell components in the tumor microenvironment. These interactions also occur in tumor-associated tertiary lymphoid structures (TLS), which resemble secondary lymphoid organs (SLOs) with orchestrated vascular, chemokine, and cellular infrastructures that support the developmental pathways of functional immune cells. In this review, we discuss recent breakthroughs on TFH biology and T cell-B cell interactions in tumor immunology, and their potential as novel therapeutic targets to advance cancer treatment.
Collapse
Affiliation(s)
- Can Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joseph Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine (Rheumatology, Allergy and Immunology), Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
48
|
Harker JA, Greene TT, Barnett BE, Bao P, Dolgoter A, Zuniga EI. IL-6 and IL-27 play both distinct and redundant roles in regulating CD4 T-cell responses during chronic viral infection. Front Immunol 2023; 14:1221562. [PMID: 37583704 PMCID: PMC10424726 DOI: 10.3389/fimmu.2023.1221562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
The IL-6 cytokine family signals through the common signal transduction molecule gp130 combined with a cytokine-specific receptor. Gp130 signaling on CD4 T cells is vital in controlling chronic infection of mice with lymphocytic choriomeningitis virus clone 13 (LCMV Cl13), but the precise role of individual members of the IL-6 cytokine family is not fully understood. Transcriptional analysis highlighted the importance of gp130 signaling in promoting key processes in CD4 T cells after LCMV Cl13 infection, particularly genes associated with T follicular helper (Tfh) cell differentiation and IL-21 production. Further, Il27r-/-Il6ra-/- mice failed to generate antibody or CD8 T-cell immunity and to control LCMV Cl13. Transcriptomics and phenotypic analyses of Il27r-/-Il6ra-/- Tfh cells revealed that IL-6R and IL-27R signaling was required to activate key pathways within CD4 T cells. IL-6 and IL-27 signaling has distinct and overlapping roles, with IL-6 regulating Tfh differentiation, IL-27 regulating CD4 T cell survival, and both redundantly promoting IL-21.
Collapse
Affiliation(s)
- James A. Harker
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Trever T. Greene
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Burton E. Barnett
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Phuc Bao
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Aleksandr Dolgoter
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Elina I. Zuniga
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
49
|
Grimsholm O. CD27 on human memory B cells-more than just a surface marker. Clin Exp Immunol 2023; 213:164-172. [PMID: 36508329 PMCID: PMC10361737 DOI: 10.1093/cei/uxac114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 07/23/2023] Open
Abstract
Immunological memory protects the human body from re-infection with an earlier recognized pathogen. This memory comprises the durable serum antibody titres provided by long-lived plasma cells and the memory T and B cells with help from other cells. Memory B cells are the main precursor cells for new plasma cells during a secondary infection. Their formation starts very early in life, and they continue to form and undergo refinements throughout our lifetime. While the heterogeneity of the human memory B-cell pool is still poorly understood, specific cellular surface markers define most of the cell subpopulations. CD27 is one of the most commonly used markers to define human memory B cells. In addition, there are molecular markers, such as somatic mutations in the immunoglobulin heavy and light chains and isotype switching to, for example, IgG. Although not every memory B cell undergoes somatic hypermutation or isotype switching, most of them express these molecular traits in adulthood. In this review, I will focus on the most recent knowledge regarding CD27+ human memory B cells in health and disease, and describe how Ig sequencing can be used as a tool to decipher the evolutionary pathways of these cells.
Collapse
Affiliation(s)
- Ola Grimsholm
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, AT-1090 Vienna, Austria
| |
Collapse
|
50
|
Gail LM, Schell KJ, Łacina P, Strobl J, Bolton SJ, Steinbakk Ulriksen E, Bogunia-Kubik K, Greinix H, Crossland RE, Inngjerdingen M, Stary G. Complex interactions of cellular players in chronic Graft-versus-Host Disease. Front Immunol 2023; 14:1199422. [PMID: 37435079 PMCID: PMC10332803 DOI: 10.3389/fimmu.2023.1199422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic Graft-versus-Host Disease is a life-threatening inflammatory condition that affects many patients after allogeneic hematopoietic stem cell transplantation. Although we have made substantial progress in understanding disease pathogenesis and the role of specific immune cell subsets, treatment options are still limited. To date, we lack a global understanding of the interplay between the different cellular players involved, in the affected tissues and at different stages of disease development and progression. In this review we summarize our current knowledge on pathogenic and protective mechanisms elicited by the major involved immune subsets, being T cells, B cells, NK cells and antigen presenting cells, as well as the microbiome, with a special focus on intercellular communication of these cell types via extracellular vesicles as up-and-coming fields in chronic Graft-versus-Host Disease research. Lastly, we discuss the importance of understanding systemic and local aberrant cell communication during disease for defining better biomarkers and therapeutic targets, eventually enabling the design of personalized treatment schemes.
Collapse
Affiliation(s)
- Laura Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kimberly Julia Schell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Steven J. Bolton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Hildegard Greinix
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Rachel Emily Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|